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Abstract. Let M be an invariant subspace of L2(T2). Considering the largest z-

invariant (resp. w-invariant) subspace Fz (resp. Fw) in the wandering subspace M ª
zwM of M with respect to the shift operator zw. If Fw 6= {0} and Fz 6= {0}, then we

consider the certain form of invariant subspaces M of L2(T2). Furthermore, we study

certain classes of invariant subspaces of L2(T2).
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1. Introduction and preliminaries

Let T2 be the torus that is the cartesian product of 2 unit circles in
C. Let L2(T2) and H2(T2) be the usual Lebesgue and Hardy space on
the torus T2, respectively. A closed subspace M of L2(T2) is said to be
invariant if zM ⊂ M and wM ⊂ M. As is well known, the structure of
invariant subspaces is much more complicated. In general, the invariant
subspaces of L2(T2) are not necessarily of the form φH2(T2) with some
unimodular function φ. The structure of Beurling-type invariant subspaces
has been studied, and some necessary and sufficient conditions for invariant
subspaces to be Beurling-type have been given (cf. [1, 2, 5], etc). Further,
many authors had attempted to study the form of invariant subspaces of
L2(T2) (cf. [4, 6, 7], etc).

In [4], we studied the structure of an invariant subspace M as a zw-
invariant subspace. We gave an alternative approach of Beuring-type in-
variant subspaces and a certain class of invariant subspace which contains
the class of invariant subspaces of the form φH2

0 (T2), where H2
0 (T2) = {f ∈

H2(T2) : f(0, 0) = 0} and φ is a unimodular function in L∞(T2).
For (m, n) ∈ Z2 and f ∈ L2(T2), the Fourier coefficient of f is defined

by
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f̂(m, n) =
∫

T2

f(z, w)zmwndµ,

where µ is the Haar measure on T2. Let supp f̂ = {(m, n) ∈ Z2 : f̂(m, n) 6=
0}. For a subset A of L2(T2), we denote the closed subspace [A] generated
by A in L2(T2). We define several subspaces of L2(T2) which will be used
later.
( i ) H2(z) or H2(w) is the set of f (in L2(T2)) with Fourier series:

∞∑
m=0

am0z
m or

∞∑
n=0

a0nwn,

respectively.
( ii ) H2

z or H2
w is the set of f with Fourier series:

∞∑
m=−∞

∞∑
n=0

amnzmwn or
∞∑

n=−∞

∞∑
m=0

amnzmwn,

respectively.
(iii) L2

z or L2
w is the set of f with Fourier series:

∞∑
m=−∞

am0z
m or

∞∑
n=−∞

a0nwn,

respectively.
Let M be a zw-invariant subspace of L2(T2). Put F = M ª zwM,

Sz = M ª zM and Sw = M ª wM, respectively. Let Fz (resp. Fw) be the
largest z-invariant (resp. w-invariant) subspace of F. In § 2, we characterize
invariant subspaces of L2(T2), where Fz 6= 0 and Fw 6= 0. Then there exist
two unimodular functions φz and φw in L∞(T2) such that Fz = φzH

2(z)
and Fw = φwH2(w). Putting ϕ = φwφz, we consider the invariant subspace

Mϕ = [H2(T2) + ϕH2(T2)].

Then we remark that M is of the form φw(Mϕ⊕N), where N = φwMªMϕ

(see Theorem 2.8). In § 3, let ϕ be a unimodular function of L∞(T2) such
that supp ϕ̂ ⊂ Z+ × (−Z+). Then we characterize the invariant subspace
Mϕ. Further, we consider the sufficient condition that Fw = H2(w) and
Fz = ϕH2(z) with respect to M = Mϕ. In § 4, as a generalization of [4],
we consider the invariant subspace

M(m,n)
α = [H2(T2) + ψ(m,n)

α H2(T2)]



Invariant subspace of L2(T2) 495

(see the definition of ψ
(m,n)
α in § 4). Then we consider the necessary and

suffcient condition that an invariant subspace M is of the form M
(m,n)
α for

some α ∈ D where D = {z ∈ C : |z| < 1} (see Theorem 4.2).

2. Invariant subspaces as zw-invariant subspaces

Let M be an invariant subspace of L2(T2). Since znM ⊃ zn+1M (resp.
wnM ⊃ wn+1M) for n ∈ Z+,

⋂∞
k=1 zkM (resp.

⋂∞
k=1 wkM) is also an in-

variant subspace. If
⋂∞

k=1 zkM = {0} (resp.
⋂∞

k=1 wkM = {0}), we say
that M is z-pure (resp. w-pure). If zM = M (resp. wM = M), we say
that M is z-reducing (resp. w-reducing). The structure of z-reducing (resp.
w-reducing) invariant subspaces has been characterized in [7].

Since M is an invariant subspace, M is also a zw-invariant subspace
and (zw)nM ⊃ (zw)n+1M for n ∈ Z+. If

⋂∞
k=1(zw)kM = {0}, then we say

that M is zw-pure. If zwM = M, we say that M is zw-reducing. First, we
have the following proposition.

Proposition 2.1 Let M be an invariant subspace of L2(T2). Then
( i ) If M is either z-pure or w-pure, then M is zw-pure.
(ii) M is zw-reducing if and only if M is z-reducing and w-reducing.

If M is zw-reducing, then by [6] and [7] the form of M is well-known.
Throughout this note, we assume without loss of generality that M is zw-
pure. Put F = Mª zwM, Sz = Mª zM and Sw = MªwM, respectively.
Then we easily have

Proposition 2.2 Keep the notations and assumptions as above. Then
( i ) M =

∑∞
k=0 ⊕zkSz ⊕

⋂∞
k=1 zkM =

∑∞
k=0 ⊕wkSw ⊕

⋂∞
k=1 wkM =∑∞

k=0 ⊕(zw)kF.
(ii) F = Sz ⊕ zSw = Sw ⊕ wSz.

Let Fz (resp. Fw) be the largest z-invariant (resp. w-invariant) subspace
in F. It is clear that Fz =

⋂∞
k=0 zkF, Fw =

⋂∞
k=0 wkF, Fz ⊂ Sw and Fw ⊂

Sz.

Proposition 2.3 Keep the notations and the assumptions as above. Then
Fz (resp. Fw) is the largest z-invariant (resp. w-invariant) subspace in Sw

(resp. Sz).



496 A. Hasegawa, G. Ji, T. Ohwada and K.-S. Saito

Proof. Since Sz ⊂ F, we have
⋂∞

k=0 wkSz ⊂
⋂∞

k=0 wkF = Fw. Conversely,
for all f ∈ Fw there exists fn ∈ F such that f = wnfn. Then for all g ∈ M,
we have

〈wnf, zg〉 = 〈wn+1f, zwg〉 = 〈fn+1, zwg〉 = 0.

Thus wnf ∈ Sz and so f ∈ wnSz. This implies that
⋂∞

k=0 wkSz = Fw.
This completes the proof. ¤

Proposition 2.4 (cf. [4, Proposition 2]) Let M be a zw-pure invariant
subspace of L2(T2). Then:
( i ) zFz ( Fz if and only if there exists a unimodular function φz ∈ L∞(T2)

such that Fz = φzH
2(z).

(ii) Fz = zFz 6= {0} if and only if M = χEqH2
z , where q is a unimodular

function of L∞(T2), and χE is the characteristic function of a Borel
subset E of T2 with χE (6= 0) ∈ L2

z. In this case, F = Fz and Fw =
{0}.

Similarly, we have the following result about Fw.

Proposition 2.5 (cf. [4, Proposition 3]) Let M be a zw-pure invariant
subspace of L2(T2). Then:
( i ) wFw ( Fw if and only if there exists a unimodular function φw ∈

L∞(T2) such that Fw = φwH2(w).
(ii) Fw = wFw 6= {0} if and only if M = χEqH2

w, where q is a unimodular
function of L∞(T2), and χE is the characteristic function of a Borel
subset E of T2 with χE (6= 0) ∈ L2

w. In this case, F = Fw and Fz =
{0}.

Throughout this paper, we suppose that Fz 6= {0} and Fw 6= {0}. Then
we have zFz ( Fz and wFw ( Fw. Otherwise, for example, assume that
Fz = zFz 6= {0}. Then, by Proposition 2.4(ii), we have M = χEqH2

z

and Fw = {0}. This is a contradiction. Thus there exist two unimodular
functions φz and φw in L∞(T2) such that Fz = φzH

2(z) and Fw = φwH2(w).
Put M̃ = φwM, then M̃ is also an invariant subspace of L2(T2). Let
F̃ = M̃ ª zwM̃. Let (F̃)z (resp. (F̃)w) be the largest z-invariant (resp.
w-invariant) subspace of F̃. Then we have

Proposition 2.6 Keep the notations and assumptions as above. Then we
have
( i ) F̃ = φwF.
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( ii ) (F̃)z = φwφzH
2(z) and (F̃)w = H2(w).

(iii) H2(T2) ⊂ M̃ ⊂ H2
w.

Proof. (i) and (ii) are clear.
(iii) Since (F̃)w=H2(w), we have H2(T2)⊂ M̃. Since M̃ =

∑∞
n=0 ⊕(zw)nF̃

and (F̃)w = H2(w) ⊂ F̃, we have

M̃ ⊥
−1∑

n=−∞
⊕(zw)nH2(w).

If there exists an element f in M̃ such that f̂(m, n) 6= 0 for m < n < 0,
then wnf ∈ M̃. Since (wnf)(m, 0) = f̂(m, n) 6= 0, wnf is not orthogonal
to

−1∑
n=−∞

⊕(zw)nH2(w).

This is a contradiction. Therefore M̃ ⊂ H2
w. This completes the proof.

¤

We now put ϕ = φwφz and Mϕ = [H2(T2) + ϕH2(T2)]. Then Mϕ is a
zw-pure invariant subspace of L2(T2) such that Mϕ ⊂ M̃. Put Fϕ = Mϕ ª
zwMϕ, S

ϕ
z = MϕªzMϕ and S

ϕ
w = MϕªwMϕ, respectively. Let F

ϕ
z (resp.

F
ϕ
w) be the largest z-invariant (resp. w-invariant) subspace of Fϕ.

Proposition 2.7 Keep the notations and assumptions as above. Then
( i ) F

ϕ
z = ϕH2(z) and F

ϕ
w = H2(w).

(ii) ϕ is a unimodular function of L∞(T2) such that supp ϕ̂ ⊂ Z+×(−Z+).

Proof. By [4, Proposition 4], we have (i).
(ii) Since ϕ ∈ M̃ ⊂ H2

w, we have supp ϕ̂ ⊂ Z+ × Z. Since F
ϕ
z ⊂ S

ϕ
w, we

have ϕ ⊥ wH2(T2). Therefore, supp ϕ̂ ⊂ Z+ × (−Z+). This completes the
proof. ¤

Then we have the following

Theorem 2.8 Let M be a zw-pure invariant subspace of L2(T2) such that
Fw = φwH2(w) and Fz = φzH

2(z), where φw and φz are unimodular func-
tions of L2(T2). Put ϕ = φwφz and N = M̃ ª Mϕ. Then M is of the
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form

M = φw(Mϕ ⊕ N),

where ϕ is a unimodular function of L∞(T2) such that supp ϕ̂ ⊂ Z+ ×
(−Z+).

Example 2.9 For m, n ∈ Z+, we consider an invariant subspace

H2
m,n(T2) = [zmH2(T2) + wnH2(T2)].

Let M be an invariant subspace such that Fz = zmH2(z) and Fw =
wnH2(w). Then it is clear that M ⊃ H2

m,n(T2). Put N = wn(M ª
H2

m,n(T2)). Then

M = H2
m,n(T2) ⊕ wnN.

If m = 1 or n = 1, then N = 0. If m = n = 2, then we easily show that N

is one of the following forms:
( i ) N = {0};
( ii ) N = [zw]; and
(iii) N = [zw, αzw2 + βw], where α and β are non-zero complex numbers

such that |α|2 + |β|2 = 1.

3. Invariant subspace Mϕ

Let ϕ be a unimodular function of L∞(T2) such that supp ϕ̂ ⊂ Z+ ×
(−Z+). Put Mϕ = [H2(T2) + ϕH2(T2)]. Then Mϕ is a zw-pure invariant
subspace of L2(T2) such that

H2(T2) ⊂ Mϕ ⊂ H2
w.

Put Fϕ = Mϕ ª zwMϕ, S
ϕ
z = Mϕ ª zMϕ and S

ϕ
w = Mϕ ª wMϕ, re-

spectively. Further, let F
ϕ
z (resp. F

ϕ
w) be the largest z-invariant (resp. w-

invariant) subspace of Fϕ. If ϕ ∈ H2(z), then Mϕ = H2(T2). Thus we may
suppose that ϕ /∈ H2(z).

In this section, we consider the conditions that F
ϕ
z = ϕH2(z) and F

ϕ
w =

H2(w).

Proposition 3.1 Let ϕ be a unimodular function of L∞(T2) such that
supp ϕ̂ ⊂ Z+ × (−Z+) and ϕ /∈ H2(z). Then ϕH2(z) ⊂ F

ϕ
z ⊂ ϕL2

z and
H2(w) ⊂ F

ϕ
w ⊂ L2

w.
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Proof. Take any f ∈ H2(w). Then, for every g ∈ H2(T2),

〈f, zwg〉 = 0

and

〈f, zwϕg〉 = 0.

This implies that H2(w) ⊂ Fϕ. Since H2(w) is w-invariant, H2(w) ⊂ F
ϕ
w.

On the other hand, let f ∈ H2(z). Then for every g ∈ H2(T2),

〈ϕf, zwg〉 = 0 and 〈ϕf, zwϕg〉 = 〈f, zwg〉 = 0.

This implies that H2(z) ⊂ Fϕ, and so ϕH2(z) ⊂ F
ϕ
z .

Take any f ∈ F
ϕ
w. Since F

ϕ
w =

⋂∞
n=0 wnFϕ, we have wnf ∈ Fϕ for any

n ≥ 0. This implies that wnf ⊥ zwMϕ. In particular, wnf ⊥ zwH2(T2).
For any n, k, l ≥ 0, we have

〈f, zk+1wl+1−n〉 = 〈wnf, zwzkwl〉 = 0.

Since f ∈ Mϕ ⊂ H2
w by Proposition 2.6, f ∈ L2

w. Thus we have F
ϕ
w ⊂ L2

w.
Similarly, take any f ∈ F

ϕ
z . Since znf ∈ Fϕ for any n ≥ 0, we have

znf ⊥ zwϕH2(T2). For any m, k, l ≥ 0, we have

〈ϕf, zk+1−mwl+1〉 = 〈zmf, zwϕzkwl〉 = 0.

Since ϕf ∈ ϕMϕ = [ϕH2(T2) + H2(T2)] ⊂ H2
z , we have ϕf ∈ L2

z. Thus
f ∈ ϕL2

z and so F
ϕ
z ⊂ ϕL2

z. This completes the proof. ¤

Theorem 3.2 Keep the notations and assumptions as above. Then
( i ) F

ϕ
w = H2(w) if and only if Mϕ ∩ wH2(w) = {0}.

(ii) F
ϕ
z = ϕH2(z) if and only if Mϕ ∩ ϕzH2(z) = {0}.

Proof. (i) (⇐) By Proposition 3.1, we have

Fϕ
w ª H2(w) = Fϕ

w ∩ wH2(w) ⊂ Mϕ ∩ wH2(w) = {0}.

Thus F
ϕ
w = H2(w).

(⇒) Suppose that Mϕ ∩ wH2(w) 6= {0}. Then there exists a nonzero
element f in Mϕ ∩ wH2(w). For all n, k, l ≥ 0,

〈wnf, zwzkwl〉 = 〈f, zk+1wl−n+1〉 = 0
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and

〈wnf, zwϕzkwl〉 = 〈f, ϕzk+1wl−n+1〉 = 0.

Thus we have wnf ∈ Fϕ for every n ≥ 0, that is, f ∈ F
ϕ
w. Therefore

H2(w) ( F
ϕ
w. This is a contradiction. Similarly we have (ii). This completes

the proof. ¤

Corollary 3.3 Keep the notations and assumptions as above. Then
( i ) If Mϕ ⊥ wH2(w), then F

ϕ
w = H2(w).

(ii) If Mϕ ⊥ ϕzH2(z), then F
ϕ
z = ϕH2(z).

Corollary 3.4 Keep the notations and assumptions as above. Then
( i ) 1 ∈ S

ϕ
w if and only if ϕ̂(0, −n) = 0 for all n ≥ 1. In this case, F

ϕ
w =

H2(w).
( ii ) ϕ ∈ S

ϕ
z if and only if ϕ̂(m, 0) = 0 for all m ≥ 1. In this case, F

ϕ
z =

ϕH2(z).
(iii) If ϕ̂(m, 0) = ϕ̂(0, −n) = 0 for all m, n ≥ 1, then F

ϕ
z = ϕH2(z) and

F
ϕ
w = H2(w).

4. Certain classes of invariant subspaces

Keep the notations as in § 2. Suppose that Fz 6= {0} and Fw 6= {0}.
In general, we have Fz + Fw ⊂ [Sz + Sw] ⊂ F. In [4], we studied invariant
subspace structure with the property Fz + Fw = [Sz + Sw].

Let D = {z ∈ C : |z| < 1}. For any α ∈ D and m, n ∈ N, we define a
function ψ

(m,n)
α by

ψ(m,n)
α (z, w) =

zmwn − α

1 − αzmwn .

Then ψ
(m,n)
α is a unimodular function in L∞(T2) with ψ̂

(m,n)
α (k, l) = 0 for

every (k, l) ∈ Z+ × (−Z+). Then we define an invariant subspace M
(m,n)
α

of L2(T) by

M(m,n)
α = [H2(T2) + ψ(m,n)

α H2(T2)].

At first we have the following

Theorem 4.1 If M = M
(m,n)
α , then Fw = H2(w), Fz = ψ

(m,n)
α H2(z),

Sw = ψ(m,n)
α H2(z) + [1, z, . . . , zm−1]
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and

Sz = H2(w) + [ψ(m,n)
α , wψ(m,n)

α , . . . , wn−1ψ(m,n)
α ].

Therefore we have

F = Fz + Fw + [z, . . . , zm] + [wψ(m,n)
α , . . . , wn−1ψ(m,n)

α ]

= Fz + Fw + [z, . . . , zm−1] + [wψ(m,n)
α , . . . , wnψ(m,n)

α ].

Proof. By Corollary 3.4, we have Fw = H2(w) and Fz = ψ
(m,n)
α H2(z). We

show that Sz = H2(w) + [ψ(m,n)
α , . . . , wn−1ψ

(m,n)
α ]. For 0 ≤ j ≤ n − 1 and

for any f, g ∈ H2(T2), we have

〈wjψ(m,n)
α , z(f + ψ(m,n)

α g)〉
= 〈ψ(m,n)

α , w−jzf〉 + 〈wj , zg〉 = 0.

Since H2(w) = Fw ⊂ Sz, we have H2(w) + [ψ(m,n)
α , . . . , wn−1ψ

(m,n)
α ] ⊂ Sz.

We put N = (H2(w) + [ψ(m,n)
α , . . . , wn−1ψ

(m,n)
α ]) ⊕ zM. Then it is enough

to show that N = M. Since H2(T2) + zψ
(m,n)
α H2(T2) ⊂ N, we only need to

show that wnψ
(m,n)
α H2(w) ⊂ N. In fact,

wnψ(m,n)
α = wn

( zmwn − α

1 − αzmwn

)
= wn(zmwn − α)

(
1 +

αzmwn

1 − αzmwn

)
= zm − αwn + αzmψ(m,n)

α .

Thus we have wnψ
(m,n)
α ∈ N. For every k ≥ 1, we have

wn+kψ(m,n)
α = zmwk − αwn+k + αzmwkψ(m,n)

α ∈ N.

This implies that N = M.
We next show that Sw = ψ

(m,n)
α H2(z) + [1, z, . . . , zm−1]. For 0 ≤ j ≤

m − 1 and for every f, g ∈ H2(T2), we have

〈zj , w(f + ψ(m,n)
α g)〉

= 〈zj , wf〉 + 〈zj , wψ(m,n)
α g〉

= 〈zj , wf〉 + 〈ψ(m,n)
α , z−jwg〉 = 0.

Since ψ
(m,n)
α H2(z) = Fz ⊂ Sw, we have

ψ(m,n)
α H2(z) + [1, z, . . . , zm−1] ⊂ Sw.
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We put N1 = (ψ(m,n)
α H2(z) + [1, z, . . . , zm−1]) ⊕ wM. We want to prove

that N1 = M. Since ψ
(m,n)
α H2(T2) + wH2(T2) ⊂ N1, we only show that

zmH2(z) ⊂ N1. In fact, zm = wnψ
(m,n)
α + αwn −αzmψ

(m,n)
α ∈ N1. Further,

for every k ≥ 1,

zm+k = wnzkψ(m,n)
α + αwnzk − αzm+kψ(m,n)

α ∈ N1.

This implies that N1 = M. The remainder of this theorem is proved from
F = Sz ⊕ zSw = Sw ⊕ wSz. This proof is complete. ¤

We next show the converse of Theorem 4.1.

Theorem 4.2 Let M be a zw-pure invariant subspace of L2(T2). Let
m, n ≥ 1. Then M = M

(m,n)
α for some α ∈ D if and only if Fw =

H2(w), Fz = ϕH2(z), Sw = ϕH2(z) + [1, z, . . . , zm−1] and Sz = H2(w) +
[ϕ, wϕ, . . . , wn−1ϕ] for some unimodular function ϕ in L∞(T2) such that
supp ϕ̂ ⊂ Z+ × (−Z+).

Proof. If M = M
(m,n)
α , by Theorem 4.1, we have the results. Thus we

prove the converse. To do it, we only prove that ϕ = cψ
(m,n)
α for some c ∈ T

and α ∈ D. By the assumption, [1, ϕ] ⊂ Sz ∩ Sw. Thus

〈ϕ, ziwj〉 = 0 (i ≥ 1, j ≥ 0 or i ≥ 0, j ≥ 1),

〈ϕ, ziwj〉 = 〈wjϕ, zi〉 = 0 (1 ≤ i ≤ m − 1, j ≤ −1)

and

〈ϕ, ziwj〉 = 〈wjϕ, zi〉 = 0 (i ≥ 0, −(n − 1) ≤ j ≤ −1).

Put ϕ̂(0, 0) = a00 and ϕ0 = ϕ − a00, respectively. Put N = H2(w) +
ϕH2(z) + [z, . . . , zm−1] + [wϕ, · · · , wn−1ϕ]. Since F = Sw ⊕ wSz = Sz ⊕
zSw, we have

F = N + [wnϕ] = N + [zm].

Thus dim(F ª N) = 1 and [wnϕ, zm] ⊂ F. It is clear that wnϕ0 ∈ F and
wnϕ0 ⊥ Fw. Moreover, for j ≥ 1 (j 6= n), we have

〈wnϕ0, zjϕ〉= 〈wnϕ, zjϕ〉 − a00〈wn, zjϕ〉
= 〈wn, zj〉 − a00〈wn, zjϕ〉 = 0.
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Since wnϕ0 ⊥ wkϕ for 1 ≤ k ≤ n − 1, this implies that

wnϕ0 ⊥ N0.

Similarly, we have zmϕ ⊥ Fw and zmϕ ⊥ zkϕ for 0 ≤ k < ∞ and k 6= m.
It is clear that zmϕ ⊥ [wϕ, . . . , wn−1ϕ] and wnϕ0 ⊥ Fw. Thus we have
zmϕ ⊥ N0. Therefore we have

F = N0 ⊕ [zmϕ, wnϕ0].

Since zm ⊥ Fw and zm ⊥ [wϕ, . . . , wn−1ϕ], we have zm ⊥ N0. Since zm ∈
F, we have zm ∈ [zmϕ, wnϕ0]. Thus

zm = γzmϕ + δwnϕ0

= γzmϕ + δwn(ϕ − a00)

= (γzmϕ + δwn)ϕ − δa00w
n

for some constants γ and δ in C. Thus

(γzm + δwn)ϕ = zm + δa00w
n.

Since ϕ is unimodular,

ϕ =
zm + δa00w

n

γzm + δwn
=

zmwn + δa00

δ + γzmwn a.e.

Put

h(λ) =
λ + δa00

δ + γλ
.

Then ϕ(z, w) = h(zmwn). Since ϕ̂(m, n) = 0 for every (m, n) ∈ Z+ ×
(−Z+), h is an analytic function. Since ϕ is not constant and h is unimod-
ular, we show that h is a Blaschke product, that is,

h(λ) = c
λ − α

1 − αλ

for some constants c ∈ T and α ∈ D. Thus ϕ(z, w) = h(zmw̄n) =
cψ

(m,n)
α (z, w), that is, ϕ = cψ

(m,n)
α , and so M = M

(m,n)
α . This completes

the proof. ¤

If ϕ̂(0, 0) = 0, then, from the proof of Theorem 4.2, we have α = 0.
Therefore we have



504 A. Hasegawa, G. Ji, T. Ohwada and K.-S. Saito

Corollary 4.3 Let M be a zw-pure invariant subspace of L2(T2).
Let m, n ≥ 1. Then M = wnH2

m,n(T2) if and only if Fw = H2(w),
Fz = ϕH2(z), Sw = ϕH2(z) + [1, z, . . . , zm−1] and Sz = H2(w)+
[ϕ, wϕ, . . . , wn−1ϕ] for some unimodular function ϕ in L∞(T2) such that
supp ϕ̂ ⊂ Z+ × (−Z+) and ϕ̂(0, 0) = 0.

Acknowledgment The second author is partly supported by the Na-
tional Natural Science Foundation of China and the excellent Young Teach-
ers Program of the MOE, PRC. The third and fourth authors are partly
supported by the Grant-in-Aid for Scientific Research(C), Japan Society for
the Promotion of Science.

References

[ 1 ] Gaspar D. and Suciu N., On invariant subspaces in the bitorus. J. Operator Theory

30 (1993), 227–241.

[ 2 ] Ghatage P. and Manderkar V., On Beurling type invariant subspaces of L2(T2) and

their equivalence. J. Operator Theory 20 (1988), 31–38.

[ 3 ] Helson H., Lectures on invariant subspaces. Academic Press, New York, 1964.

[ 4 ] Ji G., Ohwada T. and Saito K.-S., Certain invariant subspace structure of L2(T2).

Proc. Amer. Math. Soc. 126 (1998), 2361–2368.

[ 5 ] Mandrekar R., The validty of Beurling theorems in polidisc. Proc. Amer. Math. Soc.

103 (1988), 145–148.

[ 6 ] Nakazi T., Certain invariant subspaces of H2 and L2 on a bidisc. Canadian J. Math.

40 (1988), 1722–1280.

[ 7 ] Nakazi T., Invariant subspaces in the bidisc and commutators. J. Austral. Math.

Soc. 56 (1994), 232–242.



Invariant subspace of L2(T2) 505

A. Hasegawa

Disco

Bunkyo, Tokyo, 112-8515, Japan

E-mail: atsushi.hasegawa@disc.co.jp

G. Ji

College of Mathematics and Information Science

Shaanxi Normal University

Xi’an 710062, PR China

E-mail: gxji@snnu.edu.cn

T. Ohwada

Faculty of Education

Shizuoka University

Shizuoka 422-8529, Japan

E-mail: etoowad@ipc.shizuoka.ac.jp

K.-S. Saito

Department of Mathematics

Faculty of Science

Niigata University

Niigata 950-2181, Japan

E-mail: saito@math.sc.niigata-u.ac.jp



		2008-09-08T16:11:18+0900
	Asao Arai
	私はこの文章の承認者です。




