Certain invariant subspace structure of $L^{2}\left(\mathbb{T}^{2}\right)$ II

Atsushi Hasegawa, Guoxing Ji, Tomoyoshi Ohwada
and Kichi-Suke Saito

(Received April 9, 2007)

Abstract

Let \mathfrak{M} be an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Considering the largest z invariant (resp. w-invariant) subspace \mathfrak{F}_{z} (resp. \mathfrak{F}_{w}) in the wandering subspace $\mathfrak{M} \ominus$ $z w \mathfrak{M}$ of \mathfrak{M} with respect to the shift operator $z w$. If $\mathfrak{F}_{w} \neq\{0\}$ and $\mathfrak{F}_{z} \neq\{0\}$, then we consider the certain form of invariant subspaces \mathfrak{M} of $L^{2}\left(\mathbb{T}^{2}\right)$. Furthermore, we study certain classes of invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$.

Key words: invariant subspace, wandering subspace.

1. Introduction and preliminaries

Let \mathbb{T}^{2} be the torus that is the cartesian product of 2 unit circles in \mathbb{C}. Let $L^{2}\left(\mathbb{T}^{2}\right)$ and $H^{2}\left(\mathbb{T}^{2}\right)$ be the usual Lebesgue and Hardy space on the torus \mathbb{T}^{2}, respectively. A closed subspace \mathfrak{M} of $L^{2}\left(\mathbb{T}^{2}\right)$ is said to be invariant if $z \mathfrak{M} \subset \mathfrak{M}$ and $w \mathfrak{M} \subset \mathfrak{M}$. As is well known, the structure of invariant subspaces is much more complicated. In general, the invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$ are not necessarily of the form $\phi H^{2}\left(\mathbb{T}^{2}\right)$ with some unimodular function ϕ. The structure of Beurling-type invariant subspaces has been studied, and some necessary and sufficient conditions for invariant subspaces to be Beurling-type have been given (cf. [1, 2, 5], etc). Further, many authors had attempted to study the form of invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)($ cf. $[4,6,7]$, etc $)$.

In [4], we studied the structure of an invariant subspace \mathfrak{M} as a $z w$ invariant subspace. We gave an alternative approach of Beuring-type invariant subspaces and a certain class of invariant subspace which contains the class of invariant subspaces of the form $\phi H_{0}^{2}\left(\mathbb{T}^{2}\right)$, where $H_{0}^{2}\left(\mathbb{T}^{2}\right)=\{f \in$ $\left.H^{2}\left(\mathbb{T}^{2}\right): f(0,0)=0\right\}$ and ϕ is a unimodular function in $L^{\infty}\left(\mathbb{T}^{2}\right)$.

For $(m, n) \in \mathbb{Z}^{2}$ and $f \in L^{2}\left(\mathbb{T}^{2}\right)$, the Fourier coefficient of f is defined by

[^0]$$
\hat{f}(m, n)=\int_{\mathbb{T}^{2}} f(z, w) \bar{z}^{m} \bar{w}^{n} d \mu
$$
where μ is the Haar measure on \mathbb{T}^{2}. Let supp $\hat{f}=\left\{(m, n) \in \mathbb{Z}^{2}: \hat{f}(m, n) \neq\right.$ $0\}$. For a subset A of $L^{2}\left(\mathbb{T}^{2}\right)$, we denote the closed subspace $[A]$ generated by A in $L^{2}\left(\mathbb{T}^{2}\right)$. We define several subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$ which will be used later.
(i) $H^{2}(z)$ or $H^{2}(w)$ is the set of $f\left(\right.$ in $\left.L^{2}\left(\mathbb{T}^{2}\right)\right)$ with Fourier series:
$$
\sum_{m=0}^{\infty} a_{m 0} z^{m} \text { or } \sum_{n=0}^{\infty} a_{0 n} w^{n}
$$
respectively.
(ii) H_{z}^{2} or H_{w}^{2} is the set of f with Fourier series:
$$
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} a_{m n} z^{m} w^{n} \text { or } \sum_{n=-\infty}^{\infty} \sum_{m=0}^{\infty} a_{m n} z^{m} w^{n}
$$
respectively.
(iii) L_{z}^{2} or L_{w}^{2} is the set of f with Fourier series:
$$
\sum_{m=-\infty}^{\infty} a_{m 0} z^{m} \text { or } \sum_{n=-\infty}^{\infty} a_{0 n} w^{n}
$$
respectively.
Let \mathfrak{M} be a $z w$-invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Put $\mathfrak{F}=\mathfrak{M} \ominus z w \mathfrak{M}$, $\mathfrak{S}_{z}=\mathfrak{M} \ominus z \mathfrak{M}$ and $\mathfrak{S}_{w}=\mathfrak{M} \ominus w \mathfrak{M}$, respectively. Let \mathfrak{F}_{z} (resp. \mathfrak{F}_{w}) be the largest z-invariant (resp. w-invariant) subspace of \mathfrak{F}. In $\S 2$, we characterize invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$, where $\mathfrak{F}_{z} \neq 0$ and $\mathfrak{F}_{w} \neq 0$. Then there exist two unimodular functions ϕ_{z} and ϕ_{w} in $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{F}_{z}=\phi_{z} H^{2}(z)$ and $\mathfrak{F}_{w}=\phi_{w} H^{2}(w)$. Putting $\varphi=\overline{\phi_{w}} \phi_{z}$, we consider the invariant subspace
$$
\mathfrak{M}_{\varphi}=\left[H^{2}\left(\mathbb{T}^{2}\right)+\varphi H^{2}\left(\mathbb{T}^{2}\right)\right]
$$

Then we remark that \mathfrak{M} is of the form $\phi_{w}\left(\mathfrak{M}_{\varphi} \oplus N\right)$, where $N=\overline{\phi_{w}} \mathfrak{M} \ominus \mathfrak{M}_{\varphi}$ (see Theorem 2.8). In § 3, let φ be a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$. Then we characterize the invariant subspace \mathfrak{M}_{φ}. Further, we consider the sufficient condition that $\mathfrak{F}_{w}=H^{2}(w)$ and $\mathfrak{F}_{z}=\varphi H^{2}(z)$ with respect to $\mathfrak{M}=\mathfrak{M}_{\varphi}$. In $\S 4$, as a generalization of [4], we consider the invariant subspace

$$
\mathfrak{M}_{\alpha}^{(m, n)}=\left[H^{2}\left(\mathbb{T}^{2}\right)+\psi_{\alpha}^{(m, n)} H^{2}\left(\mathbb{T}^{2}\right)\right]
$$

(see the definition of $\psi_{\alpha}^{(m, n)}$ in § 4). Then we consider the necessary and suffcient condition that an invariant subspace \mathfrak{M} is of the form $\mathfrak{M}_{\alpha}^{(m, n)}$ for some $\alpha \in \mathbb{D}$ where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ (see Theorem 4.2).

2. Invariant subspaces as $z w$-invariant subspaces

Let \mathfrak{M} be an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Since $z^{n} \mathfrak{M} \supset z^{n+1} \mathfrak{M}$ (resp. $w^{n} \mathfrak{M} \supset w^{n+1} \mathfrak{M}$) for $n \in \mathbb{Z}_{+}, \bigcap_{k=1}^{\infty} z^{k} \mathfrak{M}$ (resp. $\bigcap_{k=1}^{\infty} w^{k} \mathfrak{M}$) is also an invariant subspace. If $\bigcap_{k=1}^{\infty} z^{k} \mathfrak{M}=\{0\}$ (resp. $\bigcap_{k=1}^{\infty} w^{k} \mathfrak{M}=\{0\}$), we say that \mathfrak{M} is z-pure (resp. w-pure). If $z \mathfrak{M}=\mathfrak{M}$ (resp. $w \mathfrak{M}=\mathfrak{M}$), we say that \mathfrak{M} is z-reducing (resp. w-reducing). The structure of z-reducing (resp. w-reducing) invariant subspaces has been characterized in [7].

Since \mathfrak{M} is an invariant subspace, \mathfrak{M} is also a $z w$-invariant subspace and $(z w)^{n} \mathfrak{M} \supset(z w)^{n+1} \mathfrak{M}$ for $n \in \mathbb{Z}_{+}$. If $\bigcap_{k=1}^{\infty}(z w)^{k} \mathfrak{M}=\{0\}$, then we say that \mathfrak{M} is $z w$-pure. If $z w \mathfrak{M}=\mathfrak{M}$, we say that \mathfrak{M} is $z w$-reducing. First, we have the following proposition.

Proposition 2.1 Let \mathfrak{M} be an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Then
(i) If \mathfrak{M} is either z-pure or w-pure, then \mathfrak{M} is zw-pure.
(ii) \mathfrak{M} is zw-reducing if and only if \mathfrak{M} is z-reducing and w-reducing.

If \mathfrak{M} is $z w$-reducing, then by [6] and [7] the form of \mathfrak{M} is well-known. Throughout this note, we assume without loss of generality that \mathfrak{M} is $z w$ pure. Put $\mathfrak{F}=\mathfrak{M} \ominus z w \mathfrak{M}, \mathfrak{S}_{z}=\mathfrak{M} \ominus z \mathfrak{M}$ and $\mathfrak{S}_{w}=\mathfrak{M} \ominus w \mathfrak{M}$, respectively. Then we easily have

Proposition 2.2 Keep the notations and assumptions as above. Then
(i) $\mathfrak{M}=\sum_{k=0}^{\infty} \oplus z^{k} \mathfrak{S}_{z} \oplus \bigcap_{k=1}^{\infty} z^{k} \mathfrak{M}=\sum_{k=0}^{\infty} \oplus w^{k} \mathfrak{S}_{w} \oplus \bigcap_{k=1}^{\infty} w^{k} \mathfrak{M}=$ $\sum_{k=0}^{\infty} \oplus(z w)^{k} \mathfrak{F}$.
(ii) $\mathfrak{F}=\mathfrak{S}_{z} \oplus z \mathfrak{S}_{w}=\mathfrak{S}_{w} \oplus w \mathfrak{S}_{z}$.

Let \mathfrak{F}_{z} (resp. \mathfrak{F}_{w}) be the largest z-invariant (resp. w-invariant) subspace in \mathfrak{F}. It is clear that $\mathfrak{F}_{z}=\bigcap_{k=0}^{\infty} \bar{z}^{k} \mathfrak{F}, \mathfrak{F}_{w}=\bigcap_{k=0}^{\infty} \bar{w}^{k} \mathfrak{F}, \mathfrak{F}_{z} \subset \mathfrak{S}_{w}$ and $\mathfrak{F}_{w} \subset$ \mathfrak{S}_{z}.

Proposition 2.3 Keep the notations and the assumptions as above. Then \mathfrak{F}_{z} (resp. \mathfrak{F}_{w}) is the largest z-invariant (resp. w-invariant) subspace in \mathfrak{S}_{w} (resp. \mathfrak{S}_{z}).

Proof. Since $\mathfrak{S}_{z} \subset \mathfrak{F}$, we have $\bigcap_{k=0}^{\infty} \bar{w}^{k} \mathfrak{S}_{z} \subset \bigcap_{k=0}^{\infty} \bar{w}^{k} \mathfrak{F}=\mathfrak{F}_{w}$. Conversely, for all $f \in \mathfrak{F}_{w}$ there exists $f_{n} \in \mathfrak{F}$ such that $f=\bar{w}^{n} f_{n}$. Then for all $g \in \mathfrak{M}$, we have

$$
\left\langle w^{n} f, z g\right\rangle=\left\langle w^{n+1} f, z w g\right\rangle=\left\langle f_{n+1}, z w g\right\rangle=0 .
$$

Thus $w^{n} f \in \mathfrak{S}_{z}$ and so $f \in \bar{w}^{n} \mathfrak{S}_{z}$. This implies that $\bigcap_{k=0}^{\infty} \bar{w}^{k} \mathfrak{S}_{z}=\mathfrak{F}_{w}$. This completes the proof.

Proposition 2.4 (cf. [4, Proposition 2]) Let \mathfrak{M} be a zw-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Then:
(i) $z \mathfrak{F}_{z} \subsetneq \mathfrak{F}_{z}$ if and only if there exists a unimodular function $\phi_{z} \in L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{F}_{z}=\phi_{z} H^{2}(z)$.
(ii) $\mathfrak{F}_{z}=z \mathfrak{F}_{z} \neq\{0\}$ if and only if $\mathfrak{M}=\chi_{E} q H_{z}^{2}$, where q is a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$, and χ_{E} is the characteristic function of a Borel subset E of \mathbb{T}^{2} with $\chi_{E}(\neq 0) \in L_{z}^{2}$. In this case, $\mathfrak{F}=\mathfrak{F}_{z}$ and $\mathfrak{F}_{w}=$ $\{0\}$.

Similarly, we have the following result about \mathfrak{F}_{w}.
Proposition 2.5 (cf. [4, Proposition 3]) Let \mathfrak{M} be a zw-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Then:
(i) $w \mathfrak{F}_{w} \subsetneq \mathfrak{F}_{w}$ if and only if there exists a unimodular function $\phi_{w} \in$ $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{F}_{w}=\phi_{w} H^{2}(w)$.
(ii) $\mathfrak{F}_{w}=w \mathfrak{F}_{w} \neq\{0\}$ if and only if $\mathfrak{M}=\chi_{E} q H_{w}^{2}$, where q is a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$, and χ_{E} is the characteristic function of a Borel subset E of \mathbb{T}^{2} with $\chi_{E}(\neq 0) \in L_{w}^{2}$. In this case, $\mathfrak{F}=\mathfrak{F}_{w}$ and $\mathfrak{F}_{z}=$ $\{0\}$.

Throughout this paper, we suppose that $\mathfrak{F}_{z} \neq\{0\}$ and $\mathfrak{F}_{w} \neq\{0\}$. Then we have $z \mathfrak{F}_{z} \subsetneq \mathfrak{F}_{z}$ and $w \mathfrak{F}_{w} \subsetneq \mathfrak{F}_{w}$. Otherwise, for example, assume that $\mathfrak{F}_{z}=z \mathfrak{F}_{z} \neq\{0\}$. Then, by Proposition 2.4(ii), we have $\mathfrak{M}=\chi_{E} q H_{z}^{2}$ and $\mathfrak{F}_{w}=\{0\}$. This is a contradiction. Thus there exist two unimodular functions ϕ_{z} and ϕ_{w} in $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{F}_{z}=\phi_{z} H^{2}(z)$ and $\mathfrak{F}_{w}=\phi_{w} H^{2}(w)$. Put $\widetilde{\mathfrak{M}}=\bar{\phi}_{w} \mathfrak{M}$, then $\widetilde{\mathfrak{M}}$ is also an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Let $\widetilde{\mathfrak{F}}=\widetilde{\mathfrak{M}} \ominus z w \widetilde{\mathfrak{M}}$. Let $(\widetilde{\mathfrak{F}})_{z}\left(\right.$ resp. $\left.(\widetilde{\mathfrak{F}})_{w}\right)$ be the largest z-invariant (resp. w-invariant) subspace of \mathfrak{F}. Then we have

Proposition 2.6 Keep the notations and assumptions as above. Then we have
(i) $\widetilde{\mathfrak{F}}=\bar{\phi}_{w} \mathfrak{F}$.
(ii) $(\widetilde{\mathfrak{F}})_{z}=\bar{\phi}_{w} \phi_{z} H^{2}(z)$ and $(\widetilde{\mathfrak{F}})_{w}=H^{2}(w)$.
(iii) $H^{2}\left(\mathbb{T}^{2}\right) \subset \widetilde{\mathfrak{M}} \subset H_{w}^{2}$.

Proof. (i) and (ii) are clear.
(iii) \quad Since $(\widetilde{\mathfrak{F}})_{w}=H^{2}(w)$, we have $H^{2}\left(\mathbb{T}^{2}\right) \subset \widetilde{\mathfrak{M}}$. Since $\widetilde{\mathfrak{M}}=\sum_{n=0}^{\infty} \oplus(z w)^{n} \widetilde{\mathfrak{F}}$ and $(\widetilde{\mathfrak{F}})_{w}=H^{2}(w) \subset \widetilde{\mathfrak{F}}$, we have

$$
\widetilde{\mathfrak{M}} \perp \sum_{n=-\infty}^{-1} \oplus(z w)^{n} H^{2}(w)
$$

If there exists an element f in $\widetilde{\mathfrak{M}}$ such that $\hat{f}(m, n) \neq 0$ for $m<n<0$, then $\bar{w}^{n} f \in \widetilde{\mathfrak{M}}$. Since $\left(\bar{w}^{n} f\right)(m, 0)=\hat{f}(m, n) \neq 0, \bar{w}^{n} f$ is not orthogonal to

$$
\sum_{n=-\infty}^{-1} \oplus(z w)^{n} H^{2}(w)
$$

This is a contradiction. Therefore $\widetilde{\mathfrak{M}} \subset H_{w}^{2}$. This completes the proof.

We now put $\varphi=\bar{\phi}_{w} \phi_{z}$ and $\mathfrak{M}_{\varphi}=\left[H^{2}\left(\mathbb{T}^{2}\right)+\varphi H^{2}\left(\mathbb{T}^{2}\right)\right]$. Then \mathfrak{M}_{φ} is a $z w$-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{M}_{\varphi} \subset \widetilde{\mathfrak{M}}$. Put $\mathfrak{F}^{\varphi}=\mathfrak{M}_{\varphi} \ominus$ $z w \mathfrak{M}_{\varphi}, \mathfrak{S}_{z}^{\varphi}=\mathfrak{M}_{\varphi} \ominus z \mathfrak{M}_{\varphi}$ and $\mathfrak{S}_{w}^{\varphi}=\mathfrak{M}_{\varphi} \ominus w \mathfrak{M}_{\varphi}$, respectively. Let $\mathfrak{F}_{z}^{\varphi}$ (resp. $\left.\mathfrak{F}_{w}^{\varphi}\right)$ be the largest z-invariant (resp. w-invariant) subspace of \mathfrak{F}^{φ}.
Proposition 2.7 Keep the notations and assumptions as above. Then
(i) $\mathfrak{F}_{z}^{\varphi}=\varphi H^{2}(z)$ and $\mathfrak{F}_{w}^{\varphi}=H^{2}(w)$.
(ii) φ is a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$.

Proof. By [4, Proposition 4], we have (i).
(ii) Since $\varphi \in \widetilde{\mathfrak{M}} \subset H_{w}^{2}$, we have $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times \mathbb{Z}$. Since $\mathfrak{F}_{z}^{\varphi} \subset \mathfrak{S}_{w}^{\varphi}$, we have $\varphi \perp w H^{2}\left(\mathbb{T}^{2}\right)$. Therefore, $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$. This completes the proof.

Then we have the following
Theorem 2.8 Let \mathfrak{M} be a zw-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$ such that $\mathfrak{F}_{w}=\phi_{w} H^{2}(w)$ and $\mathfrak{F}_{z}=\phi_{z} H^{2}(z)$, where ϕ_{w} and ϕ_{z} are unimodular functions of $L^{2}\left(\mathbb{T}^{2}\right)$. Put $\varphi=\bar{\phi}_{w} \phi_{z}$ and $N=\widetilde{\mathfrak{M}} \ominus \mathfrak{M}_{\varphi}$. Then \mathfrak{M} is of the
form

$$
\mathfrak{M}=\phi_{w}\left(\mathfrak{M}_{\varphi} \oplus N\right)
$$

where φ is a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times$ $\left(-\mathbb{Z}_{+}\right)$.

Example 2.9 For $m, n \in \mathbb{Z}_{+}$, we consider an invariant subspace

$$
H_{m, n}^{2}\left(\mathbb{T}^{2}\right)=\left[z^{m} H^{2}\left(\mathbb{T}^{2}\right)+w^{n} H^{2}\left(\mathbb{T}^{2}\right)\right]
$$

Let \mathfrak{M} be an invariant subspace such that $\mathfrak{F}_{z}=z^{m} H^{2}(z)$ and $\mathfrak{F}_{w}=$ $w^{n} H^{2}(w)$. Then it is clear that $\mathfrak{M} \supset H_{m, n}^{2}\left(\mathbb{T}^{2}\right)$. Put $N=\overline{w^{n}}(\mathfrak{M} \ominus$ $\left.H_{m, n}^{2}\left(\mathbb{T}^{2}\right)\right)$. Then

$$
\mathfrak{M}=H_{m, n}^{2}\left(\mathbb{T}^{2}\right) \oplus w^{n} N
$$

If $m=1$ or $n=1$, then $N=0$. If $m=n=2$, then we easily show that N is one of the following forms:
(i) $N=\{0\}$;
(ii) $N=[z \bar{w}]$; and
(iii) $N=\left[z \bar{w}, \alpha z \bar{w}^{2}+\beta \bar{w}\right]$, where α and β are non-zero complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$.

3. Invariant subspace \mathfrak{M}_{φ}

Let φ be a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times$ $\left(-\mathbb{Z}_{+}\right)$. Put $\mathfrak{M}_{\varphi}=\left[H^{2}\left(\mathbb{T}^{2}\right)+\varphi H^{2}\left(\mathbb{T}^{2}\right)\right]$. Then \mathfrak{M}_{φ} is a $z w$-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$ such that

$$
H^{2}\left(\mathbb{T}^{2}\right) \subset \mathfrak{M}_{\varphi} \subset H_{w}^{2}
$$

Put $\mathfrak{F}^{\varphi}=\mathfrak{M}_{\varphi} \ominus z w \mathfrak{M}_{\varphi}, \mathfrak{S}_{z}^{\varphi}=\mathfrak{M}_{\varphi} \ominus z \mathfrak{M}_{\varphi}$ and $\mathfrak{S}_{w}^{\varphi}=\mathfrak{M}_{\varphi} \ominus w \mathfrak{M}_{\varphi}$, respectively. Further, let $\mathfrak{F}_{z}^{\varphi}$ (resp. $\mathfrak{F}_{w}^{\varphi}$) be the largest z-invariant (resp. w invariant) subspace of \mathfrak{F}^{φ}. If $\varphi \in H^{2}(z)$, then $\mathfrak{M}_{\varphi}=H^{2}\left(\mathbb{T}^{2}\right)$. Thus we may suppose that $\varphi \notin H^{2}(z)$.

In this section, we consider the conditions that $\mathfrak{F}_{z}^{\varphi}=\varphi H^{2}(z)$ and $\mathfrak{F}_{w}^{\varphi}=$ $H^{2}(w)$.

Proposition 3.1 Let φ be a unimodular function of $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$and $\varphi \notin H^{2}(z)$. Then $\varphi H^{2}(z) \subset \mathfrak{F}_{z}^{\varphi} \subset \varphi L_{z}^{2}$ and $H^{2}(w) \subset \mathfrak{F}_{w}^{\varphi} \subset L_{w}^{2}$.

Proof. Take any $f \in H^{2}(w)$. Then, for every $g \in H^{2}\left(\mathbb{T}^{2}\right)$,

$$
\langle f, z w g\rangle=0
$$

and

$$
\langle f, z w \varphi g\rangle=0
$$

This implies that $H^{2}(w) \subset \mathfrak{F}^{\varphi}$. Since $H^{2}(w)$ is w-invariant, $H^{2}(w) \subset \mathfrak{F}_{w}^{\varphi}$. On the other hand, let $f \in H^{2}(z)$. Then for every $g \in H^{2}\left(\mathbb{T}^{2}\right)$,

$$
\langle\varphi f, z w g\rangle=0 \quad \text { and } \quad\langle\varphi f, z w \varphi g\rangle=\langle f, z w g\rangle=0 .
$$

This implies that $H^{2}(z) \subset \mathfrak{F}^{\varphi}$, and so $\varphi H^{2}(z) \subset \mathfrak{F}_{z}^{\varphi}$.
Take any $f \in \mathfrak{F}_{w}^{\varphi}$. Since $\mathfrak{F}_{w}^{\varphi}=\bigcap_{n=0}^{\infty} \bar{w}^{n} \mathfrak{F}^{\varphi}$, we have $w^{n} f \in \mathfrak{F}^{\varphi}$ for any $n \geq 0$. This implies that $w^{n} f \perp z w \mathfrak{M}_{\varphi}$. In particular, $w^{n} f \perp z w H^{2}\left(\mathbb{T}^{2}\right)$. For any $n, k, l \geq 0$, we have

$$
\left\langle f, z^{k+1} w^{l+1-n}\right\rangle=\left\langle w^{n} f, z w z^{k} w^{l}\right\rangle=0
$$

Since $f \in \mathfrak{M}_{\varphi} \subset H_{w}^{2}$ by Proposition $2.6, f \in L_{w}^{2}$. Thus we have $\mathfrak{F}_{w}^{\varphi} \subset L_{w}^{2}$.
Similarly, take any $f \in \mathfrak{F}_{z}^{\varphi}$. Since $z^{n} f \in \mathfrak{F}^{\varphi}$ for any $n \geq 0$, we have $z^{n} f \perp z w \varphi H^{2}\left(\mathbb{T}^{2}\right)$. For any $m, k, l \geq 0$, we have

$$
\left\langle\bar{\varphi} f, z^{k+1-m} w^{l+1}\right\rangle=\left\langle z^{m} f, z w \varphi z^{k} w^{l}\right\rangle=0
$$

Since $\bar{\varphi} f \in \bar{\varphi} \mathfrak{M}_{\varphi}=\left[\bar{\varphi} H^{2}\left(\mathbb{T}^{2}\right)+H^{2}\left(\mathbb{T}^{2}\right)\right] \subset H_{z}^{2}$, we have $\bar{\varphi} f \in L_{z}^{2}$. Thus $f \in \varphi L_{z}^{2}$ and so $\mathfrak{F}_{z}^{\varphi} \subset \varphi L_{z}^{2}$. This completes the proof.

Theorem 3.2 Keep the notations and assumptions as above. Then
(i) $\mathfrak{F}_{w}^{\varphi}=H^{2}(w)$ if and only if $\mathfrak{M}_{\varphi} \cap \overline{w H^{2}(w)}=\{0\}$.
(ii) $\mathfrak{F}_{z}^{\varphi}=\varphi H^{2}(z)$ if and only if $\mathfrak{M}_{\varphi} \cap \varphi \overline{z H^{2}(z)}=\{0\}$.

Proof. (i) $(\Leftarrow) \quad$ By Proposition 3.1, we have

$$
\mathfrak{F}_{w}^{\varphi} \ominus H^{2}(w)=\mathfrak{F}_{w}^{\varphi} \cap \overline{w H^{2}(w)} \subset \mathfrak{M}_{\varphi} \cap \overline{w H^{2}(w)}=\{0\}
$$

Thus $\mathfrak{F}_{w}^{\varphi}=H^{2}(w)$.
(\Rightarrow) Suppose that $\mathfrak{M}_{\varphi} \cap \overline{w H^{2}(w)} \neq\{0\}$. Then there exists a nonzero element f in $\mathfrak{M}_{\varphi} \cap \overline{w H^{2}(w)}$. For all $n, k, l \geq 0$,

$$
\left\langle w^{n} f, z w z^{k} w^{l}\right\rangle=\left\langle f, z^{k+1} w^{l-n+1}\right\rangle=0
$$

and

$$
\left\langle w^{n} f, z w \varphi z^{k} w^{l}\right\rangle=\left\langle f, \varphi z^{k+1} w^{l-n+1}\right\rangle=0
$$

Thus we have $w^{n} f \in \mathfrak{F}^{\varphi}$ for every $n \geq 0$, that is, $f \in \mathfrak{F}_{w}^{\varphi}$. Therefore $H^{2}(w) \subsetneq \mathfrak{F}_{w}^{\varphi}$. This is a contradiction. Similarly we have (ii). This completes the proof.

Corollary 3.3 Keep the notations and assumptions as above. Then
(i) If $\mathfrak{M}_{\varphi} \perp \overline{w H^{2}(w)}$, then $\mathfrak{F}_{w}^{\varphi}=H^{2}(w)$.
(ii) If $\mathfrak{M}_{\varphi} \perp \varphi \overline{z H^{2}(z)}$, then $\mathfrak{F}_{z}^{\varphi}=\varphi H^{2}(z)$.

Corollary 3.4 Keep the notations and assumptions as above. Then
(i) $1 \in \mathfrak{S}_{w}^{\varphi}$ if and only if $\hat{\varphi}(0,-n)=0$ for all $n \geq 1$. In this case, $\mathfrak{F}_{w}^{\varphi}=$ $H^{2}(w)$.
(ii) $\varphi \in \mathfrak{S}_{z}^{\varphi}$ if and only if $\hat{\varphi}(m, 0)=0$ for all $m \geq 1$. In this case, $\mathfrak{F}_{z}^{\varphi}=$ $\varphi H^{2}(z)$.
(iii) If $\hat{\varphi}(m, 0)=\hat{\varphi}(0,-n)=0$ for all $m, n \geq 1$, then $\mathfrak{F}_{z}^{\varphi}=\varphi H^{2}(z)$ and $\mathfrak{F}_{w}^{\varphi}=H^{2}(w)$.

4. Certain classes of invariant subspaces

Keep the notations as in $\S 2$. Suppose that $\mathfrak{F}_{z} \neq\{0\}$ and $\mathfrak{F}_{w} \neq\{0\}$. In general, we have $\mathfrak{F}_{z}+\mathfrak{F}_{w} \subset\left[\mathfrak{S}_{z}+\mathfrak{S}_{w}\right] \subset \mathfrak{F}$. In [4], we studied invariant subspace structure with the property $\mathfrak{F}_{z}+\mathfrak{F}_{w}=\left[\mathfrak{S}_{z}+\mathfrak{S}_{w}\right]$.

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. For any $\alpha \in \mathbb{D}$ and $m, n \in \mathbb{N}$, we define a function $\psi_{\alpha}^{(m, n)}$ by

$$
\psi_{\alpha}^{(m, n)}(z, w)=\frac{z^{m} \bar{w}^{n}-\alpha}{1-\bar{\alpha} z^{m} \bar{w}^{n}}
$$

Then $\psi_{\alpha}^{(m, n)}$ is a unimodular function in $L^{\infty}\left(\mathbb{T}^{2}\right)$ with $\widehat{\psi_{\alpha}^{(m, n)}}(k, l)=0$ for every $(k, l) \in \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$. Then we define an invariant subspace $\mathfrak{M}_{\alpha}^{(m, n)}$ of $L^{2}(\mathbb{T})$ by

$$
\mathfrak{M}_{\alpha}^{(m, n)}=\left[H^{2}\left(\mathbb{T}^{2}\right)+\psi_{\alpha}^{(m, n)} H^{2}\left(\mathbb{T}^{2}\right)\right]
$$

At first we have the following
Theorem 4.1 If $\mathfrak{M}=\mathfrak{M}_{\alpha}^{(m, n)}$, then $\mathfrak{F}_{w}=H^{2}(w), \mathfrak{F}_{z}=\psi_{\alpha}^{(m, n)} H^{2}(z)$,

$$
\mathfrak{S}_{w}=\psi_{\alpha}^{(m, n)} H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right]
$$

and

$$
\mathfrak{S}_{z}=H^{2}(w)+\left[\psi_{\alpha}^{(m, n)}, w \psi_{\alpha}^{(m, n)}, \ldots, w^{n-1} \psi_{\alpha}^{(m, n)}\right] .
$$

Therefore we have

$$
\begin{aligned}
\mathfrak{F} & =\mathfrak{F}_{z}+\mathfrak{F}_{w}+\left[z, \ldots, z^{m}\right]+\left[w \psi_{\alpha}^{(m, n)}, \ldots, w^{n-1} \psi_{\alpha}^{(m, n)}\right] \\
& =\mathfrak{F}_{z}+\mathfrak{F}_{w}+\left[z, \ldots, z^{m-1}\right]+\left[w \psi_{\alpha}^{(m, n)}, \ldots, w^{n} \psi_{\alpha}^{(m, n)}\right] .
\end{aligned}
$$

Proof. By Corollary 3.4, we have $\mathfrak{F}_{w}=H^{2}(w)$ and $\mathfrak{F}_{z}=\psi_{\alpha}^{(m, n)} H^{2}(z)$. We show that $\mathfrak{S}_{z}=H^{2}(w)+\left[\psi_{\alpha}^{(m, n)}, \ldots, w^{n-1} \psi_{\alpha}^{(m, n)}\right]$. For $0 \leq j \leq n-1$ and for any $f, g \in H^{2}\left(\mathbb{T}^{2}\right)$, we have

$$
\begin{aligned}
& \left\langle w^{j} \psi_{\alpha}^{(m, n)}, z\left(f+\psi_{\alpha}^{(m, n)} g\right)\right\rangle \\
& =\left\langle\psi_{\alpha}^{(m, n)}, w^{-j} z f\right\rangle+\left\langle w^{j}, z g\right\rangle=0 .
\end{aligned}
$$

Since $H^{2}(w)=\mathfrak{F}_{w} \subset \mathfrak{S}_{z}$, we have $H^{2}(w)+\left[\psi_{\alpha}^{(m, n)}, \ldots, w^{n-1} \psi_{\alpha}^{(m, n)}\right] \subset \mathfrak{S}_{z}$. We put $\mathfrak{N}=\left(H^{2}(w)+\left[\psi_{\alpha}^{(m, n)}, \ldots, w^{n-1} \psi_{\alpha}^{(m, n)}\right]\right) \oplus z \mathfrak{M}$. Then it is enough to show that $\mathfrak{N}=\mathfrak{M}$. Since $H^{2}\left(\mathbb{T}^{2}\right)+z \psi_{\alpha}^{(m, n)} H^{2}\left(\mathbb{T}^{2}\right) \subset \mathfrak{N}$, we only need to show that $w^{n} \psi_{\alpha}^{(m, n)} H^{2}(w) \subset \mathfrak{N}$. In fact,

$$
\begin{aligned}
w^{n} \psi_{\alpha}^{(m, n)} & =w^{n}\left(\frac{z^{m} \bar{w}^{n}-\alpha}{1-\bar{\alpha} z^{m} \bar{w}^{n}}\right) \\
& =w^{n}\left(z^{m} \bar{w}^{n}-\alpha\right)\left(1+\frac{\bar{\alpha} z^{m} \bar{w}^{n}}{1-\bar{\alpha} z^{m} \bar{w}^{n}}\right) \\
& =z^{m}-\alpha w^{n}+\bar{\alpha} z^{m} \psi_{\alpha}^{(m, n)} .
\end{aligned}
$$

Thus we have $w^{n} \psi_{\alpha}^{(m, n)} \in \mathfrak{N}$. For every $k \geq 1$, we have

$$
w^{n+k} \psi_{\alpha}^{(m, n)}=z^{m} w^{k}-\alpha w^{n+k}+\bar{\alpha} z^{m} w^{k} \psi_{\alpha}^{(m, n)} \in \mathfrak{N} .
$$

This implies that $\mathfrak{N}=\mathfrak{M}$.
We next show that $\mathfrak{S}_{w}=\psi_{\alpha}^{(m, n)} H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right]$. For $0 \leq j \leq$ $m-1$ and for every $f, g \in H^{2}\left(\mathbb{T}^{2}\right)$, we have

$$
\begin{aligned}
& \left\langle z^{j}, w\left(f+\psi_{\alpha}^{(m, n)} g\right)\right\rangle \\
& =\left\langle z^{j}, w f\right\rangle+\left\langle z^{j}, w \psi_{\alpha}^{(m, n)} g\right\rangle \\
& =\left\langle z^{j}, w f\right\rangle+\left\langle\overline{\psi_{\alpha}^{(m, n)}}, z^{-j} w g\right\rangle=0 .
\end{aligned}
$$

Since $\psi_{\alpha}^{(m, n)} H^{2}(z)=\mathfrak{F}_{z} \subset \mathfrak{S}_{w}$, we have

$$
\psi_{\alpha}^{(m, n)} H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right] \subset \mathfrak{S}_{w}
$$

We put $\mathfrak{N}_{1}=\left(\psi_{\alpha}^{(m, n)} H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right]\right) \oplus w \mathfrak{M}$. We want to prove that $\mathfrak{N}_{1}=\mathfrak{M}$. Since $\psi_{\alpha}^{(m, n)} H^{2}\left(\mathbb{T}^{2}\right)+w H^{2}\left(\mathbb{T}^{2}\right) \subset \mathfrak{N}_{1}$, we only show that $z^{m} H^{2}(z) \subset \mathfrak{N}_{1}$. In fact, $z^{m}=w^{n} \psi_{\alpha}^{(m, n)}+\alpha w^{n}-\bar{\alpha} z^{m} \psi_{\alpha}^{(m, n)} \in \mathfrak{N}_{1}$. Further, for every $k \geq 1$,

$$
z^{m+k}=w^{n} z^{k} \psi_{\alpha}^{(m, n)}+\alpha w^{n} z^{k}-\bar{\alpha} z^{m+k} \psi_{\alpha}^{(m, n)} \in \mathfrak{N}_{1}
$$

This implies that $\mathfrak{N}_{1}=\mathfrak{M}$. The remainder of this theorem is proved from $\mathfrak{F}=\mathfrak{S}_{z} \oplus z \mathfrak{S}_{w}=\mathfrak{S}_{w} \oplus w \mathfrak{S}_{z}$. This proof is complete.

We next show the converse of Theorem 4.1.
Theorem 4.2 Let \mathfrak{M} be a zw-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Let $m, n \geq 1$. Then $\mathfrak{M}=\mathfrak{M}_{\alpha}^{(m, n)}$ for some $\alpha \in \mathbb{D}$ if and only if $\mathfrak{F}_{w}=$ $H^{2}(w), \mathfrak{F}_{z}=\varphi H^{2}(z), \mathfrak{S}_{w}=\varphi H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right]$ and $\mathfrak{S}_{z}=H^{2}(w)+$ $\left[\varphi, w \varphi, \ldots, w^{n-1} \varphi\right]$ for some unimodular function φ in $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$.
Proof. If $\mathfrak{M}=\mathfrak{M}_{\alpha}^{(m, n)}$, by Theorem 4.1, we have the results. Thus we prove the converse. To do it, we only prove that $\varphi=c \psi_{\alpha}^{(m, n)}$ for some $c \in \mathbb{T}$ and $\alpha \in \mathbb{D}$. By the assumption, $[1, \varphi] \subset \mathfrak{S}_{z} \cap \mathfrak{S}_{w}$. Thus

$$
\begin{aligned}
& \left\langle\varphi, z^{i} w^{j}\right\rangle=0 \quad(i \geq 1, j \geq 0 \text { or } i \geq 0, j \geq 1) \\
& \left\langle\varphi, z^{i} w^{j}\right\rangle=\left\langle\bar{w}^{j} \varphi, z^{i}\right\rangle=0 \quad(1 \leq i \leq m-1, j \leq-1)
\end{aligned}
$$

and

$$
\left\langle\varphi, z^{i} w^{j}\right\rangle=\left\langle\bar{w}^{j} \varphi, z^{i}\right\rangle=0 \quad(i \geq 0,-(n-1) \leq j \leq-1)
$$

Put $\hat{\varphi}(0,0)=a_{00}$ and $\varphi_{0}=\varphi-a_{00}$, respectively. Put $\mathfrak{N}=H^{2}(w)+$ $\varphi H^{2}(z)+\left[z, \ldots, z^{m-1}\right]+\left[w \varphi, \cdots, w^{n-1} \varphi\right]$. Since $\mathfrak{F}=\mathfrak{S}_{w} \oplus w \mathfrak{S}_{z}=\mathfrak{S}_{z} \oplus$ $z \mathfrak{S}_{w}$, we have

$$
\mathfrak{F}=\mathfrak{N}+\left[w^{n} \varphi\right]=\mathfrak{N}+\left[z^{m}\right]
$$

Thus $\operatorname{dim}(\mathfrak{F} \ominus \mathfrak{N})=1$ and $\left[w^{n} \varphi, z^{m}\right] \subset \mathfrak{F}$. It is clear that $w^{n} \varphi_{0} \in \mathfrak{F}$ and $w^{n} \varphi_{0} \perp \mathfrak{F}_{w}$. Moreover, for $j \geq 1(j \neq n)$, we have

$$
\begin{aligned}
\left\langle w^{n} \varphi_{0}, z^{j} \varphi\right\rangle & =\left\langle w^{n} \varphi, z^{j} \varphi\right\rangle-a_{00}\left\langle w^{n}, z^{j} \varphi\right\rangle \\
& =\left\langle w^{n}, z^{j}\right\rangle-a_{00}\left\langle w^{n}, z^{j} \varphi\right\rangle=0
\end{aligned}
$$

Since $w^{n} \varphi_{0} \perp w^{k} \varphi$ for $1 \leq k \leq n-1$, this implies that

$$
w^{n} \varphi_{0} \perp \mathfrak{N}_{0}
$$

Similarly, we have $z^{m} \varphi \perp \mathfrak{F}_{w}$ and $z^{m} \varphi \perp z^{k} \varphi$ for $0 \leq k<\infty$ and $k \neq m$. It is clear that $z^{m} \varphi \perp\left[w \varphi, \ldots, w^{n-1} \varphi\right]$ and $w^{n} \varphi_{0} \perp \mathfrak{F}_{w}$. Thus we have $z^{m} \varphi \perp \mathfrak{N}_{0}$. Therefore we have

$$
\mathfrak{F}=\mathfrak{N}_{0} \oplus\left[z^{m} \varphi, w^{n} \varphi_{0}\right] .
$$

Since $z^{m} \perp \mathfrak{F}_{w}$ and $z^{m} \perp\left[w \varphi, \ldots, w^{n-1} \varphi\right]$, we have $z^{m} \perp \mathfrak{N}_{0}$. Since $z^{m} \in$ \mathfrak{F}, we have $z^{m} \in\left[z^{m} \varphi, w^{n} \varphi_{0}\right]$. Thus

$$
\begin{aligned}
z^{m} & =\gamma z^{m} \varphi+\delta w^{n} \varphi_{0} \\
& =\gamma z^{m} \varphi+\delta w^{n}\left(\varphi-a_{00}\right) \\
& =\left(\gamma z^{m} \varphi+\delta w^{n}\right) \varphi-\delta a_{00} w^{n}
\end{aligned}
$$

for some constants γ and δ in \mathbb{C}. Thus

$$
\left(\gamma z^{m}+\delta w^{n}\right) \varphi=z^{m}+\delta a_{00} w^{n} .
$$

Since φ is unimodular,

$$
\varphi=\frac{z^{m}+\delta a_{00} w^{n}}{\gamma z^{m}+\delta w^{n}}=\frac{z^{m} \bar{w}^{n}+\delta a_{00}}{\delta+\gamma z^{m} \bar{w}^{n}} \quad \text { a.e. }
$$

Put

$$
h(\lambda)=\frac{\lambda+\delta a_{00}}{\delta+\gamma \lambda} .
$$

Then $\varphi(z, w)=h\left(z^{m} \bar{w}^{n}\right)$. Since $\hat{\varphi}(m, n)=0$ for every $(m, n) \in \mathbb{Z}_{+} \times$ $\left(-\mathbb{Z}_{+}\right), h$ is an analytic function. Since φ is not constant and h is unimodular, we show that h is a Blaschke product, that is,

$$
h(\lambda)=c \frac{\lambda-\alpha}{1-\bar{\alpha} \lambda}
$$

for some constants $c \in \mathbb{T}$ and $\alpha \in \mathbb{D}$. Thus $\varphi(z, w)=h\left(z^{m} \bar{w}^{n}\right)=$ $c \psi_{\alpha}^{(m, n)}(z, w)$, that is, $\varphi=c \psi_{\alpha}^{(m, n)}$, and so $\mathfrak{M}=\mathfrak{M}_{\alpha}^{(m, n)}$. This completes the proof.

If $\hat{\varphi}(0,0)=0$, then, from the proof of Theorem 4.2, we have $\alpha=0$. Therefore we have

Corollary 4.3 Let \mathfrak{M} be a zw-pure invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. Let $m, n \geq 1$. Then $\mathfrak{M}=\overline{w^{n}} H_{m, n}^{2}\left(\mathbb{T}^{2}\right)$ if and only if $\mathfrak{F}_{w}=H^{2}(w)$, $\mathfrak{F}_{z}=\varphi H^{2}(z), \mathfrak{S}_{w}=\varphi H^{2}(z)+\left[1, z, \ldots, z^{m-1}\right]$ and $\mathfrak{S}_{z}=H^{2}(w)+$ $\left[\varphi, w \varphi, \ldots, w^{n-1} \varphi\right]$ for some unimodular function φ in $L^{\infty}\left(\mathbb{T}^{2}\right)$ such that $\operatorname{supp} \hat{\varphi} \subset \mathbb{Z}_{+} \times\left(-\mathbb{Z}_{+}\right)$and $\hat{\varphi}(0,0)=0$.

Acknowledgment The second author is partly supported by the National Natural Science Foundation of China and the excellent Young Teachers Program of the MOE, PRC. The third and fourth authors are partly supported by the Grant-in-Aid for Scientific Research(C), Japan Society for the Promotion of Science.

References

[1] Gaspar D. and Suciu N., On invariant subspaces in the bitorus. J. Operator Theory 30 (1993), 227-241.
[2] Ghatage P. and Manderkar V., On Beurling type invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$ and their equivalence. J. Operator Theory 20 (1988), 31-38.
[3] Helson H., Lectures on invariant subspaces. Academic Press, New York, 1964.
[4] Ji G., Ohwada T. and Saito K.-S., Certain invariant subspace structure of $L^{2}\left(\mathbb{T}^{2}\right)$. Proc. Amer. Math. Soc. 126 (1998), 2361-2368.
[5] Mandrekar R., The validty of Beurling theorems in polidisc. Proc. Amer. Math. Soc. 103 (1988), 145-148.
[6] Nakazi T., Certain invariant subspaces of H^{2} and L^{2} on a bidisc. Canadian J. Math. 40 (1988), 1722-1280.
[7] Nakazi T., Invariant subspaces in the bidisc and commutators. J. Austral. Math. Soc. 56 (1994), 232-242.

A. Hasegawa

Disco
Bunkyo, Tokyo, 112-8515, Japan
E-mail: atsushi.hasegawa@disc.co.jp
G. Ji

College of Mathematics and Information Science
Shaanxi Normal University
Xi'an 710062, PR China
E-mail: gxji@snnu.edu.cn
T. Ohwada

Faculty of Education
Shizuoka University
Shizuoka 422-8529, Japan
E-mail: etoowad@ipc.shizuoka.ac.jp
K.-S. Saito

Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-2181, Japan
E-mail: saito@math.sc.niigata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 47A15; Secondary 46L10.

