An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants

Takuya Ohta

(Received February 28, 2007; Revised October 10, 2007)

Abstract

Let V be a finite dimensional vector space over the complex number field \mathbb{C}. Suppose that, by the adjoint action, a reductive subgroup \tilde{G} of $G L(V)$ acts on a subspace \tilde{L} of $\operatorname{End}(V)$ and a closed subgroup G of \tilde{G} acts on a subspace L of \tilde{L}. In this paper, we give a sufficient condition on the inclusion $(G, L) \hookrightarrow(\tilde{G}, \tilde{L})$ for which the orbits correspondence $L / G \rightarrow \tilde{L} / \tilde{G}(\mathcal{O} \mapsto \tilde{\mathcal{O}}:=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O})$ is injective. Moreover we show that the ring $\mathbb{C}[L]^{G}$ of G-invariants on L is the integral closure of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ in its quotient field. Then, if the ring $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ is normal, the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]_{\tilde{G}}^{G}\left(\left.f \mapsto f\right|_{L}\right)$ is surjective. By using this, we give some examples for which $L / G \rightarrow \tilde{L} / \tilde{G}$ is injective and rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G}$ is surjective.

Key words: inclusion theorem between sets of orbits, the restriction map of rings of invariants.

0. Introduction

Let V be a finite dimensional vector space over the complex number field \mathbb{C} and $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ a \mathbb{C}-linear anti-automorphism of the associative algebra. Let \tilde{G} be a subgroup of $G L(V)$ such that $\sigma(\tilde{G})=\tilde{G}$ and $\left.\sigma^{2}\right|_{\tilde{G}}=\mathrm{id}_{\tilde{G}}$. Suppose that \tilde{G} acts on a σ-stable subspace \tilde{L} of $\operatorname{End}(V)$ by the adjoint action. Define a subgroup G of \tilde{G} and a subspace L of \tilde{L} by

$$
G:=\left\{g \in \tilde{G} \mid \sigma(g)=g^{-1}\right\}, \quad L:=\{X \in \tilde{L} \mid \sigma(X)=\alpha X\}
$$

where $\alpha \in \mathbb{C}^{\times}$. Then the group G also acts on L by the adjoint action. The following are examples of such situation $(G, L) \hookrightarrow(\tilde{G}, \tilde{L})$.
(1) Put $\tilde{G}=G L(V), \tilde{L}=\mathfrak{g l}(V), \sigma(X)={ }^{t} X$ and $\alpha=-1$. Then $G=$ $O(V)$ and $L=\mathfrak{o}(V)$.
(2) Put $V=\mathbb{C}^{m+n}, \tilde{G}=\left\{\left.\left(\begin{array}{cc}g_{1} & 0 \\ 0 & g_{2}\end{array}\right) \right\rvert\, g_{1} \in G L(m, \mathbb{C}), g_{2} \in G L(n, \mathbb{C})\right\}$,
$\tilde{L}=\left\{\left.\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right) \right\rvert\, A \in \operatorname{Mat}_{m \times n}(\mathbb{C}), B \in \operatorname{Mat}_{n \times m}(\mathbb{C})\right\}, \sigma(X)={ }^{t} X$ and $\alpha=-1$.

[^0]Then $G=O(m, \mathbb{C}) \times O(n, \mathbb{C})$ and $L=\{X \in \tilde{L} \mid \sigma(X)=-X\}(L$ is the -1-eigenspace of the symmetric pair $(O(m+n, \mathbb{C}), O(m, \mathbb{C}) \times$ $O(n, \mathbb{C}))$).
(3) Put $V=\mathbb{C}^{m+n}, \tilde{G}=\left\{\left.\left(\begin{array}{cc}g_{1} & 0 \\ 0 & g_{2}\end{array}\right) \right\rvert\, g_{1} \in G L(m, \mathbb{C}), g_{2} \in G L(n, \mathbb{C})\right\}$,
$\tilde{L}=\left\{\left.\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right) \right\rvert\, A \in \operatorname{Mat}_{m \times n}(\mathbb{C}), B \in \operatorname{Mat}_{n \times m}(\mathbb{C})\right\}$,
$J=\left(\begin{array}{ccc}1_{m} & 0 & 0 \\ 0 & 0 & 1_{n / 2} \\ 0 & -1_{n / 2} & 0\end{array}\right)$,
$\sigma(X)=J^{-1 t} X J$ and $\alpha=-\sqrt{-1}$. Then
$G=O(m, \mathbb{C}) \times S p(n, \mathbb{C})$ and $L=\{X \in \tilde{L} \mid \sigma(X)=-\sqrt{-1} X\}$
(L is the $\sqrt{-1}$-eigenspace of the \mathbb{Z}_{4}-graded Lie algebra defined by $(\mathfrak{g l}(V),-\sigma))$.
These examples $(G, L) \hookrightarrow(\tilde{G}, \tilde{L})$ can be seen as inclusions of $\mathbb{Z}_{m^{\prime}}$-graded Lie algebras. For these examples, it is known that the inclusions $\mathcal{N}(L) / G \hookrightarrow$ $\mathcal{N}(\tilde{L}) / \tilde{G}(\mathcal{O} \mapsto \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O})$ of nilpotent orbits holds, and as a consequence, nilpotent G-orbits in L are classified by Young diagrams or ab-diagrams (see for example [He], [O2], [KP]). We can show that the inclusions of orbits hold not only for nilpotent orbits, but also for general orbits (i.e., $L / G \hookrightarrow \tilde{L} / \tilde{G})$. In this paper, we show that the inclusion $L / G \hookrightarrow \tilde{L} / \tilde{G}$ hold for more general situations (Theorem 1).

We are going to explain the contents of this paper briefly. In $\S 1$, we give a sufficient condition for which the inclusion $L / G \hookrightarrow \tilde{L} / \tilde{G}$ holds. In $\S 2$, we study the relationship between the rings $\mathbb{C}[L]^{G}$ and $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ (restrictions of \tilde{G}-invariants on \tilde{L} to L). Suppose that the inclusion $L / G \hookrightarrow \tilde{L} / \tilde{G}$ holds and that closed G-orbits are mapped to closed \tilde{G}-orbits by this correspondence. Then the correspondence of closed orbits $L^{G-c l} / G \hookrightarrow \tilde{L}^{\tilde{G}}$-cl $/ \tilde{G}$ is identified with the morphism $\operatorname{Spec}\left(\mathbb{C}[\tilde{L}]^{\tilde{G}}\right) \rightarrow \operatorname{Spec}\left(\mathbb{C}[L]^{G}\right)$ defined by the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G}\left(\left.f \mapsto f\right|_{L}\right)$. Since $L^{G-\mathrm{cl}} / G$ is a subset of $\tilde{L}^{\tilde{G} \text {-cl }} / \tilde{G}$, it is wishful that functions on $L^{G-\mathrm{cl}} / G$ extend to those on $\tilde{L}^{\tilde{G}-\mathrm{cl}} / \tilde{G}$ and the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G}$ becomes surjective. We show that rest is surjective under the assumption of Theorem 1 and the condition that the ring $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ is normal (Theorem 12).

In $\S 3, \S 4$ and $\S 5$, we give some examples of inclusions $(G, L) \hookrightarrow(\tilde{G}, \tilde{L})$ for which $L / G \hookrightarrow \tilde{L} / \tilde{G}$ and $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G}$ hold. In particular, in $\S 4$, we show that FFT for $O(n, \mathbb{C})$ and $S p(n, \mathbb{C})$ can be proved by using FFT for $G L(n, \mathbb{C})$ and Theorem 12 , under some restriction on the size of matrices.

We mention that the results of this paper can be applied to the classical
\mathbb{Z}_{m}-graded Lie algebras to obtain classification of orbits and determination of rings of invariants. These applications will be treated in the forthcoming paper [O3].

1. Inclusion theorem between sets of orbits

The following theorem is a generalization of [O1, Proposition 4].
Theorem 1 Let V be a finite dimensional vector space over the complex number field \mathbb{C} and $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ a \mathbb{C}-linear anti-automorphism of the associative algebra. Let \tilde{G} be a subgroup of $G L(V)$ such that
(a) $\langle\tilde{G}\rangle_{\mathbb{C}} \cap G L(\underset{\sim}{V})=\tilde{G}$, where $\langle\tilde{G}\rangle_{\mathbb{C}}$ denotes the subspace of $\operatorname{End}(V)$ spanned by \tilde{G}.
(b) $\underset{\tilde{L}}{\sigma}(\tilde{G})=\tilde{G}$ and $\left.\sigma^{2}\right|_{\tilde{G}}=\mathrm{id}_{\tilde{G}}$.

Let \tilde{L} be an $\operatorname{Ad}(\tilde{G})$-stable and σ-stable subspace of $\operatorname{End}(V)$, and α an element of $G L(\tilde{L})$ such that $\alpha(\operatorname{Ad}(g) X)=\operatorname{Ad}(g) \alpha(X)$ for any $g \in \tilde{G}$ and $X \in \tilde{L}$ (i.e., $\left.\alpha \in Z_{G L(\tilde{L})}\left(\operatorname{Ad}_{\tilde{L}}(\tilde{G})\right)\right)$. Define the subgroup $G:=\{g \in \tilde{G} \mid$ $\left.\sigma(g)=g^{-1}\right\}$ of \tilde{G} and the subspace $L:=\{X \in \tilde{L} \mid \sigma(X)=\alpha(X)\}$. Then the correspondence $L / G \rightarrow \tilde{L} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}:=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$ of adjoint orbits is injective.

Proof. Suppose that two elements $X, Y \in L$ are conjugate by an element $g \in \tilde{G} ; Y=g X g^{-1}$. It is sufficient to show that X and Y are conjugate under G.

Since

$$
\begin{aligned}
g X g^{-1} & =Y=\alpha^{-1}(\sigma(Y)) \\
& =\alpha^{-1}\left(\sigma\left(g X g^{-1}\right)\right)=\alpha^{-1}\left(\sigma(g)^{-1} \sigma(X) \sigma(g)\right) \\
& =\alpha^{-1}\left(\sigma(g)^{-1} \alpha(X) \sigma(g)\right)=\sigma(g)^{-1} X \sigma(g)
\end{aligned}
$$

we have $\sigma(g) g X=X \sigma(g) g$ and hence $h:=g^{-1} \sigma(g)^{-1}=(\sigma(g) g)^{-1} \in$ $Z_{\tilde{G}}(X)$. Since h is invertible, there exsits a polynomial $f(T) \in \mathbb{C}[T]$ of a variable T such that $h=f(h)^{2}$ by Lemma 2 below. Then we see

$$
\begin{aligned}
& \sigma(h)=\sigma\left(g^{-1} \sigma(g)^{-1}\right)=\left(\sigma^{2}(g)\right)^{-1} \sigma(g)^{-1}=g^{-1} \sigma(g)^{-1}=h \\
& \sigma(f(h))=f(h), \quad g^{-1} \sigma(g)^{-1}=h=f(h)^{2}=f(h) \sigma(f(h))
\end{aligned}
$$

and

$$
1=g\left(g^{-1} \sigma(g)^{-1}\right) \sigma(g)=g f(h) \sigma(f(h)) \sigma(g)=g f(h) \sigma(g f(h))
$$

Hence we have $\sigma(g f(h))=(g f(h))^{-1}$. Since $f(h) \in \tilde{G}$ by condition (a), we have $g f(h) \in G$. Since $h \in Z_{\tilde{G}}(X)$, we also have $f(h) \in Z_{\tilde{G}}(X)$. Then by

$$
Y=g X g^{-1}=g f(h) X f(h)^{-1} g^{-1}=g f(h) X(g f(h))^{-1}
$$

X and Y are conjugate under $g f(h) \in G$.
The next lemma easily follows from the Chinese remainder theorem.
Lemma 2 For any invertible element $h \in \operatorname{End}(V)$, there exsits a polynomial $f(T) \in \mathbb{C}[T]$ such that $h=f(h)^{2}$.

Remark 3 (1) Let \langle,$\rangle be a non-degenerate bilinear form on V$ and $\sigma(X)=X^{*}$ the adjoint of an element $X \in \operatorname{End}(V)$. Then clearly $\sigma: \operatorname{End}(V)$ $\rightarrow \operatorname{End}(V)$ is a \mathbb{C}-linear anti-automorphism of the associative algebra.

Conversely, if $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ is a \mathbb{C}-linear anti-automorphism of the associative algebra, we can easily show that there exsists a nondegenerate bilinear form \langle,$\rangle on V$ for which the adjoint with respect to \langle,$\rangle coinsides with \sigma$.
(2) In Theorem 1, of course $\alpha \in G L(\tilde{L})$ can be choosen as a non-zero scalar multiplication; $\alpha: \tilde{L} \rightarrow \tilde{L}, \alpha(X)=\alpha X\left(\alpha \in \mathbb{C}^{\times}\right)$. The author cannot find meaningful example for which α is not a scalar multiplication. The examples in $\S 4$ and $\S 5$ are all the cases where α are non-zero scalar multiplications.
By Theorem $1, L / G \hookrightarrow \tilde{L} / \tilde{G}$ holds for the three examples in Introduction.

2. Invariant theory related to the inclusion theorem

(2.1) Preliminaries from invariant theory

Suppose a reductive group G acts on an affine variety X. We denote by $\mathbb{C}[X]^{G}$ the subring of the coordinate ring $\mathbb{C}[X]$ consisting of G-invariant functions and call $\mathbb{C}[X]^{G}$ the ring of G-invariants. Since $\mathbb{C}[X]^{G}$ is finitely generated by Hilbert's theorem, we can consider the affine variety $X / / G:=$ $\operatorname{Spec}\left(\mathbb{C}[X]^{G}\right)$. It is known that $X / / G$ is the categorical quotient of X under the action of G. The morphism $\pi_{(G, X)}: X \rightarrow X / / G$ defined by the inclusion $\mathbb{C}[X]^{G} \hookrightarrow \mathbb{C}[X]$ is called the affine quotient map under G. Clearly $\pi_{(G, X)}$ maps any G-orbit of X to a point of $X / / G$.
Theorem 4 (See [PV, Thorem 4.6 and Corollary to Theorem 4.7] for example) $\pi_{(G, X)}: X \rightarrow X / / G$ is surjective and any fibre of $\pi_{(G, X)}$ contains exactly one closed G-orbit.

For a G-stable subset Y of X, we denote by Y / G the set-theoretical quotient, that is, the set of G-orbits in Y. We denote by $X^{G-c l}$ the set of points $x \in X$ for which the orbit $G \cdot x$ is closed in X. The map $\pi_{(G, X)}$ defines a $\operatorname{map} \bar{\pi}_{(G, X)}: X / G \rightarrow X / / G$ and the restriction $\left.\bar{\pi}_{(G, X)}\right|_{X^{G-c l} / G}: X^{G-\mathrm{cl}} / G \rightarrow$ $X / / G$ is bijective by Theorem 4. Hence we can identify $X / / G$ with the set $X^{G \text {-cl }} / G$ of closed G-orbits in X.

Next, we consider the following situation. Suppose a reductive group \tilde{G} acts on an affine variety \tilde{X} and a reductive closed subgroup G of \tilde{G} acts on a closed subvariety X of \tilde{X}. We denote such a situation by $(G, X) \hookrightarrow$ (\tilde{G}, \tilde{X}). For an orbit $\mathcal{O} \in X / G$, we denote by $\tilde{\mathcal{O}}:=\tilde{G} \cdot \mathcal{O} \in \tilde{X} / \tilde{G}$ the \tilde{G}-orbit generated by \mathcal{O}. We also denote by $\tilde{\mathcal{O}} \tilde{G}^{\tilde{-c l}}$ the unique closed \tilde{G}-orbit in the closure $\overline{\tilde{\mathcal{O}}}$. Thus we obtain a map

$$
X^{G-\mathrm{cl}} / G \rightarrow \tilde{X}^{\tilde{G}-\mathrm{cl}} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}^{\tilde{G}-\mathrm{cl}}
$$

Proposition 5 Let $r: X / / G \rightarrow \tilde{X} / / \tilde{G}$ be the morphism defined by the restriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{G}} \rightarrow \mathbb{C}[X]^{G},\left.f \mapsto f\right|_{X}$. Then by the above identification $X / / G=X^{G-\mathrm{cl}} / G$ and $\tilde{X} / / \tilde{G}=\tilde{X}^{\tilde{G}-\mathrm{cl}} / \tilde{G}$, the morphism r coincides with the $\operatorname{map} \mathcal{O} \mapsto \tilde{\mathcal{O}}^{\tilde{G}-\mathrm{cl}}$.

Remark 6 Let us consider the correspondence

$$
X / G \rightarrow \tilde{X} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}:=\tilde{G} \cdot \mathcal{O}
$$

Suppose that any closed G-orbit in X is mapped, by this correspondence, to a closed \tilde{G}-orbit in \tilde{X}. Then the morphism $r: X / / G \rightarrow \tilde{X} / / \tilde{G}$ coincides with the natural correspondence

$$
X^{G-\mathrm{cl}} / G \rightarrow \tilde{X}^{\tilde{G}-\mathrm{cl}} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}:=\tilde{G} \cdot \mathcal{O}
$$

In particular, if this correspondence is injective, so is r.
Let us give a geometric interpretation of the ring $\left.\mathbb{C}[\tilde{X}]^{\tilde{G}}\right|_{X}$ (the image of rest: $\left.\mathbb{C}[\tilde{X}]^{\tilde{G}} \rightarrow \mathbb{C}[X]^{G}\right)$.

Proposition 7 Suppose that a reductive algebraic group \tilde{G} acts on an affine variety \tilde{X} and that X is a closed subvariety of \tilde{X}.
(i) Let us consider the \tilde{G}-stable subvariety $N:=\overline{\tilde{G} \cdot X}$ of \tilde{X}. Then the restriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{G}} \rightarrow \mathbb{C}[N]^{\tilde{G}},\left.f \mapsto f\right|_{N}$ is surjective.
(ii) From (i), we obtain a ring homomorphism $\left.\mathbb{C}[N]^{\tilde{G}} \rightarrow \mathbb{C}[\tilde{X}]^{\tilde{G}}\right|_{X}, f \mapsto$
$\left.f\right|_{X}$. This is an isomorphism. In paticular, we obtain $\operatorname{Spec}\left(\left.\mathbb{C}[\tilde{X}]^{\tilde{G}}\right|_{X}\right)$ $\simeq N / / \tilde{G}$.
(iii) Let $\pi=\pi_{(\tilde{G}, \tilde{X})}: \underline{X} \rightarrow \tilde{X} / / \tilde{G}$ be the affine quotient map under \tilde{G}. Then the closure $\overline{\pi(X)}$ of the image $\pi(X)$ is isomorphic $N / / \tilde{G}$:

$$
\overline{\pi(X)} \simeq N / / \tilde{G} \simeq \operatorname{Spec}\left(\left.\mathbb{C}[\tilde{X}]^{\tilde{G}}\right|_{X}\right)
$$

Proof. (i) Since \tilde{G} is reductive and $\mathbb{C}[\tilde{X}] \rightarrow \mathbb{C}[N],\left.f \mapsto f\right|_{N}$ is a surjective \tilde{G}-module homomorphism of the locally finite \tilde{G}-modules, the sum of trivial representations in $\mathbb{C}[\tilde{X}]$ is mapped by this homomorphism onto that in $\mathbb{C}[N]$. This means $\mathbb{C}[\tilde{X}]^{\tilde{G}} \rightarrow \mathbb{C}[N]^{\tilde{G}}$ is surjective.
(ii) Since $X \subset N$ and $\mathbb{C}[\tilde{X}]^{\tilde{G}} \rightarrow \mathbb{C}[N]^{\tilde{G}}$ is surjective, we obtain a surjective homomorphism $\left.\mathbb{C}[N]^{\tilde{G}} \rightarrow \mathbb{C}[\tilde{X}]^{\tilde{G}}\right|_{X}$. Since $\tilde{G} \cdot X$ is dense in N, this homomorphism is injective.
(iii) Let us consider the commutative diagram

and the corresponding diagram

$$
\begin{array}{ccc}
N & \hookrightarrow & \tilde{X} \\
\downarrow & & \downarrow \\
N / / \tilde{G} & \hookrightarrow & \tilde{X} / / \tilde{G}
\end{array} .
$$

Since the vertical arrows in the first diagram are surjectuve, those in the second diagram are closed immersions. Hence we have $N / / \tilde{G}=\pi(N)$. Since π is continuous and $\pi(N)$ is a closed subset of $\tilde{X} / / \tilde{G}$, we easily see that $\overline{\pi(X)}=\overline{\pi(\tilde{G} \cdot X)}=\pi(N)$.

(2.2) An application of Luna's criterion

As an application of Luna's criterion, let us give a condition on $(G, L) \hookrightarrow$ (\tilde{G}, \tilde{L}) for which the correspondence $L / G \rightarrow \tilde{L} / \tilde{G}$ maps a closed orbit to a closed orbit and the ring extension $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L} \subset \mathbb{C}[L]^{G}$ is integral.
Theorem 8 Let \mathcal{G} be a reductive algebraic group over \mathbb{C} and $\theta: \mathcal{G} \rightarrow \mathcal{G}$ an automorphism of \mathcal{G}. We denote by $\theta: \operatorname{Lie}(\mathcal{G}) \rightarrow \operatorname{Lie}(\mathcal{G})$ the corresponding automorphism of the Lie algebra of \mathcal{G}. Let \tilde{G} be a θ-stable reductive subgroup of \mathcal{G} and \tilde{L} a θ-stable, $\operatorname{Ad}(\tilde{G})$-stable subspace of $\operatorname{Lie}(\mathcal{G})$. Define a closed
subgroup G^{\prime} of \tilde{G} by $G^{\prime}=\left\{g \in \tilde{G} \mid \operatorname{Ad}_{\tilde{L}}(g)=\operatorname{Ad}_{\tilde{L}}(\theta(g))\right\}$. Let α be an element of $G L(\tilde{L})$ such that $\alpha(\operatorname{Ad}(g) X)=\operatorname{Ad}(g) \alpha(X)$ for any $g \in \tilde{G}$ and $X \in \tilde{L}$. Define an element $\varphi \in G L(\tilde{L})$ by $\varphi(X)=\alpha^{-1}(\theta(X))(X \in \tilde{L})$. Put $L:=\{X \in \tilde{L} \mid \varphi(X)=X(\Leftrightarrow \theta(X)=\alpha(X))\}$. Suppose that φ has finite order. Then $\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right)$ is reductive and we have the following:
(i) For the correspondence

$$
L / G^{\prime} \rightarrow \tilde{L} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}:=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}
$$

$\tilde{\mathcal{O}}$ is closed in \tilde{L} if and only if \mathcal{O} is closed in L.
(ii) The morphism $L / / G^{\prime} \rightarrow \tilde{L} / / \tilde{G}$ corresponding to the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G^{\prime}}$ is finite, that is, $\mathbb{C}[L]^{G^{\prime}}$ is integral over the image $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$.
(iii) Suppose that the morphism $L / / G^{\prime} \rightarrow \tilde{L} / / \tilde{G}$ of (ii) is injective. Then the morphism $L / / G^{\prime}=\operatorname{Spec}\left(\mathbb{C}[L]^{G^{\prime}}\right) \rightarrow \operatorname{Spec}\left(\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}\right)$ corresponding to $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L} \hookrightarrow \mathbb{C}[L]^{G^{\prime}}$ is bijective and birational (i.e., the quotient fields of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ and $\mathbb{C}[L]^{G^{\prime}}$ coinside). In particular, since $\mathbb{C}[L]^{G^{\prime}}$ is normal (i.e., integrally closed in its quotient field), $\mathbb{C}[L]^{G^{\prime}}$ is the integral closure of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ in its quotient field.

By Proposition 7, we have the following:
Corollary to Theorem 8 In the setting of Theorem 8, (iii), if $\overline{\pi_{(\tilde{G}, \tilde{L})}(L)}$ is a normal variety, we have $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G^{\prime}}$, that is the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G^{\prime}}$ is surjective.

We begin the proof of Theorem 8 with showing the following lemma.
Lemma 9 In the setting of Theorem 8, let \tilde{H} be the subgroup of $G L(\tilde{L})$ generated by $\operatorname{Ad}_{\tilde{L}}(\tilde{G})$ and $\varphi ; \tilde{H}:=\left\langle\operatorname{Ad}_{\tilde{L}}(\tilde{G}) \cup\{\varphi\}\right\rangle$.
(i) For $g \in \tilde{G}$, we have $\varphi \circ \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{-1}=\operatorname{Ad}_{\tilde{L}}(\theta(g))$. Therefore $\operatorname{Ad}_{\tilde{L}}(\tilde{G})$ is a normal subgroup of \tilde{H} and the identity component of $\operatorname{Ad}_{\tilde{L}}(\tilde{G})$ coinsides with that of \tilde{H}. In particular \tilde{H} is a reductive subgroup of $G L(\tilde{L})$.
(ii) Let $H:=\langle\varphi\rangle$ be the finite subgroup of \tilde{H} generated by φ. Then the fixed points set $\tilde{L}^{H}:=\{X \in \tilde{L} \mid h \cdot X=X$ for any $h \in H\}$ of \tilde{L} under the action of H coinsides with L.
(iii) We have $Z_{\tilde{H}}(H)=\left\langle\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right) \cup\{\varphi\}\right\rangle$. Moreover $\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right)$ is reductive.

Proof. For $g \in \tilde{G}$ and $X \in \tilde{L}$, since $\theta(g) \in \tilde{G}$ and α commutes with $\operatorname{Ad}_{\tilde{L}}(\theta(g))$, we compute

$$
\begin{aligned}
\varphi \circ \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{-1}(X)= & \alpha^{-1}\left(\theta\left(\operatorname{Ad}_{\tilde{L}}(g) \theta^{-1}(\alpha(X))\right)\right) \\
& =\alpha^{-1}\left(\operatorname{Ad}_{\tilde{L}}(\theta(g)) \alpha(X)\right)=\operatorname{Ad}_{\tilde{L}}(\theta(g)) X .
\end{aligned}
$$

Hence (i) follows.
(ii) is obvious.

By (i), any $\tilde{g} \in \tilde{H}$ can be written as $\tilde{g}=\operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{k}$ for some $g \in \tilde{G}$ and an integer $k \geq 0$. Again by (i), we have

$$
\begin{aligned}
\varphi \circ \tilde{g} \circ \varphi^{-1}=\varphi \circ & \left\{\operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{k}\right\} \circ \varphi^{-1} \\
& =\varphi \circ\left\{\operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{-1}\right\} \circ \varphi^{k}=\operatorname{Ad}_{\tilde{L}}(\theta(g)) \circ \varphi^{k} .
\end{aligned}
$$

Therefore we see

$$
\begin{aligned}
\tilde{g} \in Z_{\tilde{H}}(H) & \Leftrightarrow \varphi \circ \tilde{g} \circ \varphi^{-1}=\tilde{g} \Leftrightarrow \operatorname{Ad}_{\tilde{L}}(\theta(g)) \circ \varphi^{k}=\operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{k} \\
& \Leftrightarrow \operatorname{Ad}_{\tilde{L}}(\theta(g))=\operatorname{Ad}_{\tilde{L}}(g) .
\end{aligned}
$$

Hence $Z_{\tilde{H}}(H)=\left\langle\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right) \cup\{\varphi\}\right\rangle$. Since \tilde{H} is reductive and H is a finite subgroup of $\tilde{H}, Z_{\tilde{H}}(H)$ is reductive by [LR, Lemma 1.1]. It is clear that the identity component of $\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right)$ coincides with that of $Z_{\tilde{H}}(H)$. Hence $\operatorname{Ad}_{\tilde{L}}\left(G^{\prime}\right)$ is also reductive.

In the setting of Lemma 9, we notice that $\mathbb{C}[\tilde{L}]^{\tilde{H}}=\left(\mathbb{C}[\tilde{L}]^{\tilde{G}}\right)^{\langle\varphi\rangle} \hookrightarrow \mathbb{C}[\tilde{L}]^{\tilde{G}}$, $\mathbb{C}[L]^{Z_{\tilde{H}}(H)}=\mathbb{C}[L]^{G^{\prime}}$, and $\tilde{H} \cdot \mathcal{O}=\langle\varphi\rangle \cdot(\tilde{G} \cdot \mathcal{O})$ for $\mathcal{O} \in L / G^{\prime}=L / Z_{\tilde{H}}(H)$. Then Theorem 8, (i) and (ii) follow from the next theorem due to Luna.
Theorem 10 ([L], see also [PV, Theorem 6.16 and Theorem 6.17]) Suppose that a reductive group \tilde{H} acts on an affine variety \tilde{X} and that H is a reductive subgroup of \tilde{H}. Let $X=\tilde{X}^{H}:=\{x \in \tilde{X} \mid h \cdot x=x$ for any $h \in$ $H\}$ be the fixed points set of \tilde{X} under the action of H. Then we have the following.
(i) The morphism $X / / Z_{\tilde{H}}(H) \rightarrow \tilde{X} / / \tilde{H}$ defined by the resrtriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{H}} \rightarrow \mathbb{C}[X]^{Z_{\tilde{H}}(H)}$ is finite (i.e., $\mathbb{C}[X]^{Z_{\tilde{H}}(H)}$ is integral over $\left.\left.\mathbb{C}[\tilde{X}]^{\tilde{H}}\right|_{X}\right)$.
(ii) For a point $x \in X$, the orbit $\tilde{H} \cdot x$ is closed in \tilde{X} if and only if $Z_{\tilde{H}}(H) \cdot x$ is closed in X.

Let us give a proof of Theorem 8, (iii). Since the restriction map
$\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G^{\prime}}$ is decomposed as

$$
\left.\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L} \hookrightarrow \mathbb{C}[L]^{G^{\prime}}
$$

the morphism $L / / G^{\prime} \rightarrow \tilde{L} / / \tilde{G}$ is also decopmosed as

$$
L / / G^{\prime} \xrightarrow{\pi} \operatorname{Spec}\left(\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}\right) \rightarrow \tilde{L} / / \tilde{G}
$$

Since π is finite (closed map) and dominant, π is surjective. On the other hand, since $L / / G^{\prime} \rightarrow \tilde{L} / / \tilde{G}$ is injective, so is π. Then the birationality of π follows from the next theorem.

Theorem 11 ([Hu, Theorem 4.6]) Let $\pi: X \rightarrow Y$ be a dominant, injective morphism of irreducible varieties over an algebraically closed field K. Then via π, the function field $K(X)$ is a finite, purely inseparable extension of $K(Y)$.

(2.3) Inclusion theorem and rings of invariants

Theorem 12 In the setting of Theorem 1, we assume the following in addition to (a), (b) of Theorem 1.
(c) The element $\varphi \in G L(\tilde{L})$, defined by $\varphi(X)=\alpha^{-1}(\sigma(X))(X \in \tilde{L})$, has finite order.
Then we have the following:
(i) For the correspondence

$$
L / G \rightarrow \tilde{L} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}:=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O},
$$

$\tilde{\mathcal{O}}$ is closed in \tilde{L} if and only if \mathcal{O} is closed in L.
(ii) The morphism $L / / G \rightarrow \operatorname{Spec}\left(\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}\right)$, defined by $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L} \hookrightarrow \mathbb{C}[L]^{G}$, is bijective and gives a normalization of the variety $\operatorname{Spec}\left(\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}\right)$ (i.e., $L / / G$ is normal and the morphism is finite, birational). In particular, if the ring $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ is normal (it is equivalent that $\overline{\pi_{(\tilde{G}, \tilde{L})}(L)}$ is normal by Proposition 7), then $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G}$ and the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \rightarrow \mathbb{C}[L]^{G}$ is surjective.
Proof. Let us consider the automorphism $\theta: G L(V) \rightarrow G L(V)$ defined by $\theta(g)=\sigma(g)^{-1}(g \in G L(V))$. Then the corresponding Lie algebra automorphism $\theta: \mathfrak{g l}(V) \rightarrow \mathfrak{g l}(V)$ is given by $\theta(X)=-\sigma(X)(X \in \mathfrak{g l}(V))$. Moreover the group G and the subspace L can be written as

$$
G=\{g \in \tilde{G} \mid \theta(g)=g\}, \quad L=\{X \in \tilde{L} \mid \theta(X)=-\alpha(X)\}
$$

We also consider the subgroup $G^{\prime}=\left\{g \in \tilde{G} \mid \operatorname{Ad}_{\tilde{L}}(g)=\operatorname{Ad}_{\tilde{L}}(\theta(g))\right\}$ of \tilde{G} which contains G. Since the correspondence $L / G \rightarrow \tilde{L} / \tilde{G}$ decomposed as

$$
L / G \rightarrow L / G^{\prime} \rightarrow \tilde{L} / \tilde{G}
$$

and $L / G \rightarrow \tilde{L} / \tilde{G}$ is injective by Theorem 1, the correspondence

$$
L / G \rightarrow L / G^{\prime}\left(\mathcal{O} \mapsto \operatorname{Ad}\left(G^{\prime}\right) \cdot \mathcal{O}\right)
$$

is bijective. This means that, for any point $x \in L$, two orbits $\operatorname{Ad}(G) x$ and $\operatorname{Ad}\left(G^{\prime}\right) x$ coinside. In particular, we have $\mathbb{C}[L]^{G}=\mathbb{C}[L]^{G^{\prime}}$. Therefor we can apply Theorem 8 by taking G instead of G^{\prime} and obtain Theorem 12 .

3. Examples

Let us give some examples for which Theorem 1, Theorem 8 and Theorem 12 can be applied.
(3.1) $\quad(\underset{\tilde{G}}{ }(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C})) \hookrightarrow(G L(n, \mathbb{C}), \mathfrak{g l}(n, \mathbb{C}))$

Put $\tilde{G}=G L(n, \mathbb{C}), \tilde{L}=\operatorname{Mat}_{n \times n}(\mathbb{C})$ (the set of $n \times n$-matrices) and consider the anti-involution

$$
\sigma: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{n \times n}(\mathbb{C}), X \mapsto{ }^{t} X
$$

We take

$$
\begin{aligned}
G:=\left\{g \in \tilde{G} \mid \sigma(g)=g^{-1}\right\}= & O(n, \mathbb{C}) \\
& \text { and } L:=\{X \in \tilde{L} \mid \sigma(X)=-X\} .
\end{aligned}
$$

By Theorem 1 and Theorem 12, we have
(1) $L / G \rightarrow \tilde{L} / \tilde{G}$ is injective.
(2) The quotient fields of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ and $\mathbb{C}[L]^{G}$ coinside and $\mathbb{C}[L]^{G}$ is the integral closure of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ in its quotient field.
Let us show that $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G}$. Define functions $P_{j} \in \mathbb{C}[\tilde{L}]$ by

$$
\operatorname{det}\left(T 1_{n}-X\right)=T^{n}+P_{1}(X) T^{n-1}+\cdots+P_{n}(X),(X \in \tilde{L})
$$

It is well known that P_{1}, \ldots, P_{n} are algbraically independent and $\mathbb{C}[\tilde{L}]^{\tilde{G}}=$ $\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$.

For $X \in L$, it is clear that $P_{j}(X)=0$ for odd j. Hence

$$
\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}\left[\left.P_{2}\right|_{L},\left.P_{4}\right|_{L}, \ldots,\left.P_{2[n / 2]}\right|_{L}\right] .
$$

Put

$$
A=\left(\begin{array}{ccccccc}
0 & a_{1} & & & & & \\
-a_{1} & 0 & & & & \mathbf{0} & \\
& & 0 & a_{2} & & & \\
& & -a_{2} & 0 & & & \\
& & & & \ddots & & \\
& \mathbf{0} & & & & 0 & a_{[n / 2]} \\
& & & & & -a_{[n / 2]} & 0
\end{array}\right)
$$

and consider an element $X=A \in L$ (n is even) or $X=\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right) \in L(n$ is odd). Then we see

$$
\operatorname{det}\left(T 1_{n}-X\right)=\left(T^{2}+a_{1}^{2}\right) \ldots\left(T^{2}+a_{[n / 2]}^{2}\right) T^{n-2[n / 2]}
$$

From this, we find that $\left.P_{2}\right|_{L},\left.P_{4}\right|_{L}, \ldots,\left.P_{[n / 2]}\right|_{L}$ are algebraically independent. Hence $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ is isomorphic to a polynomial ring. By (2) above, we obtain
(3) $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G}$.
(3.2) Symmetric pairs $(\mathfrak{s p}(2 m, \mathbb{C}), \mathfrak{g l}(m, \mathbb{C}))$

$$
\hookrightarrow(\mathfrak{g l}(2 m, \mathbb{C}), \mathfrak{g l}(m, \mathbb{C})+\mathfrak{g l}(m, \mathbb{C}))
$$

Let us consider a vector space $V=\mathbb{C}^{2 m}$, a matrix $S=\left(\begin{array}{cc}1_{m} & 0 \\ 0 & -1_{m}\end{array}\right)$ and an automorphism $\theta: G L(V) \rightarrow G L(V), \theta(g)=S g S^{-1}$. Let us take subgroups

$$
\begin{aligned}
& \tilde{G}=\{g \in G L(V) \mid \theta(g)=g\}=\left\{\left.\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right) \right\rvert\, g_{1}, g_{2} \in G L(m, \mathbb{C})\right\}, \\
& G L(V)^{\prime}=\{g \in G L(V) \mid \operatorname{Ad}(\theta(g))=\operatorname{Ad}(g)\} \\
& =\left\langle\tilde{G} \cup\left\{\left(\begin{array}{cc}
0 & 1_{m} \\
1_{m} & 0
\end{array}\right)\right\}\right\rangle
\end{aligned}
$$

of $G L(V)$ and a subspace

$$
\begin{aligned}
\tilde{\mathfrak{s}} & =\{X \in \mathfrak{g l}(V) \mid \theta(X)=-X\} \\
& =\left\{\left.\left(\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B, C \in \operatorname{Mat}_{m \times m}(\mathbb{C})\right\}
\end{aligned}
$$

of $\mathfrak{g l}(V)$. Apply Theorem 8, (i) to the inclusion $\left(G L(V)^{\prime}, \tilde{\mathfrak{s}}\right) \hookrightarrow(G L(V)$, $\mathfrak{g l}(V))$. Then, for an orbit $\mathcal{O}^{\prime} \in \tilde{\mathfrak{s}} / G L(V)^{\prime}, \mathcal{O}^{\prime}$ is closed in $\tilde{\mathfrak{s}}$ if and only if $\operatorname{Ad}(G L(V)) \cdot \mathcal{O}^{\prime}$ is a semisimple orbit. Since ${ }^{\sharp}\left(G L(V)^{\prime} / \tilde{G}\right)<\infty$, we obtain the following well-known fact due to $[\mathrm{KR}]$.
(0) For an orbit $\mathcal{O} \in \tilde{\mathfrak{s}} / \tilde{G}, \mathcal{O}$ is closed in $\tilde{\mathfrak{s}}$ if and only if $\operatorname{Ad}(G L(V)) \mathcal{O}$ is a semisimple orbit.
By [O3], we have the following:
(1) The eigenvalues of an element of $\tilde{\mathfrak{s}}$ are of the form $\alpha_{1},-\alpha_{1}, \alpha_{2},-\alpha_{2}$, $\ldots, \alpha_{m},-\alpha_{m}\left(\alpha_{j} \in \mathbb{C}\right)$. Moreover, for given $\alpha_{j} \in \mathbb{C}(1 \leq j \leq m)$, there exsist an element of $\tilde{\mathfrak{s}}$ with eigenvalues $\alpha_{1},-\alpha_{1}, \alpha_{2},-\alpha_{2}, \ldots$, $\alpha_{m},-\alpha_{m}$.
(2) For two semisimple elements $X, Y \in \tilde{\mathfrak{s}}, X$ and Y are conjugate under \tilde{G} if and only if the eigenvalues (with multiplicities) of X and Y coinside.
The statement (2) implies
(3) The morphism $\tilde{\mathfrak{s}} / / \tilde{G} \rightarrow \mathfrak{g l}(V) / / G L(V)$ defined by rest: $\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}$ $\rightarrow \mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}$ is injective.
By Theorem 8, (iii), we have
(4) The quotient fields of $\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\tilde{\mathfrak{s}}}$ and $\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}$ coinside and $\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}$ is the integral closure of $\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\tilde{\mathfrak{s}}}$ in its quotient field.
Define functions $P_{1}, P_{2}, \ldots, P_{2 m} \in \mathbb{C}[\mathfrak{g l}(V)]$ by

$$
\begin{aligned}
\operatorname{det}\left(T 1_{2 m}-X\right)=T^{2 m}+P_{1}(X) T^{2 m-1}+\cdots+ & P_{2 m}(X) \\
& (X \in \mathfrak{g l}(V)) .
\end{aligned}
$$

For $X \in \tilde{\mathfrak{s}}$, since $S X S^{-1}=-X, P_{j}(X)=0$ for odd j and hence

$$
\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\tilde{\mathfrak{s}}}=\mathbb{C}\left[\left.P_{2}\right|_{\tilde{\mathfrak{s}}},\left.P_{4}\right|_{\tilde{\mathfrak{s}}}, \ldots,\left.P_{2 m}\right|_{\tilde{\mathfrak{s}}}\right]
$$

Suppose that the eigenvalues of an element $X \in \tilde{\mathfrak{s}}$ are $\alpha_{1},-\alpha_{1}, \alpha_{2}$, $-\alpha_{2}, \ldots, \alpha_{m},-\alpha_{m}$. Then we have

$$
\operatorname{det}\left(T 1_{2 m}-X\right)=\left(T^{2}-\alpha_{1}^{2}\right)\left(T^{2}-\alpha_{2}^{2}\right) \cdots\left(T^{2}-\alpha_{m}^{2}\right)
$$

From this, we know that $\left.P_{2}\right|_{\tilde{\mathfrak{s}}},\left.P_{4}\right|_{\tilde{\mathfrak{s}}}, \ldots,\left.P_{2 m}\right|_{\tilde{\mathfrak{s}}}$ are algebraically independent. Hence $\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\tilde{\mathfrak{s}}}$ is isomorphic to a polynomial ring. By (4) above, we obtain
(5) $\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\tilde{\mathfrak{s}}}=\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}$.

Next we consider an anti-automorphism $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ defined by $\sigma(X)=J^{-1 t} X J(X \in \operatorname{End}(V))$, where we put $J:=\left(\begin{array}{cc}0 & 1 \\ -1_{m} & 0\end{array}\right)$. We also consider the subgroup $G=\left\{g \in \tilde{G} \mid \sigma(g)=g^{-1}\right\}$ of \tilde{G} and a subspace

$$
\mathfrak{s}=\{X \in \tilde{\mathfrak{s}} \mid \sigma(X)=-X\}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B, C \in \operatorname{Sym}_{m}(\mathbb{C})\right\}
$$

of $\tilde{\mathfrak{s}}$. Then by Theorem 1 , the orbits correspondence $\mathfrak{s} / G \rightarrow \tilde{\mathfrak{s}} / \tilde{G}$ is injective. For

$$
X=\left(\begin{array}{cccccc}
& & & b_{1} & & \\
& \mathbf{0} & & & \ddots & \\
& & & & & b_{m} \\
c_{1} & & & & & \\
& \ddots & & & \mathbf{0} &
\end{array}\right) \in \mathfrak{s},
$$

we find $\operatorname{det}\left(T 1_{2 m}-X\right)=\left(T^{2}-b_{1} c_{1}\right)\left(T^{2}-b_{2} c_{2}\right) \cdots\left(T^{2}-b_{m} c_{m}\right)$. From this, we find that $\left.P_{2}\right|_{\mathfrak{s}},\left.P_{4}\right|_{\mathfrak{s}}, \ldots,\left.P_{2 m}\right|_{\mathfrak{s}}$ are algebraically independent and $\left.\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}\right|_{\mathfrak{s}}=$ $\mathbb{C}\left[\left.P_{2}\right|_{\mathfrak{s}},\left.P_{4}\right|_{\mathfrak{s}}, \ldots,\left.P_{2 m}\right|_{\mathfrak{s}}\right]$ is isomorphic to a polynomial ring. Therefore by Theorem 12, we obtain
(6) $\mathbb{C}[\mathfrak{s}]^{G}=\left.\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}\right|_{\mathfrak{s}}=\left.\mathbb{C}[\mathfrak{g l}(V)]^{G L(V)}\right|_{\mathfrak{s}}$.
(G, \mathfrak{s}) is an example of classical graded Lie algebras. Generalization of these results for general classical graded Lie algebras will be given in [O3].
4. FFT for $G L_{n}$ and that for $O_{n}, S p_{n}$

Let us consider a vector space $V=\mathbb{C}^{n+m}$ and a matrix $J=\left(\begin{array}{cc}K & 0 \\ 0 & 1_{m}\end{array}\right)$, where we put

$$
K=\left\{\begin{array}{cc}
1_{n} & (\varepsilon=1) \\
\left(\begin{array}{cc}
0 & 1_{n / 2} \\
-1_{n / 2} & 0
\end{array}\right) & (\varepsilon=-1, n: \text { even })
\end{array}\right.
$$

Define an anti-automorphism $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ by $\sigma(X)=J^{-1 t} X J$ $(X \in \operatorname{End}(V))$. We consider the following subgroups of $G L(V)$:

$$
\begin{aligned}
\tilde{G} & :=\left\{\left.\left(\begin{array}{cc}
g & 0 \\
0 & c 1_{m}
\end{array}\right) \right\rvert\, g \in G L(n, \mathbb{C}), c \in \mathbb{C}^{\times}\right\} \simeq G L(n, \mathbb{C}) \times \mathbb{C}^{\times}, \\
G & =\left\{x \in \tilde{G} \mid \sigma(x)=x^{-1}\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
g & 0 \\
0 & c 1_{m}
\end{array}\right) \right\rvert\, J^{-1 t} g J=g^{-1}, c \in\{ \pm 1\}\right\} \\
& \simeq\left\{\begin{array}{cc}
O(n, \mathbb{C}) \times\left\{ \pm 1_{m}\right\} & (\varepsilon=1) \\
S p(n, \mathbb{C}) \times\left\{ \pm 1_{m}\right\} & (\varepsilon=-1) .
\end{array}\right.
\end{aligned}
$$

We also consider the following subspaces of $\operatorname{End}(V)$:

$$
\begin{aligned}
\tilde{L} & =\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Mat}_{n \times m}(\mathbb{C}), C \in \operatorname{Mat}_{m \times n}(\mathbb{C})\right\} \\
L & =\{X \in \tilde{L} \mid \sigma(X)=X\}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
{ }^{t} B K & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Mat}_{n \times m}(\mathbb{C})\right\} .
\end{aligned}
$$

Then we can easily verify that the assumptions of Theorem 1 and Theorem 12 hold in this situation (with $\alpha=1$). Therefore we have the following:
(1) The correspondence $L / G \rightarrow \tilde{L} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$, is injective.
(2) $\mathcal{O} \in L / G$ is closed in L if and only if $\tilde{\mathcal{O}} \in \tilde{L} / \tilde{G}$ is closed in \tilde{L}.
(3) The quotient fields of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ and $\mathbb{C}[L]^{G}$ coinside and $\mathbb{C}[L]^{G}$ is the integral closure of $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}$ in its quotient field.
We easily see that

$$
\begin{aligned}
\operatorname{Ad}_{\tilde{L}}(\tilde{G})=\operatorname{Ad}_{\tilde{L}}\left(G L(n, \mathbb{C}) \times\left\{1_{m}\right\}\right) \text { and } \\
\operatorname{Ad}_{\tilde{L}}(G)=\left\{\begin{array}{cc}
\operatorname{Ad}_{\tilde{L}}\left(O(n, \mathbb{C}) \times\left\{1_{m}\right\}\right) & (\varepsilon=1) \\
\operatorname{Ad}_{\tilde{L}}\left(S p(n, \mathbb{C}) \times\left\{1_{m}\right\}\right) & (\varepsilon=-1)
\end{array}\right.
\end{aligned}
$$

In such way, we can consider $\tilde{G}, G, \tilde{L}, L$ as

$$
\begin{aligned}
& G=\left\{\begin{array}{cc}
O(n, \mathbb{C}) & (\varepsilon=1) \\
S p(n, \mathbb{C}) & (\varepsilon=-1)
\end{array} \hookrightarrow \tilde{G}=G L(n, \mathbb{C}),\right. \\
& L=\operatorname{Mat}_{n \times m}(\mathbb{C}) \stackrel{\hookrightarrow}{\hookrightarrow} \\
& \qquad \quad \tilde{L}=\operatorname{Mat}_{m \times n}(\mathbb{C}) \times \operatorname{Mat}_{n \times m}(\mathbb{C})\left(B \mapsto\left({ }^{t} B K, B\right)\right),
\end{aligned}
$$

where the action of \tilde{G} on \tilde{L} is given by $g \cdot(C, B)=\left(C g^{-1}, g B\right)(g \in \tilde{G}$, $(C, B) \in \tilde{L})$ and that of G on L is the left action. Notice that the inclusion $L \hookrightarrow \tilde{L}$ is G-equivariant.

For $x=(C, B) \in \tilde{L}$, we put $\pi(x)=C B \in \operatorname{Mat}_{m \times m}(\mathbb{C})$ and obtain a map $\pi: \tilde{L} \rightarrow \operatorname{Mat}_{m \times m}(\mathbb{C})$. Denote by $\pi_{i, j}(x)(1 \leq i, j \leq m)$ the (i, j) entry of $\pi(x)$. Clearly $\pi_{i, j} \in \mathbb{C}[\tilde{L}]^{\tilde{G}}$. First fundamental theorem (FFT) for invariant theory for $G L_{n}$ says that
FFT for $\boldsymbol{G} \boldsymbol{L}_{\boldsymbol{n}} \quad \mathbb{C}[\tilde{L}]^{\tilde{G}}=\mathbb{C}\left[\pi_{i, j}\right]_{1 \leq i, j \leq m}$.
This implies that $\pi: \tilde{L} \rightarrow \pi(\tilde{L})$ is the affine quotient map under $\tilde{G} ; \pi(\tilde{L}) \simeq$ $\tilde{L} / / \tilde{G}$. Then, if we can show that $\overline{\pi(L)}$ is normal, we obtain $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=$ $\mathbb{C}[L]^{G}$ by Theorem 12, (ii).

Suppose $n \geq m$. Then it is easy to see that

$$
\begin{aligned}
& \pi(L)=\left\{\begin{array}{cc}
\operatorname{Sym}_{m}(\mathbb{C}) & (\varepsilon=1) \\
\operatorname{Alt}_{m}(\mathbb{C}) & (\varepsilon=-1)
\end{array}\right. \text { and } \\
& \qquad\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\left\{\begin{array}{lc}
\mathbb{C}\left[\left.\pi_{i, j}\right|_{L}\right]_{1 \leq i \leq j \leq m} & (\varepsilon=1) \\
\mathbb{C}\left[\left.\pi_{i, j}\right|_{L}\right]_{1 \leq i<j \leq m} & (\varepsilon=-1)
\end{array}\right.
\end{aligned}
$$

Hence $\overline{\pi(L)}=\pi(L)$ is normal and we obtain
(4) $\left.\mathbb{C}[\tilde{L}]^{\tilde{G}}\right|_{L}=\mathbb{C}[L]^{G}, \mathbb{C}[L]^{G}=\left\{\begin{array}{cc}\mathbb{C}\left[\left.\pi_{i, j}\right|_{L}\right]_{1 \leq i \leq j \leq m} & (\varepsilon=1) \\ \mathbb{C}\left[\left.\pi_{i, j}\right|_{L}\right]_{1 \leq i<j \leq m} & (\varepsilon=-1)\end{array}\right.$ and the functions $\left.\pi_{i, j}\right|_{L}(1 \leq i \leq j \leq m$ in case $\varepsilon=1$ and $1 \leq i<j \leq$
m in case $\varepsilon=-1$) are algebraically independent generaters of $\mathbb{C}[L]^{G}$. These are FFT for $O(n, \mathbb{C})$ and $S p(n, \mathbb{C})$ in case $m \leq n$. In such way, we can prove FFT for $O(n, \mathbb{C})$ and $S p(n, \mathbb{C})$ by using FFT for $G L(n, \mathbb{C})$ and Theorem 12.

5. Embedding of the action of Doković, Sekiguchi and Zhao

Let us consider a vector space $V=\mathbb{C}^{4 n}$ and a matrix $J=\left(\begin{array}{cccc}0 & 0 & 0 & 1_{n} \\ 0 & 0 & 1_{n} & 0 \\ 0 & 1_{n} & 0 & 0 \\ 1_{n} & 0 & 0 & 0\end{array}\right)$.
Define an anti-involution $\sigma: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ by $\sigma(X)=J^{-1 t} X J(X \in$ $\operatorname{End}(V)$). We consider the following subgroups of $G L(V)$:

$$
\begin{aligned}
\tilde{G} & :=\left\{\left.\left(\begin{array}{llll}
g & 0 & 0 & 0 \\
0 & g & 0 & 0 \\
0 & 0 & h & 0 \\
0 & 0 & 0 & h
\end{array}\right) \right\rvert\, g, h \in G L(n, \mathbb{C})\right\}, \\
G & =\left\{x \in \tilde{G} \mid \sigma(x)=x^{-1}\right\} \\
& =\left\{\left.\left(\begin{array}{cccc}
g & 0 & 0 & 0 \\
0 & g & 0 & 0 \\
0 & 0 & { }^{t} g^{-1} & 0 \\
0 & 0 & 0 & { }^{t} g^{-1}
\end{array}\right) \right\rvert\, g \in G L(n, \mathbb{C})\right\} .
\end{aligned}
$$

We also consider the following subspaces of $\operatorname{End}(V)$:

$$
\tilde{L}=\left\{\left.\left(\begin{array}{cccc}
0 & 0 & X & 0 \\
0 & 0 & 0 & Y \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C})\right\},
$$

$$
L=\{A \in \tilde{L} \mid \sigma(A)=A\}=\left\{\left.\left(\begin{array}{cccc}
0 & 0 & X & 0 \\
0 & 0 & 0 & { }^{t} X \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, X \in \operatorname{Mat}_{n \times n}(\mathbb{C})\right\} .
$$

It is easy to see that these satisfy the assumption of Theorem 1. Hence (1) The correspondence $L / G \rightarrow \tilde{L} / \tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}}=\operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$ is injective. By the natural identifications, we can consider $\tilde{G}, G, \tilde{L}, L$ as

$$
\begin{aligned}
& G=G L(n, \mathbb{C}) \hookrightarrow \tilde{G}=G L(n, \mathbb{C}) \times G L(n, \mathbb{C}), g \mapsto\left(g,^{t} g^{-1}\right), \\
& L=\operatorname{Mat}_{n \times n}(\mathbb{C}) \hookrightarrow \tilde{L}=\operatorname{Mat}_{n \times n}(\mathbb{C}) \times \operatorname{Mat}_{n \times n}(\mathbb{C}), \quad X \mapsto\left(X,{ }^{t} X\right),
\end{aligned}
$$

where the action of \tilde{G} on \tilde{L} is given by $(g, h) \cdot(X, Y)=\left(g X h^{-1}, g Y h^{-1}\right)$ $((g, h) \in \tilde{G},(X, Y) \in \tilde{L})$ and that of G on L is given by $g \cdot X=g X^{t} g$ $(g \in G, X \in L)$. Notice that the inclusion $L \hookrightarrow \tilde{L}$ is G-equivariant. The action $G \times L \rightarrow L$ is that considered in [DSZ].

For these actions, we easily see that $\mathbb{C}[\tilde{L}]^{\tilde{G}}=\mathbb{C}[L]^{G}=\mathbb{C}$. Let us determine the fields of rational invariants $\mathbb{C}(\tilde{L})^{\tilde{G}}$ and $\mathbb{C}(L)^{G}$, and show that generaters of $\mathbb{C}(L)^{G}$ are obtained by restrictions of some elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$.

Define functions $P_{0}, P_{1}, \ldots, P_{n} \in \mathbb{C}[\tilde{L}]$ by

$$
\begin{aligned}
\operatorname{det}(T X+Y)=P_{0}(X, Y) T^{n} & +P_{1}(X, Y) T^{n-1} \\
& +\cdots+P_{n}(X, Y) \quad((X, Y) \in \tilde{L}) .
\end{aligned}
$$

Notice that $P_{0}(X, Y)=\operatorname{det}(X)$ and $P_{n}(X, Y)=\operatorname{det}(Y)$. Since

$$
P_{j}((g, h) \cdot(X, Y))=\operatorname{det}(g) \operatorname{det}(h)^{-1} P_{j}((X, Y)) \quad((g, h) \in \tilde{G}),
$$

rational functions $f_{j}:=P_{j} / P_{0}(1 \leq j \leq n)$ are elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$. Define dense open subset \tilde{L}_{0} of \tilde{L} by

$$
\begin{aligned}
\tilde{L}_{0}:=\{(X, Y) \in \tilde{L} \mid \operatorname{det}(X) \neq 0 & \neq \operatorname{det}(Y) \text { and } \\
& \left.X^{-1} Y \text { has distinct eigenvalues }\right\} .
\end{aligned}
$$

For $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \in \tilde{L}_{0}$, suppose that $f_{j}\left(X_{1}, Y_{1}\right)=f_{j}\left(X_{2}, Y_{2}\right)$ for any $1 \leq j \leq n$. Then we have

$$
\begin{aligned}
\operatorname{det}\left(T 1_{n}+X_{2}^{-1} Y_{2}\right) & =\operatorname{det}\left(X_{2}\right)^{-1} \operatorname{det}\left(T X_{2}+Y_{2}\right) \\
& =\operatorname{det}\left(X_{1}\right)^{-1} \operatorname{det}\left(T X_{1}+Y_{1}\right) \\
& =\operatorname{det}\left(T 1_{n}+X_{1}^{-1} Y_{1}\right) .
\end{aligned}
$$

Since $X_{1}^{-1} Y_{1}$ and $X_{2}^{-1} Y_{2}$ have distinct eigenvalues, there exists $h \in G L(n, \mathbb{C})$ such that $X_{2}^{-1} Y_{2}=h\left(X_{1}^{-1} Y_{1}\right) h^{-1}$. If we put $g:=X_{2} h X_{1}^{-1}$, we have $g X_{1} h^{-1}=X_{2}$ and $Y_{2}=\left(X_{2} h X_{1}^{-1}\right) Y_{1} h^{-1}=g Y_{1} h^{-1}$. Hence $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are conjugate under \tilde{G}. Therefore the rational invariants $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{C}(\tilde{L})^{\tilde{G}}$ separate \tilde{G}-orbits in \tilde{L}_{0}. By [PV, Lemma 2.1], we have
(2) $\mathbb{C}(\tilde{L})^{\tilde{G}}=\mathbb{C}\left(f_{1}, f_{2}, \ldots, f_{n}\right)$.

We easily see that
(3) $P_{j}(X, Y)=P_{n-j}(Y, X)(0 \leq j \leq n)$. In particular, $P_{j}\left(X,{ }^{t} X\right)=$ $P_{j}\left({ }^{t} X, X\right)=P_{n-j}\left(X,{ }^{t} X\right)(0 \leq j \leq n)$ for any $\left(X,{ }^{t} X\right) \in L$.
Thus we see $\left.f_{j}\right|_{L}=\left.f_{n-j}\right|_{L}(1 \leq j \leq n-1)$ and obtain rational invariants $\left.f_{1}\right|_{L},\left.f_{2}\right|_{L}, \ldots,\left.f_{[n / 2]}\right|_{L} \in \mathbb{C}(L)^{G}$.

Let us show that
(4) $\mathbb{C}(L)^{G}=\mathbb{C}\left(\left.f_{1}\right|_{L},\left.f_{2}\right|_{L}, \ldots,\left.f_{[n / 2]}\right|_{L}\right)$.

For this purpose we first show that $\tilde{L}_{0} \cap L \neq \emptyset$. Suppose that $n=$ $2 m+1$ is odd. Take a skew-symmetric matrix A with distinct eigenvalues $a_{1}, a_{2}, \ldots, a_{m}, 0,-a_{1},-a_{2}, \ldots,-a_{m}$ and a scalar $c \in \mathbb{C}^{\times}$such that $c \neq \pm a_{j}(1 \leq j \leq m)$. Put $X=c 1_{n}+A$. Then $X^{-1 t} X=\left(c 1_{n}+A\right)^{-1}\left(c 1_{n}-\right.$ A) has distinct eigenvalues

$$
\frac{c-a_{1}}{c+a_{1}}, \ldots, \frac{c-a_{m}}{c+a_{m}}, 1, \frac{c+a_{1}}{c-a_{1}}, \ldots, \frac{c+a_{m}}{c-a_{m}}
$$

Hence $\left(X,{ }^{t} X\right) \in \tilde{L}_{0} \cap L$ and $\tilde{L}_{0} \cap L \neq \emptyset$. Similarly we can show that $\tilde{L}_{0} \cap$ $L \neq \emptyset$ for even n.

For $\left(X_{1},{ }^{t} X_{1}\right),\left(X_{2},{ }^{t} X_{2}\right) \in \tilde{L}_{0} \cap L$, suppose that $f_{j}\left(X_{1},{ }^{t} X_{1}\right)=f_{j}\left(X_{2},{ }^{t} X_{2}\right)$ for any $1 \leq j \leq[n / 2]$. Then the same equations hold for any $1 \leq$ $j \leq n$. Since $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{C}(\tilde{L})^{\tilde{G}}$ separate \tilde{G}-orbits in $\tilde{L}_{0},\left(X_{1},{ }^{t} X_{1}\right)$ and $\left(X_{2},{ }^{t} X_{2}\right)$ are conjugate under \tilde{G}. By the fact (1) above, $\left(X_{1},{ }^{t} X_{1}\right)$ and ($X_{2},{ }^{t} X_{2}$) are conjugate under G. Therefor the rational invariants $\left.f_{1}\right|_{L},\left.f_{2}\right|_{L}, \ldots,\left.f_{[n / 2]}\right|_{L} \in \mathbb{C}(L)^{G}$ separate G-orbits in $\tilde{L}_{0} \cap L$. Again by [PV, Lemma 2.1], we obtain the fact (4).

Therefore, for the inclusion $(G, L) \hookrightarrow(\tilde{G}, \tilde{L}), \mathbb{C}(L)^{G}$ is generated by the restrictions of elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$.

References

[DSZ] Doković D., Sekiguchi J. and Zhao K., On the geometry of unimodular congruence classes of bilinear forms. preprint.
[He] Hesselink W., Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc. 222 (1976), 1-32.
[Hu] Humphreys J.E., Linear algebraic groups. Springer-Verlag, New York.
[KR] Kostant B. and Rallis S., Orbits and representations associated with symmetric spaces. Amer. J. Math. 93 (1971),753-809.
[KP] Kraft H. and Procesi C., On the geometry of conjugacy classes in classical groups. Comment. Math. Helv. 57 (1982), 539-602.
[L] Luna D., Adherences d'orbite et invariants. Invent. Math. 29 (1975), 231-238.
[LR] Luna D. and Richardson R.W., A generalization of the Chevalley restriction theorem. Duke Math. J. (3) 46 (1979), 487-496.
[O1] Ohta T., The singularities of the closures of nilpotent orbits in certain symmetric pairs. Tohoku Math. J. 38 (1986), 441-468.
[O2] Ohta T., The closure of nilpotent orbits in the classical symmetric pairs and their singularities. Tohoku Math. J. 43 (1991), 161-211.
[O3] Ohta T., Orbits, rings of invariants and Weyl groups for classical graded Lie algebras. preprint.
[PV] Popov V.L. and Vinberg E.V., Invariant Theory. Encyclopaedia of Mathematical Sciences, vol. 55, Algebraic Geometry IV, Springer-Verlag.

Department of Mathematics Tokyo Denki University
Kanda-nisiki-cho, Chiyoda-ku Tokyo 101-8457, Japan
E-mail: ohta@cck.dendai.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 13A50, 14R20,; Secondary 14L35.

