Hokkaido Mathematical Journal Vol. 37 (2008) p. 437-454

An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants

Такиуа Онта

(Received February 28, 2007; Revised October 10, 2007)

Abstract. Let V be a finite dimensional vector space over the complex number field \mathbb{C} . Suppose that, by the adjoint action, a reductive subgroup \tilde{G} of GL(V) acts on a subspace \tilde{L} of End(V) and a closed subgroup G of \tilde{G} acts on a subspace L of \tilde{L} . In this paper, we give a sufficient condition on the inclusion $(G, L) \hookrightarrow (\tilde{G}, \tilde{L})$ for which the orbits correspondence $L/G \to \tilde{L}/\tilde{G}$ ($\mathcal{O} \mapsto \tilde{\mathcal{O}} := \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$) is injective. Moreover we show that the ring $\mathbb{C}[L]^G$ of G-invariants on L is the integral closure of $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_L$ in its quotient field. Then, if the ring $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_L$ is normal, the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^G$ ($f \mapsto f|_L$) is surjective. By using this, we give some examples for which $L/G \to \tilde{L}/\tilde{G}$ is injective and rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^G$ is surjective.

 $Key\ words:$ inclusion theorem between sets of orbits, the restriction map of rings of invariants.

0. Introduction

Let V be a finite dimensional vector space over the complex number field \mathbb{C} and σ : End(V) \rightarrow End(V) a \mathbb{C} -linear anti-automorphism of the associative algebra. Let \tilde{G} be a subgroup of GL(V) such that $\sigma(\tilde{G}) = \tilde{G}$ and $\sigma^2|_{\tilde{G}} = \mathrm{id}_{\tilde{G}}$. Suppose that \tilde{G} acts on a σ -stable subspace \tilde{L} of End(V) by the adjoint action. Define a subgroup G of \tilde{G} and a subspace L of \tilde{L} by

$$G := \{g \in \tilde{G} \mid \sigma(g) = g^{-1}\}, \quad L := \{X \in \tilde{L} \mid \sigma(X) = \alpha X\},\$$

where $\alpha \in \mathbb{C}^{\times}$. Then the group G also acts on L by the adjoint action. The following are examples of such situation $(G, L) \hookrightarrow (\tilde{G}, \tilde{L})$.

- (1) Put $\tilde{G} = GL(V)$, $\tilde{L} = \mathfrak{gl}(V)$, $\sigma(X) = {}^{t}X$ and $\alpha = -1$. Then G = O(V) and $L = \mathfrak{o}(V)$.
- (2) Put $V = \mathbb{C}^{m+n}$, $\tilde{G} = \left\{ \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} \mid g_1 \in GL(m, \mathbb{C}), g_2 \in GL(n, \mathbb{C}) \right\}$, $\tilde{L} = \left\{ \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \mid A \in \operatorname{Mat}_{m \times n}(\mathbb{C}), B \in \operatorname{Mat}_{n \times m}(\mathbb{C}) \right\}$, $\sigma(X) = {}^tX$ and $\alpha = -1$.

²⁰⁰⁰ Mathematics Subject Classification : Primary 13A50, 14R20,; Secondary 14L35.

Then $G = O(m, \mathbb{C}) \times O(n, \mathbb{C})$ and $L = \{X \in \tilde{L} \mid \sigma(X) = -X\}$ (L is the -1-eigenspace of the symmetric pair $(O(m + n, \mathbb{C}), O(m, \mathbb{C}) \times O(n, \mathbb{C}))$).

(3) Put
$$V = \mathbb{C}^{m+n}$$
, $G = \{ \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} \mid g_1 \in GL(m, \mathbb{C}), g_2 \in GL(n, \mathbb{C}) \},$
 $\tilde{L} = \{ \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \mid A \in \operatorname{Mat}_{m \times n}(\mathbb{C}), B \in \operatorname{Mat}_{n \times m}(\mathbb{C}) \},$
 $J = \begin{pmatrix} 1_m & 0 & 0 \\ 0 & 0 & 1_{n/2} \\ 0 & -1_{n/2} & 0 \end{pmatrix},$
 $\sigma(X) = J^{-1t}XJ$ and $\alpha = -\sqrt{-1}$. Then
 $G = O(m, \mathbb{C}) \times Sp(n, \mathbb{C})$ and $L = \{ X \in \tilde{L} \mid \sigma(X) = -\sqrt{-1}X \}$
(L is the $\sqrt{-1}$ -eigenspace of the \mathbb{Z}_4 -graded Lie algebra defined by
 $(\mathfrak{gl}(V), -\sigma)).$

These examples $(G, L) \hookrightarrow (\tilde{G}, \tilde{L})$ can be seen as inclusions of \mathbb{Z}_m -graded Lie algebras. For these examples, it is known that the inclusions $\mathcal{N}(L)/G \hookrightarrow \mathcal{N}(\tilde{L})/\tilde{G}$ ($\mathcal{O} \mapsto \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$) of nilpotent orbits holds, and as a consequence, nilpotent *G*-orbits in *L* are classified by Young diagrams or *ab*-diagrams (see for example [He], [O2], [KP]). We can show that the inclusions of orbits hold not only for nilpotent orbits, but also for general orbits (i.e., $L/G \hookrightarrow \tilde{L}/\tilde{G}$). In this paper, we show that the inclusion $L/G \hookrightarrow \tilde{L}/\tilde{G}$ hold for more general situations (Theorem 1).

We are going to explain the contents of this paper briefly. In §1, we give a sufficient condition for which the inclusion $L/G \hookrightarrow \tilde{L}/\tilde{G}$ holds. In §2, we study the relationship between the rings $\mathbb{C}[L]^G$ and $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_L$ (restrictions of \tilde{G} -invariants on \tilde{L} to L). Suppose that the inclusion $L/G \hookrightarrow \tilde{L}/\tilde{G}$ holds and that closed G-orbits are mapped to closed \tilde{G} -orbits by this correspondence. Then the correspondence of closed orbits $L^{G-\text{cl}}/G \hookrightarrow \tilde{L}^{\tilde{G}-\text{cl}}/\tilde{G}$ is identified with the morphism $\operatorname{Spec}(\mathbb{C}[\tilde{L}]^{\tilde{G}}) \to \operatorname{Spec}(\mathbb{C}[L]^G)$ defined by the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^G$ ($f \mapsto f|_L$). Since $L^{G-\text{cl}}/G$ is a subset of $\tilde{L}^{\tilde{G}-\text{cl}}/\tilde{G}$, it is wishful that functions on $L^{G-\text{cl}}/G$ extend to those on $\tilde{L}^{\tilde{G}-\text{cl}}/\tilde{G}$ and the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^G$ becomes surjective. We show that rest is surjective under the assumption of Theorem 1 and the condition that the ring $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_L$ is normal (Theorem 12).

In §3, §4 and §5, we give some examples of inclusions $(G, L) \hookrightarrow (\tilde{G}, \tilde{L})$ for which $L/G \hookrightarrow \tilde{L}/\tilde{G}$ and $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} = \mathbb{C}[L]^{G}$ hold. In particular, in §4, we show that FFT for $O(n, \mathbb{C})$ and $Sp(n, \mathbb{C})$ can be proved by using FFT for $GL(n, \mathbb{C})$ and Theorem 12, under some restriction on the size of matrices.

We mention that the results of this paper can be applied to the classical

 \mathbb{Z}_m -graded Lie algebras to obtain classification of orbits and determination of rings of invariants. These applications will be treated in the forthcoming paper [O3].

1. Inclusion theorem between sets of orbits

The following theorem is a generalization of [O1, Proposition 4].

Theorem 1 Let V be a finite dimensional vector space over the complex number field \mathbb{C} and σ : End(V) \rightarrow End(V) a \mathbb{C} -linear anti-automorphism of the associative algebra. Let \tilde{G} be a subgroup of GL(V) such that

- (a) $\langle \tilde{G} \rangle_{\mathbb{C}} \cap GL(V) = \tilde{G}$, where $\langle \tilde{G} \rangle_{\mathbb{C}}$ denotes the subspace of End(V) spanned by \tilde{G} .
- (b) $\sigma(\tilde{G}) = \tilde{G} \text{ and } \sigma^2|_{\tilde{G}} = \mathrm{id}_{\tilde{G}}.$

Let \tilde{L} be an $\operatorname{Ad}(\tilde{G})$ -stable and σ -stable subspace of $\operatorname{End}(V)$, and α an element of $GL(\tilde{L})$ such that $\alpha(\operatorname{Ad}(g)X) = \operatorname{Ad}(g)\alpha(X)$ for any $g \in \tilde{G}$ and $X \in \tilde{L}$ (i.e., $\alpha \in Z_{GL(\tilde{L})}(\operatorname{Ad}_{\tilde{L}}(\tilde{G}))$). Define the subgroup $G := \{g \in \tilde{G} \mid \sigma(g) = g^{-1}\}$ of \tilde{G} and the subspace $L := \{X \in \tilde{L} \mid \sigma(X) = \alpha(X)\}$. Then the correspondence $L/G \to \tilde{L}/\tilde{G}, \mathcal{O} \mapsto \tilde{\mathcal{O}} := \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$ of adjoint orbits is injective.

Proof. Suppose that two elements $X, Y \in L$ are conjugate by an element $g \in \tilde{G}$; $Y = gXg^{-1}$. It is sufficient to show that X and Y are conjugate under G.

Since

$$gXg^{-1} = Y = \alpha^{-1}(\sigma(Y)) = \alpha^{-1}(\sigma(gXg^{-1})) = \alpha^{-1}(\sigma(g)^{-1}\sigma(X)\sigma(g)) = \alpha^{-1}(\sigma(g)^{-1}\alpha(X)\sigma(g)) = \sigma(g)^{-1}X\sigma(g),$$

we have $\sigma(g)gX = X\sigma(g)g$ and hence $h := g^{-1}\sigma(g)^{-1} = (\sigma(g)g)^{-1} \in Z_{\tilde{G}}(X)$. Since h is invertible, there exsits a polynomial $f(T) \in \mathbb{C}[T]$ of a variable T such that $h = f(h)^2$ by Lemma 2 below. Then we see

$$\begin{aligned} \sigma(h) &= \sigma(g^{-1}\sigma(g)^{-1}) = (\sigma^2(g))^{-1}\sigma(g)^{-1} = g^{-1}\sigma(g)^{-1} = h, \\ \sigma(f(h)) &= f(h), \quad g^{-1}\sigma(g)^{-1} = h = f(h)^2 = f(h)\sigma(f(h)), \end{aligned}$$

and

$$1 = g(g^{-1}\sigma(g)^{-1})\sigma(g) = gf(h)\sigma(f(h))\sigma(g) = gf(h)\sigma(gf(h)).$$

Hence we have $\sigma(gf(h)) = (gf(h))^{-1}$. Since $f(h) \in \tilde{G}$ by condition (a), we have $gf(h) \in G$. Since $h \in Z_{\tilde{G}}(X)$, we also have $f(h) \in Z_{\tilde{G}}(X)$. Then by

$$Y = gXg^{-1} = gf(h)Xf(h)^{-1}g^{-1} = gf(h)X(gf(h))^{-1}$$

X and Y are conjugate under $gf(h) \in G$.

The next lemma easily follows from the Chinese remainder theorem.

Lemma 2 For any invertible element $h \in \text{End}(V)$, there exsits a polynomial $f(T) \in \mathbb{C}[T]$ such that $h = f(h)^2$.

Remark 3 (1) Let \langle , \rangle be a non-degenerate bilinear form on V and $\sigma(X) = X^*$ the adjoint of an element $X \in \text{End}(V)$. Then clearly σ : End $(V) \rightarrow \text{End}(V)$ is a \mathbb{C} -linear anti-automorphism of the associative algebra.

Conversely, if $\sigma \colon \operatorname{End}(V) \to \operatorname{End}(V)$ is a \mathbb{C} -linear anti-automorphism of the associative algebra, we can easily show that there exsists a nondegenerate bilinear form \langle , \rangle on V for which the adjoint with respect to \langle , \rangle coinsides with σ .

(2) In Theorem 1, of course $\alpha \in GL(\tilde{L})$ can be choosen as a non-zero scalar multiplication; $\alpha \colon \tilde{L} \to \tilde{L}$, $\alpha(X) = \alpha X$ ($\alpha \in \mathbb{C}^{\times}$). The author cannot find meaningful example for which α is not a scalar multiplication. The examples in §4 and §5 are all the cases where α are non-zero scalar multiplications.

By Theorem 1, $L/G \hookrightarrow \tilde{L}/\tilde{G}$ holds for the three examples in Introduction.

2. Invariant theory related to the inclusion theorem

(2.1) Preliminaries from invariant theory

Suppose a reductive group G acts on an affine variety X. We denote by $\mathbb{C}[X]^G$ the subring of the coordinate ring $\mathbb{C}[X]$ consisting of G-invariant functions and call $\mathbb{C}[X]^G$ the ring of G-invariants. Since $\mathbb{C}[X]^G$ is finitely generated by Hilbert's theorem, we can consider the affine variety X//G := $\operatorname{Spec}(\mathbb{C}[X]^G)$. It is known that X//G is the categorical quotient of X under the action of G. The morphism $\pi_{(G,X)} \colon X \to X//G$ defined by the inclusion $\mathbb{C}[X]^G \hookrightarrow \mathbb{C}[X]$ is called the affine quotient map under G. Clearly $\pi_{(G,X)}$ maps any G-orbit of X to a point of X//G.

Theorem 4 (See [PV, Thorem 4.6 and Corollary to Theorem 4.7] for example) $\pi_{(G,X)}: X \to X//G$ is surjective and any fibre of $\pi_{(G,X)}$ contains exactly one closed G-orbit.

440

For a *G*-stable subset *Y* of *X*, we denote by *Y/G* the set-theoretical quotient, that is, the set of *G*-orbits in *Y*. We denote by $X^{G-\text{cl}}$ the set of points $x \in X$ for which the orbit $G \cdot x$ is closed in *X*. The map $\pi_{(G,X)}$ defines a map $\overline{\pi}_{(G,X)} \colon X/G \to X//G$ and the restriction $\overline{\pi}_{(G,X)}|_{X^{G-\text{cl}}/G} \colon X^{G-\text{cl}}/G \to X//G$ is bijective by Theorem 4. Hence we can identify X//G with the set $X^{G-\text{cl}}/G$ of closed *G*-orbits in *X*.

Next, we consider the following situation. Suppose a reductive group \tilde{G} acts on an affine variety \tilde{X} and a reductive closed subgroup G of \tilde{G} acts on a closed subvariety X of \tilde{X} . We denote such a situation by $(G, X) \hookrightarrow (\tilde{G}, \tilde{X})$. For an orbit $\mathcal{O} \in X/G$, we denote by $\tilde{\mathcal{O}} := \tilde{G} \cdot \mathcal{O} \in \tilde{X}/\tilde{G}$ the \tilde{G} -orbit generated by \mathcal{O} . We also denote by $\tilde{\mathcal{O}}^{\tilde{G}\text{-cl}}$ the unique closed \tilde{G} -orbit in the closure $\tilde{\mathcal{O}}$. Thus we obtain a map

$$X^{G-\mathrm{cl}}/G \to \tilde{X}^{\tilde{G}-\mathrm{cl}}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}}^{\tilde{G}-\mathrm{cl}}$$

Proposition 5 Let $r: X//G \to \tilde{X}//\tilde{G}$ be the morphism defined by the restriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{G}} \to \mathbb{C}[X]^{G}$, $f \mapsto f|_X$. Then by the above identification $X//G = X^{G-\text{cl}}/G$ and $\tilde{X}//\tilde{G} = \tilde{X}^{\tilde{G}-\text{cl}}/\tilde{G}$, the morphism r coincides with the map $\mathcal{O} \mapsto \tilde{\mathcal{O}}^{\tilde{G}-\text{cl}}$.

Remark 6 Let us consider the correspondence

$$X/G \to \tilde{X}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}} := \tilde{G} \cdot \mathcal{O}.$$

Suppose that any closed G-orbit in X is mapped, by this correspondence, to a closed \tilde{G} -orbit in \tilde{X} . Then the morphism $r: X//G \to \tilde{X}//\tilde{G}$ coincides with the natural correspondence

$$X^{G-\mathrm{cl}}/G \to \tilde{X}^{\tilde{G}-\mathrm{cl}}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}} := \tilde{G} \cdot \mathcal{O}.$$

In particular, if this correspondence is injective, so is r.

Let us give a geometric interpretation of the ring $\mathbb{C}[\tilde{X}]^{\tilde{G}}|_X$ (the image of rest: $\mathbb{C}[\tilde{X}]^{\tilde{G}} \to \mathbb{C}[X]^G$).

Proposition 7 Suppose that a reductive algebraic group \tilde{G} acts on an affine variety \tilde{X} and that X is a closed subvariety of \tilde{X} .

- (i) Let us consider the \tilde{G} -stable subvariety $N := \tilde{G} \cdot X$ of \tilde{X} . Then the restriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{G}} \to \mathbb{C}[N]^{\tilde{G}}$, $f \mapsto f|_N$ is surjective.
- (ii) From (i), we obtain a ring homomorphism $\mathbb{C}[N]^G \to \mathbb{C}[\tilde{X}]^G|_X, f \mapsto$

 $f|_X$. This is an isomorphism. In paticular, we obtain $\operatorname{Spec}(\mathbb{C}[\tilde{X}]^{\tilde{G}}|_X) \simeq N//\tilde{G}$.

(iii) Let $\pi = \pi_{(\tilde{G},\tilde{X})} \colon \tilde{X} \to \tilde{X}//\tilde{G}$ be the affine quotient map under \tilde{G} . Then the closure $\overline{\pi(X)}$ of the image $\pi(X)$ is isomorphic $N//\tilde{G}$:

$$\overline{\pi(X)} \simeq N / / \tilde{G} \simeq \operatorname{Spec}(\mathbb{C}[\tilde{X}]^G |_X).$$

Proof. (i) Since \tilde{G} is reductive and $\mathbb{C}[\tilde{X}] \to \mathbb{C}[N]$, $f \mapsto f|_N$ is a surjective \tilde{G} -module homomorphism of the locally finite \tilde{G} -modules, the sum of trivial representations in $\mathbb{C}[\tilde{X}]$ is mapped by this homomorphism onto that in $\mathbb{C}[N]$. This means $\mathbb{C}[\tilde{X}]^{\tilde{G}} \to \mathbb{C}[N]^{\tilde{G}}$ is surjective.

(ii) Since $X \subset N$ and $\mathbb{C}[\tilde{X}]^{\tilde{G}} \to \mathbb{C}[N]^{\tilde{G}}$ is surjective, we obtain a surjective homomorphism $\mathbb{C}[N]^{\tilde{G}} \to \mathbb{C}[\tilde{X}]^{\tilde{G}}|_X$. Since $\tilde{G} \cdot X$ is dense in N, this homomorphism is injective.

(iii) Let us consider the commutative diagram

$$\begin{array}{ccc} \mathbb{C}[N] & \leftarrow & \mathbb{C}[X] \\ \uparrow & & \uparrow \\ \mathbb{C}[N]^{\tilde{G}} \leftarrow & \mathbb{C}[\tilde{X}]^{\tilde{G}} \end{array}$$

and the corresponding diagram

$$\begin{array}{ccc} N & \hookrightarrow & \tilde{X} \\ \downarrow & & \downarrow \\ N / / \tilde{G} & \hookrightarrow \tilde{X} / / \tilde{G} \end{array}$$

Since the vertical arrows in the first diagram are surjective, those in the second diagram are closed immersions. Hence we have $N//\tilde{G} = \pi(N)$. Since π is continuous and $\pi(N)$ is a closed subset of $\tilde{X}//\tilde{G}$, we easily see that $\overline{\pi(X)} = \overline{\pi(\tilde{G} \cdot X)} = \pi(N)$.

(2.2) An application of Luna's criterion

As an application of Luna's criterion, let us give a condition on $(G, L) \hookrightarrow (\tilde{G}, \tilde{L})$ for which the correspondence $L/G \to \tilde{L}/\tilde{G}$ maps a closed orbit to a closed orbit and the ring extension $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_L \subset \mathbb{C}[L]^G$ is integral.

Theorem 8 Let \mathcal{G} be a reductive algebraic group over \mathbb{C} and $\theta: \mathcal{G} \to \mathcal{G}$ an automorphism of \mathcal{G} . We denote by $\theta: \operatorname{Lie}(\mathcal{G}) \to \operatorname{Lie}(\mathcal{G})$ the corresponding automorphism of the Lie algebra of \mathcal{G} . Let \tilde{G} be a θ -stable reductive subgroup of \mathcal{G} and \tilde{L} a θ -stable, $\operatorname{Ad}(\tilde{G})$ -stable subspace of $\operatorname{Lie}(\mathcal{G})$. Define a closed

subgroup G' of \tilde{G} by $G' = \{g \in \tilde{G} \mid \operatorname{Ad}_{\tilde{L}}(g) = \operatorname{Ad}_{\tilde{L}}(\theta(g))\}$. Let α be an element of $GL(\tilde{L})$ such that $\alpha(\operatorname{Ad}(g)X) = \operatorname{Ad}(g)\alpha(X)$ for any $g \in \tilde{G}$ and $X \in \tilde{L}$. Define an element $\varphi \in GL(\tilde{L})$ by $\varphi(X) = \alpha^{-1}(\theta(X))$ $(X \in \tilde{L})$. Put $L := \{X \in \tilde{L} \mid \varphi(X) = X \iff \theta(X) = \alpha(X))\}$. Suppose that φ has finite order. Then $\operatorname{Ad}_{\tilde{L}}(G')$ is reductive and we have the following: (i) For the correspondence

. ~ ~ ~

 $L/G' \to \tilde{L}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}} := \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O},$

 $\tilde{\mathcal{O}}$ is closed in \tilde{L} if and only if \mathcal{O} is closed in L.

- (ii) The morphism L//G' → L̃//G̃ corresponding to the restriction map rest: C[L̃]^{G̃} → C[L]^{G'} is finite, that is, C[L]^{G'} is integral over the image C[L̃]^{G̃}|_L.
- (iii) Suppose that the morphism L//G' → L̃//G̃ of (ii) is injective. Then the morphism L//G' = Spec(C[L]^{G'}) → Spec(C[L̃]^{G̃}|_L) corresponding to C[L̃]^{G̃}|_L → C[L]^{G'} is bijective and birational (i.e., the quotient fields of C[L̃]^{G̃}|_L and C[L]^{G'} coinside). In particular, since C[L]^{G'} is normal (i.e., integrally closed in its quotient field), C[L]^{G'} is the integral closure of C[L̃]^{G̃}|_L in its quotient field.

By Proposition 7, we have the following:

Corollary to Theorem 8 In the setting of Theorem 8, (iii), if $\overline{\pi_{(\tilde{G},\tilde{L})}(L)}$ is a normal variety, we have $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} = \mathbb{C}[L]^{G'}$, that is the restriction map rest: $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^{G'}$ is surjective.

We begin the proof of Theorem 8 with showing the following lemma.

Lemma 9 In the setting of Theorem 8, let \tilde{H} be the subgroup of $GL(\tilde{L})$ generated by $\operatorname{Ad}_{\tilde{L}}(\tilde{G})$ and φ ; $\tilde{H} := \langle \operatorname{Ad}_{\tilde{L}}(\tilde{G}) \cup \{\varphi\} \rangle$.

- (i) For g ∈ G̃, we have φ ∘ Ad_{L̃}(g) ∘ φ⁻¹ = Ad_{L̃}(θ(g)). Therefore Ad_{L̃}(G̃) is a normal subgroup of H̃ and the identity component of Ad_{L̃}(G̃) coinsides with that of H̃. In particular H̃ is a reductive subgroup of GL(L̃).
- (ii) Let $H := \langle \varphi \rangle$ be the finite subgroup of \tilde{H} generated by φ . Then the fixed points set $\tilde{L}^H := \{X \in \tilde{L} \mid h \cdot X = X \text{ for any } h \in H\}$ of \tilde{L} under the action of H coinsides with L.
- (iii) We have $Z_{\tilde{H}}(H) = \langle \operatorname{Ad}_{\tilde{L}}(G') \cup \{\varphi\} \rangle$. Moreover $\operatorname{Ad}_{\tilde{L}}(G')$ is reductive.

Proof. For $g \in \tilde{G}$ and $X \in \tilde{L}$, since $\theta(g) \in \tilde{G}$ and α commutes with $\operatorname{Ad}_{\tilde{L}}(\theta(g))$, we compute

$$\begin{split} \varphi \circ \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{-1}(X) &= \alpha^{-1}(\theta(\operatorname{Ad}_{\tilde{L}}(g)\theta^{-1}(\alpha(X)))) \\ &= \alpha^{-1}(\operatorname{Ad}_{\tilde{L}}(\theta(g))\alpha(X)) = \operatorname{Ad}_{\tilde{L}}(\theta(g))X. \end{split}$$

Hence (i) follows.

(ii) is obvious.

By (i), any $\tilde{g} \in \tilde{H}$ can be written as $\tilde{g} = \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^k$ for some $g \in \tilde{G}$ and an integer $k \geq 0$. Again by (i), we have

$$\varphi \circ \tilde{g} \circ \varphi^{-1} = \varphi \circ \{ \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^k \} \circ \varphi^{-1}$$

= $\varphi \circ \{ \operatorname{Ad}_{\tilde{L}}(g) \circ \varphi^{-1} \} \circ \varphi^k = \operatorname{Ad}_{\tilde{L}}(\theta(g)) \circ \varphi^k.$

Therefore we see

$$\begin{split} \tilde{g} \in Z_{\tilde{H}}(H) &\Leftrightarrow \varphi \circ \tilde{g} \circ \varphi^{-1} = \tilde{g} \,\Leftrightarrow \, \mathrm{Ad}_{\tilde{L}}(\theta(g)) \circ \varphi^{k} = \mathrm{Ad}_{\tilde{L}}(g) \circ \varphi^{k} \\ &\Leftrightarrow \mathrm{Ad}_{\tilde{L}}(\theta(g)) = \mathrm{Ad}_{\tilde{L}}(g). \end{split}$$

Hence $Z_{\tilde{H}}(H) = \langle \operatorname{Ad}_{\tilde{L}}(G') \cup \{\varphi\} \rangle$. Since H is reductive and H is a finite subgroup of \tilde{H} , $Z_{\tilde{H}}(H)$ is reductive by [LR, Lemma 1.1]. It is clear that the identity component of $\operatorname{Ad}_{\tilde{L}}(G')$ coincides with that of $Z_{\tilde{H}}(H)$. Hence $\operatorname{Ad}_{\tilde{L}}(G')$ is also reductive.

In the setting of Lemma 9, we notice that $\mathbb{C}[\tilde{L}]^{\tilde{H}} = (\mathbb{C}[\tilde{L}]^{\tilde{G}})^{\langle \varphi \rangle} \hookrightarrow \mathbb{C}[\tilde{L}]^{\tilde{G}},$ $\mathbb{C}[L]^{Z_{\tilde{H}}(H)} = \mathbb{C}[L]^{G'},$ and $\tilde{H} \cdot \mathcal{O} = \langle \varphi \rangle \cdot (\tilde{G} \cdot \mathcal{O})$ for $\mathcal{O} \in L/G' = L/Z_{\tilde{H}}(H)$. Then Theorem 8, (i) and (ii) follow from the next theorem due to Luna.

Theorem 10 ([L], see also [PV, Theorem 6.16 and Theorem 6.17]) Suppose that a reductive group \tilde{H} acts on an affine variety \tilde{X} and that H is a reductive subgroup of \tilde{H} . Let $X = \tilde{X}^H := \{x \in \tilde{X} \mid h \cdot x = x \text{ for any } h \in H\}$ be the fixed points set of \tilde{X} under the action of H. Then we have the following.

- (i) The morphism $X//Z_{\tilde{H}}(H) \to \tilde{X}//\tilde{H}$ defined by the restriction map rest: $\mathbb{C}[\tilde{X}]^{\tilde{H}} \to \mathbb{C}[X]^{Z_{\tilde{H}}(H)}$ is finite (i.e., $\mathbb{C}[X]^{Z_{\tilde{H}}(H)}$ is integral over $\mathbb{C}[\tilde{X}]^{\tilde{H}}|_X$).
- (ii) For a point x ∈ X, the orbit H
 ·x is closed in X if and only if Z_H(H) ·x is closed in X.

Let us give a proof of Theorem 8, (iii). Since the restriction map

 $\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[L]^{G'}$ is decomposed as

$$\mathbb{C}[\tilde{L}]^{\tilde{G}} \to \mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} \hookrightarrow \mathbb{C}[L]^{G'},$$

the morphism $L//G' \to \tilde{L}//\tilde{G}$ is also decopmosed as

$$L//G' \xrightarrow{\pi} \operatorname{Spec}(\mathbb{C}[\tilde{L}]^G|_L) \to \tilde{L}//\tilde{G}.$$

Since π is finite (closed map) and dominant, π is surjective. On the other hand, since $L//G' \to \tilde{L}//\tilde{G}$ is injective, so is π . Then the birationality of π follows from the next theorem.

Theorem 11 ([Hu, Theorem 4.6]) Let $\pi: X \to Y$ be a dominant, injective morphism of irreducible varieties over an algebraically closed field K. Then via π , the function field K(X) is a finite, purely inseparable extension of K(Y).

(2.3) Inclusion theorem and rings of invariants

Theorem 12 In the setting of Theorem 1, we assume the following in addition to (a), (b) of Theorem 1.

(c) The element $\varphi \in GL(\tilde{L})$, defined by $\varphi(X) = \alpha^{-1}(\sigma(X))$ $(X \in \tilde{L})$, has finite order.

Then we have the following:

(i) For the correspondence

 $L/G \to \tilde{L}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}} := \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O},$

 $\tilde{\mathcal{O}}$ is closed in \tilde{L} if and only if \mathcal{O} is closed in L.

(ii) The morphism L//G → Spec(C[Ĩ]^G|_L), defined by C[Ĩ]^G|_L → C[L]^G, is bijective and gives a normalization of the variety Spec(C[Ĩ]^G|_L) (i.e., L//G is normal and the morphism is finite, birational). In particular, if the ring C[Ĩ]^G|_L is normal (it is equivalent that π_(Ĝ,Ĩ)(L) is normal by Proposition 7), then C[Ĩ]^Ğ|_L = C[L]^G and the restriction map rest: C[Ĩ]^Ğ → C[L]^G is surjective.

Proof. Let us consider the automorphism $\theta: GL(V) \to GL(V)$ defined by $\theta(g) = \sigma(g)^{-1}$ $(g \in GL(V))$. Then the corresponding Lie algebra automorphism $\theta: \mathfrak{gl}(V) \to \mathfrak{gl}(V)$ is given by $\theta(X) = -\sigma(X)$ $(X \in \mathfrak{gl}(V))$. Moreover the group G and the subspace L can be written as

$$G = \{g \in G \mid \theta(g) = g\}, \quad L = \{X \in L \mid \theta(X) = -\alpha(X)\}$$

We also consider the subgroup $G' = \{g \in \tilde{G} \mid \operatorname{Ad}_{\tilde{L}}(g) = \operatorname{Ad}_{\tilde{L}}(\theta(g))\}$ of \tilde{G} which contains G. Since the correspondence $L/G \to \tilde{L}/\tilde{G}$ decomposed as

$$L/G \to L/G' \to \tilde{L}/\tilde{G}$$

and $L/G \to \tilde{L}/\tilde{G}$ is injective by Theorem 1, the correspondence

$$L/G \to L/G' \ (\mathcal{O} \mapsto \operatorname{Ad}(G') \cdot \mathcal{O})$$

is bijective. This means that, for any point $x \in L$, two orbits $\operatorname{Ad}(G)x$ and $\operatorname{Ad}(G')x$ coinside. In particular, we have $\mathbb{C}[L]^G = \mathbb{C}[L]^{G'}$. Therefor we can apply Theorem 8 by taking G instead of G' and obtain Theorem 12. \Box

3. Examples

Let us give some examples for which Theorem 1, Theorem 8 and Theorem 12 can be applied.

$(3.1) \quad (O(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C})) \hookrightarrow (GL(n, \mathbb{C}), \mathfrak{gl}(n, \mathbb{C}))$

Put $\tilde{G} = GL(n, \mathbb{C}), \ \tilde{L} = \operatorname{Mat}_{n \times n}(\mathbb{C})$ (the set of $n \times n$ -matrices) and consider the anti-involution

$$\sigma \colon \operatorname{Mat}_{n \times n}(\mathbb{C}) \to \operatorname{Mat}_{n \times n}(\mathbb{C}), \ X \mapsto {}^{t}X.$$

We take

$$G := \{ g \in \tilde{G} \mid \sigma(g) = g^{-1} \} = O(n, \mathbb{C})$$

and $L := \{ X \in \tilde{L} \mid \sigma(X) = -X \}.$

By Theorem 1 and Theorem 12, we have

(1) $L/G \to \tilde{L}/\tilde{G}$ is injective.

~ ~

(2) The quotient fields of $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L}$ and $\mathbb{C}[L]^{G}$ coinside and $\mathbb{C}[L]^{G}$ is the integral closure of $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L}$ in its quotient field.

Let us show that $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} = \mathbb{C}[L]^{G}$. Define functions $P_{j} \in \mathbb{C}[\tilde{L}]$ by

$$\det(T1_n - X) = T^n + P_1(X)T^{n-1} + \dots + P_n(X), \ (X \in \tilde{L}).$$

It is well known that P_1, \ldots, P_n are algorated provided independent and $\mathbb{C}[\tilde{L}]^{\tilde{G}} = \mathbb{C}[P_1, \ldots, P_n].$

For $X \in L$, it is clear that $P_j(X) = 0$ for odd j. Hence

$$\mathbb{C}[L]^G|_L = \mathbb{C}[P_2|_L, P_4|_L, \dots, P_{2[n/2]}|_L].$$

$$A = \begin{pmatrix} 0 & a_1 & & & \\ -a_1 & 0 & & \mathbf{0} & \\ & 0 & a_2 & & \\ & -a_2 & 0 & & \\ & & \ddots & & \\ \mathbf{0} & & & 0 & a_{[n/2]} \\ & & & -a_{[n/2]} & \mathbf{0} \end{pmatrix}$$

and consider an element $X = A \in L$ (*n* is even) or $X = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \in L$ (*n* is odd). Then we see

$$\det(T1_n - X) = (T^2 + a_1^2) \dots (T^2 + a_{[n/2]}^2) T^{n-2[n/2]}.$$

From this, we find that $P_2|_L, P_4|_L, \ldots, P_{[n/2]}|_L$ are algebraically independent. Hence $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L}$ is isomorphic to a polynomial ring. By (2) above, we obtain

(3)
$$\mathbb{C}[\tilde{L}]^G|_L = \mathbb{C}[L]^G$$

(3.2)Symmetric pairs $(\mathfrak{sp}(2m, \mathbb{C}), \mathfrak{gl}(m, \mathbb{C}))$

 $\stackrel{\bullet}{\hookrightarrow} (\mathfrak{gl}(2m, \mathbb{C}), \mathfrak{gl}(m, \mathbb{C}) + \mathfrak{gl}(m, \mathbb{C}))$ Let us consider a vector space $V = \mathbb{C}^{2m}$, a matrix $S = \begin{pmatrix} 1m & 0 \\ 0 & -1m \end{pmatrix}$ and an automorphism $\theta \colon GL(V) \to GL(V), \ \theta(g) = SgS^{-1}$. Let us take subgroups

$$\tilde{G} = \{g \in GL(V) \mid \theta(g) = g\} = \left\{ \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} \middle| g_1, g_2 \in GL(m, \mathbb{C}) \right\},\$$
$$GL(V)' = \{g \in GL(V) \mid \operatorname{Ad}(\theta(g)) = \operatorname{Ad}(g)\}$$
$$= \left\langle \tilde{G} \cup \left\{ \begin{pmatrix} 0 & 1_m \\ 1_m & 0 \end{pmatrix} \right\} \right\rangle$$

of GL(V) and a subspace

$$\tilde{\mathfrak{s}} = \{ X \in \mathfrak{gl}(V) \mid \theta(X) = -X \} \\ = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \mid B, C \in \operatorname{Mat}_{m \times m}(\mathbb{C}) \right\}$$

of $\mathfrak{gl}(V)$. Apply Theorem 8, (i) to the inclusion $(GL(V)', \tilde{\mathfrak{s}}) \hookrightarrow (GL(V), \tilde{\mathfrak{s}})$ $\mathfrak{gl}(V)$). Then, for an orbit $\mathcal{O}' \in \tilde{\mathfrak{s}}/GL(V)', \mathcal{O}'$ is closed in $\tilde{\mathfrak{s}}$ if and only if $\operatorname{Ad}(GL(V)) \cdot \mathcal{O}'$ is a semisimple orbit. Since ${}^{\sharp}(GL(V)'/\tilde{G}) < \infty$, we obtain the following well-known fact due to [KR].

Put

- T. Ohta
- (0) For an orbit $\mathcal{O} \in \tilde{\mathfrak{s}}/\tilde{G}$, \mathcal{O} is closed in $\tilde{\mathfrak{s}}$ if and only if $\operatorname{Ad}(GL(V))\mathcal{O}$ is a semisimple orbit.
- By [O3], we have the following:
- (1) The eigenvalues of an element of $\tilde{\mathfrak{s}}$ are of the form $\alpha_1, -\alpha_1, \alpha_2, -\alpha_2, \ldots, \alpha_m, -\alpha_m \ (\alpha_j \in \mathbb{C})$. Moreover, for given $\alpha_j \in \mathbb{C}$ $(1 \leq j \leq m)$, there exists an element of $\tilde{\mathfrak{s}}$ with eigenvalues $\alpha_1, -\alpha_1, \alpha_2, -\alpha_2, \ldots, \alpha_m, -\alpha_m$.
- (2) For two semisimple elements $X, Y \in \tilde{\mathfrak{s}}, X$ and Y are conjugate under \tilde{G} if and only if the eigenvalues (with multiplicities) of X and Y coinside. The statement (2) implies
- (3) The morphism $\tilde{\mathfrak{s}}//\tilde{G} \to \mathfrak{gl}(V)//GL(V)$ defined by rest: $\mathbb{C}[\mathfrak{gl}(V)]^{GL(V)} \to \mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}$ is injective.
- By Theorem 8, (iii), we have
- (4) The quotient fields of C[gl(V)]^{GL(V)}|_{\$\vec{s}\$} and C[\$\vec{s}]\$^{\$\vec{G}\$} coinside and C[\$\vec{s}\$]\$^{\$\vec{G}\$} is the integral closure of C[gl(V)]^{GL(V)}|\$\vec{s}\$ in its quotient field. Define functions P₁, P₂, ..., P_{2m} ∈ C[gl(V)] by

$$\det(T1_{2m} - X) = T^{2m} + P_1(X)T^{2m-1} + \dots + P_{2m}(X),$$

(X \in gl(V)).

For $X \in \tilde{\mathfrak{s}}$, since $SXS^{-1} = -X$, $P_j(X) = 0$ for odd j and hence

$$\mathbb{C}[\mathfrak{gl}(V)]^{GL(V)}|_{\mathfrak{s}} = \mathbb{C}[P_2|_{\mathfrak{s}}, P_4|_{\mathfrak{s}}, \dots, P_{2m}|_{\mathfrak{s}}].$$

Suppose that the eigenvalues of an element $X \in \tilde{\mathfrak{s}}$ are $\alpha_1, -\alpha_1, \alpha_2, -\alpha_2, \ldots, \alpha_m, -\alpha_m$. Then we have

$$\det(T1_{2m} - X) = (T^2 - \alpha_1^2)(T^2 - \alpha_2^2) \cdots (T^2 - \alpha_m^2).$$

From this, we know that $P_2|_{\tilde{\mathfrak{s}}}, P_4|_{\tilde{\mathfrak{s}}}, \ldots, P_{2m}|_{\tilde{\mathfrak{s}}}$ are algebraically independent. Hence $\mathbb{C}[\mathfrak{gl}(V)]^{GL(V)}|_{\tilde{\mathfrak{s}}}$ is isomorphic to a polynomial ring. By (4) above, we obtain

(5) $\mathbb{C}[\mathfrak{gl}(V)]^{GL(V)}|_{\tilde{\mathfrak{s}}} = \mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}.$

Next we consider an anti-automorphism σ : End(V) \rightarrow End(V) defined by $\sigma(X) = J^{-1t}XJ$ ($X \in$ End(V)), where we put $J := \begin{pmatrix} 0 & 1_m \\ -1_m & 0 \end{pmatrix}$. We also consider the subgroup $G = \{g \in \tilde{G} \mid \sigma(g) = g^{-1}\}$ of \tilde{G} and a subspace

$$\mathfrak{s} = \{ X \in \tilde{\mathfrak{s}} \mid \sigma(X) = -X \} = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \mid B, C \in \operatorname{Sym}_{m}(\mathbb{C}) \right\}$$

of $\tilde{\mathfrak{s}}$. Then by Theorem 1, the orbits correspondence $\mathfrak{s}/G \to \tilde{\mathfrak{s}}/\tilde{G}$ is injective. For

$$X = \begin{pmatrix} & b_1 & & \\ \mathbf{0} & & \ddots & \\ & & & b_m \\ c_1 & & & \\ & \ddots & & \mathbf{0} \\ & & c_m & & \end{pmatrix} \in \mathfrak{s},$$

we find det $(T1_{2m}-X) = (T^2-b_1c_1)(T^2-b_2c_2)\cdots(T^2-b_mc_m)$. From this, we find that $P_2|_{\mathfrak{s}}, P_4|_{\mathfrak{s}}, \ldots, P_{2m}|_{\mathfrak{s}}$ are algebraically independent and $\mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}|_{\mathfrak{s}} = \mathbb{C}[P_2|_{\mathfrak{s}}, P_4|_{\mathfrak{s}}, \ldots, P_{2m}|_{\mathfrak{s}}]$ is isomorphic to a polynomial ring. Therefore by Theorem 12, we obtain

(6) $\mathbb{C}[\mathfrak{s}]^G = \mathbb{C}[\tilde{\mathfrak{s}}]^{\tilde{G}}|_{\mathfrak{s}} = \mathbb{C}[\mathfrak{gl}(V)]^{GL(V)}|_{\mathfrak{s}}.$

 (G, \mathfrak{s}) is an example of classical graded Lie algebras. Generalization of these results for general classical graded Lie algebras will be given in [O3].

4. FFT for GL_n and that for O_n , Sp_n

Let us consider a vector space $V = \mathbb{C}^{n+m}$ and a matrix $J = \begin{pmatrix} K & 0 \\ 0 & 1_m \end{pmatrix}$, where we put

$$K = \begin{cases} 1_n & (\varepsilon = 1) \\ \begin{pmatrix} 0 & 1_{n/2} \\ -1_{n/2} & 0 \end{pmatrix} & (\varepsilon = -1, \ n \colon \text{even}) \end{cases}.$$

Define an anti-automorphism σ : End(V) \rightarrow End(V) by $\sigma(X) = J^{-1t}XJ$ (X \in End(V)). We consider the following subgroups of GL(V):

$$\begin{split} \tilde{G} &:= \left\{ \begin{pmatrix} g & 0 \\ 0 & c\mathbf{1}_m \end{pmatrix} \middle| g \in GL(n, \mathbb{C}), \ c \in \mathbb{C}^{\times} \right\} \simeq GL(n, \mathbb{C}) \times \mathbb{C}^{\times}, \\ G &= \{ x \in \tilde{G} \mid \sigma(x) = x^{-1} \} \\ &= \left\{ \begin{pmatrix} g & 0 \\ 0 & c\mathbf{1}_m \end{pmatrix} \middle| J^{-1t}gJ = g^{-1}, \ c \in \{\pm 1\} \right\} \\ &\simeq \left\{ \begin{array}{c} O(n, \mathbb{C}) \times \{\pm 1_m\} & (\varepsilon = 1) \\ Sp(n, \mathbb{C}) \times \{\pm 1_m\} & (\varepsilon = -1) \end{array} \right. \end{split}$$

We also consider the following subspaces of End(V):

$$\tilde{L} = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \middle| B \in \operatorname{Mat}_{n \times m}(\mathbb{C}), \ C \in \operatorname{Mat}_{m \times n}(\mathbb{C}) \right\},\$$
$$L = \left\{ X \in \tilde{L} \mid \sigma(X) = X \right\} = \left\{ \begin{pmatrix} 0 & B \\ {}^{t}BK & 0 \end{pmatrix} \middle| B \in \operatorname{Mat}_{n \times m}(\mathbb{C}) \right\}.$$

Then we can easily verify that the assumptions of Theorem 1 and Theorem 12 hold in this situation (with $\alpha = 1$). Therefore we have the following: (1) The correspondence $L/G \to \tilde{L}/\tilde{G}$, $\mathcal{O} \mapsto \tilde{\mathcal{O}} = \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$, is injective.

- (2) $\mathcal{O} \in L/G$ is closed in L if and only if $\tilde{\mathcal{O}} \in \tilde{L}/\tilde{G}$ is closed in \tilde{L} .
- (3) The quotient fields of $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L}$ and $\mathbb{C}[L]^{G}$ coinside and $\mathbb{C}[L]^{G}$ is the integral closure of $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L}$ in its quotient field.

We easily see that

$$\begin{split} \operatorname{Ad}_{\tilde{L}}(\tilde{G}) &= \operatorname{Ad}_{\tilde{L}}(GL(n,\,\mathbb{C})\times\{1_m\}) \text{ and} \\ \operatorname{Ad}_{\tilde{L}}(G) &= \begin{cases} \operatorname{Ad}_{\tilde{L}}(O(n,\,\mathbb{C})\times\{1_m\}) & (\varepsilon=1) \\ \operatorname{Ad}_{\tilde{L}}(Sp(n,\,\mathbb{C})\times\{1_m\}) & (\varepsilon=-1) \end{cases}. \end{split}$$

In such way, we can consider \tilde{G} , G, \tilde{L} , L as

$$G = \begin{cases} O(n, \mathbb{C}) & (\varepsilon = 1) \\ Sp(n, \mathbb{C}) & (\varepsilon = -1) \end{cases} \hookrightarrow \tilde{G} = GL(n, \mathbb{C}), \\ L = \operatorname{Mat}_{n \times m}(\mathbb{C}) \hookrightarrow \\ \tilde{L} = \operatorname{Mat}_{m \times n}(\mathbb{C}) \times \operatorname{Mat}_{n \times m}(\mathbb{C}) \ (B \mapsto ({}^{t}BK, B)) \end{cases}$$

where the action of \tilde{G} on \tilde{L} is given by $g \cdot (C, B) = (Cg^{-1}, gB)$ $(g \in \tilde{G}, (C, B) \in \tilde{L})$ and that of G on L is the left action. Notice that the inclusion $L \hookrightarrow \tilde{L}$ is G-equivariant.

For $x = (C, B) \in \tilde{L}$, we put $\pi(x) = CB \in \operatorname{Mat}_{m \times m}(\mathbb{C})$ and obtain a map $\pi : \tilde{L} \to \operatorname{Mat}_{m \times m}(\mathbb{C})$. Denote by $\pi_{i,j}(x)$ $(1 \leq i, j \leq m)$ the (i, j)entry of $\pi(x)$. Clearly $\pi_{i,j} \in \mathbb{C}[\tilde{L}]^{\tilde{G}}$. First fundamental theorem (FFT) for invariant theory for GL_n says that

 $\mathbf{FFT} \,\, \mathbf{for} \,\, \boldsymbol{GL_n} \quad \mathbb{C}[\tilde{L}]^{\tilde{G}} = \mathbb{C}[\pi_{i,j}]_{1 \leq i,j \leq m}.$

This implies that $\pi: \tilde{L} \to \pi(\tilde{L})$ is the affine quotient map under \tilde{G} ; $\pi(\tilde{L}) \simeq \tilde{L}/\tilde{G}$. Then, if we can show that $\overline{\pi(L)}$ is normal, we obtain $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} = \mathbb{C}[L]^{G}$ by Theorem 12, (ii).

Suppose $n \ge m$. Then it is easy to see that

$$\pi(L) = \begin{cases} \operatorname{Sym}_m(\mathbb{C}) & (\varepsilon = 1) \\ \operatorname{Alt}_m(\mathbb{C}) & (\varepsilon = -1) \end{cases} \text{ and} \\ \mathbb{C}[\tilde{L}]^{\tilde{G}}|_L = \begin{cases} \mathbb{C}[\pi_{i,j}|_L]_{1 \le i \le j \le m} & (\varepsilon = 1) \\ \mathbb{C}[\pi_{i,j}|_L]_{1 \le i < j \le m} & (\varepsilon = -1) \end{cases}.$$

Hence $\overline{\pi(L)} = \pi(L)$ is normal and we obtain (4) $\mathbb{C}[\tilde{L}]^{\tilde{G}}|_{L} = \mathbb{C}[L]^{G}, \ \mathbb{C}[L]^{G} = \begin{cases} \mathbb{C}[\pi_{i,j}|_{L}]_{1 \leq i \leq j \leq m} & (\varepsilon = 1) \\ \mathbb{C}[\pi_{i,j}|_{L}]_{1 \leq i < j \leq m} & (\varepsilon = -1) \end{cases}$ and the functions $\pi_{i,j}|_{L}$ $(1 \leq i \leq j \leq m$ in case $\varepsilon = 1$ and $1 \leq i < j \leq m$

m in case $\varepsilon = -1$) are algebraically independent generators of $\mathbb{C}[L]^{\overline{G}}$. These are FFT for $O(n, \mathbb{C})$ and $Sp(n, \mathbb{C})$ in case $m \leq n$. In such way, we can prove FFT for $O(n, \mathbb{C})$ and $Sp(n, \mathbb{C})$ by using FFT for $GL(n, \mathbb{C})$ and Theorem 12.

5. Embedding of the action of Doković, Sekiguchi and Zhao

Let us consider a vector space $V = \mathbb{C}^{4n}$ and a matrix $J = \begin{pmatrix} 0 & 0 & 0 & 1_n \\ 0 & 0 & 1_n & 0 \\ 0 & 1_n & 0 & 0 \\ 1_n & 0 & 0 & 0 \end{pmatrix}$. Define an anti-involution σ : End(V) \rightarrow End(V) by $\sigma(X) = J^{-1t}XJ$ (X' \in End(V)). We consider the following subgroups of GL(V):

$$\begin{split} \tilde{G} &:= \left\{ \left. \begin{pmatrix} g & 0 & 0 & 0 \\ 0 & g & 0 & 0 \\ 0 & 0 & h & 0 \\ 0 & 0 & 0 & h \end{pmatrix} \right| g, \ h \in GL(n, \mathbb{C}) \right\}, \\ G &= \left\{ x \in \tilde{G} \mid \sigma(x) = x^{-1} \right\} \\ &= \left\{ \left. \begin{pmatrix} g & 0 & 0 & 0 \\ 0 & g & 0 & 0 \\ 0 & 0 & tg^{-1} & 0 \\ 0 & 0 & 0 & tg^{-1} \end{pmatrix} \right| g \in GL(n, \mathbb{C}) \right\}. \end{split}$$

We also consider the following subspaces of End(V):

$$\tilde{L} = \left\{ \left. \begin{pmatrix} 0 & 0 & X & 0 \\ 0 & 0 & 0 & Y \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \right| X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \right\},\$$

$$L = \{A \in \tilde{L} \mid \sigma(A) = A\} = \left\{ \begin{pmatrix} 0 & 0 & X & 0 \\ 0 & 0 & 0 & {}^{t}X \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \middle| X \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \right\}.$$

It is easy to see that these satisfy the assumption of Theorem 1. Hence (1) The correspondence $L/G \to \tilde{L}/\tilde{G}, \ \mathcal{O} \mapsto \tilde{\mathcal{O}} = \operatorname{Ad}(\tilde{G}) \cdot \mathcal{O}$ is injective. By the natural identifications, we can consider \tilde{G} , G, \tilde{L} , L as

$$G = GL(n, \mathbb{C}) \hookrightarrow \tilde{G} = GL(n, \mathbb{C}) \times GL(n, \mathbb{C}), \ g \mapsto (g, {}^{t}g^{-1}),$$
$$L = \operatorname{Mat}_{n \times n}(\mathbb{C}) \hookrightarrow \tilde{L} = \operatorname{Mat}_{n \times n}(\mathbb{C}) \times \operatorname{Mat}_{n \times n}(\mathbb{C}), \ X \mapsto (X, {}^{t}X),$$

where the action of \tilde{G} on \tilde{L} is given by $(g, h) \cdot (X, Y) = (gXh^{-1}, gYh^{-1})$ $((q, h) \in \tilde{G}, (X, Y) \in \tilde{L})$ and that of \tilde{G} on L is given by $q \cdot X = qX^{t}q$ $(g \in G, X \in L)$. Notice that the inclusion $L \hookrightarrow \tilde{L}$ is G-equivariant. The action $G \times L \to L$ is that considered in [DSZ].

For these actions, we easily see that $\mathbb{C}[\tilde{L}]^{\tilde{G}} = \mathbb{C}[L]^{G} = \mathbb{C}$. Let us determine the fields of rational invariants $\mathbb{C}(\tilde{L})^{\tilde{G}}$ and $\mathbb{C}(L)^{G}$, and show that generators of $\mathbb{C}(L)^G$ are obtained by restrictions of some elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$.

Define functions $P_0, P_1, \ldots, P_n \in \mathbb{C}[\tilde{L}]$ by

$$det(TX + Y) = P_0(X, Y)T^n + P_1(X, Y)T^{n-1} + \dots + P_n(X, Y) \quad ((X, Y) \in \tilde{L}).$$

Notice that $P_0(X, Y) = \det(X)$ and $P_n(X, Y) = \det(Y)$. Since

$$P_j((g, h) \cdot (X, Y)) = \det(g) \det(h)^{-1} P_j((X, Y)) \quad ((g, h) \in \tilde{G}),$$

rational functions $f_j := P_j/P_0$ $(1 \le j \le n)$ are elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$. Define dense open subset \tilde{L}_0 of \tilde{L} by

$$\tilde{L}_0 := \{ (X, Y) \in \tilde{L} \mid \det(X) \neq 0 \neq \det(Y) \text{ and} \\ X^{-1}Y \text{ has distinct eigenvalues} \}$$

For $(X_1, Y_1), (X_2, Y_2) \in \tilde{L}_0$, suppose that $f_j(X_1, Y_1) = f_j(X_2, Y_2)$ for any $1 \leq j \leq n$. Then we have

$$det(T1_n + X_2^{-1}Y_2) = det(X_2)^{-1} det(TX_2 + Y_2)$$

= det(X_1)^{-1} det(TX_1 + Y_1)
= det(T1_n + X_1^{-1}Y_1).

Since $X_1^{-1}Y_1$ and $X_2^{-1}Y_2$ have distinct eigenvalues, there exists $h \in GL(n, \mathbb{C})$ such that $X_2^{-1}Y_2 = h(X_1^{-1}Y_1)h^{-1}$. If we put $g := X_2hX_1^{-1}$, we have $gX_1h^{-1} = X_2$ and $Y_2 = (X_2hX_1^{-1})Y_1h^{-1} = gY_1h^{-1}$. Hence (X_1, Y_1) and (X_2, Y_2) are conjugate under \tilde{G} . Therefore the rational invariants $f_1, f_2, \ldots, f_n \in \mathbb{C}(\tilde{L})^{\tilde{G}}$ separate \tilde{G} -orbits in \tilde{L}_0 . By [PV, Lemma 2.1], we have

- (2) $\mathbb{C}(\tilde{L})^{\tilde{G}} = \mathbb{C}(f_1, f_2, \dots, f_n).$ We easily see that
- (3) $P_j(X, Y) = P_{n-j}(Y, X) \ (0 \le j \le n).$ In particular, $P_j(X, {}^tX) = P_j({}^tX, X) = P_{n-j}(X, {}^tX) \ (0 \le j \le n)$ for any $(X, {}^tX) \in L.$

Thus we see $f_j|_L = f_{n-j}|_L$ $(1 \le j \le n-1)$ and obtain rational invariants $f_1|_L, f_2|_L, \ldots, f_{[n/2]}|_L \in \mathbb{C}(L)^G$.

- Let us show that
- (4) $\mathbb{C}(L)^G = \mathbb{C}(f_1|_L, f_2|_L, \dots, f_{[n/2]}|_L).$

For this purpose we first show that $\tilde{L}_0 \cap L \neq \emptyset$. Suppose that n = 2m + 1 is odd. Take a skew-symmetric matrix A with distinct eigenvalues $a_1, a_2, \ldots, a_m, 0, -a_1, -a_2, \ldots, -a_m$ and a scalar $c \in \mathbb{C}^{\times}$ such that $c \neq \pm a_j$ $(1 \leq j \leq m)$. Put $X = c1_n + A$. Then $X^{-1t}X = (c1_n + A)^{-1}(c1_n - A)$ has distinct eigenvalues

$$\frac{c-a_1}{c+a_1}, \dots, \frac{c-a_m}{c+a_m}, 1, \frac{c+a_1}{c-a_1}, \dots, \frac{c+a_m}{c-a_m}$$

Hence $(X, {}^{t}X) \in \tilde{L}_0 \cap L$ and $\tilde{L}_0 \cap L \neq \emptyset$. Similarly we can show that $\tilde{L}_0 \cap L \neq \emptyset$ for even n.

For $(X_1, {}^tX_1), (X_2, {}^tX_2) \in \tilde{L}_0 \cap L$, suppose that $f_j(X_1, {}^tX_1) = f_j(X_2, {}^tX_2)$ for any $1 \leq j \leq [n/2]$. Then the same equations hold for any $1 \leq j \leq n$. Since $f_1, f_2, \ldots, f_n \in \mathbb{C}(\tilde{L})^{\tilde{G}}$ separate \tilde{G} -orbits in $\tilde{L}_0, (X_1, {}^tX_1)$ and $(X_2, {}^tX_2)$ are conjugate under \tilde{G} . By the fact (1) above, $(X_1, {}^tX_1)$ and $(X_2, {}^tX_2)$ are conjugate under G. Therefor the rational invariants $f_1|_L, f_2|_L, \ldots, f_{[n/2]}|_L \in \mathbb{C}(L)^G$ separate G-orbits in $\tilde{L}_0 \cap L$. Again by [PV, Lemma 2.1], we obtain the fact (4).

Therefore, for the inclusion $(G, L) \hookrightarrow (\tilde{G}, \tilde{L}), \mathbb{C}(L)^G$ is generated by the restrictions of elements of $\mathbb{C}(\tilde{L})^{\tilde{G}}$.

References

[DSZ] Doković D., Sekiguchi J. and Zhao K., On the geometry of unimodular congruence classes of bilinear forms. preprint.

- [He] Hesselink W., Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc. 222 (1976), 1–32.
- [Hu] Humphreys J.E., *Linear algebraic groups*. Springer-Verlag, New York.
- [KR] Kostant B. and Rallis S., Orbits and representations associated with symmetric spaces. Amer. J. Math. 93 (1971),753–809.
- [KP] Kraft H. and Procesi C., On the geometry of conjugacy classes in classical groups. Comment. Math. Helv. 57 (1982), 539–602.
- [L] Luna D., Adherences d'orbite et invariants. Invent. Math. 29 (1975), 231–238.
- [LR] Luna D. and Richardson R.W., A generalization of the Chevalley restriction theorem. Duke Math. J. (3) 46 (1979), 487–496.
- [O1] Ohta T., The singularities of the closures of nilpotent orbits in certain symmetric pairs. Tohoku Math. J. 38 (1986), 441–468.
- [O2] Ohta T., The closure of nilpotent orbits in the classical symmetric pairs and their singularities. Tohoku Math. J. 43 (1991), 161–211.
- [O3] Ohta T., Orbits, rings of invariants and Weyl groups for classical graded Lie algebras. preprint.
- [PV] Popov V.L. and Vinberg E.V., *Invariant Theory*. Encyclopaedia of Mathematical Sciences, vol. 55, Algebraic Geometry IV, Springer-Verlag.

Department of Mathematics Tokyo Denki University Kanda-nisiki-cho, Chiyoda-ku Tokyo 101-8457, Japan E-mail: ohta@cck.dendai.ac.jp