On non-symmetric relative difference sets

Yutaka Hiramine

(Received February 5, 2007)

Abstract

Let D be a (m, u, k, λ)-difference set in a group G relative to a subgroup U of G. We say D is symmetric if $D^{(-1)}$ is also a (m, u, k, λ)-difference set. By a result of [7] D is symmetric if U is a normal subgroup of G. In general, D is non-symmetric when U is not normal in G. In this paper we study a condition under which D is symmetric and show that if D is semiregular then D is symmetric if and only if the dual of $\operatorname{dev}(D)$ is a divisible design. We also give a modification of Davis' product construction of relative difference sets and as an application we give a class of non-symmetric semiregular relative difference sets.

Key words: relative difference set, non-symmetric transversal designs.

1. Introduction

Let G be a group of order $m u$ and U a subgroup of G of order u. A k-subset D of G is called a (m, u, k, λ)-difference set in G with respect to U if the list of quotients $d_{1} d_{2}^{-1}$ with $d_{1}, d_{2} \in D\left(d_{1} \neq d_{2}\right)$ contains each element in $G \backslash U$ exactly λ times and no element in U. The definition yields the group ring equation

$$
\begin{equation*}
D D^{(-1)}=k+\lambda(G-U) \tag{1}
\end{equation*}
$$

where we identify a subset X of G with a group ring element $\hat{X}=\sum_{x \in X} x \in$ $\mathbb{C}[G]$ and set $X^{(-1)}=\sum_{x \in X} x^{-1}$. D is also called a relative difference set relative to U and U is called a forbidden subgroup. By definition $m \geq k$ and $k^{2}=k+\lambda(m u-u)$. We note that $D^{(-1)}$ is not always a relative difference set. For a (m, u, k, λ)-difference set D in a group G relative to $U, \operatorname{dev}(D)(=$ $(\mathbb{P}, \mathbb{B}))$ is an incidence structure with a set of points $\mathbb{P}=\{g \mid g \in G\}$ and a set of blocks $\mathbb{B}=\{D g \mid g \in G\}$. Then $\operatorname{dev}(D)$ is a (m, u, k, λ)-divisible design ([7]). If $m=k$ then $(m, u, k, \lambda)=(u \lambda, u, u \lambda, \lambda)$ and D is said to be semiregular.

A (m, u, k, λ)-difference set D is called symmetric if $D^{(-1)}$ is also a (m, u, k, λ)-difference set. In Section 2 we study a semiregular relative

[^0]difference set D and show that D is symmetric if and only if the dual of $\operatorname{dev}(D)$ is a divisible design (Corollary 2.7).

In Sections 3 and 4 we give a construction for relative difference sets D such that $\operatorname{dev}(D)$ is non-symmetric. To construct such difference sets we present the following lemma on products of semiregular relative difference sets, which is a modification of Theorem 2.1 of [4] or Result 2.1 of [8].

Lemma 3.1 Let $X=G \times H$ be a group, where G is a group of order $u^{2} \lambda$ and H is a group of order $u \lambda^{\prime}$. Let D be a $(u \lambda, u, u \lambda, \lambda)$-difference set in G relative to a subgroup U of G of order u and let C be a $\left(u \lambda^{\prime}, u, u \lambda^{\prime}, \lambda^{\prime}\right)$ difference set in $G^{\prime}=U \times H$ relative to U. Then
(i) $C D$ is a $\left(u^{2} \lambda \lambda^{\prime}, u, u^{2} \lambda \lambda^{\prime}, u \lambda \lambda^{\prime}\right)$-difference set in X relative to $U \times 1$.
(ii) $C D$ is symmetric if and only if D is symmetric.

We note that U is not assumed to be normal in G in Lemma 3.1. Roughly speaking, Lemma 3.1(ii) implies that a non-symmetric and a splitting semiregular relative difference sets that share a forbidden subgroup give us another non-symmetric one. By a recursive construction applying Lemma 3.1 we obtain a class of non-symmetric semiregular relative difference sets (see Theorem 3.2 and Proposition 4.4).

2. Divisible designs and relative difference sets

Let D be a relative difference set in a group G relative to U. Then $\operatorname{dev}(D)$ is a divisible design. However, the dual of $\operatorname{dev}(D)$ is not always a divisible design. In this section we study a condition under which the dual of $\operatorname{dev}(D)$ is a divisible design when D is semiregular.

Definition 2.1 An incidence structure (\mathbb{P}, \mathbb{B}) is called a square (m, u, k, λ)-divisible design if the following conditions are satisfied.
(i) $|\mathbb{P}|=|\mathbb{B}|=m u$.
(ii) There exists a partition $\mathbb{P}=\mathbb{P}_{1} \cup \mathbb{P}_{2} \cup \cdots \cup \mathbb{P}_{m}$ of \mathbb{P} such that $\left|\mathbb{P}_{1}\right|=\cdots=$ $\left|\mathbb{P}_{m}\right|=u$ and for any distinct points $p, q \in \mathbb{P}$ the number of blocks $B \in \mathbb{B}$ containing p and q is 0 if $p, q \in \mathbb{P}_{i}$ for some $i \in\{1, \ldots, m\}$ and λ otherwise. (Each P_{i} is called a point class of (\mathbb{P}, \mathbb{B}).)
(iii) $|B|=k(\forall B \in \mathbb{B})$.

Counting all triples $(p, q, B)(p, q \in \mathbb{B}, p \neq q \in \mathbb{P}, B \in \mathbb{B})$ in two ways we obtain the following fundamental equation.

$$
\begin{equation*}
k(k-1)=\lambda(m u-u) \tag{2}
\end{equation*}
$$

Definition 2.2 (i) A square (m, u, k, λ)-divisible design is said to be symmetric if its dual is also a square (m, u, k, λ)-divisible design. In other words, there is a partition $\mathbb{B}=\mathbb{B}_{1} \cup \cdots \cup \mathbb{B}_{m}$ of \mathbb{B} such that for any two distinct blocks $B, C \in \mathbb{B}$

$$
|B \cap C|= \begin{cases}0 & \text { if } B, C \in \mathbb{B}_{i} \text { for some } i \in\{1, \ldots, m\} \\ \lambda & \text { otherwise }\end{cases}
$$

(ii) $\mathrm{A}(m, u, k, \lambda)$-difference set D is said to be symmetric if $D^{(-1)}$ is also a (m, u, k, λ)-difference set.

Remark 2.3 (i) In Theorem 6.2 of [3], W.S. Connor showed that (\mathbb{P}, \mathbb{B}) is symmetric whenever $k>u \lambda$ and $(k, \lambda)=1$.
(ii) If a (m, u, k, λ)-difference set D in a group G relative to U satisfies $D D^{(-1)}=D^{(-1)} D$, then $\operatorname{dev}(D)$ is symmetric.
(iii) By Jungnickel's result in [7], $D D^{(-1)}=D^{(-1)} D$ whenever $G \triangleright U$. Hence, if $G \triangleright U$, then D is symmetric.

Definition 2.4 A square (m, u, k, λ)-divisible design (\mathbb{P}, \mathbb{B}) is called a transversal design and denoted by $\mathrm{TD}_{\lambda}[k ; u]$ if $\left|B \cap \mathbb{P}_{i}\right|=1$ for any $B \in \mathbb{B}$ and any point class P_{i} of (\mathbb{P}, \mathbb{B}).

Hence, a square (m, u, k, λ)-divisible design is a transversal design if and only if $k=m(=u \lambda)$.

Lemma 2.5 Let \mathcal{D} be a transversal design $\operatorname{TD}_{\lambda}[u \lambda ; u]$. If the dual of \mathcal{D} is $a(m, n, k, \mu)$-divisible design for some $m, n, k, \mu \in \mathbb{N}$, then $(m, n, k, \mu)=$ $(u \lambda, u, u \lambda, \lambda)$ and \mathcal{D} is symmetric.

Proof. Clearly $m n=u^{2} \lambda, k=u \lambda$. By Theorem 3 of [2], $k \geq n \mu$. Hence

$$
\begin{equation*}
u \lambda \geq n \mu \tag{3}
\end{equation*}
$$

By (2), $u \lambda(u \lambda-1)=k(k-1)=\mu\left(u^{2} \lambda-n\right)=u \lambda(u \mu)-\mu n$. From this $\mu n \equiv 0(\bmod u \lambda)$. Applying (3), we have $u \lambda=n \mu$ and so $(n \mu)(n \mu-1)=$ $\mu(m n-n)=n \mu(m-1)$. It follows that $m=n \mu$. As $n^{2} \mu=m n=u^{2} \lambda$, we have $n=u$ and so $\lambda=\mu$. Therefore the lemma holds.

A (m, u, k, λ)-difference set is called semiregular if $m=k$ (or equivalently $m=k=u \lambda$). Then, clearly $|G|=u^{2} \lambda$. In this case $\operatorname{dev}(D)$ is a
transversal design $\mathrm{TD}_{\lambda}[u \lambda ; u]$.
As an application of Lemma 2.5, we can show the following.
Proposition 2.6 Let D be a semiregular relative difference set in a group G relative to a subgroup U of G. Then the following conditions are equivalent.
(i) $\operatorname{dev}(D)$ is symmetric.
(ii) $D^{(-1)}$ is a relative difference set in G relative to a subgroup of G.
(iii) The dual of $\operatorname{dev}(D)$ is a divisible design.

Proof. Set $(\mathbb{P}, \mathbb{B})=\operatorname{dev}(D)$ and assume (i). Then, there exists a partition $\mathbb{B}=\mathbb{B}_{1} \cup \cdots \cup \mathbb{B}_{u \lambda}$ of \mathbb{B} such that for any two distinct blocks $B, C \in \mathbb{B}$,

$$
|B \cap C|= \begin{cases}0 & \text { if } B, C \in \mathbb{B}_{i} \text { for some } i \in\{1, \ldots, u \lambda\} \tag{4}\\ \lambda & \text { otherwise }\end{cases}
$$

Set $\mathbb{B}_{1}=\left\{D g_{1}, D g_{2}, \ldots, D g_{u}\right\}$, where $g_{1}=1$. As $D g_{i} \cap D g_{j}=\emptyset$ for any distinct $i, j \in\{1,2, \ldots, u\}$, for each \mathbb{B}_{k} there is an element $g \in G$ so that $\mathbb{B}_{k}=\left\{D g_{1} g, D g_{2} g, \ldots, D g_{u} g\right\}$.

We note that

$$
D g_{i} \cap D g_{j}=\emptyset \Longleftrightarrow\left\{\left(d_{1}, d_{2}\right) \mid d_{1}, d_{2} \in D, d_{1} g_{i}=d_{2} g_{j}\right\}=\emptyset .
$$

Hence

$$
\begin{equation*}
D g_{i} \cap D g_{j}=\emptyset \Longleftrightarrow\left\{\left(d_{1}, d_{2}\right) \mid d_{1}, d_{2} \in D, d_{1}^{-1} d_{2}=g_{i} g_{j}^{-1}\right\}=\emptyset \tag{5}
\end{equation*}
$$

Set $V=\left\{g_{1}(=1), g_{2}, \ldots, g_{u}\right\}$. Let $g_{i}, g_{j} \in V$. Then, by (5), $D g_{i} g_{j}^{-1} \cap D=$ \emptyset. Hence $D g_{i} g_{j}^{-1} \in \mathbb{B}_{1}$ and so $g_{i} g_{j}^{-1} \in V$. Thus V is a subgroup of G of order u. Assume $a \in G \backslash V$. Then $D a \notin \mathbb{B}_{1}$. As $D \in \mathbb{B}_{1}$, we have $|D \cap D a|=\lambda$ by (4). Then $\left|\left\{\left(d_{1}, d_{2}\right) \mid a=d_{1}^{-1} d_{2}\right\}\right|=\lambda$. Thus $D^{(-1)} D=u \lambda+\lambda(G-V)$. Therefore (ii) holds. Clearly (ii) implies (iii). By Lemma 2.5, (iii) implies (i).

As a corollary of Proposition 2.6, we have
Corollary 2.7 A semiregular relative difference set D is symmetric if and only if the dual of $\operatorname{dev}(D)$ is a divisible design.

Under the above assumption, $D D^{(-1)} \neq D^{(-1)} D$ in general. To our knowledge, transversal designs obtained from semiregular relative difference sets and previously known were symmetric. In Section 3 and 4 we
will give examples of semiregular relative difference sets D with $\operatorname{dev}(D)$ non-symmetric. Then they give us examples of non-symmetric semiregular relative difference sets.

Concerning the case $m>k$ we would like to ask the following.
Question 2.8 Let D be a (m, u, k, λ)-difference set in a group G such that $m>k$. Is D symmetric whenever the dual of $\operatorname{dev}(D)$ is a divisible design ?

3. Non-symmetric relative difference sets

In this section we construct non-symmetric relative difference sets. To do this we need the following lemma.

Lemma 3.1 Let $X=G \times H$ be a group, where G is a group of order $u^{2} \lambda$ and H is a group of order $u \lambda^{\prime}$. Let D be a (u $\left., u, u \lambda, \lambda\right)$-difference set in G relative to a subgroup U of G of order u and let C be a ($\left.u \lambda^{\prime}, u, u \lambda^{\prime}, \lambda^{\prime}\right)$ difference set in $G^{\prime}=U \times H$ relative to U. Then
(i) $C D$ is a $\left(u^{2} \lambda \lambda^{\prime}, u, u^{2} \lambda \lambda^{\prime}, u \lambda \lambda^{\prime}\right)$-difference set in X relative to U.
(ii) $C D$ is symmetric if and only if D is symmetric.

Proof. Let $c_{1}, c_{2} \in C$ and $d_{1}, d_{2} \in D$ and assume $c_{1} d_{1}=c_{2} d_{2}$. Then $c_{1}^{-1} c_{2}=d_{1} d_{2}^{-1} \in U H \cap G=U$. Thus $d_{1}=d_{2}$ and so $c_{1}=c_{2}$. Therefore $C D$ is a subset of X.

Let S and T be subsets of G and H, respectively. We identify S and T with $S \times\{1\}(\subset X)$ and $\{1\} \times T(\subset X)$, respectively. Then, by assumption, the following hold.

$$
\begin{align*}
& D D^{(-1)}=u \lambda+\lambda(G-U) \tag{6}\\
& C C^{(-1)}=u \lambda^{\prime}+\lambda^{\prime}(U H-U) \tag{7}\\
& G=U D, \quad U C=U H \tag{8}
\end{align*}
$$

Hence, substituting (6) and (7) we have

$$
\begin{aligned}
(C D)(C D)^{(-1)} & =C\left(D D^{(-1)}\right) C^{(-1)} \\
& =C(u \lambda+\lambda(G-U)) C^{(-1)} \\
& =u \lambda C C^{(-1)}+\lambda C G C^{(-1)}-\lambda C U C^{(-1)} .
\end{aligned}
$$

As $C, U \subset U H$ and $U \triangleleft U H$, we have $C U=U C$. Similarly $G C=C G$. It
follows that

$$
\begin{aligned}
& (C D)(C D)^{(-1)}=u \lambda\left(u \lambda^{\prime}+\lambda^{\prime}(U H-U)\right)+\lambda G C C^{(-1)}-\lambda U C C^{(-1)} \\
& =u^{2} \lambda^{\prime} \lambda+u \lambda^{\prime} \lambda U H-u \lambda^{\prime} \lambda U \\
& \quad+\lambda G\left(u \lambda^{\prime}+\lambda^{\prime} U H-\lambda^{\prime} U\right)-\lambda U\left(u \lambda^{\prime}+\lambda^{\prime} U H-\lambda^{\prime} U\right) \\
& =u^{2} \lambda^{\prime} \lambda+u \lambda^{\prime} \lambda(X-U)
\end{aligned}
$$

Thus we have (i).
Since $U H \triangleright U$, we obtain $C^{(-1)} C=C C^{(-1)}=u \lambda^{\prime}+\lambda^{\prime} U H-\lambda^{\prime} U$. Hence $(C D)^{(-1)} C D=D^{(-1)}\left(C C^{(-1)}\right) D=D^{(-1)}\left(u \lambda^{\prime}+\lambda^{\prime} U H-\lambda^{\prime} U\right) D$. By (8), we have

$$
\begin{equation*}
(C D)^{(-1)} C D=u \lambda^{\prime} D^{(-1)} D+u \lambda^{\prime} \lambda X-u \lambda^{\prime} \lambda G \tag{9}
\end{equation*}
$$

Assume $C D$ is symmetric. Then $(C D)^{(-1)} C D=u^{2} \lambda^{\prime} \lambda+u \lambda^{\prime} \lambda(X-V)$ for a subgroup V of X of order u. By (9), $u \lambda^{\prime} D^{(-1)} D-u \lambda^{\prime} \lambda G=u^{2} \lambda^{\prime} \lambda-$ $u \lambda^{\prime} \lambda V$. Thus $D^{(-1)} D=u \lambda+\lambda(G-V)$. In particular, V is a subgroup of G of order u and so D is symmetric. Conversely, assume D is symmetric. Then $D^{(-1)} D=u \lambda+\lambda(G-V)$ for a subgroup V of G of order u. Then, by $(9),(C D){ }^{(-1)} C D=u \lambda^{\prime}(u \lambda+\lambda(G-V))+u \lambda^{\prime} \lambda X-u \lambda^{\prime} \lambda G=u^{2} \lambda^{\prime} \lambda+$ $u \lambda^{\prime} \lambda(X-V)$. Therefore $C D$ is symmetric. Thus we have (ii).

We note that Lemma 3.1(i) is a modification of Result 2.4 of [8], where N is assumed to be normal in G.

We now prove the following theorem on a recursive construction of nonsymmetric semiregular relative difference sets.

Theorem 3.2 Let D be $a\left(u \lambda_{0}, u, u \lambda_{0}, \lambda_{0}\right)$-difference set in a group G relative to a subgroup U of G. Let H_{i} be a group of order $u \lambda_{i}$ and assume the existence of a splitting $\left(u \lambda_{i}, u, u \lambda_{i}, \lambda_{i}\right)$-difference set, say D_{i}, in $U \times H_{i}$ relative to $U \times 1$ for each $i \in\{1,2, \ldots, n-1\}$. Set $\lambda=\lambda_{0} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1}$. Then,
(i) $D_{1} D_{2} \cdots D_{n-1} D$ is a $\left(u^{n} \lambda, u, u^{n} \lambda, u^{n-1} \lambda\right)$-difference set in $G \times H_{n-1}$ $\times H_{n-2} \times \cdots \times H_{1}$ relative to $U \times 1 \times \cdots \times 1$.
(ii) $D_{1} D_{2} \cdots D_{n-1} D$ is non-symmetric if and only if D is non-symmetric.

Proof. Set $X=G \times H_{n-1}$. Since $U \times H_{n-1}$ contains a $\left(u \lambda_{n-1}, u, u \lambda_{n-1}, \lambda_{n-1}\right)$ difference set D_{n-1} relative to $U \times 1$, applying Lemma 3.1 we have that $D_{n-1} D$ is a $\left(u^{2} \lambda \lambda_{n-1}, u, u^{2} \lambda \lambda_{n-1}, u \lambda \lambda_{n-1}\right)$-difference set in X relative to $U \times 1$.

Set $X^{\prime}=\left(G \times H_{n-1}\right) \times H_{n-2}$ and let ψ be the natural projection from $U \times H_{n-2}$ to X^{\prime}. Then we can regard D_{n-2} as a $\left(u \lambda_{n-2}, u, u \lambda_{n-2}, \lambda_{n-2}\right)$ difference set relative to $(U \times 1) \times 1$. Applying Lemma 3.1 again, we obtain a $\left(u^{3} \lambda \lambda_{n-1} \lambda_{n-2}, u, u^{3} \lambda \lambda_{n-1} \lambda_{n-2}, u^{2} \lambda \lambda_{n-1} \lambda_{n-2}\right)$-difference set $C_{n-2} C_{n-1} D$ in X^{\prime} relative to $U \times 1 \times 1$. Repeating the procedure we have the theorem.

4. Examples of non-symmetric relative difference sets

We denote by m^{*} the square free part of a positive integer m.
Proposition 4.1 Assume the existence of a splitting $(3 \lambda, 3,3 \lambda, \lambda)$-difference set. Then
(i) $p \equiv 1(\bmod 3)$ for each prime divisor $p(\neq 3)$ of λ^{*}.
(ii) The congruence $x^{2} \equiv-12\left(\bmod 4 \lambda^{*}\right)$ has a solution in integers.

Proof. Let D be a $(3 \lambda, 3,3 \lambda, \lambda)$-difference set in a group $G=H \times U$ relative to $U \simeq \mathbb{Z}_{3}$. Let χ be a linear character of G such that $\left.\chi\right|_{H}$ is principal, while $\left.\chi\right|_{U}$ is not. Then, as $U \simeq \mathbb{Z}_{3}, \chi(D)=a+b \omega+c \omega^{2}$, $a+b+c=|D|=3 \lambda$ for non-negative integers a, b, c. Hence $\chi(D) \overline{\chi(D)}=$ $a^{2}+b^{2}+c^{2}-a b-b c-c a$. On the other hand, $\chi(D) \overline{\chi(D)}=3 \lambda$ by (1). From this, $(2 a+b-3 \lambda)^{2}+3(b-\lambda)^{2}=4 \lambda$. Thus an equation $x^{2}+3 y^{2}=$ 4λ has an integral solution $(x, y)=(2 a+b-3 \lambda, b-\lambda)$. In particular, $2 \nmid \lambda^{*}$. By Theorem 7 in Section 7.6 of Chapter 2 in [1], the congruence $x^{2} \equiv-12\left(\bmod 4 \lambda^{*}\right)$ is solvable.

Let $p(\neq 3)$ be an odd prime dividing λ^{*}. Assume $p \equiv 2(\bmod 3)$. Then, by Theorem 2 in Section 2.2 of Chapter 5 in [1], (p) is a prime ideal in the ring of algebraic integers in $\mathbb{Q}(\omega)$. This is contrary to the fact that $\chi(D) \overline{\chi(D)}=3 \lambda$. Thus $p \equiv 1(\bmod 3)$. Therefore the proposition holds.

Example 4.2 By Proposition 4.1, there are no splitting ($3 \lambda, 3,3 \lambda, \lambda$)difference sets for $\lambda=2,5,6,8,10,11$. On the other hand, here exist splitting a $(3 \lambda, 3,3 \lambda, \lambda)$-difference set for $\lambda=1,3,4,7,9$ (for $\lambda=7$, see [9]). Also there exists a splitting $\left(3 \cdot 2^{2 s} 3^{t}, 3,3 \cdot 2^{2 s} 3^{t}, 2^{2 s} 3^{t}\right)$-difference set for any $s, t \geq 0$ by Corollary 4.4 of [5].

We now show that a relative difference set in $G=S_{3} \times \mathbb{Z}_{6}$ construcred in [6] is non-symmetric.

Example 4.3 Let $G=\langle a, b, c| a^{3}=b^{2}=c^{6}=1, b^{-1} a b=a^{-1}, a c=$ $c a, b c=c b\rangle$ and set $D=\left\{1, c, c^{2}, c^{3}, a, a c, b, a^{2} b c^{5}, a b c^{4}, a^{2} b c, b c^{4}, a b c\right\}$. Then D is a $(12,3,12,4)$-difference set relative to $U=\left\langle a c^{2}\right\rangle \simeq Z_{3}$. We can easily check that $D D^{(-1)}=12+4(G-U)$, while $D^{(-1)} D=12+4 a+$ $4 a^{2}+4 b+4 a b+4 a^{2} b+4 c+3 a c+5 a^{2} c+3 b c+5 a b c+4 a^{2} b c+4 c^{2}+2 a c^{2}+$ $2 a^{2} c^{2}+4 b c^{2}+4 a b c^{2}+4 a^{2} b c^{2}+4 c^{3}+4 a c^{3}+4 a^{2} c^{3}+6 b c^{3}+2 a b c^{3}+4 a^{2} b c^{3}+$ $4 c^{4}+2 a c^{4}+2 a^{2} c^{4}+4 b c^{4}+4 a b c^{4}+4 a^{2} b c^{4}+4 c^{5}+5 a c^{5}+3 a^{2} c^{5}+3 b c^{5}+$ $5 a b c^{5}+4 a^{2} b c^{5}$. Thus $D^{(-1)}$ is not a relative difference set. Thus D is a non-symmetric relative difference set.

By Theorem 3.2 and Examples 4.2 and 4.3 we have the following.
Proposition 4.4 There exists a non-symmetric $\left(2^{2} 3^{m+1} \lambda, 3,2^{2} 3^{m+1} \lambda\right.$, $\left.2^{2} 3^{m} \lambda\right)$-difference set D for any $\lambda=2^{2 s m_{2}} 3^{t m_{1}} 7^{m_{2}}, m\left(\geq m_{1}+m_{2}\right)$ and $s, t\left(m_{1}, m_{2}, s, t \in \mathbb{N} \cup\{0\}\right)$. Under this condition, $\operatorname{dev}(D)$ is a nonsymmetric $T D_{2^{2} 3^{m} \lambda}\left[2^{2} 3^{m+1} \lambda ; 3\right]$.

Example 4.5 Let $G=\langle a, b\rangle \times\langle c\rangle \simeq S_{3} \times \mathbb{Z}_{6}$, where $a^{3}=b^{2}=1$, $b a b=$ a^{-1} and let $H=\langle d\rangle \times\langle e\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{6}$. Set $X=G \times H$. Then one can verify that $C=\left\{1, e, e^{2}, e^{3}, a c^{2} e^{4}, a c^{2} e^{5}, a^{2} c^{4} d, d e, a c^{2} d e^{2}, a^{2} c^{4} d e^{3}, a c^{2} d e^{4}, d e^{5}\right\}$ is a $(12,3,12,4)$-difference set in $\left\langle a^{2} c^{4} d\right\rangle \times\langle e\rangle \simeq \mathbb{Z}_{6} \times \mathbb{Z}_{6}$ relative to $\left\langle a c^{2}\right\rangle \simeq$ \mathbb{Z}_{3}. By Example $4.3, D=\left\{1, c, c^{2}, c^{3}, a, a c, b, a^{2} b c^{5}, a b c^{4}, a^{2} b c, b c^{4}, a b c\right\}$ is a non-symmetric $(12,3,12,4)$-difference set in G relative to $\left\langle a c^{2}\right\rangle \simeq \mathbb{Z}_{3}$. Applying Lemma 3.1, $C D$ is a non-symmetric (144, 3, 144, 48)-difference set.

References

[1] Borevich Z.I. and Shafarevich I.R., Number Theory. Academic Press, SanDiego, CA/New York/London, 1966.
[2] Bose R.C. and Connor W.S., Combinatorial properties of group divisible incomplete block designs. Ann. Math. Stat. 23 (1952), 367-383.
[3] Connor W.S., Some relations among the blocks of symmetric group divisible designs. Ann. Math. Stat. 23 (1952), 602-609.
[4] Davis J.A., A note on products of relative difference sets. Designs, Codes Crypt. 1 (1991), 117-119.
[5] Davis J.A., Jedwab J. and Mowbray M., New Families of Semi-Regular Relative Difference Sets. Designs, Codes Crypt. 13 (1998), 131-146.
[6] Hiramine Y., A classification of semiregular relative difference sets with $k=12$. preprint.
[7] Jungnickel D., On automorphism group of divisible designs. Canad. J. Math. 34 (1982), 257-297.
[8] Schmidt B., On $\left(p^{a}, p^{b}, p^{a}, p^{a-b}\right)$-Relative Difference Sets. Journal of Algebraic Combinatorics 6 (1997), 279-297.
[9] Akiyama K. and Suetake C., On $S T D_{k / 3}[k ; 3]$'s. preprint.

Department of Mathematics
Faculty of Education
Kumamoto University
Kurokami, Kumamoto, Japan
E-mail: hiramine@gpo.kumamoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : 05B10.

