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The existence of the global solutions

to semilinear wave equations

with a class of cubic nonlinearities in 2-dimensional space
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Abstract. This paper deals with the Cauchy problem of the semilinear wave equation

with a small initial data in 2-dimensional space. When the nonlinearity is cubic, we

can not expect the global existence of smooth solutions, in general. However, Godin [1]

showed that if the nonlinearity has the null-form, the solution exists globally. In this

paper, we will show the global solvability for the other type of nonlinearities which does

not have null-form.
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1. Introduction

Let us consider the following Cauchy problem;

2u = ∂2
t u −4u = F (∂u) (x, t) ∈ R2 × (0, ∞), (1.1)

u(x, 0) = εf(x), ∂tu(x, 0) = εg(x) x ∈ R2. (1.2)

Here, ∂ = (∂0, ∂1, ∂2), ∂0 = ∂t = ∂/∂t, ∂j = ∂/∂xj (j = 1, 2) and ε is a
positive small parameter. We assume f, g ∈ C∞

0 (R2; R), |f | + |g| 6≡ 0 and
supp{f, g} ⊂ {x ∈ R2; |x| ≤ M}. We also assume that

F ∈ C∞(R3; R),

F (∂u) = O(|∂u|3) near ∂u = 0.

More presicely, we assume

F (∂u) =
2∑

α,β,γ=0

Aαβγ∂αu∂βu∂γu + O(|∂u|4) near ∂u = 0, (1.3)

where Aαβγ are real constants.
The aim of this paper is to estimate the lifespan Tε of the smooth

solution to the Cauchy problem (1.1) and (1.2), which is defined for each
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ε > 0 as follows;

Tε = sup{T > 0; there exists a smooth solution

to (1.1) and (1.2) in C∞(R2 × [0, T ); R)}.

In order to state the results which we have already known about the lifespan,
we introduce some notations.

For vectors X = (X0, X1, X2) ∈ R3, we define

C(X) =
2∑

α,β,γ=0

AαβγXαXβXγ .

This function charaterizes the essential cubic terms of F (∂u) along the light
cone.

On the other hand, let u0 = u0(x, t) be the solution to the Cauchy
problem;

2u0 = 0 (x, t) ∈ R2 × (0, ∞),

u0(x, 0) = f(x), ∂tu
0(x, 0) = g(x)

and set r = |x| ≥ 0, ω = x/r ∈ S1 and ρ = r − t ∈ R. Then we define

F(ω, ρ) = lim
r→∞

r1/2u0(rω, r − ρ),

which is called the Friedlander radiation field. Hörmander showed in [2] the
following properties of F .

|∂k
ρF(ω, ρ)| ≤C(1 + |ρ|)−1/2−k ρ ∈ R, (1.4)

F(ω, ρ) = 0 for ρ ≥ M. (1.5)

By (1.4) and (1.5), we find that the constant

H = max
ρ∈R, ω∈S1

{
−C(−1, ω)(∂ρF(ω, ρ))2

}
(1.6)

is well-defined and nonnegative.
Then Godin proved the following (a) and (b) in [1].

(a) If H > 0, then

lim inf
ε→+0

ε2 log Tε ≥
1
H

holds.
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(b) If C(−1, ω) ≡ 0 holds for ω ∈ S1, then Tε = ∞ holds for sufficiently
small ε > 0.

The condition C(−1, ω) ≡ 0 is called the null-condition. If the null-
condition is satisfied, then we can write the cubic part of the nonlinear term
F (∂u) as a linear combination of terms ∂αu((∂0u)2 − |∇u|2), i.e.,

F (∂u) =
2∑

α=0

Cα∂αu((∂0u)2 − |∇u|2) + O(|∂u|4),

where Cα are real constants. It follows from (1.6) that the null-condition is
a sufficient condition of H = 0 and not a necessary condition. In the case
where |f | + |g| 6≡ 0, we find that H = 0 is equivalent to the condition

C(−1, ω) ≥ 0 for any ω ∈ S1. (1.7)

This means that there is a nonlinearity F (∂u) which does not satisfy the
assumptions of both (a) and (b). For example,

F (∂u) = −(∂0u)3, F (∂u) = −∂0u|∇u|2,
F (∂u) = −(∂0u)3 + ∂0u∂1u∂2u

and so on. For the above F (∂u), we can easily show that

C(X) = −X3
0 , C(X) = −X0(X2

1 + X2
2 ),

C(X) = −X3
0 − X0X1X2,

respectively. Hence we find that these F (∂u) satisfy (1.7). From the re-
sults (a) and (b), we can expect the solution exists longer than the time
exp(C/ε2) for any constant C > 0 in such cases. Our purpose of this paper
is to show the global existence of the smooth solution to (1.1) and (1.2),
when the condition (1.7) holds.

2. Statement of the main theorem

We introduce generalized differential operators;

Ω = x1∂2 − x2∂1, Li = t∂i + xi∂0, S = t∂0 + x1∂1 + x2∂2

and denote

Γ0 = S, Γ1 = Ω, Γ2 = L1, Γ3 = L2, Γ4 = ∂0, Γ5 = ∂1, Γ6 = ∂2.
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We can verify the following commutator relations;

[∂α, ∂β ] = 0, [S, ∂α] = −∂α, [Ω, ∂1] = −∂2, [Ω, ∂2] = ∂1,

[Ω, ∂0] = 0, [Li, ∂j ] = −δij∂0, [Li, ∂0] = −∂i, [S, Ω] = 0, (2.1)

[Ω, L1] = −L2, [Ω, L2] = L1, [S, Li] = 0, [L1, L2] = Ω,

[Γσ, 2] = −2δ0σ2

for α, β = 0, 1, 2, i, j = 1, 2 and σ = 0, 1, . . . , 6. Here [ , ] denotes the
usual commutator of linear operators and δαβ is the Kronecker delta. We
also write Γau = Γa0

0 Γa1
1 · · ·Γa6

6 u for a multi-index a = (a0, a1, . . . , a6).
Next we define some generalized Sobolev norms as

|v(x, t)|k =
∑
|a|≤k

|Γav(x, t)|

|v(t)|k =
∑
|a|≤k

‖Γav( · , t)‖L∞
x (R2;R) (2.2)

[v(t)]k =
∑
|a|≤k

‖(1 + | · |+ t)1/2(1 + || · | − t|)1/2Γav( · , t)‖L∞
x (R2 ;R)

‖v(t)‖k =
∑
|a|≤k

‖Γav( · , t)‖L2
x(R2;R).

Note that by (2.1) and the definition of norms, we have

|v(x, t)| ≤ [v(t)]0
(1 + t)1/2

(2.3)

and

α|∂v(t)|k≤
∑
|a|≤k

|∂Γav(t)|0 ≤ β|∂v(t)|k

α[∂v(t)]k≤
∑
|a|≤k

[∂Γav(t)]0 ≤ β[∂v(t)]k (2.4)

α‖∂v(t)‖k≤
∑
|a|≤k

‖∂Γav(t)‖0 ≤ β‖∂v(t)‖k

for some positive constants α and β. Now we state the main theorem.

Theorem 2.1 Assume that (1.7) holds. Then there exists a constant ε∗ >

0 such that Tε = ∞ holds for ε ∈ (0, ε∗). Moreover, for any integer k ≥ 5,
there exists constants cl > 0 and ml ≥ 0 (l = 0, 1, . . . , k) such that the
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solution satisfies

‖∂u(t)‖l ≤ clε(1 + ε2 log(1 + t))ml 0≤ t <∞, l = 0, 1, . . . , k (2.5)

for ε ∈ (0, ε∗). Here cl > cl−1 and c0 = c0(f, g), ml > ml−1 and m0 = 0.

Remark Kubo proved the same result in [8], in which he also showed an
asymptotic behavior of solutions.

3. Proof of the main theorem

First of all, the following local existence result has been shown in The-
orem 6.5.3 in [3].

Proposition 3.1 There exist constants D > 0 and ε′ > 0 such that for
0 < ε < ε′ the Cauchy problem (1.1) and (1.2) has a local solution u ∈
C∞(R2 × [0, ε−1];R) which satisfies

‖∂u(t)‖k ≤ Dε 0 ≤ t ≤ 1
ε

(3.1)

for k = 0, 1, 2, . . ..

Combining Proposition 3.1 with the following lemma, we can show the
Theorem 2.1.

Lemma 3.1 Assume that (1.7) holds, choose an integer k ≥ 5. Let u ∈
C∞(R2 × [0, T );R) be a solution to (1.1) and (1.2). Then, there exist
constants ε0 > 0, cl > 0 and ml ≥ 0 (cl > cl−1, c0 > D, ml > ml−1, m0 =
0, l = 0, 1, . . . , k) independent of T such that if

‖∂u(t)‖l ≤ 2clε(1 + ε2 log(1 + t))ml

0 ≤ t < T, l = 0, 1, . . . , k (3.2)

holds for an ε ∈ (0, ε0), then

‖∂u(t)‖l ≤ clε(1 + ε2 log(1 + t))ml

0 ≤ t < T, l = 0, 1, . . . , k (3.3)

holds for the same ε.

Proof of Theorem 2.1. Choose an integer k ≥ 5 and define a set

Uε = {t; t ≤ Tε, ‖∂u(t)‖l ≤ 2clε(1 + ε2 log(1 + t))ml ,
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l = 0, 1, . . . , k} (⊂ [0, ∞))

for each ε ∈ (0, ε∗), where ε∗ = min{ε0, ε′}. Proposition 3.1 implies that
Uε is not empty. Furthermore, by Lemma 3.1, we can easily show that Uε

is open and closed in [0, ∞) from the usual argument. Namely we have
Uε = [0, ∞) and therefore we find that Tε = ∞ and (2.5) hold for any
ε ∈ (0, ε∗). This completes the proof of Theorem 2.1. ¤

In what follows we concentrate on showing (3.3) under the assumption
(3.2). For this purpose, we will use the following propositions.

Proposition 3.2 Let v ∈ C2(R2 × [0, T );R) be a function satisfying
sup0≤t<T ‖v(t)‖2 < ∞. Then there exists a constant K > 0 such that

[∂v(t)]0 ≤ K‖∂v(t)‖2 0 ≤ t < T (3.4)

holds.

Proposition 3.3 Let v ∈ C1(R2 × [0, T );R) be a function satisfying
v(x, t) = 0 when |x| ≥ t + R for some constant R > 0. Then there ex-
ists a constant L = L(R) > 0 such that∥∥∥ v(t)

1 + |t − |x||

∥∥∥
0
≤ L‖∂v(t)‖0 0 ≤ t < T (3.5)

holds.

Proposition 3.4 Let u ∈ C2(R2 × [0, T );R) be a solution to (1.1) and
(1.2). Then

u(x, t) = 0 for |x| ≥ t + M (3.6)

holds.

See Corollary 1 in [7], Lemma 3.2 in [6] and Theorem 4a in [5] for the
proof of Propositions 3.2, 3.3 and 3.4, respectively.

Proof of Lemma 3.1. Now we show Lemma 3.1 by 3 steps.

Step 1. There exist constants C ′ > 0 and ε1 > 0 such that

|∂u(x, t)|j ≤
C ′ε(1 + ε2 log(1 + t))j

(1 + |x| + t)1/2
(x, t) ∈ R2 × [0, T ) (3.7)
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holds for ε ∈ (0, ε1) and j = 0, 1, 2. Here C ′ is independent of the constants
cl and ml (l = 0, 1, 2, . . . , k).

Firstly, by (3.1), we know that

|∂u(x, t)|2 ≤ KDε

(1 + t)1/2
0 ≤ t ≤ 1

ε
(3.8)

holds for ε ∈ (0, ε′). This implies that (3.7) is true when 0 ≤ t ≤ 1/ε.
Secondly, by (3.2) and Proposition 3.2, we find that

(1 + |x| + t)1/2(1 + ||x| − t|)1/2|∂u(t, x)|l−2

≤ [∂u(t)]l−2

≤ K‖∂u(t)‖l (3.9)

≤ 2Kclε(1 + ε2 log(1 + t))ml

holds for (x, t) ∈ R2 × [0, T ) and l = 2, 3, . . . , k. Then, setting

Λ0 =
{

(y, s)
∣∣∣ y ∈ R2,

1
ε
≤ s < T, ||y| − s| ≥ s

2

}
,

Λ1 =
{

(y, s)
∣∣∣ y ∈ R2,

1
ε
≤ s < T, ||y| − s| ≤ s

2

}
,

we find that (3.7) is true for (x, t) ∈ Λ0. In fact, by (3.9) and the fact that

1 + ||x| − t| ≥ 1 +
t

2
≥ 1

2ε
(x, t) ∈ Λ0,

we have

(1 + |x| + t)1/2|∂u(t, x)|2 ≤
2Kc4ε(1 + ε2 log(1 + t))m4

(1 + t/2)1/2

≤ 25/4Kc4ε
5/4(1 + log(1 + t))m4

(1 + t/2)1/4
(3.10)

≤ ε

for ε ∈ (0, ε′′), if we take ε′′ as

ε′′ < min
{

1,
(
25/4Kc4 sup

0≤s

(1 + log(1 + s))m4

(1 + s/2)1/4

)−4}
.

In order to show (3.7) for (x, t) ∈ Λ1, we prepare an estimate of u. It
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follows from (3.9) and Proposition 3.4 that

|Γau(x, t)|=
∣∣∣−∫ t+M

|x|
∂rΓau(λω, t)dλ

∣∣∣
≤ [∂u(t)]4

∫ t+M

|x|

1
(1 + t + λ)1/2(1 + |λ − t|)1/2

dλ

≤ 2Kc4ε(1 + ε2 log(1 + t))m6

×
∫ M

|x|−t

1
(1 + 2t + µ)1/2(1 + |µ|)1/2

dµ

≤ 2Kc4ε(1 + ε2 log(1 + t))m6

(∫ M

0
dµ + B

(1
2
,

1
2

))
≤ 2Kc4(M + π)ε(1 + ε2 log(1 + t))m6

for |a| ≤ 4. Here, B(p, q) stands for the beta function. Hence we have

|u(x, t)|4 ≤ C̃∗ε(1 + log(1 + t))m6 (x, t) ∈ Λ1, (3.11)

if ε ∈ (0, 1). Here C̃∗ is a constant depending on c4.
Since the operator ∂j (j = 1, 2) can be written as

∂j = −ωj∂0 +
1
t
Lj +

ωj

t + r
S −

2∑
i=1

rωiωj

t(t + r)
Li,

we find

∂αv = −ωα∂0v + O
( ∑
|a|=1

|Γav|0
t

)
with ω0 = −1, (3.12)

(∂0 + ∂r)v = O
( ∑
|a|=1

|Γav|0
t

)
, (3.13)

(∂0 + ∂r)2v = O
( ∑
|a|=2

|Γav|0
t2

)
(3.14)

and therefore we obtain

2u = −C(−1, ω)(∂0u)3

+ O
(∑
|b|=1

{ |∂u|20|Γbu|0
t

+
|∂u|0|Γbu|20

t2
+

|Γbu|30
t3

}
+ |∂u|40

)
. (3.15)
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We also introduce characteristic lines of (1.1). By (1.1), we can show
that

r−1/2(∂0 + ∂r)(r1/2∂0v)

=
1
2
2v +

1
2
(∂0 + ∂r)2v +

1
2r

(∂0 + ∂r)v +
1

2r2
Ω2v (3.16)

holds for a function v(x, t). Then, setting rλ(s) = s+λ for each λ ∈ R and
denoting v(s) = v(rλ(s)ω, s), we obtain

2
d

ds
(rλ(s)1/2∂0v(s)) = rλ(s)1/22v + rλ(s)1/2(∂0 + ∂r)2v

+
1

rλ(s)1/2
(∂0 + ∂r)v +

1
rλ(s)3/2

Ω2v (3.17)

for each ω ∈ S1 and λ ∈ R. For each (x, t) ∈ Λ1, settting x = rω and λ =
r − t, we find that rλ(t) = r. Then we call the line (rλ(s)ω, s) (0 ≤ s < T )
the characteristic line of (1.1) passing through the point (x, t). Moreover,
we denote

tλ = inf{s | (rλ(s)ω, s) ∈ Λ1}

which is the time when (rλ(s), s) ∈ ∂Λ1. Note that tλ ≥ 1/ε and (rλ(s)ω, s)
∈ Λ1 holds for tλ ≤ s < T .

Hence, for any (x, t) ∈ Λ1, by multiplying

P (s) = exp
(1

2

∫ s

tλ

C(−1, ω)(∂0u(τ))2dτ
)

to the both sides of (3.17) with v = u and integrating it from tλ to t, we
have

P (t)|x|1/2|∂0u(x, t)|
≤ rλ(tλ)1/2|∂0u(rλ(tλ)ω, tλ)|

+ C1

∫ t

tλ

P (s)
( |∂u|20|u|1

(1 + s)1/2
+ rλ(s)1/2|∂u|40 +

|u|2
(1 + s)3/2

)
ds,

where we have used (3.13), (3.14), (3.15) and the fact

1
As

≤ 1
rλ(s)

≤ A

1 + s
(rλ(s)ω, s) ∈ Λ1 (3.18)

for some constnat A > 0. Since P (t) is monotonously increasing and P (t) ≥
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1, we have by (3.8), (3.9), (3.10) and (3.11),

|x|1/2|∂0u(x, t)|

≤ 1
P (t)

{
rλ(tλ)1/2|∂0u(rλ(tλ)ω, tλ)|

+ C1

∫ t

tλ

P (s)
( |∂u|20|u|1

rλ(s)1/2
+ rλ(s)1/2|∂u|40 +

|u|2
rλ(s)3/2

)
ds

}
≤ (1 + KD)ε + C̃1

∫ t

tλ

ε(1 + log(1 + s))4m6

(1 + s)3/2
ds

≤ (1 + KD)ε +
C̃2ε

(1 + tλ)1/4

≤ (1 + KD)ε + C̃2ε
1+1/4 (x, t) ∈ Λ1.

Hereafter, Cj stands for constnats independent of cl and ml, while C̃j stands
for constants depending on cl or ml (l = 0, 1, 2, . . . , k). Therefore, taking

ε′′′0 ≤ min
{

ε′, ε′′,
1

C̃4
2

}
,

we have

|x|1/2|∂0u(x, t)| ≤ (2 + KD)ε (x, t) ∈ Λ1 (3.19)

for ε ∈ (0, ε′′′0 ). Moreover, by (3.11), (3.12) and (3.19), we have

|x|1/2|∂ju(x, t)|= |x|1/2|∂0u(x, t)| + O
( |u|1

t

)
≤ (3 + KD)ε (x, t) ∈ Λ1 (3.20)

for ε ∈ (0, ε′′′0 ), taking ε′′′0 smaller if necessary. Therefore, by (3.18), (3.19)
and (3.20), we find that

(1 + t)1/2|∂u(x, t)|0 ≤ C ′
0ε (x, t) ∈ Λ1 (3.21)

holds for ε ∈ (0, ε′′′0 ), if we take C ′
0 > 3(3 + KD)A1/2.

Next we take v = Γu in (3.16). Here Γ stands for any one of Γα (α =
0, 1, . . . , 6). By (1.3), (2.1) and (3.15), we have

2Γu = Γ2u + C2u

=−3C(−1, ω)(∂0u)2(∂0Γu) + (3.22)
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+O

(
|∂u|30 + |∂u|30|∂u|1

+
∑
|b|=1
|c|=1

{
|∂u|20|Γbu|1 + |∂u|0|Γbu|0|∂u|1

t
+

+
|∂u|1|Γbu|20 + |∂u|0|Γbu|0|Γcu|1

t2
+

|Γbu|20|Γcu|1
t3

})
.

Hence, for any (x, t) ∈ Λ1, by multiplying

P (s) = exp
(3

2

∫ s

tλ

C(−1, ω)(∂0u(τ))2dτ
)

to the both sides of (3.17)) with v = Γu and integrating it from tλ to t, we
have

P (t)|x|1/2|∂0Γu(x, t)|
≤ rλ(tλ)1/2|∂0Γu(rλ(tλ)ω, tλ)|

+ C2

∫ t

tλ

P (s)
(
rλ(s)1/2(|∂u|30 + |∂u|30|∂u|1)

+
|∂u|20|u|2 + |∂u|0|u|1|∂u|1

(1 + s)1/2
+

|u|3
(1 + s)3/2

)
ds,

where we have used (3.13), (3.14), (3.15) and (3.18). Since P (t) is monot-
onously increasing and P (t) ≥ 1, we have by (3.8), (3.9), (3.10), (3.11),
(3.21) and (3.22),

|x|1/2|∂0Γu(x, t)|

≤ 1
P (t)

{
rλ(tλ)1/2|∂0Γu(rλ(tλ)ω, tλ)|

+ C2

∫ t

tλ

P (s)
(

rλ(s)1/2(|∂u|30 + |∂u|30|∂u|1)

+
|∂u|20|u|2 + |∂u|0|u|1|∂u|1

(1 + s)1/2
+

|u|3
(1 + s)3/2

)
ds

}
≤ (1 + KD)ε +

∫ t

tλ

( C3ε
3

1 + s
+

C̃3ε(1 + log(1 + s))4m6

(1 + s)3/2

)
ds

≤ (1 + KD)ε + C3ε
3 log(1 + t) +

C̃4ε

(1 + tλ)1/4
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≤ (1 + KD + C3)ε(1 + ε2 log(1 + t)) + C̃4ε
1+1/4

≤ (2 + KD + C3)ε(1 + ε2 log(1 + t)) (x, t) ∈ Λ1

for ε ∈ (0, ε′′′1 ), if we take

ε′′′1 < min
{

ε′′′0 ,
1

C̃4
4

}
.

Namely we have

|x|1/2|∂0u(x, t)|1
≤ 7(2 + KD + C3)ε(1 + ε2 log(1 + t)) (x, t) ∈ Λ1 (3.23)

and therefore by using (3.11), (3.12) and (3.23), we have

|x|1/2|∂ju(x, t)|1 ≤ (7(2 + KD + C3) + 1)

× ε(1 + ε2 log(1 + t)) (x, t) ∈ Λ1 (3.24)

for ε ∈ (0, ε′′′1 ), taking ε′′′1 smaller if necessary. Hence, by (3.18) and (3.24),
we have

(1 + t)1/2|∂u(x, t)|1 ≤ C ′
1ε(1 + ε2 log(1 + t)) (x, t) ∈ Λ1 (3.25)

for ε ∈ (0, ε′′′1 ), if we take C ′
1 > (21(2 + KD + C3) + 2)A1/2.

Repeating the same argument, we find that there exist positive con-
stants C ′

2 and ε′′′2 (< ε′′′1 ) such that

(1 + t)1/2|∂u(x, t)|2 ≤ C ′
2ε(1 + ε2 log(1 + t))2 (x, t) ∈ Λ1

for ε ∈ (0, ε′′′2 ). Therefore, taking

C ′ = max{KD, 1, C ′
0, C ′

1, C ′
2} and ε1 = ε′′′2 ,

we obtain (3.7).

Next we show the following

Step 2. Let ν be a small positive number. Then, there exist constants C̃ ′′ >

0 and ε2 > 0 such that

‖∂u(t)‖k+1 ≤ C̃ ′′ε(1 + t)ν 0 ≤ t < T (3.26)

holds for ε ∈ (0, ε2). Here C̃ ′′ depends on the constants ml and cl (l =
0, 1, 2, . . . , k).
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By (1.1) and (2.1), we have

2Γau = ΓaF (∂u) +
′∑

|b|<|a|

ΓbF (∂u). (3.27)

Here
∑′

|b|<|a| Ab =
∑

b<|a| γbAb with certain constants γb. Furthermore, by
(1.3), we have

ΓaF (∂u)+
′∑

|b|<|a|

ΓbF (∂u)

=
′∑

α,β,γ=0,1,2

∂αu∂βuΓa∂γu+
′∑

|c|+|d|+|e|≤|a|
|c|,|d|,|e|≤|a|−1

Γc∂uΓd∂uΓe∂u

+O
( ′∑
|c|+|d|+|e|+|f |≤|a|

Γc∂uΓd∂uΓe∂uΓf∂u
)

(3.28)

=O
((
|∂u(t)|20+|∂u(t)|3[|a|/2]

)
|∂u(x, t)||a|+|∂u(t)|2[|a|/2]|∂u(x, t)||a|−1

)
.

Thus, multiplying ∂0Γau to both sides of (3.27), integrating it over R2 and
summing up with respect to a over |a| ≤ k + 1, we have

d

dt
‖∂u(t)‖k+1 ≤ C4

((
|∂u(t)|20 + |∂u(t)|3[(k+1)/2]

)
‖∂u(t)‖k+1

+ |∂u(t)|2[(k+1)/2]‖∂u(t)‖k

)
. (3.29)

Therefore, by (2.3), (2.4), (3.2), (3.7), (3.9), (3.29), the Gronwall inequality
and the fact that [(k + 1)/2] ≤ k − 2 holds for k ≥ 4, we have

‖∂u(t)‖k+1 ≤C5

(
‖∂u(0)‖k+1 +

∫ t

0

[∂u(s)]2[(k+1)/2]

1 + s
‖∂u(s)‖kds

)
× exp

(
C4

∫ t

0

(
|∂u(s)|20 +

[∂u(s)]3[(k+1)/2]

(1 + s)3/2

)
ds

)
≤

(
C6ε + C̃5ε

3

∫ t

0

(1 + ε2 log(1 + s))3mk

1 + s
ds

)
× exp

(∫ t

0

( C7ε
2

1 + s
+

C̃6ε
3(1 + ε2 log(1 + s))3mk

(1 + s)3/2

)
ds

)
≤ (C6ε + C̃7ε(1 + ε2 log(1 + t))3mk+1)
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× exp(C7ε
2 log(1 + t) + C̃8ε

3)

≤ C̃9ε(1 + ε2 log(1 + t))3mk+1 × (1 + t)C7ε2

for ε ∈ (0, ε1). Hence, setting

C̃10 = sup
0≤t

((1 + log(1 + t))3mk+1

(1 + t)ν/2

)
, C̃ ′′ = C̃9C̃10,

ε2 = min
{

ε1,

√
ν√

2C7

}
,

we have

‖∂u(t)‖k+1 ≤ C̃9C̃10ε(1 + t)ν/2+C7ε2

≤ C̃ ′′ε(1 + t)ν

for ε ∈ (0, ε2). This implies (3.26).

Finally, we show (3.3).

Step 3. We can determine constants cl, ml (l = 0, 1, 2, . . . , k) and ε0 so
that (3.3) holds under the assumption (3.2).

By (3.1), we know that

‖∂u(t)‖k ≤ Dε 0 ≤ t <
1
ε

(3.30)

for ε ∈ (0, ε′). Hence we have only to consider the case 1/ε ≤ t < T .
In order to estimate ‖∂u(t)‖l, we make use of (3.27) again, but estimate

the right hand side more precisely this time.
When (x, t) ∈ Λ0, we find that P (1 + ||x| − t|) ≥ (1 + |x|+ t) holds for

a certain constant P > 0. Hence we have

|∂u(x, t)|l ≤
P

1 + |x| + t
[∂u(t)]l (x, t) ∈ Λ0. (3.31)

On the other hand, when (x, t) ∈ Λ1, we find that

1
Q

(1 + |x| + t) ≤ r ≤ Qt (x, t) ∈ Λ1 (3.32)

for a certain constant Q > 0. Thus we have by (3.12) and (3.32),

2∑
α,β,γ=0

Aαβγ(∂αΓau∂βu∂γu + ∂αu∂βΓau∂γu + ∂αu∂βu∂γΓau)
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= −3C(−1, ω)(∂0u)2∂0Γau

+ O
( ∑

|b|=1
|c|=1

{ |∂u|20|Γbu||a| + |∂u|0|Γbu|0|∂u||a|
t

(3.33)

+
|∂u|0|Γbu|0|Γcu||a| + |Γbu|20|∂u||a|

t2
+

|Γbu|20|Γcu||a|
t3

})
= −3C(−1, ω)(∂0u)2∂0Γau

+ O
( |∂u|20|u||a|+1 + |∂u|0|u|1|∂u||a|

1 + |x| + t

)
(x, t) ∈ Λ1.

Hence, combining (3.28) and (3.33), we obtain

ΓaF (∂u) +
′∑

|b|<|a|

ΓbF (∂u)

= −3C(−1, ω)(∂0u)2∂0Γau

+ O
( |∂u|20|u||a|+1 + |∂u|0|u|1|∂u||a|

1 + |x| + t
(3.34)

+ |∂u|3[|a|/2]|∂u||a| + (1 − δ0|a|)|∂u|2[|a|/2]|∂u||a|−1

)
(x, t) ∈ Λ1.

Firstly, we consider the case l = 0. By (1.7), (3.27), (3.30), (3.31),
(3.34) with a = 0 and Propositions 3.3 and 3.4, we have

d

dt
‖∂u(t)‖2

0

≤
∫
R2

F (∂u)∂0udx

≤ C8

∫
||x|−t|≥t/2

|∂u(x, t)|40dx− 3
∫
||x|−t|≤t/2

C(−1, ω)|∂u(x, t)|40dx

+ C8

∫
||x|−t|≤t/2

|∂u(x, t)|30|u(x, t)|1
1 + |x|+ t

dx + C8

∫
R2

|∂u(x, t)|50dx

≤ C9

∫
||x|−t|≥t/2

[∂u(t)]20|∂u(x, t)|20
(1 + t)2

dx

+ C8

∫
||x|−t|≤t/2

[∂u(t)]20|u(x, t)|1|∂u(x, t)|0
(1 + t)2(1 + ||x| − t|)

dx

+ C10

∫
R2

(C ′)3ε3|∂u(x, t)|20
(1 + t)3/2

dx
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≤ C11

( ε2

(1 + t)3/2
‖∂u(t)‖2

0 +
∑
|c|=1

[∂u(t)]20
(1 + t)2

∥∥∥ Γcu(t)
1 + ||x| − t|

∥∥∥
0
‖∂u(t)‖0

)
≤ C12

( ε2

(1 + t)3/2
‖∂u(t)‖2

0 +
[∂u(t)]20
(1 + t)2

‖∂u(t)‖1‖∂u(t)‖0

)
,

which implis

d

dt
‖∂u(t)‖0 ≤ C13

( ε2

(1 + t)3/2
‖∂u(t)‖0 +

[∂u(t)]20
(1 + t)2

‖∂u(t)‖1

)
. (3.35)

Therefore, it follows from (3.2), (3.9), (3.30), (3.35) and the Gronwall in-
equality that

‖∂u(t)‖0 ≤
(
‖∂u(ε−1)‖0 + C13

∫ t

1/ε

[∂u(s)]20
(1 + s)2

‖∂u(s)‖1ds
)

× exp
(∫ t

1/ε

C13ε
2

(1 + s)3/2
ds

)
≤

(
C14ε + C̃11

∫ t

1/ε

ε3(1 + ε2 log(1 + s))3m2

(1 + s)2
ds

)
× exp(C15ε

5/2)

≤
(
C14ε +

∫ t

1/ε

C̃12ε
3

(1 + s)3/2
ds

)
exp(C15ε

5/2)

≤ (C14ε + C̃13ε
7/2) exp(C15ε

5/2)

≤ (C14 + 1)eε

for ε ∈ (0, ε00), if we take ε00 = min{ε2, 1/C̃
2/5
13 , 1/C

2/5
15 }. Hence we find

that (3.3) holds for l = 0, if we take c0 = (C14 + 1)e and m0 = 0.
Next, we estimate ‖∂u(t)‖l assuming ci and mi (i = 0, 1, 2, . . . , l − 1)

are determined. By (1.7), (2.4), (3.27), (3.31), (3.34) and Proposition 3.3,
we have

d

dt
‖∂u(t)‖2

l

≤
′∑

|a|≤l

∫
R2

(ΓaF (∂u) +
′∑

|b|<|a|

ΓbF (∂u))∂0Γaudx

≤
′∑

|a|≤l

( ∫
||x|−t|≥t/2

|∂u(x, t)|2[|a|/2]|∂u(x, t)|2|a|dx
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− 3
∫
||x|−t|≤t/2

C(−1, ω)|∂u(x, t)|20|∂u(x, t)|2|a|dx

+
∫
||x|−t|≤t/2

1
1 + |x| + t

(|∂u(x, t)|20|u(x, t)||a|+1

+ |∂u(x, t)|0|u(x, t)|1|∂u(x, t)||a|)|∂u(x, t)||a|dx

+
∫
||x|−t|≤t/2

|∂u(x, t)|2[|a|/2]|∂u(x, t)||a|−1|∂u(x, t)||a|dx

+
∫
R2

|∂u(x, t)|3[|a|/2]|∂u(x, t)|2|a|dx
)

≤
′∑

|a|≤l

( ∫
||x|−t|≥t/2

[∂u(t)]2[|a|/2]|∂u(x, t)|2|a|
(1 + t)2

dx

+
∫
||x|−t|≤t/2

[∂u(t)]20|u(x, t)||a|+1|∂u(x, t)||a|
(1 + ||x| − t|)(1 + t)2

dx

+
∫
||x|−t|≤t/2

[∂u(t)]0|u(x, t)|1|∂u(x, t)|2|a|
(1 + t)3/2

dx

+
∫
||x|−t|≤t/2

|∂u(t)|2[|a|/2]|∂u(x, t)||a|−1|∂u(x, t)||a|dx

+
∫
R2

[∂u(t)]3[|a|/2]|∂u(x, t)|2|a|
(1 + t)3/2

dx
)

≤ C16

( [∂u(t)]2[l/2]

(1 + t)2
‖∂u(t)‖2

l +
∑

|c|≤l+1

[∂u(t)]20
(1 + t)2

∥∥∥ Γcu(x, t)
1 + ||x| − t|

∥∥∥
0
‖∂u(t)‖l

+
[∂u(t)]0|u(t)|1

(1 + t)3/2
‖∂u(t)‖2

l + |∂u(t)|2[l/2]‖∂u(t)‖l−1‖∂u(t)‖l

+
[∂u(t)]3[l/2]

(1 + t)3/2
‖∂u(t)‖2

l

)
≤ C17

( [∂u(t)]2[l/2] + [∂u(t)]3[l/2] + [∂u(t)]0|u(t)|1
(1 + t)3/2

‖∂u(t)‖2
l

+
[∂u(t)]20
(1 + t)2

‖∂u(t)‖l+1‖∂u(t)‖l

+ |∂u(t)|2[l/2]‖∂u(t)‖l−1‖∂u(t)‖l

)
,

which implies
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d

dt
‖∂u(t)‖l ≤C18

( [∂u(t)]2[l/2] + [∂u(t)]3[l/2] + [∂u(t)]0|u(t)|1
(1 + t)3/2

‖∂u(t)‖l

+
[∂u(t)]20
(1 + t)2

‖∂u(t)‖l+1 + |∂u(t)|2[l/2]‖∂u(t)‖l−1

)
. (3.36)

Therefore, when l = 1, 2, 3, 4, it follows from (3.2), (3.7), (3.11), (3.26)
with ν < 1/4, (3.30), (3.36), Proposition 3.4 and the Gronwall inequality
that

‖∂u(t)‖l ≤
{
‖∂u(ε−1)‖l +

∫ t

1/ε

(C18[∂u(s)]20
(1 + s)2

‖∂u(s)‖l+1

+
C19[∂u(s)]2[l/2]

1 + s
‖∂u(s)‖l−1

)
ds

}
× exp

(
C18

∫ t

1/ε

[∂u(s)]22 + [∂u(s)]32 + [∂u(s)]0|u(s)|1
(1 + s)3/2

ds
)

≤
{

C20ε +
∫ t

1/ε

( C̃14ε
3(1 + ε2 log(1 + s))2m2

(1 + s)2−ν

+
C21cl−1ε

3(1 + ε2 log(1 + s))ml−1

1 + s

)
ds

}
× exp

(∫ t

1/ε

C̃15(1 + log(1 + s))3m6ε2

(1 + s)3/2
ds

)
≤

{
C20ε + C̃16ε

3 +
C21cl−1ε

ml−1 + 1
(1 + ε2 log(1 + t))ml−1+1

}
× exp(C̃17ε

2)

≤ clε(1 + ε2 log(1 + t))ml

for ε ∈ (0, ε0l), if we take

ε0l = min
{

ε2,
1

C̃
1/2
16

,
1

C̃
1/2
17

}
, cl =

(
C20 + 1 +

C21cl−1

ml−1 + 1

)
e,

ml = ml−1 + 1.

On the other hand, when l ≥ 5, it follows from (3.2), (3.9), (3.26) with
ν < 1/4, (3.30), (3.36), Proposition 3.4, the Gronwall inequality and the
fact [l/2] + 2 ≤ l − 1 that

‖∂u(t)‖l ≤
{
‖∂u(ε−1)‖l +

∫ t

1/ε
C22

( [∂u(s)]20
(1 + s)2

‖∂u(s)‖l+1
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+
[∂u(s)]2[l/2]

1 + s
‖∂u(s)‖l−1

)
ds

}
× exp

(
C23

∫ t

1/ε

[∂u(s)]2[l/2] + [∂u(s)]3[l/2] + [∂u(s)]0|u(s)|1
(1 + s)3/2

ds
)

≤
{

C24ε +
∫ t

1/ε

( C̃18ε
3(1 + ε2 log(1 + s))2m2

(1 + s)2−ν

+
C25c

3
l−1ε

3(1 + ε2 log(1 + s))3ml−1

1 + s

)
ds

}
× exp

(∫ t

1/ε

C̃19(1 + log(1 + s))3ml−1+2m6ε2

(1 + s)3/2
ds

)
≤

{
C24ε + C̃20ε

3 +
C25c

3
l−1ε

3ml−1 + 1
(1 + ε2 log(1 + t))3ml−1+1

}
× exp(C̃21ε

2)

≤ clε(1 + ε2 log(1 + t))ml

holds for ε ∈ (0, ε0l), if we take

ε0l = min
{

ε2,
1

C̃
1/2
20

,
1

C̃
1/2
21

}
, cl =

(
C24 + 1 +

C25c
3
l−1

3ml−1 + 1

)
e,

ml = 3ml−1 + 1.

Hence, we obtain (3.3) if we take ε0 = min{ε00, ε01, . . . , ε0k}. This com-
pletes the proof of Lemma 3.1.

¤
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[ 3 ] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations. Springer,

1997.

[ 4 ] Hoshiga A., Existence and blowing up of solutions to systems of quasilinear wave

equations in two space dimensions. Advances in Math. Sci. and Appli. (1) 15 (2005),

69–110.



688 A. Hoshiga

[ 5 ] John F., Blow-up for quasi-linear wave equations in three space dimensions. Comm.

Pure Appli. Math. 34 (1981), 29–51.

[ 6 ] Katayama S., Global existence for systems of nonlinear wave equations in two space

dimensions, II. Publ. RIMS Kyoto Univ. 31 (1995), 645–665.

[ 7 ] Klainerman S., Remarks on the global Sobolev inequalities in the Minkowski space

Rn+1. Comm. Pure Appli. Math. 40 (1987), 111–117.

[ 8 ] Kubo H., Large time behavior of solutions to semilinear wave equations with dissi-

pative structure. to appear in Expanded Volume of DCDS.

Shizuoka Univ.





