A generic classification of function germs with respect to the reticular t- \mathcal{P} - \mathcal{K} -equivalence

Takaharu TSUKADA

(Received October 10, 2007; Revised February 19, 2008)

Abstract. We investigate several stabilities and a genericity of function germs with respect to the reticular $t-\mathcal{P}-\mathcal{K}$ -equivalence.

Key words: Legendrian Singularity, Contact Manifold, Mather theory, Singularity

1. Introduction

In [3], S. Izumiya introduced the equivalence relation 't- \mathcal{P} - \mathcal{K} -equivalence' of function germs in order to classify 'generic Legendrian unfoldings'. The classification list is given in [12] by V. M. Zakalyukin who classified quasi-homogeneous function germs.

In this paper we introduce a more general equivalence relation 'reticular t- \mathcal{P} - \mathcal{K} -equivalence' of function germs in $\mathfrak{M}(r; k + n + m)$ and give a generic classification in the case $r = 0, n \leq 5, m \leq 1$ and $r = 1, n \leq 3, m \leq 1$ respectively. Our one is for not only quasi-homogeneous function germs but also all smooth function germs. Our work in this paper will play an important role in a generic classification of bifurcations of wave fronts generated by a hypersurface germ with a boundary ([8], [9]).

Let $\mathbb{H}^r = \{(x_1, \ldots, x_r) \in \mathbb{R}^r | x_1 \ge 0, \ldots, x_r \ge 0\}$ be an *r*-corner. We consider a equivalence relation of the set $\mathcal{E}(r; k+n+m)$ of function germs on $(\mathbb{H}^r \times \mathbb{R}^{k+n+m}, 0)$. Function germs $F, G \in \mathcal{E}(r; k+n+m)$ are called *reticular* t- \mathcal{P} - \mathcal{K} -equivalent if there exist a diffeomorphism germ Φ on $(\mathbb{H}^r \times \mathbb{R}^{k+n+m}, 0)$ and a unit $\alpha \in \mathcal{E}(r; k+n+m)$ such that

(1) Φ can be written in the form:

$$\Phi(x, y, u, t) = \left(x_1 \phi_1^1(x, y, u, t), \dots, x_r \phi_1^r(x, y, u, t), \phi_2(x, y, u, t), \phi_3(u, t), \phi_4(t)\right),$$

²⁰⁰⁰ Mathematics Subject Classification : 26A21, 32S05, 37J25.

(2) $G(x, y, u, t) = \alpha(x, y, u, t) \cdot F \circ \Phi(x, y, u, t)$ for all $(x, y, u, t) \in (\mathbb{H}^r \times \mathbb{R}^{k+n+m}, 0)$.

We investigate stabilities and a genericity of function germs under this equivalence relation. The main result is the following (Theorem 4.7):

Let $r = 0, n \leq 5$ or $r = 1, n \leq 3$ and U be a neighborhood of 0 in $\mathbb{H}^r \times \mathbb{R}^{k+n+1}$. Then there exists a residual set $O \subset C^{\infty}(U,\mathbb{R})$ with C^{∞} -topology such that for any $\tilde{F} \in O$ and $(0, y_0, u_0, t_0) \in U$, the function germ $F(x, y, u, t) \in \mathfrak{M}(r; k+n+1)$ given by $F(x, y, u, t) = \tilde{F}(x, y+y_0, u+u_0, t+t_0) - \tilde{F}(0, y_0, u_0, t_0)$ is reticular t- \mathcal{P} - \mathcal{K} -stable unfolding of $F|_{t=0}$ and stably reticular t- \mathcal{P} - \mathcal{K} -equivalent to one of the types:

In the case $r = 0, n \leq 5$: ${}^{0}A_{l}(0 \leq l \leq 5), {}^{0}D_{4}^{\pm}, {}^{0}D_{5}, {}^{1}A_{l}(1 \leq l \leq 6), {}^{1}D_{4}^{\pm}, {}^{1}D_{5}, {}^{1}D_{6}^{\pm}, \text{and } {}^{1}E_{6}.$ In the case $r = 1, n \leq 3$: ${}^{0}A_{1}, {}^{0}A_{2}, {}^{0}A_{3}, {}^{0}B_{1}, {}^{0}B_{2}, {}^{0}B_{3}, {}^{0}C_{3}^{\pm}, {}^{1}A_{2}, {}^{1}A_{3}, {}^{1}A_{4}, {}^{1}D_{4}^{\pm}, {}^{1}B_{1}, {}^{1}B_{2}, {}^{1}B_{3}, {}^{1}B_{4}, {}^{1}C_{3}^{\pm}, {}^{1}C_{4}, \text{ and } {}^{1}F_{4}.$

This paper consists of three sections. In Section 2 we define notations and review stabilities of unfoldings under the reticular \mathcal{P} - \mathcal{K} -equivalence relation. In Section 3 we investigate stabilities of unfoldings under the reticular t- \mathcal{P} - \mathcal{K} -equivalence relation. In Section 4 we give a generic classification of function germs under the equivalence relation.

2. Preliminaries

We denote by $\mathcal{E}(r; k_1, r; k_2)$ the set of all germs at 0 in $\mathbb{H}^r \times \mathbb{R}^{k_1}$ of smooth maps $\mathbb{H}^r \times \mathbb{R}^{k_1} \to \mathbb{H}^r \times \mathbb{R}^{k_2}$ and set $\mathfrak{M}(r; k_1, r; k_2) = \{f \in \mathcal{E}(r; k_1, r; k_2) | f(0) = 0\}$. We denote $\mathcal{E}(r; k_1, k_2)$ for $\mathcal{E}(r; k_1, 0; k_2)$ and denote $\mathfrak{M}(r; k_1, k_2)$ for $\mathfrak{M}(r; k_1, 0; k_2)$.

If $k_2 = 1$ we write simply $\mathcal{E}(r; k)$ for $\mathcal{E}(r; k, 1)$ and $\mathfrak{M}(r; k)$ for $\mathfrak{M}(r; k, 1)$. Then $\mathcal{E}(r; k)$ is an \mathbb{R} -algebra in the usual way and $\mathfrak{M}(r; k)$ is its unique maximal ideal. We also denote by $\mathcal{E}(k)$ for $\mathcal{E}(0; k)$ and $\mathfrak{M}(k)$ for $\mathfrak{M}(0; k)$.

We denote by $J^{l}(r+k,p)$ the set of *l*-jets at 0 of germs in $\mathcal{E}(r;k,p)$. There are natural projections:

$$\pi_l: \mathcal{E}(r;k,p) \longrightarrow J^l(r+k,p), \quad \pi_{l_2}^{l_1}: J^{l_1}(r+k,p) \longrightarrow J^{l_2}(r+k,p) \ (l_1 > l_2).$$

We write $j^l f(0)$ for $\pi_l(f)$ for each $f \in \mathcal{E}(r; k, p)$.

Let $(x, y) = (x_1, \ldots, x_r, y_1, \ldots, y_k)$ be a fixed coordinate system of $(\mathbb{H}^r \times$

 $\mathbb{R}^k, 0$). We denote by $\mathcal{B}(r; k)$ the group of diffeomorphism germs ($\mathbb{H}^r \times \mathbb{R}^k, 0$) $\rightarrow (\mathbb{H}^r \times \mathbb{R}^k, 0)$ of the form:

$$\phi(x,y) = \left(x_1\phi_1^1(x,y), \dots, x_r\phi_1^r(x,y), \phi_2^1(x,y), \dots, \phi_2^k(x,y)\right).$$

We denote by $\mathcal{B}_n(r; k+n)$ the group of diffeomorphism germs $(\mathbb{H}^r \times \mathbb{R}^{k+n}, 0) \to (\mathbb{H}^r \times \mathbb{R}^{k+n}, 0)$ of the form:

$$\phi(x, y, u) = \left(x_1 \phi_1^1(x, y, u), \dots, x_r \phi_1^r(x, y, u), \\ \phi_2^1(x, y, u), \dots, \phi_2^k(x, y, u), \phi_3^1(u), \dots, \phi_3^n(u)\right).$$

We denote by $\mathcal{B}_n^l(r; k+n)$ the Lie group of *l*-jets at 0 of germs in $\mathcal{B}_n(r; k+n)$. This group acts on $J^l(r+k+n, 1)$ by the composition.

Lemma 2.1 (cf. [11, Corollary 1.8]) Let B be a submodule of $\mathcal{E}(r; k + n + m)$, A_1 be a finitely generated $\mathcal{E}(m)$ submodule of $\mathcal{E}(r; k + n + m)$ generated d-elements, and A_2 be a finitely generated $\mathcal{E}(n + m)$ submodule of $\mathcal{E}(r; k + n + m)$. Suppose

$$\mathcal{E}(r;k+n+m) = B + A_2 + A_1 + \mathfrak{M}(m)\mathcal{E}(r;k+n+m)$$
$$+ \mathfrak{M}(n+m)^{d+1}\mathcal{E}(r;k+n+m).$$

Then

$$\mathcal{E}(r;k+n+m) = B + A_2 + A_1,$$
$$\mathfrak{M}(n+m)^d \mathcal{E}(r;k+n+m) \subset B + A_2 + \mathfrak{M}(m)\mathcal{E}(r;k+n+m).$$

We recall the stabilities of *n*-dimensional unfolding under reticular \mathcal{P} - \mathcal{K} -equivalence which is developed in [7].

We say that $f_0, g_0 \in \mathcal{E}(r; k)$ are reticular \mathcal{K} -equivalent if there exist $\phi \in \mathcal{B}(r; k)$ and a unit $a \in \mathcal{E}(r; k)$ such that $g_0 = a \cdot f_0 \circ \phi$. We write $O_{r\mathcal{K}}(f_0)$ the orbit of f_0 under this equivalence relation.

Lemma 2.2 Let $f_0(x, y) \in \mathfrak{M}(r; k)$ and $O_{r\mathcal{K}}^l(j^l f_0(0))$ be the submanifold of $J^l(r+k, 1)$ consist of the image by π_l of the orbit of reticular \mathcal{K} -equivalence of f_0 . Put $z = j^l f_0(0)$. Then

$$T_z(O_{r\mathcal{K}}^l(z)) = \pi_l\left(\left\langle f_0, x_1 \frac{\partial f_0}{\partial x_1}, \dots, x_r \frac{\partial f_0}{\partial x_r} \right\rangle_{\mathcal{E}(r;k)} + \mathfrak{M}(r;k) \left\langle \frac{\partial f_0}{\partial y_1}, \dots, \frac{\partial f_0}{\partial y_k} \right\rangle\right)$$

We say that a function germ $f_0 \in \mathfrak{M}(r; k)$ is reticular \mathcal{K} -l-determined if all function germ which has same l-jet of f_0 is reticular \mathcal{K} -equivalent to f_0 . If f_0 is reticular \mathcal{K} -l-determined for some l, then we say that f_0 is reticular \mathcal{K} -finitely determined.

We denote $x \frac{\partial f_0}{\partial x}$ for $\left(x_1 \frac{\partial f_0}{\partial x_1}, \ldots, x_r \frac{\partial f_0}{\partial x_r}\right)$ and $\frac{\partial f_0}{\partial y}$ for $\left(\frac{\partial f_0}{\partial y_1}, \ldots, \frac{\partial f_0}{\partial y_k}\right)$, and denote other notations analogously.

Lemma 2.3 Let $f_0(x, y) \in \mathfrak{M}(r; k)$ and let

$$\mathfrak{M}(r;k)^{l+1} \subset \mathfrak{M}(r;k) \left(\left\langle f_0, x \frac{\partial f_0}{\partial x} \right\rangle + \mathfrak{M}(r;k) \left\langle \frac{\partial f_0}{\partial y} \right\rangle \right) + \mathfrak{M}(r;k)^{l+2},$$

then f_0 is reticular K-l-determined. Conversely if $f_0(x,y) \in \mathfrak{M}(r;k)$ is reticular K-l-determined, then

$$\mathfrak{M}(r;k)^{l+1} \subset \left\langle f_0, x \frac{\partial f_0}{\partial x} \right\rangle_{\mathcal{E}(r;k)} + \mathfrak{M}(r;k) \left\langle \frac{\partial f_0}{\partial y} \right\rangle.$$

Let $f(x, y, u) \in \mathfrak{M}(r; k + n_1), g(x, y, v) \in \mathfrak{M}(r; k + n_2)$ be unfoldings of $f_0(x, y) \in \mathfrak{M}(r; k)$. We say that g is reticular \mathcal{P} - \mathcal{K} - f_0 -induced from f if there exist $\Phi \in \mathfrak{M}(r; k + n_2, r; k + n_1)$ and $\alpha \in \mathcal{E}(r; k + n_2)$ satisfying the following conditions:

- (1) $\Phi(x, y, 0) = (x, y, 0), \ \alpha(x, y, 0) = 1 \text{ for all } (x, y) \in (\mathbb{H}^r \times \mathbb{R}^k, 0),$
- (2) Φ can be written in the form:

$$\Phi(x, y, v) = (x_1\phi_1^1(x, y, v), \dots, x_r\phi_1^r(x, y, v), \phi_2(x, y, v), \phi_3(v)),$$

(3) $g(x, y, v) = \alpha(x, y, v) \cdot f \circ \Phi(x, y, v)$ for all $(x, y, v) \in (\mathbb{H}^r \times \mathbb{R}^{k+n_2}, 0)$. We denote $\Phi(x, y, v) = (x\phi_1(x, y, v), \phi_2(x, y, v), \phi_3(v))$.

We say that $f, g \in \mathcal{E}(r; k+n)$ are reticular \mathcal{P} - \mathcal{K} -equivalent if there exist $\Phi \in \mathcal{B}_n(r; k+n)$ and a unit $\alpha \in \mathcal{E}(r; k+n)$ such that $g = \alpha \cdot f \circ \Phi$. We call (Φ, α) a reticular \mathcal{P} - \mathcal{K} -isomorphism from f to g. We write $O_{r\mathcal{P}-\mathcal{K}}(f)$ the orbit of f under this equivalence relation.

Definition 2.4 We recall the definition of several stabilities of unfoldings under the reticular \mathcal{P} - \mathcal{K} -equivalence. Let $f(x, y, u) \in \mathfrak{M}(r; k + n)$ be an unfolding of $f_0(x, y) \in \mathfrak{M}(r; k)$.

We say that f is reticular \mathcal{P} - \mathcal{K} -stable if the following condition holds: For any neighborhood U of 0 in \mathbb{R}^{r+k+n} and any representative $\tilde{f} \in C^{\infty}(U, \mathbb{R})$ of f, there exists a neighborhood $N_{\tilde{f}}$ of \tilde{f} in $C^{\infty}(U, \mathbb{R})$ with C^{∞} -topology such that for any element $\tilde{g} \in N_{\tilde{f}}$ the germ $\tilde{g}|_{\mathbb{H}^r \times \mathbb{R}^{k+n}}$ at $(0, y_0, u_0)$ is reticular \mathcal{P} - \mathcal{K} -equivalent to f for some $(0, y_0, u_0) \in U$.

We say that f is *reticular* \mathcal{P} - \mathcal{K} -*versal* if any unfolding of f_0 is reticular \mathcal{P} - \mathcal{K} - f_0 -induced from f.

We say that f is reticular \mathcal{P} - \mathcal{K} -infinitesimally versal if

$$\mathcal{E}(r;k) = \left\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \right\rangle_{\mathcal{E}(r;k)} + \left\langle \frac{\partial f}{\partial u} \right|_{u=0} \right\rangle_{\mathbb{R}}.$$

We say that f is reticular \mathcal{P} - \mathcal{K} -infinitesimally stable if

$$\mathcal{E}(r;k+n) = \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)}$$

We say that f is reticular \mathcal{P} - \mathcal{K} -homotopically stable if for any smooth path-germ $(\mathbb{R}, 0) \to \mathcal{E}(r; k+n), t \mapsto f^t$ with $f^0 = f$, there exists a smooth path-germ $(\mathbb{R}, 0) \to \mathcal{B}_n(r; k+n) \times \mathcal{E}(r; k+n), t \mapsto (\Phi_t, \alpha_t)$ with $(\Phi_0, \alpha_0) =$ (id, 1) such that each (Φ_t, α_t) is a reticular \mathcal{P} - \mathcal{K} -isomorphism from f^0 to f^t , that is $f^t = \alpha_t \cdot f^0 \circ \Phi_t$.

Theorem 2.5 Let $f \in \mathfrak{M}(r; k+n)$ be an unfolding of $f_0 \in \mathfrak{M}(r; k)$. Then the following are equivalent.

- (1) f is reticular \mathcal{P} - \mathcal{K} -stable.
- (2) f is reticular \mathcal{P} - \mathcal{K} -versal.
- (3) f is reticular \mathcal{P} - \mathcal{K} -infinitesimally versal.
- (4) f is reticular \mathcal{P} - \mathcal{K} -infinitesimally stable.
- (5) f is reticular \mathcal{P} - \mathcal{K} -homotopically stable.

For $f_0(x,y) \in \mathfrak{M}(r;k)$, if $a_1, \ldots, a_n \in \mathcal{E}(r;k)$ is a representative of a basis of the vector space

$$\mathcal{E}(r;k) / \left\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \right\rangle_{\mathcal{E}(r;k)},$$

then the function germ $f_0 + a_1 u_1 + \cdots + a_n u_n \in \mathfrak{M}(r; k+n)$ is a reticular \mathcal{P} - \mathcal{K} -stable unfolding of f_0 .

Proposition 2.6 Let $f_0 \in \mathfrak{M}(r; k)$. Then f_0 has a reticular \mathcal{P} - \mathcal{K} -stable unfolding if and only if f_0 is reticular \mathcal{K} -finitely determined.

3. Reticular t- \mathcal{P} - \mathcal{K} -stabilities of unfoldings

The right-left-(n, m)-stabilities of *m*-dimensional unfoldings of *n*-dimensional unfoldings of function germs is studied by G. Wassermann in [11]. In this section we study *stabilities* of *m*-dimensional unfoldings of *n*-dimensional unfoldings of function germs under the reticular t- \mathcal{P} - \mathcal{K} -equivalence which should be called reticular (n, m)- \mathcal{K} -equivalence in G. Wassermann's notation.

Lemma 3.1 Let $f(x, y, u) \in \mathcal{E}(r; k+n)$ and set $z = j^l f(0)$. Let $O_{r\mathcal{P}-\mathcal{K}}^l(z)$ be the submanifold of $J^l(r+k+n, 1)$ consist of the image by π_l of the orbit of reticular $\mathcal{P}-\mathcal{K}$ -equivalence of f_0 . Then

$$T_z \left(O_{r\mathcal{P}-\mathcal{K}}^l(z) \right) = \pi_l \left(\left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle \right).$$
(1)

Here we give the definitions of stabilities of unfoldings under the equivalence relation 'reticular t- \mathcal{P} - \mathcal{K} -equivalence' and prove that these definitions are all equivalent.

Let $F(x, y, u, t) \in \mathfrak{M}(r; k+n+m_1)$ and $G(x, y, u, s) \in \mathfrak{M}(r; k+n+m_2)$ be unfoldings of $f(x, y, u) \in \mathfrak{M}(r; k+n)$.

A reticular t- \mathcal{P} - \mathcal{K} -f-morphism from G to F is a pair (Φ, α) , where $\Phi \in \mathfrak{M}(r; k+n+m_2, r; k+n+m_1)$ and α is a unit of $\mathcal{E}(r; k+n+m_2)$, satisfying the following conditions:

- (1) Φ can be written in the form: $\Phi(x, y, u, s) = (x\phi_1(x, y, u, s), \phi_2(x, y, u, s), \phi_3(u, s), \phi_4(s)),$
- (2) $\Phi|_{\mathbb{H}^r \times \mathbb{R}^{k+n}} = id_{\mathbb{H}^r \times \mathbb{R}^{k+n}}, \, \alpha|_{\mathbb{H}^r \times \mathbb{R}^{k+n}} \equiv 1$
- (3) $G(x, y, u, s) = \alpha(x, y, u, s) \cdot F \circ \Phi(x, y, u, s)$ for all $(x, y, u, s) \in (\mathbb{H}^r \times \mathbb{R}^{k+n+m_2}, 0)$.

If there exists a reticular t- \mathcal{P} - \mathcal{K} -f-morphism from F to G, we say that G is reticular t- \mathcal{P} - \mathcal{K} -f-induced from F. If $m_1 = m_2$ and Φ is invertible, we call (Φ, α) a reticular t- \mathcal{P} - \mathcal{K} -f-isomorphism from F to G and we say that F is reticular t- \mathcal{P} - \mathcal{K} -f-equivalent to G.

Let U be a neighborhood of 0 in $\mathbb{R}^{r+k+n+m}$ and let $F: U \to \mathbb{R}$ be a smooth function and q be a non-negative integer. We define the smooth map germ

$$j_1^q F: U \longrightarrow J^q (r+k+n, 1)$$

as the follow: For $(x, y, u, t) \in U$ we set $j_1^q F(x, y, u, t)$ by the *l*-jet of the function germ $\tilde{F}_{(x,y,u,t)} \in \mathfrak{M}(r; k+n)$ at 0, where $\tilde{F}_{(x,y,u,t)}$ is given by $\tilde{F}_{(x,y,u,t)}(x', y', u') = F(x+x', y+y', u+u', t) - F(x, y, u, t).$

Theorem 3.2 Let U be a neighborhood of 0 in $\mathbb{R}^{r+k+n+m}$ and A be a smooth submanifold of $J^q(r+k+n,1)$. We define

$$T_A = \{ F \in C^{\infty}(U, \mathbb{R}) | j_1^q F|_{x=0} \text{ is transversal to } A \}.$$

Then T_A is dense in $C^{\infty}(U, \mathbb{R})$.

The transversality we used is a slightly different for the ordinary one [10], however we can also prove this theorem by the method which is the same as the ordinary method.

Definition 3.3 We define stabilities of unfoldings. Let $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r; k + n)$.

Let q be a non-negative integer and $z = j^q f(0)$. We say that F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f if the $j_1^q F|_{x=0}$ at 0 is transversal to $O_{r\mathcal{P}-\mathcal{K}}^q(z)$.

We say that F is reticular t- \mathcal{P} - \mathcal{K} -stable unfolding of f if the following condition holds: For any neighborhood U of 0 in $\mathbb{R}^{r+k+n+m}$ and any representative $\tilde{F} \in C^{\infty}(U,\mathbb{R})$ of F, there exists a neighborhood $N_{\tilde{F}}$ of \tilde{F} in $C^{\infty}(U,\mathbb{R})$ with C^{∞} -topology such that for any element $\tilde{G} \in N_{\tilde{F}}$ the germ $\tilde{G}|_{\mathbb{H}^r \times \mathbb{R}^{k+n+m}}$ at $(0, y_0, u_0, t_0)$ is reticular t- \mathcal{P} - \mathcal{K} -equivalent to F for some $(0, y_0, u_0, t_0) \in U$.

We say that F is a reticular t- \mathcal{P} - \mathcal{K} -versal unfolding of f if any unfolding

of f is reticular t- \mathcal{P} - \mathcal{K} -f-induced from F.

We say that F is a reticular t- \mathcal{P} - \mathcal{K} -universal unfolding of f if m is minimal in reticular t- \mathcal{P} - \mathcal{K} -versal unfoldings of f.

We say that F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally versal if

$$\mathcal{E}(r;k+n) = \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}}.$$

We say that F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable if

$$\mathcal{E}(r;k+n+m) = \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial F}{\partial t} \right\rangle_{\mathcal{E}(m)}.$$
 (2)

We say that F is reticular $t \cdot \mathcal{P} \cdot \mathcal{K}$ -homotopically stable if for any smooth path-germ $(\mathbb{R}, 0) \to \mathcal{E}(r; k + n + m), \tau \mapsto F_{\tau}$ with $F_0 = F$, there exists a smooth path-germ $(\mathbb{R}, 0) \to \mathcal{B}(r, k + n + m) \times \mathcal{E}(r; k + n + m), \tau \mapsto (\Phi_{\tau}, \alpha_{\tau})$ with $(\Phi_0, \alpha_0) = (id, 1)$ such that each $(\Phi_{\tau}, \alpha_{\tau})$ is a reticular $t \cdot \mathcal{P} \cdot \mathcal{K}$ isomorphism and $F_{\tau} = \alpha_{\tau} \cdot F_0 \circ \Phi_{\tau}$ for $\tau \in (\mathbb{R}, 0)$.

For a function germ $f(x, y, u) \in \mathcal{E}(r; k + n)$, we define that

$$T_e(r\mathcal{P}\text{-}\mathcal{K})(f) = \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)},$$

and define that $r\mathcal{P}-\mathcal{K}-\operatorname{cod} f = \dim_{\mathbb{R}} \mathcal{E}(r;k+n)/T_e(r\mathcal{P}-\mathcal{K})(f).$

Lemma 3.4 Let $F(x, y, u, t) \in \mathcal{E}(r; k + n + m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r; k + n)$ and q be a non-negative integer.

The function germ F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal if and only if

$$\mathcal{E}(r;k+n) = T_e(r\mathcal{P}-\mathcal{K})(f) + \left\langle \frac{\partial F}{\partial t} |_{t=0} \right\rangle_{\mathbb{R}} + \mathfrak{M}(r;k+n)^{q+1}.$$

We remark that if F is reticular $t-\mathcal{P}-\mathcal{K}-q$ -transversal then F is also reticular $t-\mathcal{P}-\mathcal{K}-q'$ -transversal for any $q' \leq q$.

Proof of the lemma. By an immediate calculation, we have

Stabilities of unfoldings under Reticular t- \mathcal{P} - \mathcal{K} -equivalence

$$T(j_1^q F|_{x=0})(T_0 \mathbb{R}^{k+n+m}) = \left\langle j^q \frac{\partial f}{\partial y}(0), j^q \frac{\partial f}{\partial u}(0), j^q \frac{\partial F}{\partial t} \Big|_{t=0}(0) \right\rangle_{\mathbb{R}}$$
$$= \pi_q \left(\left\langle \frac{\partial f}{\partial y}, \frac{\partial f}{\partial u}, \frac{\partial F}{\partial t} \Big|_{t=0} \right\rangle_{\mathbb{R}} \right)$$

Therefore

F is a reticular t- \mathcal{P} - \mathcal{K} -q-transversal

$$\Leftrightarrow J^{q}(r+k+n,1) = T_{j^{q}f(0)} \left(O^{q}_{r\mathcal{P}-\mathcal{K}}(j^{q}f(0)) \right) + T(j^{q}_{1}F|_{x=0}) (T_{0}\mathbb{R}^{k+n+m})$$

$$\Leftrightarrow J^{q}(r+k+n,1) = \pi_{q} \left(\left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle_{\mathbb{R}} \right)$$

$$+ \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle \right) + \pi_{q} \left(\left\langle \frac{\partial f}{\partial y}, \frac{\partial f}{\partial u}, \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}} \right)$$

$$\Leftrightarrow J^{q}(r+k+n,1) = \pi_{q} \left(\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)}$$

$$+ \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}} \right)$$

$$\Leftrightarrow \mathcal{E}(r;k+n) = \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}}$$

$$+ \mathfrak{M}(r;k+n)^{q+1}.$$

Proposition 3.5 Let $F, G \in \mathfrak{M}(r; k + n + m)$ and q be a non-negative integer. Suppose that F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to G. If F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal, then G is also reticular t- \mathcal{P} - \mathcal{K} -q-transversal.

Theorem 3.6 (cf. [11, Theorem 3.6]) Let $f(x, y, u) \in \mathfrak{M}(r; k + n)$ be an unfolding of $f_0(x, y) \in \mathfrak{M}(r; k)$ and $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m)$ be an unfolding of f. Suppose f_0 is reticular \mathcal{K} -finitely determined. Choose an integer l such that

$$\mathfrak{M}(r;k)^{l+1} \subset \left\langle f_0, x \frac{\partial f_0}{\partial x} \right\rangle_{\mathcal{E}(r;k)} + \mathfrak{M}(r;k) \left\langle \frac{\partial f_0}{\partial y} \right\rangle.$$
(3)

Let $q \ge lm + l + m$. Then the following are equivalent.

(a) F is reticular t-P-K-infinitesimally stable.
(b) F is reticular t-P-K-infinitesimally versal.
(c) / ∂f ∂f / /∂f /

$$\begin{split} \mathcal{E}(r;k+n) &= \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}} \\ &+ \mathfrak{M}(n)^{m+1} \mathcal{E}(r;k+n) + \mathfrak{M}(r;k+n)^{q+1} \end{split}$$

Proof. It is enough to prove (c) \Rightarrow (a). Since $f|_{u=0} = f_0$ it follows that $\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \rangle_{\mathcal{E}(r;k)} \subset \langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(n)\mathcal{E}(r;k+n)$. Since $\mathfrak{M}(r;k+n)^{l+1} \subset \mathfrak{M}(r;k)^{l+1} + \mathfrak{M}(n)\mathcal{E}(r;k+n)$ it follows that $\mathfrak{M}(r;k+n)^{q+1} \subset \mathfrak{M}(r;k+n)^{(l+1)(m+1)} \subset \langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(n)^{m+1}\mathcal{E}(r;k+n)$. Therefore we may drop the term $\mathfrak{M}(r;k+n)^{q+1}$ from the right-hand side of (c). Then the following holds:

$$\mathcal{E}(r;k+n+m) = \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial F}{\partial t} \right\rangle_{\mathcal{E}(m)} + \mathfrak{M}(n+m)^{m+1} \mathcal{E}(r;k+n+m) + \mathfrak{M}(m) \mathcal{E}(r;k+n+m).$$

Then the assumption of Lemma 2.1 holds for $B = \langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \rangle_{\mathcal{E}(r;k+n+m)}$, $A_2 = \langle \frac{\partial F}{\partial u} \rangle_{\mathcal{E}(n+m)}$, $A_1 = \langle \frac{\partial F}{\partial t} \rangle_{\mathcal{E}(m)}$ and m = d. Hence we have (a).

The following two lemma's can be proved by almost parallel methods of the corresponding assertions in [11].

Lemma 3.7 (cf. [11, Corollary 3.7]) Let $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m_1)$ and $G(x, y, u, t, s) \in \mathfrak{M}(r; k + n + m_1 + m_2)$ and suppose $G|_{s=0} = F$. If F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable, then G is also reticular t- \mathcal{P} - \mathcal{K} infinitesimally stable.

Lemma 3.8 (cf. [11, Theorem 3.8]) Let $F, G \in \mathfrak{M}(r; k + n + m)$. If F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable and if F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to G, then G is also reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable.

Lemma 3.9 Let $f_0(x, y) \in \mathfrak{M}(r; k)$ be a reticular \mathcal{K} -l-determined function germ. Let $q \geq lm + l + m$. If $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m)$ unfold $f(x, y, u) \in \mathfrak{M}(r; k + n)$ and f_0 , and if F is a reticular t- \mathcal{P} - \mathcal{K} -q-transversal, then the following holds: Stabilities of unfoldings under Reticular t- $\mathcal{P}\text{-}\mathcal{K}\text{-}equivalence}$

$$\mathfrak{M}(r;k+n)^{q+1} \subset \left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle.$$

Proof. By Lemma 2.3, we have that $\mathfrak{M}(r;k)^{l+1} \subset \langle f_0, x \frac{\partial f_0}{\partial x} \rangle_{\mathcal{E}(r;k)} + \mathfrak{M}(r;k) \langle \frac{\partial f_0}{\partial y} \rangle$. It follows as the proof of Lemma 3.6 that

$$\mathfrak{M}(r;k+n)^{q+1} \subset \left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n)^{m+1} \mathcal{E}(r;k+n).$$
(4)

Therefore we have that

$$\mathfrak{M}(r;k+n)^{q+1} \subset \left\langle F, x \frac{\partial F}{\partial x} \right\rangle_{\mathcal{E}(r;k+n+m)} + \mathfrak{M}(r;k+n+m) \left\langle \frac{\partial F}{\partial y} \right\rangle \\ + \mathfrak{M}(n+m)^{m+1} \mathcal{E}(r;k+n+m) + \mathfrak{M}(m) \mathcal{E}(r;k+n+m).$$

This means that

$$\begin{split} \mathcal{E}(r;k+n+m) &\subset \mathcal{E}(r;k+n) + \mathfrak{M}(m)\mathcal{E}(r;k+n+m) \\ &\subset \left\langle f,x\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t}\right|_{t=0} \right\rangle_{\mathbb{R}} \\ &+ \mathfrak{M}(r;k+n)^{q+1} + \mathfrak{M}(m)\mathcal{E}(r;k+n+m) \\ &\subset \left\langle F,x\frac{\partial F}{\partial x},\frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)} \\ &+ \mathfrak{M}(n+m)^{m+1}\mathcal{E}(r;k+n+m) + \mathfrak{M}(m)\mathcal{E}(r;k+n+m). \end{split}$$

We apply $B = \langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \rangle_{\mathcal{E}(r;k+n+m)}$, $A_2 = \langle \frac{\partial F}{\partial u} \rangle_{\mathcal{E}(n+m)}$, $A_1 = \langle \frac{\partial F}{\partial t} \rangle_{\mathcal{E}(m)}$ and m = d for Lemma 2.1. Then we have that

$$\mathfrak{M}(n+m)^{m}\mathcal{E}(r;k+n+m)$$

$$\subset \left\langle F, x\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \mathfrak{M}(m)\mathcal{E}(r;k+n+m).$$

Restrict this equation on t = 0, then we have that

$$\mathfrak{M}(n)^m \mathcal{E}(r;k+n) \subset \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)}.$$

From this equation and the equation (4), we have the result.

Let q be a non-negative integer. We say that a function germ $f \in \mathfrak{M}(r; k + n)$ is reticular \mathcal{P} - \mathcal{K} -q-determined if all function germ which has same q-jet of f is reticular \mathcal{P} - \mathcal{K} -equivalent to f.

 \square

Lemma 3.10 Let $f(x, y, u) \in \mathfrak{M}(r; k+n)$ and q be a non-negative integer. If

$$\mathfrak{M}(r;k+n)^{q} \subset \left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle + \mathfrak{M}(n) \mathfrak{M}(r;k+n)^{q},$$
(5)

then f is reticular \mathcal{P} - \mathcal{K} -q-determined.

Proof. Let a germ $g(x, y, u) \in \mathcal{E}(r; k + n)$ with the same q-jet of f be given. We have to show that there exists a germ $\phi \in \mathcal{B}_n(r; k + n)$ and $\alpha \in \mathcal{E}(r; k + n)$ such that g has the form $g(x, y, u) = \alpha(x, y, u) f \circ \phi(x, y, u)$. By the restriction of (5) to u = 0, we have that $f(x, y, 0) \in \mathcal{E}(r; k)$ is reticular \mathcal{K} -q-determined by Lemma 2.3. It follows that there exist $\phi'(x, y) \in \mathcal{B}(r; k)$ and a unit $a \in \mathcal{E}(r; k)$ such that $f(x, y, 0) = a(x, y)g(\phi'(x, y), 0)$. Therefore we may assume that f(x, y, 0) = g(x, y, 0). Hence we may assume that $f - g \in \mathfrak{M}(n)\mathfrak{M}(r; k + n)^q$.

Define the one-parameter family F connect f and g by $F(x, y, u, \tau) = (1 - \tau)f(x, y, u) + \tau g(x, y, u), \tau \in [0, 1]$ and set $F_{\tau_0} \in \mathcal{E}(r; k + n + 1)$ by $F_{\tau_0}(x, y, u, \tau) = F(x, y, u, \tau_0 + \tau)$ for $\tau_0 \in [0, 1]$.

By using the same methods of the Mather theorem (see [10, p. 37]), we need only to show that

$$\begin{split} \frac{\partial F_{\tau_0}}{\partial \tau} &\in \mathfrak{M}(n) \left\langle F_{\tau_0}, x \frac{\partial F_{\tau_0}}{\partial x} \right\rangle_{\mathcal{E}(r;k+n+1)} \\ &+ \mathfrak{M}(n) \mathfrak{M}(r;k+n) \left\langle \frac{\partial F_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+1)} + \mathfrak{M}(n)^2 \left\langle \frac{\partial F_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+1)} \end{split}$$

Then we have that

$$\begin{split} \mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}\mathcal{E}(r;k+n+1) \\ &= \mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}(\mathcal{E}(r;k+n)+\mathfrak{M}(1)\mathcal{E}(r;k+n+1)) \\ &= \mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}+\mathfrak{M}(1)\mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}\mathcal{E}(r;k+n+1) \\ &\subset \mathfrak{M}(n)\left\langle \left\langle f,x\frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n)\left\langle \frac{\partial f}{\partial y} \right\rangle \\ &+ \mathfrak{M}(n)\left\langle \frac{\partial f}{\partial u} \right\rangle + \mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q} \right) \\ &+ \mathfrak{M}(1)\mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}\mathcal{E}(r;k+n+1) \\ &\subset \mathfrak{M}(n)\left\langle f,x\frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n+1)} + \mathfrak{M}(n)\mathfrak{M}(r;k+n)\left\langle \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+1)} \\ &+ \mathfrak{M}(n)^{2}\left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n+1)} + \mathfrak{M}(n+1)\mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}\mathcal{E}(r;k+n+1) \\ &\subset \mathfrak{M}(n)\left\langle F_{\tau_{0}},x\frac{\partial F_{\tau_{0}}}{\partial x} \right\rangle_{\mathcal{E}(r;k+n+1)} + \mathfrak{M}(n)\mathfrak{M}(r;k+n)\left\langle \frac{\partial F_{\tau_{0}}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+1)} \\ &+ \mathfrak{M}(n)^{2}\left\langle \frac{\partial F_{\tau_{0}}}{\partial u} \right\rangle_{\mathcal{E}(n+1)} + \mathfrak{M}(n+1)\mathfrak{M}(n)\mathfrak{M}(r;k+n)^{q}\mathcal{E}(r;k+n+1). \end{split}$$

By the assumption (5), we have the first inclusion. For the last inclusion, observe that

$$\begin{split} x_i \frac{\partial F_{\tau_0}}{\partial x_i} - x_i \frac{\partial f}{\partial x_i} &= (\tau_0 + \tau) x_i \frac{\partial}{\partial x_i} (g - f) \in \mathfrak{M}(n) \mathfrak{M}(r; k + n)^q, \\ \frac{\partial F_{\tau_0}}{\partial y_i} - \frac{\partial f}{\partial y_i} &= (\tau_0 + \tau) \frac{\partial}{\partial y_i} (g - f) \in \mathfrak{M}(n) \mathfrak{M}(r; k + n)^{q - 1}, \\ \frac{\partial F_{\tau_0}}{\partial u_i} - \frac{\partial f}{\partial u_i} &= (\tau_0 + \tau) \frac{\partial}{\partial u_i} (g - f) \in \mathfrak{M}(r; k + n)^q. \end{split}$$

Since $\mathfrak{M}(n)\mathfrak{M}(r; k+n)^q \mathcal{E}(r; k+n+1)$ is a finitely generated $\mathcal{E}(r; k+n+1)$ module, we have by Malgrange preparation theorem (see [11, p. 60 Theorem 1.6, Corollary 1.7]) that

$$\begin{aligned} \frac{\partial F_{\tau_0}}{\partial \tau} &= g - f \\ &\in \mathfrak{M}(n)\mathfrak{M}(r; k+n)^q \subset \mathfrak{M}(n)\mathfrak{M}(r; k+n)^q \mathcal{E}(r; k+n+1) \\ &\subset \mathfrak{M}(n) \left\langle F_{\tau_0}, x \frac{\partial F_{\tau_0}}{\partial x} \right\rangle_{\mathcal{E}(r; k+n+1)} \\ &+ \mathfrak{M}(n)\mathfrak{M}(r; k+n) \left\langle \frac{\partial F_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r; k+n+1)} + \mathfrak{M}(n)^2 \left\langle \frac{\partial F_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+1)} \quad \Box \end{aligned}$$

Lemma 3.11 Let $f_0(x, y) \in \mathfrak{M}(r; k)$ be a reticular \mathcal{K} -l-determined function germ. Let $f(x, y, u) \in \mathfrak{M}(r; k + n)$ unfold f_0 and suppose $m = r\mathcal{P}$ - \mathcal{K} codf is a finite number. Let $q \ge lm+l+m$ and let $F(x, y, u, t), G(x, y, u, t) \in$ $\mathfrak{M}(r; k + n + m)$ be reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f. Then F and G are reticular t- \mathcal{P} - \mathcal{K} -f-equivalent.

Proof. By using analogous methods of the Mather theorem (see [10, the proof of p. 68 Lemma 3.16]), we need only to prove the following assertion: Suppose that $E_{\tau}(x, y, u, t) = (1 - \tau)F(x, y, u, t) + \tau G(x, y, u, t) \in \mathcal{E}(r; k + n + m + 1)$ is reticular t-P-K-q-transversal unfolding of f for all $\tau \in [0, 1]$ and define $E_{\tau_0} \in \mathcal{E}(r; k + n + m + 1)$ by $E_{\tau_0}(x, y, t, u, \tau) = (1 - \tau_0 - \tau)F(x, y, u, t) + (\tau_0 + \tau)G(x, y, u, t)$ for $\tau_0 \in [0, 1]$. Then for all $\tau \in [0, 1]$, the following holds

$$\begin{aligned} \mathcal{E}(r;k+n+m+1) &= \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x}, \frac{\partial E_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m+1)} \\ &+ \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+m+1)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right\rangle_{\mathcal{E}(m+1)}. \end{aligned}$$

Proof of this assertion Fix $\tau_0 \in [0,1]$. Since E_{τ_0} is reticular t- \mathcal{P} - \mathcal{K} -q-transversal, we have

$$\begin{aligned} \mathcal{E}(r;k+n) &= \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} \\ &+ \left\langle \frac{\partial E_{\tau_0}}{\partial t} |_{t=0} \right\rangle_{\mathbb{R}} + \mathfrak{M}(r;k+n)^{q+1}. \end{aligned}$$

By Lemma 3.9, we have that

Stabilities of unfoldings under Reticular t- \mathcal{P} - \mathcal{K} -equivalence

$$\mathfrak{M}(r;k+n)^{q+1} \subset \left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle.$$

Therefore we have that

$$\mathcal{E}(r;k+n) = \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} |_{t=0} \right\rangle_{\mathbb{R}}.$$

Since $E_{\tau_0}(x, y, u, t) - f(x, y, u) \in \mathfrak{M}(m)\mathcal{E}(r; k + n + m)$, we have that

$$\begin{split} \mathcal{E}(r;k+n+m) &= \mathcal{E}(r;k+n+m) \\ &= \mathcal{E}(r;k+n) + \mathfrak{M}(m)\mathcal{E}(r;k+n+m) \\ &= \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}} \\ &+ \mathfrak{M}(m)\mathcal{E}(r;k+n+m) \\ &= \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x}, \frac{\partial E_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right\rangle_{\mathcal{E}(m)} \\ &+ \mathfrak{M}(m)\mathcal{E}(r;k+n+m). \end{split}$$

Therefore we have that

$$\begin{split} \mathcal{E}(r;k+n+m+1) &= \mathcal{E}(r;k+n+m+1) \\ &= \mathcal{E}(r;k+n+m) + \mathfrak{M}(1)\mathcal{E}(r;k+n+m+1) \\ &= \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x}, \frac{\partial E_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right\rangle_{\mathcal{E}(m)} \\ &+ \mathfrak{M}(m)\mathcal{E}(r;k+n+m) + \mathfrak{M}(1)\mathcal{E}(r;k+n+m+1) \\ &= \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x}, \frac{\partial E_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m+1)} + \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+m+1)} \\ &+ \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right\rangle_{\mathcal{E}(m+1)} + \mathfrak{M}(m+1)\mathcal{E}(r;k+n+m+1). \end{split}$$

By Malgrange preparation theorem, we have

$$\begin{aligned} \mathcal{E}(r;k+n+m+1) &= \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x}, \frac{\partial E_{\tau_0}}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m+1)} \\ &+ \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle_{\mathcal{E}(n+m+1)} + \left\langle \frac{\partial E_{\tau_0}}{\partial t} \right\rangle_{\mathcal{E}(m+1)}. \end{aligned}$$

Theorem 3.12 Let $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m)$ unfold $f(x, y, u) \in \mathfrak{M}(r; k + n)$ and $f_0(x, y) \in \mathfrak{M}(r; k)$. Suppose that f_0 is reticular \mathcal{K} -l-determined and $q \ge lm + l + m + 1$. Then the following are equivalent. (1) F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal.

- (2) F is reticular t- \mathcal{P} - \mathcal{K} -stable.
- (3) F is reticular t- \mathcal{P} - \mathcal{K} -versal.

Proof. Let $z = j^q f(0)$. $(1) \Rightarrow (2)$. Let F be a reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f. Let $\tilde{F} \in C^{\infty}(U, \mathbb{R})$ be a representative of F. Set $V = U \cap (\{0\} \times \mathbb{R}^{k+n+m})$. Define

$$N_{\tilde{F}} = \left\{ \tilde{G} \in C^{\infty}(U, \mathbb{R}) | j_1^q \tilde{G}|_{x=0} \text{ is transversal to } O_{r\mathcal{P}-\mathcal{K}}^q(z) \right.$$

and $j_1^q \tilde{G}|_{x=0}(V) \cap O_{r\mathcal{P}-\mathcal{K}}^q(z) \neq \emptyset \right\}.$

This is an open neighborhood of \tilde{F} because the maps $\tilde{G} \mapsto j^q \tilde{G} \mapsto j^q_1 \tilde{G} \mapsto j^q_1 \tilde{G} \mapsto j^q_1 \tilde{G} |_{x=0}$ are given by compositions of continuous maps. Let $\tilde{G} \in N_{\tilde{F}}$ and take $(0, y_0, u_0, t_0) \in V$ such that $j^q_1 \tilde{G}$ is transversal to $O^q_{r\mathcal{P}-\mathcal{K}}(z)$ at $(0, y_0, u_0, t_0)$. Let G be the germ of $\tilde{G}|_{\mathbb{H}^r \times \mathbb{R}^{k+n+m}}$ at $(0, y_0, u_0, t_0)$ and define $g \in \mathcal{E}(r; k+n)$ by $g(x, y, u) = G(x, y+y_0, u+u_0, t_0)$. Since $j^q g(0, 0, 0) = j^q_1 \tilde{G}(0, y_0, u_0, t_0) \in O^q_{r\mathcal{P}-\mathcal{K}}(z)$, there exists $\phi \in \mathcal{B}_n(r; k+n)$ and a unit $\alpha \in \mathcal{E}(r; k+n)$ such that the germ $f' \in \mathcal{E}(r; k+n)$ defined by $f'(x, y, u) = \alpha(x, y, u)g \circ \phi(x, y, u)$ has the same q-jet of f. Since F is also reticular t- \mathcal{P} - \mathcal{K} -(q-1)-transversal and $q-1 \geq lm+l+m$, we have by Lemma 3.9 that

$$\mathfrak{M}(r;k+n)^q \subset \left\langle f, x \frac{\partial f}{\partial x} \right\rangle_{\mathcal{E}(r;k+n)} + \mathfrak{M}(r;k+n) \left\langle \frac{\partial f}{\partial y} \right\rangle + \mathfrak{M}(n) \left\langle \frac{\partial f}{\partial u} \right\rangle.$$

This means by Lemma 3.10 that f is reticular \mathcal{P} - \mathcal{K} -q-determined. It follows that f' is reticular \mathcal{P} - \mathcal{K} -equivalent to f. So g is also reticular \mathcal{P} - \mathcal{K} -equivalent to f. Hence there exist $\phi' \in \mathcal{B}_n(r; k+n)$ and $\alpha' \in \mathcal{E}(r; k+n)$ such that ghas the form $f(x, y, u) = \alpha'(x, y, u)g \circ \phi'(x, y, u)$ Define $G' \in \mathcal{E}(r; k+n+m)$

by $G'(x, y, u, t) = \alpha'(x, y, u)G(\phi'(x, y, u), t)$. Then G' is a reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f. By Lemma 3.11 we have that F and G' are reticular t- \mathcal{P} - \mathcal{K} -f-equivalent. Therefore F and G are reticular t- \mathcal{P} - \mathcal{K} -equivalent.

 $(2) \Rightarrow (3)$. Let F be a reticular $t - \mathcal{P} - \mathcal{K}$ -stable unfolding of f and let $\tilde{F} \in C^{\infty}(U, \mathbb{R})$ be a representative of F. By hypothesis and Theorem 3.2, there exist $\tilde{F'} \in C^{\infty}(U, \mathbb{R})$ and $(0, y_0, u_0, t_0) \in U$ such that $j_1^q \tilde{F'}|_{x=0}$ is transversal to $O^q_{r\mathcal{P}-\mathcal{K}}(z)$ and the germ $F' = \tilde{F'}|_{\mathbb{H}^r \times \mathbb{R}^{k+n+m}}$ at $(0, y_0, u_0, t_0)$ is reticular $t - \mathcal{P} - \mathcal{K}$ -equivalent to F. By Proposition 3.5, we have that F is a reticular $t - \mathcal{P} - \mathcal{K} - q$ -transversal unfolding of f.

Let an unfolding $G(x, y, u, s) \in \mathcal{E}(r; k + n + m_1)$ of f be given. Define $G'(x, y, u, t, s) \in \mathcal{E}(r; k + n + m + m_1)$ by G'(x, y, u, t, s) = G(x, y, u, s) - f(x, y, u) + F(x, y, u, t). Then G' is a reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f because F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal. Define $F''(x, y, u, t, s) \in \mathcal{E}(r; k + n + m + m_1)$ by F''(x, y, u, t, s) = F(x, y, u, t). Then F'' is also a reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding of f. By Lemma 3.11, we have that G' and F'' are reticular t- \mathcal{P} - \mathcal{K} -f-equivalent. Since G is reticular t- \mathcal{P} - \mathcal{K} -f-induced from G', and F'' is reticular t- \mathcal{P} - \mathcal{K} -f-induced from F, it follows that G is reticular t- \mathcal{P} - \mathcal{K} -f-induced from F. Therefore F is reticular t- \mathcal{P} - \mathcal{K} -versal.

 $(3) \Rightarrow (1)$. Let $F(x, y, u, t) \in \mathcal{E}(r; k + n + m_1)$ be a reticular t- \mathcal{P} - \mathcal{K} -versal unfolding of f. Take a reticular t- \mathcal{P} - \mathcal{K} -q-transversal unfolding $G(x, y, u, s) \in \mathcal{E}(r; k + n + m_2)$ of f. By hypothesis, there exists a reticular t- \mathcal{P} - \mathcal{K} -f-morphism from G to F of the form:

$$G(x, y, u, s) = \alpha(x, y, u, s) F(x\phi_1(x, y, u, s), \phi_2(x, y, u, s), \phi_3(u, s), \phi_4(s)).$$

Since G is reticular t- \mathcal{P} - \mathcal{K} -q-transversal, we have

$$\begin{aligned} \mathcal{E}(r;k+n) &= \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial G}{\partial s} |_{s=0} \right\rangle_{\mathbb{R}} \\ &+ \mathfrak{M}(r;k+n)^{q+1}. \end{aligned}$$

On the other hand, we have that

$$\left\langle \frac{\partial G}{\partial s} \right|_{s=0} \right\rangle_{\mathbb{R}} \subset \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}}$$

Therefore

$$\begin{aligned} \mathcal{E}(r;k+n) &= \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \right\rangle_{\mathcal{E}(r;k+n)} + \left\langle \frac{\partial f}{\partial u} \right\rangle_{\mathcal{E}(n)} + \left\langle \frac{\partial F}{\partial t} \right|_{t=0} \right\rangle_{\mathbb{R}} \\ &+ \mathfrak{M}(r;k+n)^{q+1}. \end{aligned}$$

Hence F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal.

Theorem 3.13 (Uniqueness of universal unfoldings) Let F(x, y, u, t), $G(x, y, u, t) \in \mathfrak{M}(r; k+n+m)$ be unfoldings of $f \in \mathfrak{M}(r; k+n)$. If F and G are reticular t- \mathcal{P} - \mathcal{K} -versal, then F and G are reticular t- \mathcal{P} - \mathcal{K} -f-equivalent.

 \square

Proof. Since F is a reticular \mathcal{P} - \mathcal{K} -versal unfolding of $f_0 = f|_{u=0}$ as (n+m)dimensional unfolding. This means that f_0 is finitely determined. Choose an non-negative integer l such that (3) holds for f_0 . Let $q \ge lm + l + m + 1$. By Theorem 3.12, we have that F and G are reticular t- \mathcal{P} - \mathcal{K} -q-transversal. By Lemma 3.11 we have that F and G are reticular t- \mathcal{P} - \mathcal{K} -f-equivalent. \Box

Theorem 3.14 Let $F(x, y, u, t) \in \mathfrak{M}(r; k + n + m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r; k + n)$ and let f be an unfolding of $f_0(x, y) \in \mathfrak{M}(r; k)$. Then following are equivalent.

- (1) There exists a non-negative number l such that f_0 is reticular \mathcal{K} -ldetermined and F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal for $q \ge lm + l + m + 1$.
- (2) F is reticular t- \mathcal{P} - \mathcal{K} -stable.
- (3) F is reticular t- \mathcal{P} - \mathcal{K} -versal.
- (4) F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally versal.
- (5) F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable.
- (6) F is reticular t- \mathcal{P} - \mathcal{K} -homotopically stable.

Proof. (2) \Rightarrow (5) F is also reticular \mathcal{P} - \mathcal{K} -stable unfolding of f_0 as (n+m)dimensional unfolding. Therefore f_0 is reticular \mathcal{K} -finitely determined. Choose an non-negative integer l such that (3) holds for f_0 . Let $q \geq lm + l + m + 1$. By Theorem 3.12, we have that F is reticular t- \mathcal{P} - \mathcal{K} -qtransversal. Then the assertion (c) of Theorem 3.6 holds. Therefore F is reticular t- \mathcal{P} - \mathcal{K} -infinitesimally stable.

- $(4) \Leftrightarrow (5)$ This is proved by Theorem 3.6.
- $(5) \Rightarrow (2)$ F is also reticular \mathcal{P} - \mathcal{K} -infinitesimally stable unfolding of f_0 as

(n+m)-dimensional unfolding. Therefore there exists a non-negative number l such that f_0 is reticular \mathcal{K} -l determined. By Theorem 3.12, we have that F is reticular t- \mathcal{P} - \mathcal{K} -q-transversal for $q \ge lm + l + m + 1$. This means that F is reticular t- \mathcal{P} - \mathcal{K} -stable by Theorem 3.12. (1) \Leftrightarrow (2) \Leftrightarrow (3) This is proved in Theorem 3.12.

$$(5) \Rightarrow (6)$$

$$\begin{split} \mathcal{E}(r;k+n+m+1) &= \mathcal{E}(r;k+n+m) + \mathfrak{M}(1)\mathcal{E}(r;k+n+m+1) \\ &= \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m)} + \left\langle \frac{\partial F}{\partial t} \right\rangle_{\mathcal{E}(m)} \\ &+ \mathfrak{M}(1)\mathcal{E}(r;k+n+m+1) \\ &= \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m+1)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m+1)} + \left\langle \frac{\partial F}{\partial t} \right\rangle_{\mathcal{E}(m+1)} \\ &+ \mathfrak{M}(m+1)\mathcal{E}(r;k+n+m+1). \end{split}$$

By Malgrange preparation theorem, we have that

$$\mathcal{E}(r;k+n+m+1) = \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(r;k+n+m+1)} + \left\langle \frac{\partial F}{\partial u} \right\rangle_{\mathcal{E}(n+m+1)} + \left\langle \frac{\partial F}{\partial t} \right\rangle_{\mathcal{E}(m+1)}.$$
 (6)

This means that F is reticular t- \mathcal{P} - \mathcal{K} -homotopically stable.

(6) \Rightarrow (5) Suppose that F is reticular t- \mathcal{P} - \mathcal{K} -homotopically stable. Then (6) holds. Restrict this equation to $\mathbb{H}^r \times \mathbb{R}^{k+n+m}$. Then we have the equation (2).

For $f \in \mathfrak{M}(r; k+n)$ if $a_1, \ldots, a_m \in \mathcal{E}(r; k+n)$ is a representative of a basis of $\mathcal{E}(r; k+n)/T_e(r\mathcal{P}-\mathcal{K})(f)$, then the function germ $f + a_1t_1 + \cdots + a_mt_m \in \mathfrak{M}(r; k+n+m)$ is a reticular t- \mathcal{P} - \mathcal{K} -stable unfolding of f.

4. A generic classification of unfoldings under the reticular t- \mathcal{P} - \mathcal{K} -equivalence

Definition 4.1 We say that function germs $f_1(x, y) \in \mathfrak{M}(r_1; k_1)$ and $f_2(x, y) \in \mathfrak{M}(r_2; k_2)$ are stably reticular \mathcal{K} -equivalent if f_1 and f_2 are reticular \mathcal{K} -equivalent after additions of linear forms in x whose all coefficients are not zero and non-degenerate quadratic forms in the variables y. We also define the stably reticular \mathcal{P} - \mathcal{K} -equivalence relation and the stably reticular t- \mathcal{P} - \mathcal{K} -equivalence relation and the stably reticular t- \mathcal{P} - \mathcal{K} -equivalence relation analogously.

Proposition 4.2 Let $f_0 \in \mathfrak{M}(1;k)$. Then f_0 is stably reticular \mathcal{K} -equivalent to $y \in \mathfrak{M}(0;1)$ or there exists $f'_0 \in \mathfrak{M}(r;k')^2$ (r = 0 or 1) such that f_0 and f'_0 are stably reticular \mathcal{K} -equivalent.

Proposition 4.3 (cf., [7, p. 126]) Let $f_0(y) \in \mathfrak{M}(0; k)$ with $(r)\mathcal{K}$ -cod $f_0 \leq 6$ be given. Then f_0 is stably (reticular) \mathcal{K} -equivalent to one of

$$A_{l}: y^{l+1} (0 \le l \le 6), \ D_{4}^{\pm}: y_{1}^{2} y_{2} \pm y_{2}^{3}, \ D_{5}: y_{1}^{2} y_{2} + y_{2}^{4},$$
$$D_{6}^{\pm}: y_{1}^{2} y_{2} \pm y_{2}^{5}, \ E_{6}: y_{1}^{3} + y_{2}^{4}.$$

Let $f_0(x, y) \in \mathfrak{M}(1; k)$ with $r\mathcal{K}$ -cod $f_0 \leq 4$ be given. Then f_0 is stably reticular \mathcal{K} -equivalent to one of

$$A_l: y^{l+1} (0 \le l \le 4), \ D_4^{\pm}: y_1^2 y_2 \pm y_2^3, \ B_l: x^l (1 \le l \le 4),$$
$$C_3^{\pm}: \pm xy + y^3, \ C_4: xy + y^4, \ F_4: x^2 + y^3.$$

Proposition 4.4 Let $f_0(x,y) \in \mathfrak{M}(r;k)$ be a simple singularity, that is A_l, D_l, E_6, E_7, E_8 for r = 0, or B_l, C_l, F_4 for r = 1. Let Q_{f_0} be the local ring of f_0 , that is $Q_{f_0} = \mathcal{E}(r;k)/\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \rangle_{\mathcal{E}(r;k)}$. Then there exist monomials $\varphi_0, \varphi_1, \ldots, \varphi_n \in \mathfrak{M}(r;k)$ which consist a basis of Q_{f_0} such that

- (1) $\mathfrak{M}(r;k) \cdot \varphi_0 \sim 0 \mod Q_{f_0}$
- (2) For any $i, j \in \{1, \ldots, n\} (i+j \ge n)$ there exists a non-zero real number a such that $\varphi_i \cdot \varphi_j \sim a\varphi_{i+j-n} \mod Q_{f_0}$.
- (3) For any $i, j \in \{1, \ldots, n\}$ $(i + j < n), \varphi_i \cdot \varphi_j \sim 0 \mod Q_{f_0}$,

For example, if $f_0(x, y) = xy + y^4(C_4)$ then we may choose that $\varphi_0 = y^3$, $\varphi_1 = y^2$, $\varphi_2 = y$, $\varphi_3 = 1$.

Proposition 4.5 Let $f_0(x,y) \in \mathfrak{M}(r;k)$ be a simple singularity, that is A_l, D_l, E_6, E_7, E_8 for r = 0, or B_l, C_l, F_4 for r = 1. Choose monomials $\varphi_0(x, y), \ldots, \varphi_n(x, y)$ as the previous proposition. Then the function $F(x, y, u, t) = f_0(x, y) + \varphi_0(x, y)t + \sum_{i=1}^n \varphi_i(x, y)u_i$ is a reticular t-P-K-universal unfolding of $F|_{t=0}$.

Proof. In this proof we write $\mathcal{E}(x, y, u, t)$ for $\mathcal{E}(r; k + n + 1)$ and write $\mathcal{E}(u)$ for $\mathcal{E}(n)$ and write other notations analogously. Since $F - f_0 \in \mathfrak{M}(u, t)\mathcal{E}(x, y, u, t)$, we have that

$$x_i \frac{\partial F}{\partial x_i} - x_i \frac{\partial f_0}{\partial x_i}, \quad \frac{\partial F}{\partial y_j} - \frac{\partial f_0}{\partial y_j} \in \mathfrak{M}(u,t)\mathcal{E}(x,y,u,t).$$

It follows that

$$\left\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \right\rangle_{\mathfrak{M}(u,t)} \subset \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x,y,u,t)} + \mathfrak{M}(u,t)^2 \mathcal{E}(x,y,u,t).$$
(7)

Therefore we have that

$$\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y} \right\rangle_{\mathfrak{M}(u,t)\mathcal{E}(x,y,u,t)}$$
$$\subset \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x,y,u,t)} + \mathfrak{M}(u,t)^{2} \mathcal{E}(x,y,u,t).$$
(8)

Let a function germ $G(x,y,u,t) \in \mathcal{E}(x,y,u,t)$ be given. It is enough to prove that

$$G \in \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x, y, u, t)} + \langle \varphi_1, \dots, \varphi_n \rangle_{\mathcal{E}(u, t)} + \langle \varphi_0 \rangle_{\mathcal{E}(t)} + \mathfrak{M}(u, t)^2 \mathcal{E}(x, y, u, t),$$

because this means by Lemma 2.1 that

$$\mathcal{E}(x, y, u, t) = \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x, y, u, t)} + \langle \varphi_1, \dots, \varphi_n \rangle_{\mathcal{E}(u, t)} + \langle \varphi_0 \rangle_{\mathcal{E}(t)}$$

Since F is a reticular \mathcal{P} - \mathcal{K} -infinitesimal stable unfolding of f_0 as (n+1)-dimensional unfolding, we have that

$$\mathcal{E}(x, y, u, t) = \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x, y, u, t)} + \langle \varphi_0, \varphi_1, \dots, \varphi_n \rangle_{\mathcal{E}(u, t)}$$

It follows that there exist function germs $g_0(u,t), \ldots, g_n(u,t) \in \mathcal{E}(u,t)$ such that

$$G \sim g_0(u,t)\varphi_0(x,y) + \dots + g_n(u,t)\varphi_n(x,y) \mod \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x,y,u,t)}$$

Then g_0 has the form $g_0(u,t) = g_0(0,t) + \sum_{i=1}^n a_i u_i + h(u,t)$, where $a_i \in \mathbb{R}$ and $h \in \mathfrak{M}(u,t)^2$. Since F is quasi-homogeneous function germ (see [1, p. 192] for the definition), and f_0 is simple singularity, there exist non-zero real numbers b_x, b_y, b_t, b_{u_i} such that F has the form:

$$F = b_x x \frac{\partial F}{\partial x} + b_y y \frac{\partial F}{\partial y} + b_t t \varphi_0 + b_{u_1} u_1 \varphi_1 + \dots + b_{u_n} u_n \varphi_n.$$

Then there exist non-zero real numbers b'_i such that

$$\varphi_{n-1}F \sim b_x \varphi_{n-1} x \frac{\partial F}{\partial x} + b_y \varphi_{n-1} y \frac{\partial F}{\partial y} + b_t t \varphi_0 \varphi_{n-1} + b_1' u_1 \varphi_0 + \dots + b_n' u_n \varphi_{n-1}$$

mod $\langle f_0, x \frac{\partial f_0}{\partial x}, \frac{\partial f_0}{\partial y} \rangle_{\mathfrak{M}(u,t)\mathcal{E}(x,y,u,t)}$. Therefore we have by (8) that

$$0 \sim \varphi_{n-1}F \sim b_t t \varphi_0 \varphi_{n-1} + b'_1 u_1 \varphi_0 + \dots + b'_n u_n \varphi_{n-1}$$

mod the right hand side of (8). Since $\mathfrak{M}(x, y)\varphi_0 \sim 0 \mod Q_{f_0}$, we have that

$$0 \sim \varphi_{n-1}F \sim b_1' u_1 \varphi_0 + \dots + b_n' u_{n-1} \varphi_{n-1}$$

mod the right hand side of (8). This means that

$$u_1\varphi_0 \in \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x, y, u, t)} + \langle \varphi_1, \dots, \varphi_n \rangle_{\mathfrak{M}(u, t)} + \mathfrak{M}(u, t)^2 \mathcal{E}(x, y, u, t).$$
(9)

By considering $\varphi_{n-2}F, \ldots, \varphi_0F$ instead of $\varphi_{n-1}F$, we have that $u_2\varphi_0, \ldots, u_n\varphi_0$, are included in the right hand side of (9). This means that $g_0(u,t)\varphi_0 \sim g_0(0,t)\varphi_0$ mod the right hand side of (9). Therefore we have that

$$G \in \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle_{\mathcal{E}(x, y, u, t)} + \langle \varphi_1, \dots, \varphi_n \rangle_{\mathcal{E}(u, t)} + \langle \varphi_0 \rangle_{\mathcal{E}(t)} + \mathfrak{M}(u, t)^2 \mathcal{E}(x, y, u, t).$$

Lemma 4.6 Let $f_0(x, y) \in \mathfrak{M}(r; k)$ be a simple singularity and $F(x, y, u, t) \in \mathfrak{M}(r; k + n + 1)$ be a reticular \mathcal{P} - \mathcal{K} -universal unfoldings of f_0 . If F is a reticular t- \mathcal{P} - \mathcal{K} -universal unfoldings of $f = F|_{t=0}$ and $r\mathcal{K}$ -codf = 1, then F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to the function germ of the form in Proposition 4.5.

Proof. We may assume that f_0 has the normal from. Then F is reticular \mathcal{P} - \mathcal{K} -equivalent to $F_0 = f_0(x, y) + t\varphi_0(x, y) + u_1\varphi_1(x, y)\cdots + u_n\varphi_n(x, y)$. Therefore there exists a reticular \mathcal{P} - \mathcal{K} -isomorphism (α, Φ) from F_0 to F. We write $\Phi = (x\phi_1, \phi_2, \phi_3, \phi_4)$. We set $f^0 \in \mathfrak{M}(r; k)$ by $f^0 = F_0|_{t=0}$, that is $f^0 = f_0(x, y) + u_1\varphi_1(x, y)\cdots + u_n\varphi_n(x, y)$. Since $r\mathcal{K}$ -cod f = 1, it follows that the map germ $u \mapsto \phi_3(u, 0)$ is invertible. Therefore we may reduce F to the form: $F(x, y, u, t) = f_0(x, y) + a(u, t)\varphi_0(x, y) + u_1\varphi_1(x, y)\cdots + u_n\varphi_n(x, y)$ for some $a \in \mathfrak{M}(n+1)$ with $\frac{\partial a}{\partial t}(0) \neq 0$. By an analogous method of Proposition 4.5, we have that

$$\mathfrak{M}(u)\varphi_0 \in \left\langle f^0, x \frac{\partial f^0}{\partial x} \right\rangle_{\mathcal{E}(x,y,u)} + \mathfrak{M}(x,y,u) \left\langle \frac{\partial f^0}{\partial y} \right\rangle + \mathfrak{M}(u) \langle \varphi_1, \dots, \varphi_n \rangle.$$

We fix $\tau_0 \in [0,1]$ and define $E_{\tau_0}(x, y, u, \tau) \in \mathfrak{M}(r; k+n+1)$ by $E_{\tau_0}(x, y, u, \tau) = f_0(x, y) + (\tau_0 + \tau)a(u, 0)\varphi_0(x, y) + u_1\varphi_1(x, y) \cdots + u_n\varphi_n(x, y).$ Since $E_{\tau_0} - f^0 = (\tau_0 + \tau)a(u, 0)\varphi_0$, it follows that

$$\frac{\partial E_{\tau_0}}{\partial \tau} \in \left\langle E_{\tau_0}, x \frac{\partial E_{\tau_0}}{\partial x} \right\rangle_{\mathcal{E}(x, y, u, \tau)} + \mathfrak{M}(x, y, u, \tau) \left\langle \frac{\partial E_{\tau_0}}{\partial y} \right\rangle + \mathfrak{M}(u, \tau) \left\langle \frac{\partial E_{\tau_0}}{\partial u} \right\rangle.$$

By an analogous method of [10, p.26 Lemma 1.27], we have that $F|_{t=0}$ and f^0 are reticular \mathcal{P} - \mathcal{K} -equivalent. By Theorem 3.13, it follows that F is

reticular t- \mathcal{P} - \mathcal{K} -equivalent to F_0 .

Now we classify reticular t- \mathcal{P} - \mathcal{K} -stable unfoldings in $\mathfrak{M}(r; k+n+1)$ with respect to stably reticular t- \mathcal{P} - \mathcal{K} -equivalence for the case $r = 0, n \leq 5$ and $r = 1, n \leq 3$. We prove only the case $r = 1, n \leq 3$.

Let a reticular t- \mathcal{P} - \mathcal{K} -stable unfolding $F(x, y, u, t) \in \mathfrak{M}(1; k+n+1)$ with $n \leq 3$ be given. We set $f = F|_{t=0}$ and $f_0 = f|_{u=0}$. Since F is a reticular \mathcal{P} - \mathcal{K} -stable unfolding of f_0 as (n+1)-dimensional unfolding, it follows that f_0 is stably reticular \mathcal{K} -equivalent to one of the types in Proposition 4.3. So we may assume that f_0 has the normal form in $\mathfrak{M}(1; 1)$. We denote X the type of f_0 . Then the local ring Q_{f_0} has basis $\varphi_0, \ldots, \varphi_{l-1}$ ($l \leq n+1$) and φ_0 has the maximal degree. The function germ $F_0(x, y, u, t) = f_0 + t\varphi_0 + u_1\varphi_1 + \cdots + u_{l-1}\varphi_{l-1} \in \mathfrak{M}(1; 1 + (l-1) + 1)$ is a reticular t- \mathcal{P} - \mathcal{K} -universal unfolding of f_0 , there exists a diffeomorphism germ ϕ on ($\mathbb{R}^{n+1}, 0$) such that $F_1 \in \mathfrak{M}(r; k + (l-1) + 1)$ given by $F_1(x, y, u, t) = F(x, y, \phi(u_1, \ldots, u_{l-1}, t, 0, \ldots, 0))$ is reticular t- \mathcal{P} - \mathcal{K} -equivalent to F_0 . So we may reduce F_1 to F_0 . Therefore F has the form

$$F(x, y, u, t) = f_0(x, y) + a_0(u, t)\varphi_0(x, y) + \dots + a_{l-1}(u, t)\varphi_{l-1}(x, y),$$

where the map germ $(u_1, \ldots, u_n, t) \mapsto (a_0(u, t), \ldots, a_{l-1}(u, t))$ is a submersion.

In the case that the map germ $(u_1, \ldots, u_n) \mapsto (a_0(u, 0), \ldots, a_{l-1}(u, 0))$ is also a submersion, then F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to 0X .

In the case that the map germ $(u_1, \ldots, u_n) \mapsto (a_0(u, 0), \ldots, a_{l-1}(u, 0))$ is not a submersion. Then $r\mathcal{K}\text{-}\mathrm{cod}F|_{t=0} = 1$. It follows that F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to F_0 by Lemma 4.6. Therefore F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to the function germ:

$$f_0 + (t + a_0)\varphi_0 + (u_1 + a_1)\varphi_1 + \cdots + (u_{l-1} + a_{l-1})\varphi_{l-1},$$

where $a_i \in \mathfrak{M}(u_l, \ldots, u_n)\mathcal{E}(u)$ for $i = 1, \ldots, l-1$. Hence F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to the function germ:

$$f_0 + (t+a_0)\varphi_0 + u_1\varphi_1 + \cdots + u_{l-1}\varphi_{l-1}.$$

Let l - 1 = n. Since $a_0 = 0$, it follows that F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to 1X .

Let l-1 < n. Then $\frac{\partial a_0}{\partial u_i}(0) = 0$ for all $i = l, \ldots, n$. If $\left(\frac{\partial^2 a_0}{\partial u_i \partial u_j}(0)\right)_{i,j=l,\ldots,n}$ is degenerate then $r\mathcal{K}\text{-}\mathrm{cod}F|_{t=0} > 1$. It follows that F is not reticular t- \mathcal{P} - \mathcal{K} -stable. Therefore $\left(\frac{\partial^2 a_0}{\partial u_i \partial u_j}(0)\right)_{i,j=l,\ldots,n}$ is non-degenerate. Since $a_0|_{u_1=\cdots=u_{l-1}=0}$ is a Morse function on u_l,\ldots,u_n , We have that F is reticular t- \mathcal{P} - \mathcal{K} -equivalent to 1X .

Theorem 4.7 Let r = 0, $n \leq 5$ or r = 1, $n \leq 3$ and U be a neighborhood of 0 in $\mathbb{H}^r \times \mathbb{R}^{k+n+1}$. Then there exists a residual set $O \subset C^{\infty}(U,\mathbb{R})$ such that the following condition holds: For any $\tilde{F} \in O$ and $(0, y_0, u_0, t_0) \in U$, the function germ $F(x, y, u, t) \in \mathfrak{M}(r; k + n + 1)$ given by F(x, y, u, t) = $\tilde{F}(x, y+y_0, u+u_0, t+t_0) - \tilde{F}(0, y_0, u_0, t_0)$ is a reticular t- \mathcal{P} - \mathcal{K} -stable unfolding of $F|_{t=0}$.

In the case $r = 0, n \leq 5$, F is stably reticular t- \mathcal{P} - \mathcal{K} -equivalent to one of the following type:

 $\begin{array}{ll} (^{0}A_{l}) & y_{1}^{l+1} + \sum_{i=1}^{l-1} u_{i}y_{1}^{i} + u_{l} \ (0 \leq l \leq 5), \\ (^{0}D_{4}^{\pm}) & y_{1}^{2}y_{2} \pm y_{2}^{3} + u_{1}y_{2}^{2} + u_{2}y_{2} + u_{3}y_{1} + u_{4}, \\ (^{0}D_{5}) & y_{1}^{2}y_{2} + y_{2}^{4} + u_{1}y_{2}^{3} + u_{2}y_{2}^{2} + u_{3}y_{2} + u_{4}y_{1} + u_{5}, \\ (^{1}A_{l}) & y_{1}^{l+1} + (t \pm u_{l-1}^{2} \pm \cdots \pm u_{n}^{2})y_{1}^{l-1} + \sum_{i=1}^{l-2} u_{i}y_{1}^{i} + u_{l} \ (2 \leq l \leq 6), \\ (^{1}D_{4}^{\pm}) & y_{1}^{2}y_{2} \pm y_{2}^{3} + ty_{2}^{2} + u_{1}y_{2} + u_{2}y_{1} + u_{3}, y_{1}^{2}y_{2} \pm y_{2}^{3} + (t \pm u_{4}^{2})y_{2}^{2} + u_{1}y_{2} + u_{2}y_{1} + u_{3}, \\ (^{1}D_{5}) & y_{1}^{2}y_{2} + y_{2}^{4} + ty_{2}^{3} + u_{1}y_{2}^{2} + u_{2}y_{2} + u_{3}y_{1} + u_{4}, y_{1}^{2}y_{2} + y_{2}^{4} + (t \pm u_{5}^{2})y_{2}^{3} + u_{1}y_{2}^{2} + u_{2}y_{2} + u_{3}y_{1} + u_{4}, \\ (^{1}D_{6}^{\pm}) & y_{1}^{2}y_{2} \pm y_{2}^{5} + ty_{2}^{6} + u_{1}y_{2}^{3} + u_{2}y_{2}^{2} + u_{3}y_{1} + u_{4}y_{1} + u_{5}, \\ (^{1}E_{6}) & y_{1}^{3} + y_{2}^{4} + ty_{1}y_{2}^{2} + u_{1}y_{1}y_{2} + u_{2}y_{2}^{2} + u_{3}y_{1} + u_{4}y_{2} + u_{5}. \end{array}$

In the case $r = 1, n \leq 3$, F is stably reticular t- \mathcal{P} - \mathcal{K} -equivalent to one of the following type:

$$\begin{array}{ll} (^{1}C_{3}^{\pm}) & \pm xy + y^{3} + ty^{2} + u_{1}y + u_{2}, \ \pm xy + y^{3} + (t \pm u_{3}^{2})y^{2} + u_{1}y + u_{2}, \\ (^{1}C_{4}) & xy + y^{4} + ty^{3} + u_{1}y^{2} + u_{2}y + u_{3}, \\ (^{1}F_{4}) & x^{2} + y^{3} + txy + u_{1}x + u_{2}y + u_{3}. \end{array}$$

We remark that a class ${}^{1}X$ is not one equivalent class, since non-degenerate quadratic forms $+u^{2}$ and $-u^{2}$ may define different classes.

Proof. We prove only the case $r = 1, n \leq 3$. All function germ in $\mathfrak{M}(1; k)$ with the reticular \mathcal{K} -codimension ≤ 3 are stably reticular \mathcal{K} -equivalent to one of the types in Proposition 4.3. We define the stably reticular \mathcal{P} - \mathcal{K} -equivalence classes by

We define that

$$O' = \left\{ F \in C^{\infty}(U, \mathbb{R}) \mid j_1^l F \mid_{x=0} \text{ is transversal to } [X] \text{ for all above } X \right\}$$

Then O' is a residual set in $C^{\infty}(U, \mathbb{R})$.

We set

$$Y = \left\{ j^l f(0) \in J^l(r+k+n) \mid r\mathcal{P}\text{-}\mathcal{K}\text{cod}f > 1. \right\}$$

Then Y is an algebraic set in $J^{l}(r+k+n)$. We also set

$$O'' = \left\{ F \in C^{\infty}(U, \mathbb{R}) \mid j_1^l F |_{x=0} \text{ is transversal to } Y \right\}.$$

Then Y has codimension > k+n+1 because all function germ $f \in \mathfrak{M}(1; k+n)$ with $j^l f(0) \in Y$ is adjacent to one of the above list which are simple. Then we have that

$$O'' = \left\{ F \in C^{\infty}(U, \mathbb{R}) \mid j_1^l F(U \cap \{x = 0\}) \cap Y = \emptyset \right\}.$$

We set $O = O' \cap O''$. Then O has the required condition.

Acknowledgments The author would like to thank the referee(s) for their useful comments and their useful suggestions.

References

- Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differential maps I, Birkhäuser, 1985.
- [2] Th. bröcker, Differentiable Germs and Catastrophes. London Math. Soc. Lecture Note Ser., 17, Cambridge Univ. Press, 1975.
- [3] Izumiya S., Perestroikas of Optical Wave fronts and Graphlike Legendrian Unfoldings. J. Diff. Geom. 38 (1993), 485–500.
- [4] Jänich K., Caustics and catastrophes, Math. Ann. 209 (1974), 161–180.
- [5] Tsukada T., Reticular Lagrangian, legendrian Singularities and their applications. PhD Thesis, Hokkaido University, 1999.
- [6] Tsukada T., Reticular Lagrangian Singularities. Asian J. Math. 1 (1997), 572–622.
- [7] Tsukada T., Reticular Legendrian Singularities. Asian J. Math. 5 (2001), 109–127.
- [8] Tsukada T., Bifurcations of Wavefronts on an r-corner I: Generating families. in preparation.
- [9] Tsukada T., Bifurcations of Wavefronts on an r-corner II: Stabilities and a generic classification. in preparation.
- [10] Wassermann G., *Stability of unfolding*. Lecture note in mathematics, **393**.
- [11] Wassermann G., Stability of unfolding in space and time. Acta Math. 135 (1975), 57–128.
- [12] Zakalyukin V.M., Reconstruction of fronts and caustics depending on a parameter and versality of mappings. J. of Soviet Math. 27 (1984), 2713– 2735.

Higashijujo 3-1-16 Kita-ku Tokyo 114-0001 Japan E-mail: tsukada@math.chs.nihon-u.ac.jp

 \square