# A generic classification of function germs with respect to the reticular $t-\mathcal{P}-\mathcal{K}$-equivalence 

Takaharu Tsukada<br>(Received October 10, 2007; Revised February 19, 2008)


#### Abstract

We investigate several stabilities and a genericity of function germs with respect to the reticular $t-\mathcal{P}-\mathcal{K}$-equivalence.


Key words: Legendrian Singularity, Contact Manifold, Mather theory, Singularity

## 1. Introduction

In [3], S. Izumiya introduced the equivalence relation ' $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalence' of function germs in order to classify 'generic Legendrian unfoldings'. The classification list is given in [12] by V. M. Zakalyukin who classified quasi-homogeneous function germs.

In this paper we introduce a more general equivalence relation 'reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalence' of function germs in $\mathfrak{M}(r ; k+n+m)$ and give a generic classification in the case $r=0, n \leq 5, m \leq 1$ and $r=1, n \leq 3, m \leq 1$ respectively. Our one is for not only quasi-homogeneous function germs but also all smooth function germs. Our work in this paper will play an important role in a generic classification of bifurcations of wave fronts generated by a hypersurface germ with a boundary ([8], [9]).

Let $\mathbb{H}^{r}=\left\{\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{R}^{r} \mid x_{1} \geq 0, \ldots, x_{r} \geq 0\right\}$ be an $r$-corner. We consider a equivalence relation of the set $\mathcal{E}(r ; k+n+m)$ of function germs on $\left(\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}, 0\right)$. Function germs $F, G \in \mathcal{E}(r ; k+n+m)$ are called reticular $t$ - $\mathcal{P}-\mathcal{K}$-equivalent if there exist a diffeomorphism germ $\Phi$ on $\left(\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}, 0\right)$ and a unit $\alpha \in \mathcal{E}(r ; k+n+m)$ such that
(1) $\Phi$ can be written in the form:

$$
\begin{aligned}
\Phi(x, y, u, t)= & \left(x_{1} \phi_{1}^{1}(x, y, u, t), \ldots, x_{r} \phi_{1}^{r}(x, y, u, t),\right. \\
& \left.\phi_{2}(x, y, u, t), \phi_{3}(u, t), \phi_{4}(t)\right),
\end{aligned}
$$

(2) $G(x, y, u, t)=\alpha(x, y, u, t) \cdot F \circ \Phi(x, y, u, t)$ for all $(x, y, u, t) \in\left(\mathbb{H}^{r} \times\right.$ $\left.\mathbb{R}^{k+n+m}, 0\right)$.

We investigate stabilities and a genericity of function germs under this equivalence relation. The main result is the following (Theorem 4.7):

Let $r=0, n \leq 5$ or $r=1, n \leq 3$ and $U$ be a neighborhood of 0 in $\mathbb{H}^{r} \times \mathbb{R}^{k+n+1}$. Then there exists a residual set $O \subset C^{\infty}(U, \mathbb{R})$ with $C^{\infty}$ topology such that for any $\tilde{F} \in O$ and $\left(0, y_{0}, u_{0}, t_{0}\right) \in U$, the function germ $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+1)$ given by $F(x, y, u, t)=\tilde{F}\left(x, y+y_{0}, u+u_{0}, t+\right.$ $\left.t_{0}\right)-\tilde{F}\left(0, y_{0}, u_{0}, t_{0}\right)$ is reticular $t-\mathcal{P}-\mathcal{K}$-stable unfolding of $\left.F\right|_{t=0}$ and stably reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to one of the types:
In the case $r=0, n \leq 5:{ }^{0} A_{l}(0 \leq l \leq 5),{ }^{0} D_{4}^{ \pm},{ }^{0} D_{5},{ }^{1} A_{l}(1 \leq l \leq 6),{ }^{1} D_{4}^{ \pm}$, ${ }^{1} D_{5},{ }^{1} D_{6}^{ \pm}$, and ${ }^{1} E_{6}$.
In the case $r=1, n \leq 3:{ }^{0} A_{1},{ }^{0} A_{2},{ }^{0} A_{3},{ }^{0} B_{1},{ }^{0} B_{2},{ }^{0} B_{3},{ }^{0} C_{3}^{ \pm},{ }^{1} A_{2},{ }^{1} A_{3},{ }^{1} A_{4}$, ${ }^{1} D_{4}^{ \pm},{ }^{1} B_{1},{ }^{1} B_{2},{ }^{1} B_{3},{ }^{1} B_{4},{ }^{1} C_{3}^{ \pm},{ }^{1} C_{4}$, and ${ }^{1} F_{4}$.

This paper consists of three sections. In Section 2 we define notations and review stabilities of unfoldings under the reticular $\mathcal{P}$ - $\mathcal{K}$-equivalence relation. In Section 3 we investigate stabilities of unfoldings under the reticular $t-\mathcal{P}$ - $\mathcal{K}$-equivalence relation. In Section 4 we give a generic classification of function germs under the equivalence relation.

## 2. Preliminaries

We denote by $\mathcal{E}\left(r ; k_{1}, r ; k_{2}\right)$ the set of all germs at 0 in $\mathbb{H}^{r} \times \mathbb{R}^{k_{1}}$ of smooth maps $\mathbb{H}^{r} \times \mathbb{R}^{k_{1}} \rightarrow \mathbb{H}^{r} \times \mathbb{R}^{k_{2}}$ and set $\mathfrak{M}\left(r ; k_{1}, r ; k_{2}\right)=\{f \in$ $\left.\mathcal{E}\left(r ; k_{1}, r ; k_{2}\right) \mid f(0)=0\right\}$. We denote $\mathcal{E}\left(r ; k_{1}, k_{2}\right)$ for $\mathcal{E}\left(r ; k_{1}, 0 ; k_{2}\right)$ and denote $\mathfrak{M}\left(r ; k_{1}, k_{2}\right)$ for $\mathfrak{M}\left(r ; k_{1}, 0 ; k_{2}\right)$.

If $k_{2}=1$ we write simply $\mathcal{E}(r ; k)$ for $\mathcal{E}(r ; k, 1)$ and $\mathfrak{M}(r ; k)$ for $\mathfrak{M}(r ; k, 1)$. Then $\mathcal{E}(r ; k)$ is an $\mathbb{R}$-algebra in the usual way and $\mathfrak{M}(r ; k)$ is its unique maximal ideal. We also denote by $\mathcal{E}(k)$ for $\mathcal{E}(0 ; k)$ and $\mathfrak{M}(k)$ for $\mathfrak{M}(0 ; k)$.

We denote by $J^{l}(r+k, p)$ the set of $l$-jets at 0 of germs in $\mathcal{E}(r ; k, p)$. There are natural projections:
$\pi_{l}: \mathcal{E}(r ; k, p) \longrightarrow J^{l}(r+k, p), \quad \pi_{l_{2}}^{l_{1}}: J^{l_{1}}(r+k, p) \longrightarrow J^{l_{2}}(r+k, p)\left(l_{1}>l_{2}\right)$.
We write $j^{l} f(0)$ for $\pi_{l}(f)$ for each $f \in \mathcal{E}(r ; k, p)$.
Let $(x, y)=\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{k}\right)$ be a fixed coordinate system of $\left(\mathbb{H}^{r} \times\right.$
$\left.\mathbb{R}^{k}, 0\right)$. We denote by $\mathcal{B}(r ; k)$ the group of diffeomorphism germs $\left(\mathbb{H}^{r} \times\right.$ $\left.\mathbb{R}^{k}, 0\right) \rightarrow\left(\mathbb{H}^{r} \times \mathbb{R}^{k}, 0\right)$ of the form:

$$
\phi(x, y)=\left(x_{1} \phi_{1}^{1}(x, y), \ldots, x_{r} \phi_{1}^{r}(x, y), \phi_{2}^{1}(x, y), \ldots, \phi_{2}^{k}(x, y)\right)
$$

We denote by $\mathcal{B}_{n}(r ; k+n)$ the group of diffeomorphism germs $\left(\mathbb{H}^{r} \times\right.$ $\left.\mathbb{R}^{k+n}, 0\right) \rightarrow\left(\mathbb{H}^{r} \times \mathbb{R}^{k+n}, 0\right)$ of the form:

$$
\begin{aligned}
\phi(x, y, u)= & \left(x_{1} \phi_{1}^{1}(x, y, u), \ldots, x_{r} \phi_{1}^{r}(x, y, u),\right. \\
& \left.\phi_{2}^{1}(x, y, u), \ldots, \phi_{2}^{k}(x, y, u), \phi_{3}^{1}(u), \ldots, \phi_{3}^{n}(u)\right) .
\end{aligned}
$$

We denote by $\mathcal{B}_{n}^{l}(r ; k+n)$ the Lie group of $l$-jets at 0 of germs in $\mathcal{B}_{n}(r ; k+n)$. This group acts on $J^{l}(r+k+n, 1)$ by the composition.

Lemma 2.1 (cf. [11, Corollary 1.8]) Let $B$ be a submodule of $\mathcal{E}(r ; k+n+$ $m), A_{1}$ be a finitely generated $\mathcal{E}(m)$ submodule of $\mathcal{E}(r ; k+n+m)$ generated $d$-elements, and $A_{2}$ be a finitely generated $\mathcal{E}(n+m)$ submodule of $\mathcal{E}(r ; k+$ $n+m$ ). Suppose

$$
\begin{aligned}
\mathcal{E}(r ; k+n+m)= & B+A_{2}+A_{1}+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) \\
& +\mathfrak{M}(n+m)^{d+1} \mathcal{E}(r ; k+n+m)
\end{aligned}
$$

Then

$$
\begin{gathered}
\mathcal{E}(r ; k+n+m)=B+A_{2}+A_{1} \\
\mathfrak{M}(n+m)^{d} \mathcal{E}(r ; k+n+m) \subset B+A_{2}+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) .
\end{gathered}
$$

We recall the stabilities of $n$-dimensional unfolding under reticular $\mathcal{P}$ -$\mathcal{K}$-equivalence which is developed in [7].

We say that $f_{0}, g_{0} \in \mathcal{E}(r ; k)$ are reticular $\mathcal{K}$-equivalent if there exist $\phi \in \mathcal{B}(r ; k)$ and a unit $a \in \mathcal{E}(r ; k)$ such that $g_{0}=a \cdot f_{0} \circ \phi$. We write $O_{r \mathcal{K}}\left(f_{0}\right)$ the orbit of $f_{0}$ under this equivalence relation.

Lemma 2.2 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ and $O_{r \mathcal{K}}^{l}\left(j^{l} f_{0}(0)\right)$ be the submanifold of $J^{l}(r+k, 1)$ consist of the image by $\pi_{l}$ of the orbit of reticular $\mathcal{K}$-equivalence of $f_{0}$. Put $z=j^{l} f_{0}(0)$. Then
$T_{z}\left(O_{r \mathcal{K}}^{l}(z)\right)=\pi_{l}\left(\left\langle f_{0}, x_{1} \frac{\partial f_{0}}{\partial x_{1}}, \ldots, x_{r} \frac{\partial f_{0}}{\partial x_{r}}\right\rangle_{\mathcal{E}(r ; k)}+\mathfrak{M}(r ; k)\left\langle\frac{\partial f_{0}}{\partial y_{1}}, \ldots, \frac{\partial f_{0}}{\partial y_{k}}\right\rangle\right)$.
We say that a function germ $f_{0} \in \mathfrak{M}(r ; k)$ is reticular $\mathcal{K}$-l-determined if all function germ which has same $l$-jet of $f_{0}$ is reticular $\mathcal{K}$-equivalent to $f_{0}$. If $f_{0}$ is reticular $\mathcal{K}$-l-determined for some $l$, then we say that $f_{0}$ is reticular $\mathcal{K}$-finitely determined.

We denote $x \frac{\partial f_{0}}{\partial x}$ for $\left(x_{1} \frac{\partial f_{0}}{\partial x_{1}}, \ldots, x_{r} \frac{\partial f_{0}}{\partial x_{r}}\right)$ and $\frac{\partial f_{0}}{\partial y}$ for $\left(\frac{\partial f_{0}}{\partial y_{1}}, \ldots, \frac{\partial f_{0}}{\partial y_{k}}\right)$, and denote other notations analogously.

Lemma 2.3 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ and let

$$
\mathfrak{M}(r ; k)^{l+1} \subset \mathfrak{M}(r ; k)\left(\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}\right\rangle+\mathfrak{M}(r ; k)\left\langle\frac{\partial f_{0}}{\partial y}\right\rangle\right)+\mathfrak{M}(r ; k)^{l+2}
$$

then $f_{0}$ is reticular $\mathcal{K}$-l-determined. Conversely if $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ is reticular $\mathcal{K}$-l-determined, then

$$
\mathfrak{M}(r ; k)^{l+1} \subset\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}\right\rangle_{\mathcal{E}(r ; k)}+\mathfrak{M}(r ; k)\left\langle\frac{\partial f_{0}}{\partial y}\right\rangle
$$

Let $f(x, y, u) \in \mathfrak{M}\left(r ; k+n_{1}\right), g(x, y, v) \in \mathfrak{M}\left(r ; k+n_{2}\right)$ be unfoldings of $f_{0}(x, y) \in \mathfrak{M}(r ; k)$. We say that $g$ is reticular $\mathcal{P}-\mathcal{K}$ - $f_{0}$-induced from $f$ if there exist $\Phi \in \mathfrak{M}\left(r ; k+n_{2}, r ; k+n_{1}\right)$ and $\alpha \in \mathcal{E}\left(r ; k+n_{2}\right)$ satisfying the following conditions:
(1) $\Phi(x, y, 0)=(x, y, 0), \alpha(x, y, 0)=1$ for all $(x, y) \in\left(\mathbb{H}^{r} \times \mathbb{R}^{k}, 0\right)$,
(2) $\Phi$ can be written in the form:

$$
\Phi(x, y, v)=\left(x_{1} \phi_{1}^{1}(x, y, v), \ldots, x_{r} \phi_{1}^{r}(x, y, v), \phi_{2}(x, y, v), \phi_{3}(v)\right)
$$

(3) $g(x, y, v)=\alpha(x, y, v) \cdot f \circ \Phi(x, y, v)$ for all $(x, y, v) \in\left(\mathbb{H}^{r} \times \mathbb{R}^{k+n_{2}}, 0\right)$. We denote $\Phi(x, y, v)=\left(x \phi_{1}(x, y, v), \phi_{2}(x, y, v), \phi_{3}(v)\right)$.

We say that $f, g \in \mathcal{E}(r ; k+n)$ are reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent if there exist $\Phi \in \mathcal{B}_{n}(r ; k+n)$ and a unit $\alpha \in \mathcal{E}(r ; k+n)$ such that $g=\alpha \cdot f \circ \Phi$. We call $(\Phi, \alpha)$ a reticular $\mathcal{P}$ - $\mathcal{K}$-isomorphism from $f$ to $g$. We write $O_{r \mathcal{P}-\mathcal{K}}(f)$ the orbit of $f$ under this equivalence relation.

Definition 2.4 We recall the definition of several stabilities of unfoldings under the reticular $\mathcal{P}$ - $\mathcal{K}$-equivalence. Let $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ be an unfolding of $f_{0}(x, y) \in \mathfrak{M}(r ; k)$.

We say that $f$ is reticular $\mathcal{P}-\mathcal{K}$-stable if the following condition holds: For any neighborhood $U$ of 0 in $\mathbb{R}^{r+k+n}$ and any representative $\tilde{f} \in C^{\infty}(U, \mathbb{R})$ of $f$, there exists a neighborhood $N_{\tilde{f}}$ of $\tilde{f}$ in $C^{\infty}(U, \mathbb{R})$ with $C^{\infty}$-topology such that for any element $\tilde{g} \in N_{\tilde{f}}$ the germ $\left.\tilde{g}\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n}}$ at $\left(0, y_{0}, u_{0}\right)$ is reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent to $f$ for some $\left(0, y_{0}, u_{0}\right) \in U$.

We say that $f$ is reticular $\mathcal{P}$ - $\mathcal{K}$-versal if any unfolding of $f_{0}$ is reticular $\mathcal{P}-\mathcal{K}$ - $f_{0}$-induced from $f$.

We say that $f$ is reticular $\mathcal{P}$ - $\mathcal{K}$-infinitesimally versal if

$$
\mathcal{E}(r ; k)=\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathcal{E}(r ; k)}+\left\langle\left.\frac{\partial f}{\partial u}\right|_{u=0}\right\rangle_{\mathbb{R}}
$$

We say that $f$ is reticular $\mathcal{P}-\mathcal{K}$-infinitesimally stable if

$$
\mathcal{E}(r ; k+n)=\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}
$$

We say that $f$ is reticular $\mathcal{P}$ - $\mathcal{K}$-homotopically stable if for any smooth path-germ $(\mathbb{R}, 0) \rightarrow \mathcal{E}(r ; k+n), t \mapsto f^{t}$ with $f^{0}=f$, there exists a smooth path-germ $(\mathbb{R}, 0) \rightarrow \mathcal{B}_{n}(r ; k+n) \times \mathcal{E}(r ; k+n), t \mapsto\left(\Phi_{t}, \alpha_{t}\right)$ with $\left(\Phi_{0}, \alpha_{0}\right)=$ $(i d, 1)$ such that each $\left(\Phi_{t}, \alpha_{t}\right)$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-isomorphism from $f^{0}$ to $f^{t}$, that is $f^{t}=\alpha_{t} \cdot f^{0} \circ \Phi_{t}$.

Theorem 2.5 Let $f \in \mathfrak{M}(r ; k+n)$ be an unfolding of $f_{0} \in \mathfrak{M}(r ; k)$. Then the following are equivalent.
(1) $f$ is reticular $\mathcal{P}-\mathcal{K}$-stable.
(2) $f$ is reticular $\mathcal{P}-\mathcal{K}$-versal.
(3) $f$ is reticular $\mathcal{P}-\mathcal{K}$-infinitesimally versal.
(4) $f$ is reticular $\mathcal{P}-\mathcal{K}$-infinitesimally stable.
(5) $f$ is reticular $\mathcal{P}-\mathcal{K}$-homotopically stable.

For $f_{0}(x, y) \in \mathfrak{M}(r ; k)$, if $a_{1}, \ldots, a_{n} \in \mathcal{E}(r ; k)$ is a representative of a basis of the vector space

$$
\mathcal{E}(r ; k) /\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathcal{E}(r ; k)}
$$

then the function germ $f_{0}+a_{1} u_{1}+\cdots+a_{n} u_{n} \in \mathfrak{M}(r ; k+n)$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f_{0}$.

Proposition 2.6 Let $f_{0} \in \mathfrak{M}(r ; k)$. Then $f_{0}$ has a reticular $\mathcal{P}$ - $\mathcal{K}$-stable unfolding if and only if $f_{0}$ is reticular $\mathcal{K}$-finitely determined.

## 3. Reticular $t-\mathcal{P}-\mathcal{K}$-stabilities of unfoldings

The right-left- $(n, m)$-stabilities of $m$-dimensional unfoldings of $n$ dimensional unfoldings of function germs is studied by G. Wassermann in [11]. In this section we study stabilities of $m$-dimensional unfoldings of $n$-dimensional unfoldings of function germs under the reticular $t$ $\mathcal{P}$ - $\mathcal{K}$-equivalence which should be called reticular $(n, m)$ - $\mathcal{K}$-equivalence in G. Wassermann's notation.

Lemma 3.1 Let $f(x, y, u) \in \mathcal{E}(r ; k+n)$ and set $z=j^{l} f(0)$. Let $O_{r \mathcal{P}-\mathcal{K}}^{l}(z)$ be the submanifold of $J^{l}(r+k+n, 1)$ consist of the image by $\pi_{l}$ of the orbit of reticular $\mathcal{P}$ - $\mathcal{K}$-equivalence of $f_{0}$. Then
$T_{z}\left(O_{r \mathcal{P}-\mathcal{K}}^{l}(z)\right)=\pi_{l}\left(\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle\right)$.

Here we give the definitions of stabilities of unfoldings under the equivalence relation 'reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalence' and prove that these definitions are all equivalent.

Let $F(x, y, u, t) \in \mathfrak{M}\left(r ; k+n+m_{1}\right)$ and $G(x, y, u, s) \in \mathfrak{M}\left(r ; k+n+m_{2}\right)$ be unfoldings of $f(x, y, u) \in \mathfrak{M}(r ; k+n)$.

A reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-morphism from $G$ to $F$ is a pair $(\Phi, \alpha)$, where $\Phi \in$ $\mathfrak{M}\left(r ; k+n+m_{2}, r ; k+n+m_{1}\right)$ and $\alpha$ is a unit of $\mathcal{E}\left(r ; k+n+m_{2}\right)$, satisfying the following conditions:
(1) $\Phi$ can be written in the form: $\Phi(x, y, u, s)=\left(x \phi_{1}(x, y, u, s)\right.$, $\left.\phi_{2}(x, y, u, s), \phi_{3}(u, s), \phi_{4}(s)\right)$,
(2) $\left.\Phi\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n}}=i d_{\mathbb{H}^{r} \times \mathbb{R}^{k+n}},\left.\alpha\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n}} \equiv 1$
(3) $G(x, y, u, s)=\alpha(x, y, u, s) \cdot F \circ \Phi(x, y, u, s)$ for all $(x, y, u, s) \in\left(\mathbb{H}^{r} \times\right.$ $\left.\mathbb{R}^{k+n+m_{2}}, 0\right)$.

If there exists a reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-morphism from $F$ to $G$, we say that $G$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-induced from $F$. If $m_{1}=m_{2}$ and $\Phi$ is invertible, we call $(\Phi, \alpha)$ a reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-isomorphism from $F$ to $G$ and we say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-equivalent to $G$.

Let $U$ be a neighborhood of 0 in $\mathbb{R}^{r+k+n+m}$ and let $F: U \rightarrow \mathbb{R}$ be a smooth function and $q$ be a non-negative integer. We define the smooth map germ

$$
j_{1}^{q} F: U \longrightarrow J^{q}(r+k+n, 1)
$$

as the follow: For $(x, y, u, t) \in U$ we set $j_{1}^{q} F(x, y, u, t)$ by the $l$-jet of the function germ $\tilde{F}_{(x, y, u, t)} \in \mathfrak{M}(r ; k+n)$ at 0 , where $\tilde{F}_{(x, y, u, t)}$ is given by $\tilde{F}_{(x, y, u, t)}\left(x^{\prime}, y^{\prime}, u^{\prime}\right)=F\left(x+x^{\prime}, y+y^{\prime}, u+u^{\prime}, t\right)-F(x, y, u, t)$.

Theorem 3.2 Let $U$ be a neighborhood of 0 in $\mathbb{R}^{r+k+n+m}$ and $A$ be a smooth submanifold of $J^{q}(r+k+n, 1)$. We define

$$
T_{A}=\left\{F \in C^{\infty}(U, \mathbb{R})\left|j_{1}^{q} F\right|_{x=0} \text { is transversal to } A\right\}
$$

Then $T_{A}$ is dense in $C^{\infty}(U, \mathbb{R})$.
The transversality we used is a slightly different for the ordinary one [10], however we can also prove this theorem by the method which is the same as the ordinary method.

Definition 3.3 We define stabilities of unfoldings. Let $F(x, y, u, t) \in$ $\mathfrak{M}(r ; k+n+m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r ; k+n)$.

Let $q$ be a non-negative integer and $z=j^{q} f(0)$. We say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal unfolding of $f$ if the $\left.j_{1}^{q} F\right|_{x=0}$ at 0 is transversal to $O_{r \mathcal{P}-\mathcal{K}}^{q}(z)$.

We say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-stable unfolding of $f$ if the following condition holds: For any neighborhood $U$ of 0 in $\mathbb{R}^{r+k+n+m}$ and any representative $\tilde{F} \in C^{\infty}(U, \mathbb{R})$ of $F$, there exists a neighborhood $N_{\tilde{F}}$ of $\tilde{F}$ in $C^{\infty}(U, \mathbb{R})$ with $C^{\infty}$-topology such that for any element $\tilde{G} \in N_{\tilde{F}}$ the germ $\left.\tilde{G}\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}}$ at $\left(0, y_{0}, u_{0}, t_{0}\right)$ is reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to $F$ for some $\left(0, y_{0}, u_{0}, t_{0}\right) \in U$.

We say that $F$ is a reticular $t-\mathcal{P}-\mathcal{K}$-versal unfolding of $f$ if any unfolding
of $f$ is reticular $t-\mathcal{P}-\mathcal{K}-f$-induced from $F$.
We say that $F$ is a reticular $t-\mathcal{P}-\mathcal{K}$-universal unfolding of $f$ if $m$ is minimal in reticular $t-\mathcal{P}$ - $\mathcal{K}$-versal unfoldings of $f$.

We say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally versal if

$$
\mathcal{E}(r ; k+n)=\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}
$$

We say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable if

$$
\begin{align*}
\mathcal{E} & (r ; k+n+m) \\
& =\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)} \tag{2}
\end{align*}
$$

We say that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-homotopically stable if for any smooth path-germ $(\mathbb{R}, 0) \rightarrow \mathcal{E}(r ; k+n+m), \tau \mapsto F_{\tau}$ with $F_{0}=F$, there exists a smooth path-germ $(\mathbb{R}, 0) \rightarrow \mathcal{B}(r, k+n+m) \times \mathcal{E}(r ; k+n+m), \tau \mapsto\left(\Phi_{\tau}, \alpha_{\tau}\right)$ with $\left(\Phi_{0}, \alpha_{0}\right)=(i d, 1)$ such that each $\left(\Phi_{\tau}, \alpha_{\tau}\right)$ is a reticular $t-\mathcal{P}-\mathcal{K}$ isomorphism and $F_{\tau}=\alpha_{\tau} \cdot F_{0} \circ \Phi_{\tau}$ for $\tau \in(\mathbb{R}, 0)$.

For a function germ $f(x, y, u) \in \mathcal{E}(r ; k+n)$, we define that

$$
T_{e}(r \mathcal{P}-\mathcal{K})(f)=\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}
$$

and define that $r \mathcal{P}-\mathcal{K}-\operatorname{cod} f=\operatorname{dim}_{\mathbb{R}} \mathcal{E}(r ; k+n) / T_{e}(r \mathcal{P}-\mathcal{K})(f)$.
Lemma 3.4 Let $F(x, y, u, t) \in \mathcal{E}(r ; k+n+m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ and $q$ be a non-negative integer.


$$
\mathcal{E}(r ; k+n)=T_{e}(r \mathcal{P}-\mathcal{K})(f)+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}+\mathfrak{M}(r ; k+n)^{q+1}
$$

We remark that if $F$ is reticular $t-\mathcal{P}-\mathcal{K}-q$-transversal then $F$ is also reticular $t-\mathcal{P}-\mathcal{K}-q^{\prime}$-transversal for any $q^{\prime} \leq q$.

Proof of the lemma. By an immediate calculation, we have

$$
\begin{aligned}
T\left(\left.j_{1}^{q} F\right|_{x=0}\right)\left(T_{0} \mathbb{R}^{k+n+m}\right) & =\left\langle j^{q} \frac{\partial f}{\partial y}(0), j^{q} \frac{\partial f}{\partial u}(0),\left.j^{q} \frac{\partial F}{\partial t}\right|_{t=0}(0)\right\rangle_{\mathbb{R}} \\
& =\pi_{q}\left(\left\langle\frac{\partial f}{\partial y}, \frac{\partial f}{\partial u},\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}\right)
\end{aligned}
$$

Therefore
$F$ is a reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal

$$
\begin{aligned}
& \Leftrightarrow J^{q}(r+k+n, 1)=T_{j^{q} f(0)}\left(O_{r \mathcal{P}-\mathcal{K}}^{q}\left(j^{q} f(0)\right)\right)+T\left(\left.j_{1}^{q} F\right|_{x=0}\right)\left(T_{0} \mathbb{R}^{k+n+m}\right) \\
& \Leftrightarrow J^{q}(r+k+n, 1)=\pi_{q}\left(\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle\right. \\
& \left.+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle\right)+\pi_{q}\left(\left\langle\frac{\partial f}{\partial y}, \frac{\partial f}{\partial u},\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}\right) \\
& \Leftrightarrow J^{q}(r+k+n, 1)=\pi_{q}\left(\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}\right. \\
& \left.+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}\right) \\
& \Leftrightarrow \mathcal{E}(r ; k+n)=\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}} \\
& +\mathfrak{M}(r ; k+n)^{q+1} .
\end{aligned}
$$

Proposition 3.5 Let $F, G \in \mathfrak{M}(r ; k+n+m)$ and $q$ be a non-negative integer. Suppose that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to $G$. If $F$ is reticular $t-\mathcal{P}-\mathcal{K}-q-t r a n s v e r s a l$, then $G$ is also reticular $t-\mathcal{P}-\mathcal{K}-q-t r a n s v e r s a l$.

Theorem 3.6 (cf. [11, Theorem 3.6]) Let $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ be an unfolding of $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ and $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+m)$ be an unfolding of $f$. Suppose $f_{0}$ is reticular $\mathcal{K}$-finitely determined. Choose an integer $l$ such that

$$
\begin{equation*}
\mathfrak{M}(r ; k)^{l+1} \subset\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}\right\rangle_{\mathcal{E}(r ; k)}+\mathfrak{M}(r ; k)\left\langle\frac{\partial f_{0}}{\partial y}\right\rangle \tag{3}
\end{equation*}
$$

Let $q \geq l m+l+m$. Then the following are equivalent.
(a) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable.
(b) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally versal.
(c)

$$
\begin{aligned}
\mathcal{E}(r ; k+n)= & \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}} \\
& +\mathfrak{M}(n)^{m+1} \mathcal{E}(r ; k+n)+\mathfrak{M}(r ; k+n)^{q+1}
\end{aligned}
$$

Proof. It is enough to prove (c) $\Rightarrow$ (a). Since $\left.f\right|_{u=0}=f_{0}$ it follows that $\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathcal{E}(r ; k)} \subset\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(n) \mathcal{E}(r ; k+n)$. Since $\mathfrak{M}(r ; k+n)^{l+1} \subset \mathfrak{M}(r ; k)^{l+1}+\mathfrak{M}(n) \mathcal{E}(r ; k+n)$ it follows that $\mathfrak{M}(r ; k+$ $n)^{q+1} \subset \mathfrak{M}(r ; k+n)^{(l+1)(m+1)} \subset\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(n)^{m+1} \mathcal{E}(r ; k+n)$. Therefore we may drop the term $\mathfrak{M}(r ; k+n)^{q+1}$ from the right-hand side of (c). Then the following holds:

$$
\begin{aligned}
\mathcal{E}(r ; k+n+m)= & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)} \\
& +\mathfrak{M}(n+m)^{m+1} \mathcal{E}(r ; k+n+m)+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m)
\end{aligned}
$$

Then the assumption of Lemma 2.1 holds for $B=\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}$, $A_{2}=\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}, A_{1}=\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)}$ and $m=d$. Hence we have (a).

The following two lemma's can be proved by almost parallel methods of the corresponding assertions in [11].

Lemma 3.7 (cf. [11, Corollary 3.7]) Let $F(x, y, u, t) \in \mathfrak{M}\left(r ; k+n+m_{1}\right)$ and $G(x, y, u, t, s) \in \mathfrak{M}\left(r ; k+n+m_{1}+m_{2}\right)$ and suppose $\left.G\right|_{s=0}=F$. If $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable, then $G$ is also reticular $t-\mathcal{P}-\mathcal{K}$ infinitesimally stable.

Lemma 3.8 (cf. [11, Theorem 3.8]) Let $F, G \in \mathfrak{M}(r ; k+n+m)$. If $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable and if $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to $G$, then $G$ is also reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable.

Lemma 3.9 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ be a reticular $\mathcal{K}$-l-determined function germ. Let $q \geq l m+l+m$. If $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+m)$ unfold $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ and $f_{0}$, and if $F$ is a reticular t-P-K-q-transversal, then the following holds:

$$
\mathfrak{M}(r ; k+n)^{q+1} \subset\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle .
$$

Proof. By Lemma 2.3, we have that $\mathfrak{M}(r ; k)^{l+1} \subset\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}\right\rangle_{\mathcal{E}(r ; k)}+$ $\mathfrak{M}(r ; k)\left\langle\frac{\partial f_{0}}{\partial y}\right\rangle$. It follows as the proof of Lemma 3.6 that
$\mathfrak{M}(r ; k+n)^{q+1} \subset\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)^{m+1} \mathcal{E}(r ; k+n)$.
Therefore we have that

$$
\begin{aligned}
\mathfrak{M}(r ; k+n)^{q+1} \subset & \left\langle F, x \frac{\partial F}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\mathfrak{M}(r ; k+n+m)\left\langle\frac{\partial F}{\partial y}\right\rangle \\
& +\mathfrak{M}(n+m)^{m+1} \mathcal{E}(r ; k+n+m)+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) .
\end{aligned}
$$

This means that

$$
\begin{aligned}
& \mathcal{E}(r ; k+n+m) \\
& \quad \subset \mathcal{E}(r ; k+n)+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) \\
& \subset \\
& \subset\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}} \\
& \quad+\mathfrak{M}(r ; k+n)^{q+1}+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) \\
& \subset \\
& \subset\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)} \\
& \quad+\mathfrak{M}(n+m)^{m+1} \mathcal{E}(r ; k+n+m)+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) .
\end{aligned}
$$

We apply $B=\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}, A_{2}=\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}, A_{1}=\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)}$ and $m=d$ for Lemma 2.1. Then we have that

$$
\begin{aligned}
& \mathfrak{M}(n+m)^{m} \mathcal{E}(r ; k+n+m) \\
& \quad \subset\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) .
\end{aligned}
$$

Restrict this equation on $t=0$, then we have that

$$
\mathfrak{M}(n)^{m} \mathcal{E}(r ; k+n) \subset\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}
$$

From this equation and the equation (4), we have the result.
Let $q$ be a non-negative integer. We say that a function germ $f \in$ $\mathfrak{M}(r ; k+n)$ is reticular $\mathcal{P}-\mathcal{K}$ - $q$-determined if all function germ which has same $q$-jet of $f$ is reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent to $f$.

Lemma 3.10 Let $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ and $q$ be a non-negative integer. If

$$
\begin{align*}
\mathfrak{M}(r ; k+n)^{q} \subset & \left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle \\
& +\mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \tag{5}
\end{align*}
$$

then $f$ is reticular $\mathcal{P}-\mathcal{K}-q$-determined.
Proof. Let a germ $g(x, y, u) \in \mathcal{E}(r ; k+n)$ with the same $q$-jet of $f$ be given. We have to show that there exists a germ $\phi \in \mathcal{B}_{n}(r ; k+n)$ and $\alpha \in \mathcal{E}(r ; k+n)$ such that $g$ has the form $g(x, y, u)=\alpha(x, y, u) f \circ \phi(x, y, u)$. By the restriction of (5) to $u=0$, we have that $f(x, y, 0) \in \mathcal{E}(r ; k)$ is reticular $\mathcal{K}$ - $q$-determined by Lemma 2.3. It follows that there exist $\phi^{\prime}(x, y) \in \mathcal{B}(r ; k)$ and a unit $a \in \mathcal{E}(r ; k)$ such that $f(x, y, 0)=a(x, y) g\left(\phi^{\prime}(x, y), 0\right)$. Therefore we may assume that $f(x, y, 0)=g(x, y, 0)$. Hence we may assume that $f-g \in \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q}$.

Define the one-parameter family $F$ connect $f$ and $g$ by $F(x, y, u, \tau)=$ $(1-\tau) f(x, y, u)+\tau g(x, y, u), \tau \in[0,1]$ and set $F_{\tau_{0}} \in \mathcal{E}(r ; k+n+1)$ by $F_{\tau_{0}}(x, y, u, \tau)=F\left(x, y, u, \tau_{0}+\tau\right)$ for $\tau_{0} \in[0,1]$.

By using the same methods of the Mather theorem (see [10, p. 37]), we need only to show that

$$
\begin{aligned}
\frac{\partial F_{\tau_{0}}}{\partial \tau} \in & \mathfrak{M}(n)\left\langle F_{\tau_{0}}, x \frac{\partial F_{\tau_{0}}}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n+1)} \\
& +\mathfrak{M}(n) \mathfrak{M}(r ; k+n)\left\langle\frac{\partial F_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+1)}+\mathfrak{M}(n)^{2}\left\langle\frac{\partial F_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+1)}
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
& \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) \\
& =\mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q}(\mathcal{E}(r ; k+n)+\mathfrak{M}(1) \mathcal{E}(r ; k+n+1)) \\
& =\mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q}+\mathfrak{M}(1) \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) \\
& \subset \mathfrak{M}(n)\left(\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle\right. \\
& \left.+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle+\mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q}\right) \\
& +\mathfrak{M}(1) \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) \\
& \subset \mathfrak{M}(n)\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n+1)}+\mathfrak{M}(n) \mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+1)} \\
& +\mathfrak{M}(n)^{2}\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n+1)}+\mathfrak{M}(n+1) \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) \\
& \subset \mathfrak{M}(n)\left\langle F_{\tau_{0}}, x \frac{\partial F_{\tau_{0}}}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n+1)}+\mathfrak{M}(n) \mathfrak{M}(r ; k+n)\left\langle\frac{\partial F_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+1)} \\
& +\mathfrak{M}(n)^{2}\left\langle\frac{\partial F_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+1)}+\mathfrak{M}(n+1) \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) .
\end{aligned}
$$

By the assumption (5), we have the first inclusion. For the last inclusion, observe that

$$
\begin{aligned}
x_{i} \frac{\partial F_{\tau_{0}}}{\partial x_{i}}-x_{i} \frac{\partial f}{\partial x_{i}} & =\left(\tau_{0}+\tau\right) x_{i} \frac{\partial}{\partial x_{i}}(g-f) \in \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q}, \\
\frac{\partial F_{\tau_{0}}}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} & =\left(\tau_{0}+\tau\right) \frac{\partial}{\partial y_{i}}(g-f) \in \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q-1} \\
\frac{\partial F_{\tau_{0}}}{\partial u_{i}}-\frac{\partial f}{\partial u_{i}} & =\left(\tau_{0}+\tau\right) \frac{\partial}{\partial u_{i}}(g-f) \in \mathfrak{M}(r ; k+n)^{q} .
\end{aligned}
$$

Since $\mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1)$ is a finitely generated $\mathcal{E}(r ; k+n+1)$ module, we have by Malgrange preparation theorem (see [11, p. 60 Theorem 1.6, Corollary 1.7]) that

$$
\begin{aligned}
& \frac{\partial F_{\tau_{0}}}{\partial \tau}=g-f \\
& \in \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \subset \mathfrak{M}(n) \mathfrak{M}(r ; k+n)^{q} \mathcal{E}(r ; k+n+1) \\
& \subset \mathfrak{M}(n)\left\langle F_{\tau_{0}}, x \frac{\partial F_{\tau_{0}}}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n+1)} \\
& \quad+\mathfrak{M}(n) \mathfrak{M}(r ; k+n)\left\langle\frac{\partial F_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+1)}+\mathfrak{M}(n)^{2}\left\langle\frac{\partial F_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+1)}
\end{aligned}
$$

Lemma 3.11 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ be a reticular $\mathcal{K}$-l-determined function germ. Let $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ unfold $f_{0}$ and suppose $m=r \mathcal{P}-\mathcal{K}$ $\operatorname{cod} f$ is a finite number. Let $q \geq l m+l+m$ and let $F(x, y, u, t), G(x, y, u, t) \in$ $\mathfrak{M}(r ; k+n+m)$ be reticular $t-\mathcal{P}-\mathcal{K}-q$-transversal unfolding of $f$. Then $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}-f$-equivalent.

Proof. By using analogous methods of the Mather theorem (see [10, the proof of p. 68 Lemma 3.16]), we need only to prove the following assertion: Suppose that $E_{\tau}(x, y, u, t)=(1-\tau) F(x, y, u, t)+\tau G(x, y, u, t) \in \mathcal{E}(r ; k+n+$ $m+1$ ) is reticular $t-\mathcal{P}-\mathcal{K}$-q-transversal unfolding of $f$ for all $\tau \in[0,1]$ and define $E_{\tau_{0}} \in \mathcal{E}(r ; k+n+m+1)$ by $E_{\tau_{0}}(x, y, t, u, \tau)=\left(1-\tau_{0}-\tau\right) F(x, y, u, t)+$ $\left(\tau_{0}+\tau\right) G(x, y, u, t)$ for $\tau_{0} \in[0,1]$. Then for all $\tau \in[0,1]$, the following holds

$$
\begin{aligned}
\mathcal{E}(r ; k+n+m+1)= & \left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}, \frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m+1)} \\
& +\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+m+1)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial t}\right\rangle_{\mathcal{E}(m+1)}
\end{aligned}
$$

Proof of this assertion Fix $\tau_{0} \in[0,1]$. Since $E_{\tau_{0}}$ is reticular $t-\mathcal{P}-\mathcal{K}-q-$ transversal, we have

$$
\begin{aligned}
\mathcal{E}(r ; k+n)= & \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)} \\
& +\left\langle\left.\frac{\partial E_{\tau_{0}}}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}+\mathfrak{M}(r ; k+n)^{q+1}
\end{aligned}
$$

By Lemma 3.9, we have that

$$
\mathfrak{M}(r ; k+n)^{q+1} \subset\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle .
$$

Therefore we have that

$$
\mathcal{E}(r ; k+n)=\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial E_{\tau_{0}}}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}
$$

Since $E_{\tau_{0}}(x, y, u, t)-f(x, y, u) \in \mathfrak{M}(m) \mathcal{E}(r ; k+n+m)$, we have that

$$
\begin{aligned}
\mathcal{E}(r ; & k+n+m) \\
= & \mathcal{E}(r ; k+n)+\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) \\
= & \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial E_{\tau_{0}}}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}} \\
& +\mathfrak{M}(m) \mathcal{E}(r ; k+n+m) \\
= & \left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}, \frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial t}\right\rangle_{\mathcal{E}(m)} \\
& +\mathfrak{M}(m) \mathcal{E}(r ; k+n+m)
\end{aligned}
$$

Therefore we have that

$$
\begin{aligned}
\mathcal{E}(r ; & k+n+m+1) \\
= & \mathcal{E}(r ; k+n+m)+\mathfrak{M}(1) \mathcal{E}(r ; k+n+m+1) \\
= & \left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}, \frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial t}\right\rangle_{\mathcal{E}(m)} \\
& +\mathfrak{M}(m) \mathcal{E}(r ; k+n+m)+\mathfrak{M}(1) \mathcal{E}(r ; k+n+m+1) \\
= & \left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}, \frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m+1)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+m+1)} \\
& +\left\langle\frac{\partial E_{\tau_{0}}}{\partial t}\right\rangle_{\mathcal{E}(m+1)}+\mathfrak{M}(m+1) \mathcal{E}(r ; k+n+m+1)
\end{aligned}
$$

By Malgrange preparation theorem, we have

$$
\begin{aligned}
\mathcal{E}(r ; k+n+m+1)= & \left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}, \frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m+1)} \\
& +\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle_{\mathcal{E}(n+m+1)}+\left\langle\frac{\partial E_{\tau_{0}}}{\partial t}\right\rangle_{\mathcal{E}(m+1)}
\end{aligned}
$$

Theorem 3.12 Let $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+m)$ unfold $f(x, y, u) \in$ $\mathfrak{M}(r ; k+n)$ and $f_{0}(x, y) \in \mathfrak{M}(r ; k)$. Suppose that $f_{0}$ is reticular $\mathcal{K}-l-$ determined and $q \geq l m+l+m+1$. Then the following are equivalent.
(1) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal.
(2) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-stable.
(3) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-versal.

Proof. Let $z=j^{q} f(0) .(1) \Rightarrow(2)$. Let $F$ be a reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal unfolding of $f$. Let $\tilde{F} \in C^{\infty}(U, \mathbb{R})$ be a representative of $F$. Set $V=$ $U \cap\left(\{0\} \times \mathbb{R}^{k+n+m}\right)$. Define

$$
\begin{aligned}
N_{\tilde{F}}=\{ & \tilde{G} \in C^{\infty}(U, \mathbb{R})\left|j_{1}^{q} \tilde{G}\right|_{x=0} \text { is transversal to } O_{r \mathcal{P}-\mathcal{K}}^{q}(z) \\
& \text { and } \left.\left.j_{1}^{q} \tilde{G}\right|_{x=0}(V) \cap O_{r \mathcal{P}-\mathcal{K}}^{q}(z) \neq \emptyset\right\} .
\end{aligned}
$$

This is an open neighborhood of $\tilde{F}$ because the maps $\tilde{G} \mapsto j^{q} \tilde{G} \mapsto j_{1}^{q} \tilde{G} \mapsto$ $\left.j_{1}^{q} \tilde{G}\right|_{x=0}$ are given by compositions of continuous maps. Let $\tilde{G} \in N_{\tilde{F}}$ and take $\left(0, y_{0}, u_{0}, t_{0}\right) \in V$ such that $j_{1}^{q} \tilde{G}$ is transversal to $O_{r \mathcal{P}-\mathcal{K}}^{q}(z)$ at $\left(0, y_{0}, u_{0}, t_{0}\right)$. Let $G$ be the germ of $\left.\tilde{G}\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}}$ at $\left(0, y_{0}, u_{0}, t_{0}\right)$ and define $g \in \mathcal{E}(r ; k+n)$ by $g(x, y, u)=G\left(x, y+y_{0}, u+u_{0}, t_{0}\right)$. Since $j^{q} g(0,0,0)=j_{1}^{q} \tilde{G}\left(0, y_{0}, u_{0}, t_{0}\right) \in$ $O_{r \mathcal{P}-\mathcal{K}}^{q}(z)$, there exists $\phi \in \mathcal{B}_{n}(r ; k+n)$ and a unit $\alpha \in \mathcal{E}(r ; k+n)$ such that the germ $f^{\prime} \in \mathcal{E}(r ; k+n)$ defined by $f^{\prime}(x, y, u)=\alpha(x, y, u) g \circ \phi(x, y, u)$ has the same $q$-jet of $f$. Since $F$ is also reticular $t-\mathcal{P}-\mathcal{K}-(q-1)$-transversal and $q-1 \geq l m+l+m$, we have by Lemma 3.9 that

$$
\mathfrak{M}(r ; k+n)^{q} \subset\left\langle f, x \frac{\partial f}{\partial x}\right\rangle_{\mathcal{E}(r ; k+n)}+\mathfrak{M}(r ; k+n)\left\langle\frac{\partial f}{\partial y}\right\rangle+\mathfrak{M}(n)\left\langle\frac{\partial f}{\partial u}\right\rangle
$$

This means by Lemma 3.10 that $f$ is reticular $\mathcal{P}-\mathcal{K}-q$-determined. It follows that $f^{\prime}$ is reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent to $f$. So $g$ is also reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent to $f$. Hence there exist $\phi^{\prime} \in \mathcal{B}_{n}(r ; k+n)$ and $\alpha^{\prime} \in \mathcal{E}(r ; k+n)$ such that $g$ has the form $f(x, y, u)=\alpha^{\prime}(x, y, u) g \circ \phi^{\prime}(x, y, u)$ Define $G^{\prime} \in \mathcal{E}(r ; k+n+m)$
by $G^{\prime}(x, y, u, t)=\alpha^{\prime}(x, y, u) G\left(\phi^{\prime}(x, y, u), t\right)$. Then $G^{\prime}$ is a reticular $t-\mathcal{P}$ $\mathcal{K}$ - $q$-transversal unfolding of $f$. By Lemma 3.11 we have that $F$ and $G^{\prime}$ are reticular $t$ - $\mathcal{P}-\mathcal{K}$ - $f$-equivalent. Therefore $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}$ equivalent.
$(2) \Rightarrow(3)$. Let $F$ be a reticular $t-\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f$ and let $\tilde{F} \in$ $C^{\infty}(U, \mathbb{R})$ be a representative of $F$. By hypothesis and Theorem 3.2, there exist $\tilde{F}^{\prime} \in C^{\infty}(U, \mathbb{R})$ and $\left(0, y_{0}, u_{0}, t_{0}\right) \in U$ such that $\left.j_{1}^{q} \tilde{F}^{\prime}\right|_{x=0}$ is transversal to $O_{r \mathcal{P}-\mathcal{K}}^{q}(z)$ and the germ $F^{\prime}=\left.\tilde{F}^{\prime}\right|_{\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}}$ at $\left(0, y_{0}, u_{0}, t_{0}\right)$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to $F$. By Proposition 3.5, we have that $F$ is a reticular $t$ - $\mathcal{P}-\mathcal{K}$ - $q$-transversal unfolding of $f$.

Let an unfolding $G(x, y, u, s) \in \mathcal{E}\left(r ; k+n+m_{1}\right)$ of $f$ be given. Define $G^{\prime}(x, y, u, t, s) \in \mathcal{E}\left(r ; k+n+m+m_{1}\right)$ by $G^{\prime}(x, y, u, t, s)=G(x, y, u, s)-$ $f(x, y, u)+F(x, y, u, t)$. Then $G^{\prime}$ is a reticular $t$ - $\mathcal{P}-\mathcal{K}-q$-transversal unfolding of $f$ because $F$ is reticular $t$ - $\mathcal{P}-\mathcal{K}$ - $q$-transversal. Define $F^{\prime \prime}(x, y, u, t, s) \in$ $\mathcal{E}\left(r ; k+n+m+m_{1}\right)$ by $F^{\prime \prime}(x, y, u, t, s)=F(x, y, u, t)$. Then $F^{\prime \prime}$ is also a reticular $t$ - $\mathcal{P}-\mathcal{K}$ - $q$-transversal unfolding of $f$. By Lemma 3.11, we have that $G^{\prime}$ and $F^{\prime \prime}$ are reticular $t-\mathcal{P}-\mathcal{K}-f$-equivalent. Since $G$ is reticular $t-\mathcal{P}-\mathcal{K}-f-$ induced from $G^{\prime}$, and $F^{\prime \prime}$ is reticular $t$ - $\mathcal{P}-\mathcal{K}-f$-induced from $F$, it follows that $G$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-induced from $F$. Therefore $F$ is reticular $t-\mathcal{P}$ -$\mathcal{K}$-versal.
$(3) \Rightarrow(1)$. Let $F(x, y, u, t) \in \mathcal{E}\left(r ; k+n+m_{1}\right)$ be a reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-versal unfolding of $f$. Take a reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal unfolding $G(x, y, u, s) \in$ $\mathcal{E}\left(r ; k+n+m_{2}\right)$ of $f$. By hypothesis, there exists a reticular $t-\mathcal{P}-\mathcal{K}-f-$ morphism from $G$ to $F$ of the form:

$$
G(x, y, u, s)=\alpha(x, y, u, s) F\left(x \phi_{1}(x, y, u, s), \phi_{2}(x, y, u, s), \phi_{3}(u, s), \phi_{4}(s)\right)
$$

Since $G$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal, we have

$$
\begin{aligned}
\mathcal{E}(r ; k+n)= & \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial G}{\partial s}\right|_{s=0}\right\rangle_{\mathbb{R}} \\
& +\mathfrak{M}(r ; k+n)^{q+1}
\end{aligned}
$$

On the other hand, we have that

$$
\left\langle\left.\frac{\partial G}{\partial s}\right|_{s=0}\right\rangle_{\mathbb{R}} \subset\left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}}
$$

Therefore

$$
\begin{aligned}
\mathcal{E}(r ; k+n)= & \left\langle f, x \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},\right\rangle_{\mathcal{E}(r ; k+n)}+\left\langle\frac{\partial f}{\partial u}\right\rangle_{\mathcal{E}(n)}+\left\langle\left.\frac{\partial F}{\partial t}\right|_{t=0}\right\rangle_{\mathbb{R}} \\
& +\mathfrak{M}(r ; k+n)^{q+1}
\end{aligned}
$$

Hence $F$ is reticular $t-\mathcal{P}-\mathcal{K}-q$-transversal.
Theorem 3.13 (Uniqueness of universal unfoldings) Let $F(x, y, u, t)$, $G(x, y, u, t) \in \mathfrak{M}(r ; k+n+m)$ be unfoldings of $f \in \mathfrak{M}(r ; k+n)$. If $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}$-versal, then $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}-f$-equivalent.

Proof. Since $F$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-versal unfolding of $f_{0}=\left.f\right|_{u=0}$ as $(n+m)$ dimensional unfolding. This means that $f_{0}$ is finitely determined. Choose an non-negative integer $l$ such that (3) holds for $f_{0}$. Let $q \geq l m+l+m+1$. By Theorem 3.12, we have that $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}-q$-transversal. By Lemma 3.11 we have that $F$ and $G$ are reticular $t-\mathcal{P}-\mathcal{K}$ - $f$-equivalent.

Theorem 3.14 Let $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+m)$ be an unfolding of $f(x, y, u) \in \mathfrak{M}(r ; k+n)$ and let $f$ be an unfolding of $f_{0}(x, y) \in \mathfrak{M}(r ; k)$. Then following are equivalent.
(1) There exists a non-negative number $l$ such that $f_{0}$ is reticular $\mathcal{K}$-ldetermined and $F$ is reticular $t-\mathcal{P}-\mathcal{K}$ - $q$-transversal for $q \geq l m+l+$ $m+1$.
(2) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-stable.
(3) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-versal.
(4) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally versal.
(5) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable.
(6) $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-homotopically stable.

Proof. $\quad(2) \Rightarrow(5) \quad F$ is also reticular $\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f_{0}$ as $(n+m)$ dimensional unfolding. Therefore $f_{0}$ is reticular $\mathcal{K}$-finitely determined. Choose an non-negative integer $l$ such that (3) holds for $f_{0}$. Let $q \geq$ $l m+l+m+1$. By Theorem 3.12, we have that $F$ is reticular $t-\mathcal{P}-\mathcal{K}-q-$ transversal. Then the assertion (c) of Theorem 3.6 holds. Therefore $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-infinitesimally stable.
$(4) \Leftrightarrow(5) \quad$ This is proved by Theorem 3.6.
$(5) \Rightarrow(2) \quad F$ is also reticular $\mathcal{P}$ - $\mathcal{K}$-infinitesimally stable unfolding of $f_{0}$ as
$(n+m)$-dimensional unfolding. Therefore there exists a non-negative number $l$ such that $f_{0}$ is reticular $\mathcal{K}$ - $l$ determined. By Theorem 3.12, we have that $F$ is reticular $t-\mathcal{P}$ - $\mathcal{K}$ - $q$-transversal for $q \geq l m+l+m+1$. This means that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-stable by Theorem 3.12.
$(1) \Leftrightarrow(2) \Leftrightarrow(3) \quad$ This is proved in Theorem 3.12.
$(5) \Rightarrow(6)$

$$
\begin{aligned}
\mathcal{E}(r ; & k+n+m+1) \\
= & \mathcal{E}(r ; k+n+m)+\mathfrak{M}(1) \mathcal{E}(r ; k+n+m+1) \\
= & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m)} \\
& +\mathfrak{M}(1) \mathcal{E}(r ; k+n+m+1) \\
= & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m+1)}+\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m+1)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m+1)} \\
& +\mathfrak{M}(m+1) \mathcal{E}(r ; k+n+m+1)
\end{aligned}
$$

By Malgrange preparation theorem, we have that

$$
\begin{align*}
\mathcal{E}(r ; k+n+m+1)= & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(r ; k+n+m+1)} \\
& +\left\langle\frac{\partial F}{\partial u}\right\rangle_{\mathcal{E}(n+m+1)}+\left\langle\frac{\partial F}{\partial t}\right\rangle_{\mathcal{E}(m+1)} \tag{6}
\end{align*}
$$

This means that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-homotopically stable.
$(6) \Rightarrow(5) \quad$ Suppose that $F$ is reticular $t-\mathcal{P}$ - $\mathcal{K}$-homotopically stable. Then (6) holds. Restrict this equation to $\mathbb{H}^{r} \times \mathbb{R}^{k+n+m}$. Then we have the equation (2).

For $f \in \mathfrak{M}(r ; k+n)$ if $a_{1}, \ldots, a_{m} \in \mathcal{E}(r ; k+n)$ is a representative of a basis of $\mathcal{E}(r ; k+n) / T_{e}(r \mathcal{P}-\mathcal{K})(f)$, then the function germ $f+a_{1} t_{1}+\cdots+$ $a_{m} t_{m} \in \mathfrak{M}(r ; k+n+m)$ is a reticular $t-\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f$.

## 4. A generic classification of unfoldings under the reticular $t-\mathcal{P}$ -$\mathcal{K}$-equivalence

Definition 4.1 We say that function germs $f_{1}(x, y) \in \mathfrak{M}\left(r_{1} ; k_{1}\right)$ and $f_{2}(x, y) \in \mathfrak{M}\left(r_{2} ; k_{2}\right)$ are stably reticular $\mathcal{K}$-equivalent if $f_{1}$ and $f_{2}$ are reticular $\mathcal{K}$-equivalent after additions of linear forms in $x$ whose all coefficients are not zero and non-degenerate quadratic forms in the variables $y$. We also define the stably reticular $\mathcal{P}-\mathcal{K}$-equivalence relation and the stably reticular $t-\mathcal{P}-\mathcal{K}$-equivalence relation analogously.

Proposition 4.2 Let $f_{0} \in \mathfrak{M}(1 ; k)$. Then $f_{0}$ is stably reticular $\mathcal{K}$ equivalent to $y \in \mathfrak{M}(0 ; 1)$ or there exists $f_{0}^{\prime} \in \mathfrak{M}\left(r ; k^{\prime}\right)^{2}(r=0$ or 1$)$ such that $f_{0}$ and $f_{0}^{\prime}$ are stably reticular $\mathcal{K}$-equivalent.

Proposition 4.3 (cf., [7, p. 126]) Let $f_{0}(y) \in \mathfrak{M}(0 ; k)$ with $(r) \mathcal{K}-\operatorname{cod} f_{0} \leq 6$ be given. Then $f_{0}$ is stably (reticular) $\mathcal{K}$-equivalent to one of

$$
\begin{gathered}
A_{l}: y^{l+1}(0 \leq l \leq 6), D_{4}^{ \pm}: y_{1}^{2} y_{2} \pm y_{2}^{3}, D_{5}: y_{1}^{2} y_{2}+y_{2}^{4} \\
D_{6}^{ \pm}: y_{1}^{2} y_{2} \pm y_{2}^{5}, E_{6}: y_{1}^{3}+y_{2}^{4}
\end{gathered}
$$

Let $f_{0}(x, y) \in \mathfrak{M}(1 ; k)$ with $r \mathcal{K}-\operatorname{cod} f_{0} \leq 4$ be given. Then $f_{0}$ is stably reticular $\mathcal{K}$-equivalent to one of

$$
\begin{gathered}
A_{l}: y^{l+1}(0 \leq l \leq 4), D_{4}^{ \pm}: y_{1}^{2} y_{2} \pm y_{2}^{3}, \quad B_{l}: x^{l}(1 \leq l \leq 4) \\
C_{3}^{ \pm}: \pm x y+y^{3}, C_{4}: x y+y^{4}, F_{4}: x^{2}+y^{3}
\end{gathered}
$$

Proposition 4.4 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ be a simple singularity, that is $A_{l}, D_{l}, E_{6}, E_{7}, E_{8}$ for $r=0$, or $B_{l}, C_{l}, F_{4}$ for $r=1$. Let $Q_{f_{0}}$ be the local ring of $f_{0}$, that is $Q_{f_{0}}=\mathcal{E}(r ; k) /\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathcal{E}(r ; k)}$. Then there exist monomials $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n} \in \mathfrak{M}(r ; k)$ which consist a basis of $Q_{f_{0}}$ such that
(1) $\mathfrak{M}(r ; k) \cdot \varphi_{0} \sim 0 \bmod Q_{f_{0}}$
(2) For any $i, j \in\{1, \ldots, n\}(i+j \geq n)$ there exists a non-zero real number a such that $\varphi_{i} \cdot \varphi_{j} \sim a \varphi_{i+j-n} \bmod Q_{f_{0}}$.
(3) For any $i, j \in\{1, \ldots, n\}(i+j<n), \varphi_{i} \cdot \varphi_{j} \sim 0 \bmod Q_{f_{0}}$,

For example, if $f_{0}(x, y)=x y+y^{4}\left(C_{4}\right)$ then we may choose that $\varphi_{0}=y^{3}$, $\varphi_{1}=y^{2}, \varphi_{2}=y, \varphi_{3}=1$.

Proposition 4.5 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ be a simple singularity, that is $A_{l}, D_{l}, E_{6}, E_{7}, E_{8}$ for $r=0$, or $B_{l}, C_{l}, F_{4}$ for $r=1$. Choose monomials $\varphi_{0}(x, y), \ldots, \varphi_{n}(x, y)$ as the previous proposition. Then the function $F(x, y, u, t)=f_{0}(x, y)+\varphi_{0}(x, y) t+\sum_{i=1}^{n} \varphi_{i}(x, y) u_{i}$ is a reticular $t-\mathcal{P}-\mathcal{K}-$ universal unfolding of $\left.F\right|_{t=0}$.

Proof. In this proof we write $\mathcal{E}(x, y, u, t)$ for $\mathcal{E}(r ; k+n+1)$ and write $\mathcal{E}(u)$ for $\mathcal{E}(n)$ and write other notations analogously. Since $F-f_{0} \in$ $\mathfrak{M}(u, t) \mathcal{E}(x, y, u, t)$, we have that

$$
x_{i} \frac{\partial F}{\partial x_{i}}-x_{i} \frac{\partial f_{0}}{\partial x_{i}}, \quad \frac{\partial F}{\partial y_{j}}-\frac{\partial f_{0}}{\partial y_{j}} \in \mathfrak{M}(u, t) \mathcal{E}(x, y, u, t)
$$

It follows that

$$
\begin{equation*}
\left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathfrak{M}(u, t)} \subset\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\mathfrak{M}(u, t)^{2} \mathcal{E}(x, y, u, t) . \tag{7}
\end{equation*}
$$

Therefore we have that

$$
\begin{align*}
& \left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathfrak{M}(u, t) \mathcal{E}(x, y, u, t)} \\
& \quad \subset\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\mathfrak{M}(u, t)^{2} \mathcal{E}(x, y, u, t) \tag{8}
\end{align*}
$$

Let a function germ $G(x, y, u, t) \in \mathcal{E}(x, y, u, t)$ be given. It is enough to prove that

$$
\begin{aligned}
G \in & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle_{\mathcal{E}(u, t)}+\left\langle\varphi_{0}\right\rangle_{\mathcal{E}(t)} \\
& +\mathfrak{M}(u, t)^{2} \mathcal{E}(x, y, u, t)
\end{aligned}
$$

because this means by Lemma 2.1 that

$$
\mathcal{E}(x, y, u, t)=\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle_{\mathcal{E}(u, t)}+\left\langle\varphi_{0}\right\rangle_{\mathcal{E}(t)}
$$

Since $F$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-infinitesimal stable unfolding of $f_{0}$ as $(n+1)$ dimensional unfolding, we have that

$$
\mathcal{E}(x, y, u, t)=\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\left\langle\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right\rangle_{\mathcal{E}(u, t)} .
$$

It follows that there exist function germs $g_{0}(u, t), \ldots, g_{n}(u, t) \in \mathcal{E}(u, t)$ such that

$$
G \sim g_{0}(u, t) \varphi_{0}(x, y)+\cdots+g_{n}(u, t) \varphi_{n}(x, y) \bmod \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}
$$

Then $g_{0}$ has the form $g_{0}(u, t)=g_{0}(0, t)+\sum_{i=1}^{n} a_{i} u_{i}+h(u, t)$, where $a_{i} \in \mathbb{R}$ and $h \in \mathfrak{M}(u, t)^{2}$. Since $F$ is quasi-homogeneous function germ (see [1, p. 192] for the definition), and $f_{0}$ is simple singularity, there exist non-zero real numbers $b_{x}, b_{y}, b_{t}, b_{u_{i}}$ such that $F$ has the form:

$$
F=b_{x} x \frac{\partial F}{\partial x}+b_{y} y \frac{\partial F}{\partial y}+b_{t} t \varphi_{0}+b_{u_{1}} u_{1} \varphi_{1}+\cdots+b_{u_{n}} u_{n} \varphi_{n}
$$

Then there exist non-zero real numbers $b_{i}^{\prime}$ such that
$\varphi_{n-1} F \sim b_{x} \varphi_{n-1} x \frac{\partial F}{\partial x}+b_{y} \varphi_{n-1} y \frac{\partial F}{\partial y}+b_{t} t \varphi_{0} \varphi_{n-1}+b_{1}^{\prime} u_{1} \varphi_{0}+\cdots+b_{n}^{\prime} u_{n} \varphi_{n-1}$
$\bmod \left\langle f_{0}, x \frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\right\rangle_{\mathfrak{M}(u, t) \mathcal{E}(x, y, u, t)}$. Therefore we have by (8) that

$$
0 \sim \varphi_{n-1} F \sim b_{t} t \varphi_{0} \varphi_{n-1}+b_{1}^{\prime} u_{1} \varphi_{0}+\cdots+b_{n}^{\prime} u_{n} \varphi_{n-1}
$$

$\bmod$ the right hand side of (8). Since $\mathfrak{M}(x, y) \varphi_{0} \sim 0 \bmod Q_{f_{0}}$, we have that

$$
0 \sim \varphi_{n-1} F \sim b_{1}^{\prime} u_{1} \varphi_{0}+\cdots+b_{n}^{\prime} u_{n-1} \varphi_{n-1}
$$

mod the right hand side of (8). This means that
$u_{1} \varphi_{0} \in\left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle_{\mathfrak{M}(u, t)}+\mathfrak{M}(u, t)^{2} \mathcal{E}(x, y, u, t)$.

By considering $\varphi_{n-2} F, \ldots, \varphi_{0} F$ instead of $\varphi_{n-1} F$, we have that $u_{2} \varphi_{0}$, $\ldots, u_{n} \varphi_{0}$, are included in the right hand side of (9). This means that $g_{0}(u, t) \varphi_{0} \sim g_{0}(0, t) \varphi_{0} \bmod$ the right hand side of (9). Therefore we have that

$$
\begin{aligned}
G \in & \left\langle F, x \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right\rangle_{\mathcal{E}(x, y, u, t)}+\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle_{\mathcal{E}(u, t)}+\left\langle\varphi_{0}\right\rangle_{\mathcal{E}(t)} \\
& +\mathfrak{M}(u, t)^{2} \mathcal{E}(x, y, u, t)
\end{aligned}
$$

Lemma 4.6 Let $f_{0}(x, y) \in \mathfrak{M}(r ; k)$ be a simple singularity and $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+1)$ be a reticular $\mathcal{P}$ - $\mathcal{K}$-universal unfoldings of $f_{0}$. If $F$ is a reticular $t-\mathcal{P}-\mathcal{K}$-universal unfoldings of $f=\left.F\right|_{t=0}$ and $r \mathcal{K}$ $\operatorname{codf}=1$, then $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to the function germ of the form in Proposition 4.5.

Proof. We may assume that $f_{0}$ has the normal from. Then $F$ is reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent to $F_{0}=f_{0}(x, y)+t \varphi_{0}(x, y)+u_{1} \varphi_{1}(x, y) \cdots+u_{n} \varphi_{n}(x, y)$. Therefore there exists a reticular $\mathcal{P}$ - $\mathcal{K}$-isomorphism $(\alpha, \Phi)$ from $F_{0}$ to $F$. We write $\Phi=\left(x \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$. We set $f^{0} \in \mathfrak{M}(r ; k)$ by $f^{0}=\left.F_{0}\right|_{t=0}$, that is $f^{0}=f_{0}(x, y)+u_{1} \varphi_{1}(x, y) \cdots+u_{n} \varphi_{n}(x, y)$. Since $r \mathcal{K}-\operatorname{cod} f=1$, it follows that the map germ $u \mapsto \phi_{3}(u, 0)$ is invertible. Therefore we may reduce $F$ to the form: $F(x, y, u, t)=f_{0}(x, y)+a(u, t) \varphi_{0}(x, y)+u_{1} \varphi_{1}(x, y) \cdots+u_{n} \varphi_{n}(x, y)$ for some $a \in \mathfrak{M}(n+1)$ with $\frac{\partial a}{\partial t}(0) \neq 0$. By an analogous method of Proposition 4.5, we have that

$$
\mathfrak{M}(u) \varphi_{0} \in\left\langle f^{0}, x \frac{\partial f^{0}}{\partial x}\right\rangle_{\mathcal{E}(x, y, u)}+\mathfrak{M}(x, y, u)\left\langle\frac{\partial f^{0}}{\partial y}\right\rangle+\mathfrak{M}(u)\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle
$$

We fix $\tau_{0} \in[0,1]$ and define $E_{\tau_{0}}(x, y, u, \tau) \in \mathfrak{M}(r ; k+n+1)$ by $E_{\tau_{0}}(x, y, u, \tau)=f_{0}(x, y)+\left(\tau_{0}+\tau\right) a(u, 0) \varphi_{0}(x, y)+u_{1} \varphi_{1}(x, y) \cdots+u_{n} \varphi_{n}(x, y)$. Since $E_{\tau_{0}}-f^{0}=\left(\tau_{0}+\tau\right) a(u, 0) \varphi_{0}$, it follows that

$$
\frac{\partial E_{\tau_{0}}}{\partial \tau} \in\left\langle E_{\tau_{0}}, x \frac{\partial E_{\tau_{0}}}{\partial x}\right\rangle_{\mathcal{E}(x, y, u, \tau)}+\mathfrak{M}(x, y, u, \tau)\left\langle\frac{\partial E_{\tau_{0}}}{\partial y}\right\rangle+\mathfrak{M}(u, \tau)\left\langle\frac{\partial E_{\tau_{0}}}{\partial u}\right\rangle
$$

By an analogous method of [10, p. 26 Lemma 1.27], we have that $\left.F\right|_{t=0}$ and $f^{0}$ are reticular $\mathcal{P}$ - $\mathcal{K}$-equivalent. By Theorem 3.13, it follows that $F$ is
reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to $F_{0}$.
Now we classify reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-stable unfoldings in $\mathfrak{M}(r ; k+n+1)$ with respect to stably reticular $t-\mathcal{P}-\mathcal{K}$-equivalence for the case $r=0, n \leq 5$ and $r=1, n \leq 3$. We prove only the case $r=1, n \leq 3$.

Let a reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-stable unfolding $F(x, y, u, t) \in \mathfrak{M}(1 ; k+n+1)$ with $n \leq 3$ be given. We set $f=\left.F\right|_{t=0}$ and $f_{0}=\left.f\right|_{u=0}$. Since $F$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f_{0}$ as $(n+1)$-dimensional unfolding, it follows that $f_{0}$ is stably reticular $\mathcal{K}$-equivalent to one of the types in Proposition 4.3. So we may assume that $f_{0}$ has the normal form in $\mathfrak{M}(1 ; 1)$. We denote $X$ the type of $f_{0}$. Then the local ring $Q_{f_{0}}$ has basis $\varphi_{0}, \ldots, \varphi_{l-1}(l \leq n+1)$ and $\varphi_{0}$ has the maximal degree. The function germ $F_{0}(x, y, u, t)=f_{0}+t \varphi_{0}+u_{1} \varphi_{1}+$ $\cdots u_{l-1} \varphi_{l-1} \in \mathfrak{M}(1 ; 1+(l-1)+1)$ is a reticular $t$ - $\mathcal{P}-\mathcal{K}$-universal unfolding of $f_{0}$ by Proposition 4.5. Since $F$ is a reticular $\mathcal{P}$ - $\mathcal{K}$-stable unfolding of $f_{0}$, there exists a diffeomorphism germ $\phi$ on $\left(\mathbb{R}^{n+1}, 0\right)$ such that $F_{1} \in \mathfrak{M}(r ; k+$ $(l-1)+1)$ given by $F_{1}(x, y, u, t)=F\left(x, y, \phi\left(u_{1}, \ldots, u_{l-1}, t, 0, \ldots, 0\right)\right)$ is reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to $F_{0}$. So we may reduce $F_{1}$ to $F_{0}$. Therefore $F$ has the form

$$
F(x, y, u, t)=f_{0}(x, y)+a_{0}(u, t) \varphi_{0}(x, y)+\cdots+a_{l-1}(u, t) \varphi_{l-1}(x, y)
$$

where the map germ $\left(u_{1}, \ldots, u_{n}, t\right) \mapsto\left(a_{0}(u, t), \ldots, a_{l-1}(u, t)\right)$ is a submersion.
In the case that the map germ $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(a_{0}(u, 0), \ldots, a_{l-1}(u, 0)\right)$ is also a submersion, then $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to ${ }^{0} X$.
In the case that the map germ $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(a_{0}(u, 0), \ldots, a_{l-1}(u, 0)\right)$ is not a submersion. Then $r \mathcal{K}-\left.\operatorname{cod} F\right|_{t=0}=1$. It follows that $F$ is reticular $t-\mathcal{P}-\mathcal{K}$ equivalent to $F_{0}$ by Lemma 4.6. Therefore $F$ is reticular $t-\mathcal{P}-\mathcal{K}$-equivalent to the function germ:

$$
f_{0}+\left(t+a_{0}\right) \varphi_{0}+\left(u_{1}+a_{1}\right) \varphi_{1}+\cdots\left(u_{l-1}+a_{l-1}\right) \varphi_{l-1}
$$

where $a_{i} \in \mathfrak{M}\left(u_{l}, \ldots, u_{n}\right) \mathcal{E}(u)$ for $i=1, \ldots, l-1$. Hence $F$ is reticular $t$ - $\mathcal{P}-\mathcal{K}$-equivalent to the function germ:

$$
f_{0}+\left(t+a_{0}\right) \varphi_{0}+u_{1} \varphi_{1}+\cdots u_{l-1} \varphi_{l-1} .
$$

Let $l-1=n$. Since $a_{0}=0$, it follows that $F$ is reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to ${ }^{1} X$.

Let $l-1<n$. Then $\frac{\partial a_{0}}{\partial u_{i}}(0)=0$ for all $i=l, \ldots, n$. If $\left(\frac{\partial^{2} a_{0}}{\partial u_{i} \partial u_{j}}(0)\right)_{i, j=l, \ldots, n}$ is degenerate then $r \mathcal{K}-\left.\operatorname{cod} F\right|_{t=0}>1$. It follows that $F$ is not reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-stable. Therefore $\left(\frac{\partial^{2} a_{0}}{\partial u_{i} \partial u_{j}}(0)\right)_{i, j=l, \ldots, n}$ is non-degenerate. Since $\left.a_{0}\right|_{u_{1}=\cdots=u_{l-1}=0}$ is a Morse function on $u_{l}, \ldots, u_{n}$, We have that $F$ is reticular $t$ - $\mathcal{P}-\mathcal{K}$-equivalent to ${ }^{1} X$.

Theorem 4.7 Let $r=0, n \leq 5$ or $r=1, n \leq 3$ and $U$ be a neighborhood of 0 in $\mathbb{H}^{r} \times \mathbb{R}^{k+n+1}$. Then there exists a residual set $O \subset C^{\infty}(U, \mathbb{R})$ such that the following condition holds: For any $\tilde{F} \in O$ and $\left(0, y_{0}, u_{0}, t_{0}\right) \in U$, the function germ $F(x, y, u, t) \in \mathfrak{M}(r ; k+n+1)$ given by $F(x, y, u, t)=$ $\tilde{F}\left(x, y+y_{0}, u+u_{0}, t+t_{0}\right)-\tilde{F}\left(0, y_{0}, u_{0}, t_{0}\right)$ is a reticular $t-\mathcal{P}-\mathcal{K}$-stable unfolding of $\left.F\right|_{t=0}$.

In the case $r=0, n \leq 5, F$ is stably reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to one of the following type:
$\left({ }^{0} A_{l}\right) \quad y_{1}^{l+1}+\sum_{i=1}^{l-1} u_{i} y_{1}^{i}+u_{l}(0 \leq l \leq 5)$,
$\left({ }^{0} D_{4}^{ \pm}\right) y_{1}^{2} y_{2} \pm y_{2}^{3}+u_{1} y_{2}^{2}+u_{2} y_{2}+u_{3} y_{1}+u_{4}$,
$\left({ }^{0} D_{5}\right) y_{1}^{2} y_{2}+y_{2}^{4}+u_{1} y_{2}^{3}+u_{2} y_{2}^{2}+u_{3} y_{2}+u_{4} y_{1}+u_{5}$,
$\left({ }^{1} A_{l}\right) \quad y_{1}^{l+1}+\left(t \pm u_{l-1}^{2} \pm \cdots \pm u_{n}^{2}\right) y_{1}^{l-1}+\sum_{i=1}^{l-2} u_{i} y_{1}^{i}+u_{l}(2 \leq l \leq 6)$,
$\left({ }^{1} D_{4}^{ \pm}\right) y_{1}^{2} y_{2} \pm y_{2}^{3}+t y_{2}^{2}+u_{1} y_{2}+u_{2} y_{1}+u_{3}, y_{1}^{2} y_{2} \pm y_{2}^{3}+\left(t \pm u_{4}^{2}\right) y_{2}^{2}+u_{1} y_{2}+u_{2} y_{1}+u_{3}$,
$\left({ }^{1} D_{5}\right) y_{1}^{2} y_{2}+y_{2}^{4}+t y_{2}^{3}+u_{1} y_{2}^{2}+u_{2} y_{2}+u_{3} y_{1}+u_{4}, y_{1}^{2} y_{2}+y_{2}^{4}+\left(t \pm u_{5}^{2}\right) y_{2}^{3}+$ $u_{1} y_{2}^{2}+u_{2} y_{2}+u_{3} y_{1}+u_{4}$,
$\left({ }^{1} D_{6}^{ \pm}\right) y_{1}^{2} y_{2} \pm y_{2}^{5}+t y_{2}^{6}+u_{1} y_{2}^{3}+u_{2} y_{2}^{2}+u_{3} y_{2}+u_{4} y_{1}+u_{5}$,
$\left({ }^{1} E_{6}\right) y_{1}^{3}+y_{2}^{4}+t y_{1} y_{2}^{2}+u_{1} y_{1} y_{2}+u_{2} y_{2}^{2}+u_{3} y_{1}+u_{4} y_{2}+u_{5}$.
In the case $r=1, n \leq 3, F$ is stably reticular $t$ - $\mathcal{P}$ - $\mathcal{K}$-equivalent to one of the following type:
$\left({ }^{0} A_{l}\right) \quad(0 \leq l \leq 3)$,
$\left({ }^{0} B_{1}\right) \quad x+u$,
$\left({ }^{0} B_{2}\right) \quad x^{2}+u_{1} x+u_{2}$,
$\left({ }^{0} B_{3}\right) x^{3}+u_{1} x^{2}+u_{2} x+u_{3}$,
$\left({ }^{0} C_{3}^{ \pm}\right) \pm x y+y^{3}+u_{1} y^{2}+u_{2} y+u_{3}$,
$\left({ }^{1} A_{l}\right) \quad(2 \leq l \leq 4),\left({ }^{1} D_{4}^{ \pm}\right)$,
$\left({ }^{1} B_{1}\right) \quad x+t$,
$\left({ }^{1} B_{2}\right) x^{2}+t x+u_{1}, x^{2}+\left(t \pm u_{2}^{2}\right) x+u_{1}, x^{2}+\left(t \pm u_{2}^{2} \pm u_{3}^{2}\right) x+u_{1}$,
$\left({ }^{1} B_{3}\right) x^{3}+t x^{2}+u_{1} x+u_{2}, x^{3}+\left(t \pm u_{3}^{2}\right) x^{2}+u_{1} x+u_{2}$,
$\left({ }^{1} B_{4}\right) x^{4}+t x^{3}+u_{1} x^{2}+u_{2} x+u_{3}$,

$$
\begin{aligned}
& \left({ }^{1} C_{3}^{ \pm}\right) \pm x y+y^{3}+t y^{2}+u_{1} y+u_{2}, \pm x y+y^{3}+\left(t \pm u_{3}^{2}\right) y^{2}+u_{1} y+u_{2}, \\
& \left({ }^{1} C_{4}\right) x y+y^{4}+t y^{3}+u_{1} y^{2}+u_{2} y+u_{3}, \\
& \left({ }^{1} F_{4}\right) \quad x^{2}+y^{3}+t x y+u_{1} x+u_{2} y+u_{3} .
\end{aligned}
$$

We remark that a class ${ }^{1} X$ is not one equivalent class, since non-degenerate quadratic forms $+u^{2}$ and $-u^{2}$ may define different classes.

Proof. We prove only the case $r=1, n \leq 3$. All function germ in $\mathfrak{M}(1 ; k)$ with the reticular $\mathcal{K}$-codimension $\leq 3$ are stably reticular $\mathcal{K}$-equivalent to one of the types in Proposition 4.3. We define the stably reticular $\mathcal{P}-\mathcal{K}$ equivalence classes by

$$
\begin{aligned}
& \left({ }^{0} A_{l}\right) \quad y_{1}^{l+1}+\sum_{i=1}^{l-1} u_{i} y_{1}^{i}+u_{l}(0 \leq l \leq 3), \\
& \left({ }^{0} B_{1}\right) \quad x+u, \\
& \left({ }^{0} B_{2}\right) x^{2}+u_{1} x+u_{2}, \\
& \left({ }^{0} B_{3}\right) x^{3}+u_{1} x^{2}+u_{2} x+u_{3}, \\
& \left({ }^{0} C_{3}^{ \pm}\right) \pm x y+y^{3}+u_{1} y^{2}+u_{2} y+u_{3}, \\
& \left({ }^{1} A_{l}\right) y_{1}^{l+1}+\left( \pm u_{l-1}^{2} \pm \cdots \pm u_{n}^{2}\right) y_{1}^{l-1}+\sum_{i=1}^{l-2} u_{i} y_{1}^{i}+u_{l}(2 \leq l \leq 4), \\
& \left({ }^{1} D_{4}^{ \pm}\right) y_{1}^{2} y_{2} \pm y_{2}^{3}+u_{1} y_{2}+u_{2} y_{1}+u_{3}, y_{1}^{2} y_{2} \pm y_{2}^{3} \pm u_{4}^{2} y_{2}^{2}+u_{1} y_{2}+u_{2} y_{1}+u_{3}, \\
& \left({ }^{0} B_{1}\right) \quad x \text {, } \\
& \left({ }^{1} B_{2}\right) x^{2}+u_{1}, x^{2} \pm u_{2}^{2} x+u_{1}, x^{2}+\left( \pm u_{2}^{2} \pm u_{3}^{2}\right) x+u_{1}, \\
& \left({ }^{1} B_{3}\right) x^{3}+u_{1} x+u_{2}, x^{3} \pm u_{3}^{2} x^{2}+u_{1} x+u_{2} \text {, } \\
& \left({ }^{1} B_{4}\right) x^{4}+u_{1} x^{2}+u_{2} x+z, \\
& \left({ }^{1} C_{3}^{ \pm}\right) \pm x y+y^{3}+u_{1} y+u_{2}, \pm x y+y^{3} \pm u_{3}^{2} y^{2}+u_{1} y+u_{2}, \\
& \left({ }^{1} C_{4}\right) \quad x y+y^{4}+u_{1} y^{2}+u_{2} y+u_{3} \text {, } \\
& \left({ }^{1} F_{4}\right) \quad x^{2}+y^{3}+u_{1} x+u_{2} y+u_{3} .
\end{aligned}
$$

We define that

$$
O^{\prime}=\left\{F \in C^{\infty}(U, \mathbb{R})\left|j_{1}^{l} F\right|_{x=0} \text { is transversal to }[X] \text { for all above } X\right\}
$$

Then $O^{\prime}$ is a residual set in $C^{\infty}(U, \mathbb{R})$.
We set

$$
Y=\left\{j^{l} f(0) \in J^{l}(r+k+n) \mid r \mathcal{P}-\mathcal{K} \operatorname{cod} f>1 .\right\}
$$

Then $Y$ is an algebraic set in $J^{l}(r+k+n)$. We also set

$$
O^{\prime \prime}=\left\{F \in C^{\infty}(U, \mathbb{R})\left|j_{1}^{l} F\right|_{x=0} \text { is transversal to } Y\right\}
$$

Then $Y$ has codimension $>k+n+1$ because all function germ $f \in \mathfrak{M}(1 ; k+n)$ with $j^{l} f(0) \in Y$ is adjacent to one of the above list which are simple. Then we have that

$$
O^{\prime \prime}=\left\{F \in C^{\infty}(U, \mathbb{R}) \mid j_{1}^{l} F(U \cap\{x=0\}) \cap Y=\emptyset\right\}
$$

We set $O=O^{\prime} \cap O^{\prime \prime}$. Then $O$ has the required condition.
Acknowledgments The author would like to thank the referee(s) for their useful comments and their useful suggestions.

## References

[1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differential maps I, Birkhäuser, 1985.
[2] Th. bröcker, Differentiable Germs and Catastrophes. London Math. Soc. Lecture Note Ser., 17, Cambridge Univ. Press, 1975.
[ 3 ] Izumiya S., Perestroikas of Optical Wave fronts and Graphlike Legendrian Unfoldings. J. Diff. Geom. 38 (1993), 485-500.
[4] Jänich K., Caustics and catastrophes, Math. Ann. 209 (1974), 161-180.
[5] Tsukada T., Reticular Lagrangian, legendrian Singularities and their applications. PhD Thesis, Hokkaido University, 1999.
[6] Tsukada T., Reticular Lagrangian Singularities. Asian J. Math. 1 (1997), 572-622.
[7] Tsukada T., Reticular Legendrian Singularities. Asian J. Math. 5 (2001), 109-127.
[8] Tsukada T., Bifurcations of Wavefronts on an r-corner I: Generating families. in preparation.
[9] Tsukada T., Bifurcations of Wavefronts on an r-corner II: Stabilities and a generic classification. in preparation.
[10] Wassermann G., Stability of unfolding. Lecture note in mathematics, 393.
[11] Wassermann G., Stability of unfolding in space and time. Acta Math. 135 (1975), 57-128.
[12] Zakalyukin V.M., Reconstruction of fronts and caustics depending on a parameter and versality of mappings. J. of Soviet Math. 27 (1984), 27132735.

Higashijujo 3-1-16 Kita-ku
Tokyo 114-0001 Japan
E-mail: tsukada@math.chs.nihon-u.ac.jp

