Hokkaido Mathematical Journal Vol. 38 (2009) p. 1-38

The Tate conjecture over finite fields for projective schemes related to Coxeter orbits

Joujuu Ohmori

(Received April 12, 2006)

Abstract. Let G be a simple algebraic group, defined over a finite field \mathbb{F}_q , with Frobenius map F. Let X_f^{\bullet} be the Hansen-Demazure-Deligne-Lusztig compactification of the Deligne-Lusztig variety X_f of G associated with a Coxeter element in the Weyl group W_G of G, and let $X_{f,0}^{\bullet}$ be the $\mathbb{F}_q\delta$ -structure on X_f^{\bullet} over the finite extension $\mathbb{F}_q\delta$ of \mathbb{F}_q determined by $F^{\delta}: X_f^{\bullet} \to X_f^{\bullet}$, where δ is the smallest positive integer such that F^{δ} is the identity map on W_G . We shall give an affirmative answer to the Tate conjecture over finite fields for algebraic cycles on $X_{f,0}^{\bullet}$ and related projective schemes.

Key words: The Tate conjecture over finite fields, Coxeter orbits.

Introduction

Let k_0 be a finite field, k an algebraic closure of k_0 and $\Pi = \operatorname{Gal}(k/k_0)$. Let X_0 be an equidimensional smooth projective scheme of finite type over k_0 , purely of dimension d. For an integer s, $0 \leq s \leq d$, let $Z^s(X_0)$ be the free abelian group generated by the closed integral subschemes of X_0 of codimension s. Let ℓ be a prime number different from the characteristic of k_0 . Let $X = X \times_{k_0} k$. Let

$$cl_{X_0}^s: Z^s(X_0) \longrightarrow H^{2s}(X, \mathbb{Q}_\ell(s))^{\Pi}$$

be the cycle map, where (s) is the Tate twist and $H^{2s}(X, \mathbb{Q}_{\ell}(s))^{\Pi}$ is the Π -invariant part of $H^{2s}(X, \mathbb{Q}_{\ell}(s))$. Let

$$A^s = A^s(X_0) = \mathbb{Q} \cdot \operatorname{Im} cl^s_{X_0} \quad (\subset H^{2s}(X, \mathbb{Q}_{\ell}(s))^{\Pi})$$

and

$$N^s = N^s(X_0) = \left\{ a \in A^s \mid \langle a, a' \rangle_X = 0 \quad \text{for all } a' \in A^{d-s} \right\},$$

2000 Mathematics Subject Classification : 11G, 20G40.

where \langle , \rangle_X is the Poincaré duality pairing via cup product:

$$\langle , \rangle_X : H^{2s}(X, \mathbb{Q}_\ell(s)) \times H^{2(d-s)}(X, \mathbb{Q}_\ell(d-s))$$

 $\xrightarrow{\cup} H^{2d}(X, \mathbb{Q}_\ell(d)) \xrightarrow{\operatorname{Tr}_X} \mathbb{Q}_\ell.$

The Tate conjecture over finite fields consists of the following two statements:

$$T^s: \mathbb{Q}_\ell \cdot A^s = H^{2s}(X, \mathbb{Q}_\ell(s))^{\Pi}$$

and

$$E^s: N_s = 0.$$

(See Tate [Ta II]). Since k_0 is finite, the Tate conjecture over finite fields is equivalent to the following statement:

The order of the pole of the zeta function $Z(X_0, t)$ at $t = q^{-s}$ is equal to $\dim_{\mathbb{Q}}(A^s/N^s)$. (See [Ta II, Theorem (2.9)]). Here $q = |k_0|$.

The Tate conjecture over finite fields is the base of Grothendieck-Milne's theory of motives over finite fields (Milne [Mi II]).

In this paper, we give an affirmative answer to the Tate conjecture over finite fields for very special projective schemes $X_{f(I),0}^{\bullet} = \bar{X}_{f}^{\bullet}(I)_{0}$ related to the Deligne-Lusztig's theory of representations of finite reductive groups G^{F} over algebraically closed fields of characteristic 0 (Deligne and Lusztig [DL]). Our main result is stated in the last paragraph of Section 3 (Theorem 1), and is proved in Sections 4, 5.

The motivation of our study is the "fact" that the rationality of a cuspidal unipotent representation of G^F has a "motivic explanation" ([Oh]).

Our result relies on Lusztig's calculation of the eigenvalues of Frobenius on the étale cohomology groups $H^i_c(X_f, \overline{\mathbb{Q}}_\ell)$ with compact supports of the Deligne-Lusztig variety X_f of G associated with a Coxeter element in the Weyl group of G (Lusztig [Lu]). Here $\overline{\mathbb{Q}}_\ell$ is an algebraic closure of \mathbb{Q}_ℓ .

I wish to dedicate this paper to may daughter Chieko.

Preliminaries and convensions

Let K be an algebraically closed field. Let (X, O_X) be a separated, reduced scheme of finite type over K with structural sheaf O_X . Let X(K) be the set of K-rational points of X, and let $O_{X(K)} = O_X | X(K)$. Then $(X(K), O_{X(K)})$ is a variety in the sense of Borel's book [Bo, Ch. AG]. The correspondence $(X, O_X) \mapsto (X(K), O_{X(K)})$ gives an equivalence of the category of separated, reduced schemes of finite type over K with morphisms over K and the category of varieties.

Throughout the paper, p is a fixed prime number and k is an algebraic closure of the prime field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. By a variety, we mean a separated, reduced scheme X of finite type over k, and we shall identify X with X(k). An algebraic group is the one in the sense of [Bo].

For an integral power p^a of p, \mathbb{F}_{p^a} is the subfield of k with p^a elements. k_0 is a finite subfield of k and $\Pi = \operatorname{Gal}(k/k_0)$. φ is the arithmetic Frobenius automorphism of k over k_0 , i.e., $\varphi(x) = x^{|k_0|}$, $x \in k$.

A sheaf is an abelian étale sheaf on a scheme.

 ℓ is a fixed prime number different from p. \mathbb{Q}_{ℓ} is an algebraic closure of \mathbb{Q}_{ℓ} .

For a variety X, we write $H^i(X)$ and $H^i_c(X)$ instead of $H^i(X, \overline{\mathbb{Q}}_\ell)$ and $H^i_c(X, \overline{\mathbb{Q}}_\ell)$ respectively.

For a set S and a map $f: S \to S$, $S^f = \{x \in S \mid f(x) = x\}$, and if T is a set of maps $f: S \to S$, then $S^T = \{x \in S \mid f(x) = x \text{ for all } f \in T\}$.

If V is a finite dimensional vector space over a field E and $f: V \to V$ is a linear map, then, for $a \in E^*$, we set

$$V_a = \{ v \in V \mid (f - aI_V)^n v = 0 \text{ for some integer } n \ge 1 \}.$$

1. The Poincaré duality theorem

Let X be a smooth equidimensional variety, purely of dimension d. Then X is the disjoint union of its irreducible components X_1, \ldots, X_m . For an inteber $u, 1 \le u \le m$, let $i_u : X_u \hookrightarrow X$ be the inclusion morphism. Let G be a sheaf on X. For $1 \le u \le m$, let $G_u = i_{u^*} i_u^* G = i_{u!} i_u^* G$. Then we have $G = \bigoplus_{u=1}^m G_u$ and

$$H^{i}(X,G) = \bigoplus_{u=1}^{m} H^{i}(X,G_{u}) = \bigoplus_{u=1}^{m} H^{i}(X,i_{u^{*}}i_{u}^{*}G).$$

Let H be another sheaf on X. Then there are cup product homomorphisms

$$\cup: H^i(X,G) \times H^j(X,H) \longrightarrow H^{i+j}(X,G \otimes H) \quad (i,j \ge 0).$$

For $1 \leq u \neq v \leq m$, we have

$$x \cup y = 0, \quad x \in H^i(X_u, i_u^*G), \quad y \in H^j(X_v, i_v^*H).$$
 (1.1)

Assume that X is a projective variety. Let n be a positive integer coprime to p. Then, for $1 \leq u \leq m$, there is a canonical isomorphism $\operatorname{Tr}_{X_u}: H^{2d}(X_u, \mathbb{Z}/n\mathbb{Z}(d)) \xrightarrow{\sim} \mathbb{Z}/n\mathbb{Z}$, where (d) denotes the Tate twist. Let

$$\operatorname{Tr}_{X} = \sum_{u=1}^{m} \operatorname{Tr}_{X_{u}} : H^{2d}(X, \mathbb{Z}/n\mathbb{Z}(d))$$
$$= \bigoplus_{u=1}^{m} H^{2d}(X_{u}, \mathbb{Z}/n\mathbb{Z}(d)) \longrightarrow \mathbb{Z}/n\mathbb{Z}(d)$$

Then, by the Poincaré duality theorem ([SGA 4, Ch. XVIII]), the pairing

$$\langle , \rangle_{X,n} : H^i(X, \mathbb{Z}/n\mathbb{Z}(a)) \times H^{2d-i}(X, \mathbb{Z}/n\mathbb{Z}(d-a))$$

 $\xrightarrow{\cup} H^{2d}(X, \mathbb{Z}/n\mathbb{Z}(d)) \xrightarrow{\operatorname{Tr}_X} \mathbb{Z}/n\mathbb{Z}$ (1.2)

is non-degenerate $(a \in \mathbb{Z})$. By replacing n by ℓ^n , on passing to the projective limit on n and by tensoring with \mathbb{Q}_{ℓ} , we get a non-degenerate pairing

$$\langle , \rangle_X : H^i(X, \mathbb{Q}_\ell(a)) \times H^{2d-i}(X, \mathbb{Q}_\ell(d-a)) \longrightarrow \mathbb{Q}_\ell.$$

Remark Deligne's proof of non-degenerateness of the pairing in [SGA 4, Ch. XVIII] is dificult to follow for the author. But, fortunately, we can see its proof in Milne's book [Mi I, Section 11] when X is irreducible. The general case follows from this special case by using (1.1).

Assume that X is obtained by the extension of scalars from a scheme X_0 over $k_0 : X = X_0 \times_{k_0} k$. Then the pairing \langle , \rangle_X is Π -equivarinat, where Π acts on \mathbb{Q}_{ℓ} trivially.

Let $Y = Y_0 \times_{k_0} k$ be another smooth equidimensional projective variety, purely of dimension e, let $f_0 : Y_0 \to X_0$ be a morphism over k_0 and let $f = f_0 \times_{k_0} k : Y \to X$. Then the inverse image homomorphism f^* : $H^i(X, \mathbb{Q}_{\ell}(a)) \to H^i(Y, \mathbb{Q}_{\ell}(a))$ and the direct image homomorphism $f_* : H^{2e-i}(Y, \mathbb{Q}_{\ell}(e-a)) \to H^{2d-i}(X, \mathbb{Q}_{\ell}(d-a))$ (the dual of f^* via the Poincaré duality theorem) are Π -equivariant. Then f^* and f_* induce homomorphisms

$$f_1^* : H^i(X, \mathbb{Q}_\ell(a))_1 \longrightarrow H^i(Y, \mathbb{Q}_\ell(a))_1$$

and

$$f_{*1}: H^{2e-i}(Y, \mathbb{Q}_{\ell}(e-a))_1 \longrightarrow H^{2d-i}(X, \mathbb{Q}_{\ell}(d-a))_1$$

The pairings \langle , \rangle_X and \langle , \rangle_Y induce non-degenerate pairings

$$\langle , \rangle_{X,1} : H^i(X, \mathbb{Q}_\ell(a))_1 \times H^{2d-i}(X, \mathbb{Q}_\ell(d-a))_1 \longrightarrow \mathbb{Q}_\ell$$

and

$$\langle , \rangle_{Y,1} : H^i(Y, \mathbb{Q}_\ell(a))_1 \times H^{2e-i}(Y, \mathbb{Q}_\ell(e-a))_1 \longrightarrow \mathbb{Q}_\ell.$$

Therefore $f_1^*: H^i(X, \mathbb{Q}_\ell(a))_1 \to H^i(Y, \mathbb{Q}_\ell(a))_1$ induces its dual homomorphism

$$(f_1^*)^{\vee}: H^{2e-i}(Y, \mathbb{Q}_\ell(e-a))_1 \longrightarrow H^{2d-i}(X, \mathbb{Q}_\ell(d-a))_1$$

We see that

$$(f_1^*)^{\vee} = f_{*1}.$$

Therefore f_{*1} is surjective if f_1^* is injective.

Let V be a finite dimensional vector space over \mathbb{Q}_ℓ on which Π acts continuously. We note that

$$\overline{\langle \varphi \rangle} = \Pi.$$

Thus $V^{\varphi} = V^{\Pi}$. Thus, in particular, when φ acts semisimply on V_1 , we have $V_1 = V^{\varphi} = V^{\pi}$.

2. Tate conjecture

Let X_0 be a separated reduced smooth scheme of finite type over k_0 , let $X = X_0 \times_{k_0} k$ and let $\pi_X : X \to X_0$ be the natural projection. Then Xis a smooth variety over k. Assume that X_0 is purely of dimension d.

Let s be an integer, $0 \le s \le d$. Let $Z^s(X_0)$ (resp. $Z^s(X)$) be the free abelian group which is generated by the integral closed subschemes of X_0 (resp. X) of codimension s. For a prime cycle $Z_0 \in Z^s(X_0)$, let Z_1, \ldots, Z_t be all the irreducible component of $Z_0 \times_{k_0} k$, and we put

$$\pi_X^* Z_0 = Z_1 + \dots + Z_t \in Z^s(X)$$

(note that k_0 is perfect). Extending by additivity, we obtain a homomorphism

$$\pi_X^*: Z^s(X_0) \longrightarrow Z^s(X).$$

Let

$$\widetilde{\operatorname{cl}_{X_0}^s}: Z^s(X_0) \longrightarrow H^{2s}(X_0, \mathbb{Q}_\ell(s))$$

and

$$\widetilde{\operatorname{cl}_X^s}: Z^s(X) \longrightarrow H^{2s}(X, \mathbb{Q}_\ell(s))$$

be cycle maps (Grothendieck-Deligne [SGA 4 1/2]). Then we have the following commutative diagram:

We see that the cycle map $\widetilde{\operatorname{cl}_X^s}$ coincides with the cycle map which is defined in [Mi I, Ch. VI, Section 9] and the map π_X^* : $H^{2s}(X_0, \mathbb{Q}_{\ell}(s)) \to H^{2s}(X, \mathbb{Q}_{\ell}(s))$ coincides with the edge homomorphism at position (0, 2s) in the spectral sequence

$$H^i(\Pi, H^j(X, \mathbb{Q}_\ell(s))) \Longrightarrow H^{i+j}(X_0, \mathbb{Q}_\ell(s)).$$

Thus $\pi_X^* \circ \widetilde{\operatorname{cl}_{X_0}^s} = \widetilde{\operatorname{cl}_X^s} \circ \pi_X^*$ factors through $H^{2s}(X, \mathbb{Q}_\ell(s))^{\Pi}$. We denote this map by

$$\operatorname{cl}_{X_0}^s : Z^s(X_0) \longrightarrow H^{2s}(X, \mathbb{Q}_\ell(s))^{\Pi}.$$

Assume that X is projective. For an integer $s, 0 \le s \le d$, let

$$A^{s} = A^{s}(X_{0}) = \mathbb{Q} \cdot \operatorname{Im}(\operatorname{cl}_{X_{0}}^{s}) \subset H^{2s}(X, \mathbb{Q}_{\ell}(s))^{\Pi}$$

and

$$N^{s} = N^{s}(X_{0}) = \{ a \in A^{s} \mid \langle a, a' \rangle_{X} = 0 \text{ for all } a' \in A^{d-s} \},\$$

where \langle , \rangle_X is the Poincaré duality pairing via cup product.

The Tate conjecture over finite fields consists of the following two statements (see Tate [Ta I, II]):

$$T^{s}: \mathbb{Q}_{\ell} \cdot A^{s} = H^{2s}(X, \mathbb{Q}_{\ell}(s))^{\Pi},$$
$$E^{s}: N^{s} = 0.$$

Remark (1) In [Ta I], Tate defines his cycle map as follows:

Let $Z \in Z^s(X)$ be a prime cycle. We define c(Z) to be an element of $H^{2s}(X, \mathbb{Q}_{\ell}(s))$ characterized by the property

$$\operatorname{Tr}_X(y \cup c(Z)) = \operatorname{Tr}_Z(y \mid Z)$$

for all $y \in H^{2(d-s)}(X, \mathbb{Q}_{\ell}(d-s))$. We see that

$$c(Z) = \widetilde{\operatorname{cl}_X^s}(Z)$$

if Z is smooth (see [Mi I, Ch. VI, Section 11, Remark 11.6(e), p. 284]). However I do not know whether this equality holds for singular Z.

(2) In [Ta II], Tate states his conjectures by using "the" cycle map whose definition is unknown to the author. Here we adopt Grothendieck-Deligne-Milne's definition of cycle maps.

Let Y_0 be a smooth equidimensional projective scheme over k_0 , purely of dimension e, Let $Y = Y_0 \times_{k_0} k$ and let $\pi_Y : Y \to Y_0$ be the natural projection. Let $g_0 : Y_0 \to X_0$ be a morphism over k_0 and let $g = g_0 \times_{k_0} k : Y \to X$. Let s be an integer, $0 \le s \le e$. Let $W_0 \in Z^s(Y_0)$ be a prime cycle. Then the image $Z_0 = g_0(W_0)$ has a structure of closed integral subscheme of X_0 . The function field $k_0(Z_0)$ of Z_0 can be regarded as a subfield of the function field $k_0(W_0)$ of W_0 . Let $m = [k_0(W_0) : k_0(Z_0)]$. Then we define $g_{0*}W_0$ to be mZ_0 if m is finite and 0 otherwise. Extending by additivity, we obtain a homomorphism

$$g_{0^*}: Z^s(Y_0) \longrightarrow Z^{d-e+s}(X_0).$$

Similarly, we can define a homomorphism

$$g_*: Z^s(Y) \longrightarrow Z^{d-e+s}(X).$$

The diagram

$$\begin{array}{c|c} Y & \xrightarrow{\pi_Y} & Y_0 \\ g \\ g \\ \chi & & \downarrow \\ X & \xrightarrow{\pi_X} & X_0 \end{array}$$

is cartesian and π_X is flat. Therefore

$$g_*\pi_Y^* = \pi_X^* g_{0^*}$$

(see Fulton [Fu, Ch. I, Section 1.7, Proposition 1.7, p. 18]). Thus, if Y_0 is the disjoint union $\coprod_{j=1}^{t} Y_{0j}$ of closed subschemes Y_{0j} of X_0 and g_0 is the sum of the inclusion morphisms $Y_{0j} \hookrightarrow X_0$, then the following diagram is commutative:

$$\begin{split} Z^s(Y_0) & \xrightarrow{\operatorname{cl}_{Y_0}^s} H^{2s}(Y, \mathbb{Q}_{\ell}(s)) \\ g_{0*} & \downarrow g_* \\ Z^{d-e+s}(X_0) \xrightarrow{\operatorname{cl}_{X_0}^{d-e+s}} H^{2(d-e+s)}(X, \mathbb{Q}_{\ell}(d-e+s)). \end{split} (0 \leq s \leq e). \end{split}$$

(Cf. [Mi I, Ch. VI, Section 9, Proposition 9.3, p. 269]).

3. Reductive groups

In the rest of this paper, we shall use the following notations. Almost all of them are extracted from Deligne and Lusztig's paper [DL] and Lusztig's paper [Lu].

G is a connected, reductive linear algebraic group over k. $F: G \to G$ is a surjective endomorphism of *G* such that some integral power F^d of *F* is the Frobenius endomorphism of *G* relative to a rational structure on *G* over a finite subfield k' of k and q is the positive real number such that $q^d = |k'|$ (uniquely determined by *F*). We assume that d = 1 or that d = 2 and q is an odd power of $\sqrt{2}$ or $\sqrt{3}$.

 X_G is the set of Borel subgroups of G. G acts transitively on X_G by conjugation: $(g, B) \mapsto gBg^{-1}, g \in G, B \in X_G$. For each $B \in X_G$, the stabilizer $N_G(B)$ of B is just B, so the mapping $gB \mapsto gBg^{-1}$ defines a bijection $G/B \xrightarrow{\sim} X_G$. Therefore X_G has a structure of a projective variety. $F: X_G \to X_G$ is the map $B \mapsto F(B)$. This map is an endomorphism of X_G with respect to the structure of the projective variety of X_G :

By Lang-Steinberg theorem, there is an F-stable Borel subgroup B of G; for such B, the diagram

$$\begin{array}{ccc} G/B \xrightarrow{\sim} X_G \\ F & & \downarrow F \\ G/B \xrightarrow{\sim} X_G \end{array}$$

is commutative.

We let G act on $X_G \times X_G$ by $(g, (B, B')) \mapsto (gBg^{-1}, gB'g^{-1})$. Then the Weyl group W_G of G can be identified with the set $G \setminus (X_G \times X_G)$ of orbits of G on $X_G \times X_G$ as follows:

Let (T, B) be a pair of a maximal torus T of G and a Borel subgroup B of G containing T. Then the composite $\sigma(T, B)$ of the following bijections is an isomorphism of groups:

$$W_G(T) = N_G(T)/T \xrightarrow{\sim} B \setminus G/B \xrightarrow{\sim} G \setminus (G/B \times G/B) \xrightarrow{\sim} G \setminus (X_G \times X_G)$$
$$= W_G$$
$$nT \longmapsto BnB \longmapsto G \cdot (B, nB) \longmapsto G \cdot (B, nBn^{-1}).$$

The law of composition in W_G will be written as $O \circ O'$ for $O, O' \in W_G$. The unit element is the diagonal $\Delta = \{(B, B) \mid B \in X_G\}$. The set

$$S = S_G = \{ O \in W_G \mid \dim O = \dim X_G + 1 \}$$

is the set of simple reflections in W_G . We denote by $\ell()$ the length function on W_G with respect to S_G . $F: W_G \to W_G$ is the map $O \mapsto F(O)$. If (T, B)is an *F*-stable pair, then the diagram

$$\begin{array}{c|c} W_G(T) \xrightarrow{\sigma(T,B)} W_G \\ F & \downarrow \\ F & \downarrow \\ W_G(T) \xrightarrow{\sim} \\ \sigma(T,B) \\ \end{array} W_G \end{array}$$

is commutative. We have $F(S_G) = S_G$. $S_F = (S_G)_F$ is the set of orbits of F on S_G . $\pi : S_G \to S_F$ is the natural map. $r = |S_F|$ is the rank of G. δ is the minimal positive integer such that F^{δ} is the identity map on W_G . q^{δ} is a power of p; we put $k_0 = \mathbb{F}_{q^{\delta}}$, and $\Pi = \text{Gal}(k/k_0)$.

Let $B \in X_G^F$ (the *F*-invariant part of X_G). Then, in view of the construction of the structure of the projective variety on $G/B \xrightarrow{\sim} X_G$ (cf. Borel [Bo, Ch. II, Section 6, (6.8), pp. 181–2; Ch. IV, Section 11, (11.1), pp. 261– 2]), we see that there is a projective space P^N over k with the "standard" k_0 -structure with Frobenius map F^{δ} such that X_G is an F^{δ} -stable closed subvariety of P^N and that $F^{\delta} : X_G \to X_G$ is the restriction to X_G of $F^{\delta} : P^N \to P^N$.

The Coxeter graph Γ of G is the graph with one vertex for each element of S_G and such that the vertices corresponding to $O, O' \in S_G \ (O \neq O')$ are joined by 0, 1, 2 or 3 bonds according as $O \circ O'$ has order 2, 3, 4 or 6 respectively. $F: S_G \to S_G$ determines an automorphism F of Γ . When Γ is connected the possible (Γ, F) is as follows (cf. Bourbaki [Bour, Ch. 6,

pp. 37-8]); $A_n \ (n \ge 1)$ (*n* vertices, $\delta = 1$), ____o____o____o 0- $B_n \ (n \ge 2)$ (*n* vertices, $\delta = 1$), _____0_____0_____0 0— $D_n \ (n \ge 4)$ (*n* vertices, $\delta = 1$), o____o___... E_6 $(\delta = 1),$ 0- E_7 $(\delta = 1),$ -0- E_8 $(\delta = 1),$ -0--0 $(\delta = 1),$ F_4 0 G_2 $(\delta = 1),$ ${}^{2}A_{2n} \ (n \ge 1)$ ≥0 -0- $(2n \text{ vertices}, \delta = 2),$ ${}^{2}A_{2n+1} \ (n \ge 1)$ <u>>></u>0 -0--0- $(2n+1 \text{ vertices}, \delta = 2),$ ${}^{2}B_{2}$ $(\delta = 2, q = \sqrt{2}^{2m+1}),$ $^{2}D_{n} \ (n \geq 4)$ $(n \text{ vertices}, \delta = 2),$ ${}^{3}D_{4}$ $(\delta = 3),$ $^{2}E_{6}$ $(\delta = 2),$

Section 4, n^0 1, Théoremè 1], Steinberg [St, Section 11]; also see Carter [Ca,

$${}^{2}F_{4} \quad \circ \underbrace{\qquad } \circ \underbrace{\quad } \circ \underbrace{\quad$$

We continue to eatablish notations. Let $O \in W_G$. We let

$$X(O) = X_G(O) = \{ B \in X_G \mid (B, F(B)) \in O \}.$$

X(O) is a smooth locally closed subvariety of X_G , purely of dimension $\ell(O)$. We call X(O) the Deligne-Lusztig variety of G associated with O.

Let $O = O_1 \circ \cdots \circ O_n$ $(O_1, \ldots, O_n \in S_G)$ be a minimal expression for O. We let

$$X(O)^{\bullet} = \bar{X}(O_1, \dots, O_n)$$

= { (B₀, B₁, ..., B_n) $\in X_G^{n+1} | (B_{i-1}, B_i) \in O_i \cup \Delta$
for $1 \le i \le n$ and $F(B_0) = B_n$ }

and

$$X(O_1, \dots, O_n) = \{ (B_0, B_1, \dots, B_n) \in X(O)^{\bullet} \mid B_{i-1} \neq B_i, 1 \le i \le n \}.$$

Then $X(O)^{\bullet}$ is a smooth projective subvariety of X_G^{n+1} , purely of dimension $\ell(O), X(O_1, \ldots, O_n)$ is an open dense subvariety of $X(O)^{\bullet}$ and the mapping $(B_0, B_1, \ldots, B_n) \mapsto B_0$ gives an isomorphism from $X(O_1, \ldots, O_n)$ onto X(O). We call $X(O)^{\bullet}$ the Hansen-Demazure-Deligne-Lusztig campactification of X(O) (with respect to a reduced expression $O = O_1 \circ \cdots \circ O_n$).

 $X(O)^{\bullet}$ is an F^{δ} -stable subvariety of X_G^{n+1} . Therefore $F^{\delta} : X(O)^{\bullet} \to X(O)^{\bullet}$ determines a k_0 -structure $X(O)_0^{\bullet}$ on $X(O)^{\bullet}$. $X(O)_0^{\bullet}$ is a smooth projective scheme of finite type over k_0 , purely of dimension $\ell(O)$.

In the following, if P is a parabolic subgroup of G, then U_P is its unipotent radical, $L_P = P/U_P$ and $\pi_P : P \to L_P$ is the natural morphism. L_P is a connected, reductive linear algebraic group over k.

 $f = (O_1, \ldots, O_r)$ is a sequence of elements of S_G such that $\{\pi(O_1), \ldots, \pi(O_r)\} = S_F$. We put

$$O_f = O_1 \circ \dots \circ O_r \in W_G,$$

$$X_f = X(O_f),$$

$$X_f^{\bullet} = X(O_f)^{\bullet} = \bar{X}(O_1, \dots, O_r)$$

and

$$X_{f,0}^{\bullet} = X(O_f)_0^{\bullet}.$$

 O_f is called a Coxeter orbit of G on $X_G \times X_G$. X_f is a smooth irreducible affine variety of dimension r, X_f^{\bullet} is a smooth irreducible projective variety of dimension r, and $X_{f,0}^{\bullet}$ is a smooth absolutely irreducible projective scheme of finite type over k_0 .

Let I be any subset of S_F , and let n = |I|. $f(I) = (O_{i_1}, \ldots, O_{i_n})$ $(1 \le i_1 < \cdots < i_n \le r)$ is the subsequence of $f = (O_1, \ldots, O_r)$ such that $\{\pi(O_{i_1}), \ldots, \pi(O_{i_n})\} = I$. We put

$$O_{f(I)} = O_{i_1} \circ \dots \circ O_{i_n} \in W_G,$$

$$X_{f(I)} = X(O_{f(I)}),$$

$$X_{f(I)}^{\bullet} = X(O_{f(I)})^{\bullet}.$$

We put

$$\bar{X}_{f}^{\bullet}(I) = \{ (B_{0}, B_{1}, \dots, B_{r}) \in X_{f}^{\bullet} \mid B_{i-1} = B_{i} \text{ if } \pi(O_{i}) \notin I \}$$

and

$$X_{f}^{\bullet}(I) = \{ (B_{0}, B_{1}, \dots, B_{r}) \in \bar{X}_{f}^{\bullet}(I) \mid B_{i-1} \neq B_{i} \text{ if } \pi(O_{i}) \in I \}.$$

 $\bar{X}_{f}^{\bullet}(I)$ is isomorphic to $X(O_{f(I)})^{\bullet} = \bar{X}(O_{i_{1}}, \ldots, O_{i_{n}})$, so it is a smooth projective variety, purely of dimension n = |I|. The mapping $(B_{0}, B_{1}, \ldots, B_{r}) \mapsto B_{0}$ gives an isomorphism from $X_{f}^{\bullet}(I)$ onto $X_{f(I)}$. $X_{f}^{\bullet}(I)$ is an open dense subvariety of $\bar{X}_{f}^{\bullet}(I)$. $\bar{X}_{f}^{\bullet}(I)_{0}$ denotes the k_{0} -structure on $\bar{X}_{f}^{\bullet}(I)$ determined by $F^{\delta} : \bar{X}_{f}^{\bullet}(I) \to \bar{X}_{f}^{\bullet}(I)$. $\bar{X}_{f}^{\bullet}(I)_{0}$ is a smooth projective scheme of finite type over k_{0} , purely of dimension n.

We give the irreducible decompositions of $X_f^{\bullet}(I) (\simeq X_{f(I)})$ and $\bar{X}_f^{\bullet}(I) (\simeq X_{f(I)})$.

Let \mathcal{P}_I be the (*F*-stable) conjugacy class of parabolic subgoups of *G* corresponding to $\pi^{-1}(I)$. More precisely, \mathcal{P}_I is constructed as follows:

We fix an *F*-stable Borel subgroup B^* of *G* and an *F*-stable maximal torus T^* of *G* contained in B^* . Let $W_I = \langle \pi^{-1}(I) \rangle \subset W_G$, and let $W_I^* = \sigma(T^*, B^*)^{-1}(W_I) \subset W_G(T^*)$. Let $P_I^* = B^*W_I^*B^*$. Then

$$\mathcal{P}_I = \left\{ g P_I^* g^{-1} \mid g \in G \right\}.$$

Let $P \in \mathcal{P}_I^F$. Then the mapping $\overline{B} \mapsto \pi_P^{-1}(\overline{B})$ defines an isomorphism i_P from $X_P = X_{L_P}$ onto the closed subvariety $X_{G,P} = \{B \in X_G \mid B \subset P\}$ of X_G . $i_P \times i_P : X_P \times X_P \to X_G \times X_G$ induces an isomorphism i_P from $W_{L_P} = L_P \setminus (X_P \times X_P)$ onto the subgroup

$$W_{I} = W(\mathcal{P}_{I})$$

= $\{O \in W_{G} \mid \text{ for } (B, B') \in O, \text{ there is } P' \in \mathcal{P}_{I} \text{ such that } B, B' \subset P' \}$

of W_G . We have

$$i_P(S_{L_P}) = S_G \cap W_I =: S_I = S(\mathcal{P}_I).$$

The bijection $i_P : S_{L_P} \xrightarrow{\sim} S_I$ determines a sequence $f(P) = f(L_P) = (\bar{O}_{i_1}, \ldots, \bar{O}_{i_n})$ of elements of S_{L_P} such that

$$\bar{O}_{f(P)} = \bar{O}_{i_1} \circ \dots \circ \bar{O}_{i_n} \in W_{L_P}$$

is a Coxeter orbit of L_P on $X_P \times X_P$. $i_P : X_P \xrightarrow{\sim} X_{G,P}$ induces an isomorphism from $X_{f(P)} = X_{f(L_P)} = X_{L_P}(\bar{O}_{f(P)})$ onto the closed subvariety

$$X_{f(I),P} = \left\{ B \in X_{f(I)} \mid B \subset P \right\}$$

of $X_{f(I)}$. And

$$X_{f(I)} = \coprod_{P \in \mathcal{P}_I^F} X_{f(I),P}.$$

Thus

$$X_f^{\bullet}(I) \xrightarrow{\sim} X_{f(I)} \xleftarrow{\sim} \prod_{P \in \mathcal{P}_I^F} X_{f(P)},$$
 (3.1)

which is the irreducible decomposition of $X_f^{\bullet}(I)$. These isomorphisms are F^{δ} -equivariant.

Similarly, the $i_P, P \in \mathcal{P}_I^F$, induce an F^{δ} -equivariant isomorphisms

$$\bar{X}_{f}^{\bullet}(I) \xrightarrow{\sim} X_{f(I)}^{\bullet} \xleftarrow{\sim} \prod_{P \in \mathcal{P}_{I}^{F}} X_{f(P)}^{\bullet}.$$
(3.2)

(3.1) is proved in [Lu]. We give here a proof of (3.2).

Let R^* , R^{*+} and D^* be respectively the root system of G with respect to T^* , the set of positive roots determined by B^* and the set of corresponding simple roots. Put $J = \pi^{-1}(I)$, and $J^* = \sigma(T^*, B^*)^{-1}(J) \subset W_G(T^*)$. J^* is a subset of $S^* = \sigma(T^*, B^*)^{-1}(S_G)$ of simple reflections in $W_G(T^*)$ determined by B^* . Each $\alpha \in D^*$ determines a simple reflection $s_\alpha \in S^*$ and the mapping $\alpha \mapsto s_\alpha$ gives a bijection $a : D^* \xrightarrow{\sim} S^*$. Let $D_I^* = a^{-1}(J^*)$. For a root $\alpha \in R^*$, let U_α^* be the root subgroup of G associated with α . Then

$$P_I^* = \left\langle U_{-\alpha}^*, B^* \mid \alpha \in D_I^* \right\rangle.$$

Let

$$M_I^* = \left\langle U_\alpha^*, U_{-\alpha}^*, T^* \mid \alpha \in D_I^* \right\rangle.$$

Then M_I^* is an *F*-stable Levi subgroup of P_I^* $(P_I^* = M_I^* \ltimes U_{P_I^*})$. The composite $M_I^* \hookrightarrow P_I^* \to L_{P_I^*}$ induces and isomorphism $b: M_I^* \xrightarrow{\sim} L_{P_I^*}$. Let $P \in \mathcal{P}_I^F$. Then $P = g_0 P_I^* g_0^{-1}$ for some $g_0 \in G^F$ (the *F*-invariant

Let $P \in \mathcal{P}_I^F$. Then $P = g_0 P_I^* g_0^{-1}$ for some $g_0 \in G^F$ (the *F*-invariant part of *G*). Let $M_P = g_0 M_I^* g_0^{-1}$. Then the composite $M_P \hookrightarrow P \to L_P$ induces an isomorphism $b_P : M_P \xrightarrow{\sim} L_P$. The morphism $i_P : X_P \to X_G$ is given by

$$i_P(\bar{B}) = b_P^{-1}(\bar{B}) \cdot U_P \quad (\bar{B} \in X_P).$$

Recall that $1 \leq i_1 < \cdots < i_n \leq r$. Put $i_0 = 0$. Then

$$X_{f(P)}^{\bullet} = \left\{ \left(\bar{B}_{i_0}, \bar{B}_{i_1}, \dots, \bar{B}_{i_n} \right) \in X_P^{n+1} \mid \left(\bar{B}_{i_{j-1}}, \bar{B}_{i_j} \right) \in \bar{O}_{i_j} \cup \Delta_P \\ \text{for } 1 \le j \le n \text{ and } F(\bar{B}_{i_0}) = \bar{B}_{i_n} \right\},$$

where $\Delta_P = \{(\bar{B}, \bar{B}) \mid \bar{B} \in X_P\}$. For $(\bar{B}_{i_0}, \bar{B}_{i_1}, \dots, \bar{B}_{i_n}) \in X_P^{n+1}$, put $i_P(\bar{B}_{i_0}, \bar{B}_{i_1}, \dots, \bar{B}_{i_n}) = (i_P(\bar{B}_{i_0}), i_P(\bar{B}_{i_1}), \dots, i_P(\bar{B}_{i_n})) \in X_G^{n+1}$.

Let

$$X^{\bullet}_{f(I),P} = \{ (B_{i_0}, B_{i_1}, \dots, B_{i_n}) \in X^{\bullet}_{f(I)} \mid B_{i_0}, B_{i_1}, \dots, B_{i_n} \subset P \},\$$

and we define $\pi_P: X^{\bullet}_{f(I),P} \to X^{\bullet}_{f(P)}$ by

$$\pi_P(B_{i_0}, B_{i_1}, \dots, B_{i_n}) = (\pi_P(B_{i_0}), \pi_P(B_{i_1}), \dots, \pi_P(B_{i_n})).$$

Then $i_P: X_P^{n+1} \to X_G^{n+1}$ induces an isomorphism from $X_{f(P)}^{\bullet}$ onto $X_{f(I),P}^{\bullet}$ whose inverse is π_P .

Thus

$$(i_P)_{P \in \mathcal{P}_I^F} : \coprod_{P \in \mathcal{P}_I^F} X^{\bullet}_{f(P)} \xrightarrow{\sim} \coprod_{P \in \mathcal{P}_I^F} X^{\bullet}_{f(I),P} \subset X^{\bullet}_{f(I)}.$$

Let $(B_{i_0}, B_{i_1}, \ldots, B_{i_n}) \in X^{\bullet}_{f(I)}$. We show that there is some $P \in \mathcal{P}^F_I$ such that $B_{i_0}, B_{i_1}, \ldots, B_{i_n} \subset P$.

If $B_{i_0} = B_{i_1} = \cdots = B_{i_n}$, let P be a parabolic subgroup in \mathcal{P}_I containing B_{i_0} . Then $F(B_{i_0}) = B_{i_n} = B_{i_0}$. So $B_{i_0} \subset F(P)$. Since $F(\mathcal{P}_I) = \mathcal{P}_I$, $F(P) \in \mathcal{P}_I$ and P and F(P) are conjegate. So we must have P = F(P). Thus $P \in \mathcal{P}_I^F$.

Otherwise, there is an integer $j, 1 \leq j \leq n$, such that $B_{i_{j-1}} \neq B_{i_j}$. Let j be minimal having this property. Then, by the definition of $X_{f(I)}^{\bullet}$, we must have $(B_{i_{j-1}}, B_{i_j}) \in O_{i_j}$. So there is an element $g \in G$ such that $B_{i_{j-1}} = gB^*g^{-1}$ and $B_{i_j} = gs_{i_j}B^*s_{i_j}g^{-1}$, where s_{i_j} is an element of $N_G(T^*)$ such that $\sigma(T^*, B^*)(s_{i_j}T^*) = O_{i_j}$. Put $P = gP_I^*g^{-1}$. Then $B_{i_{j-1}} \subset P$. As $g^{-1}B_{i_j}g = s_{i_j}B^*s_{i_j} \subset s_{i_j}P_I^*s_{i_j} = P_I^*$, $B_{i_j} \subset gP_I^*g^{-1} = P$.

If j is a unique integer such that $B_{i_{j-1}} \neq B_{i_j}$, then $(B_{i_0}, \ldots, B_{i_n}) = (B_{i_{j-1}}, \ldots, B_{i_{j-1}}, B_{i_j}, \ldots, B_{i_j})$. Therefore, in this case, as $B_{i_j} = B_{i_n} = F(B_{i_0}) = F(B_{i_{j-1}}), B_{i_j} \subset F(P)$. But P and F(P) are conjugate, so we must have F(P) = P. Thus $P \in \mathcal{P}_I^F$.

Otherwise, let j' > j be the minimal integer such that $B_{i_{j'-1}} \neq B_{i_{j'}}$. Then $(B_{i_{j'-1}}, B_{i_{j'}}) \in O_{i_{j'}}$. So there is an element $g' \in G$ such that $B_{i_{j'-1}} =$

 $g'B^*g'^{-1}$ and $B_{i_{j'}} = g's_{i_{j'}}B^*s_{i_{j'}}g'^{-1}$. We have $B_{i_j} = B_{i_{j'-1}} \subset P$ and $B_{i_{j'-1}} \subset g'P_I^*g'^{-1}$. But P and $g'P_I^*g'^{-1}$ are conjugate, so we must have $P = g'P_I^*g'^{-1}$. As $g'^{-1}B_{i_{j'}}g' = s_{i_{j'}}B^*s_{i_{j'}} \subset s_{i_{j'}}P_I^*s_{i_{j'}} = P_I^*$, $B_{i_{j'}} \subset g'P_I^*g'^{-1} = P$.

By continuing the similar considerations, we see that there is some $P \in \mathcal{P}_I$ such that $B_{i_0}, B_{i_1}, \ldots, B_{i_n} \subset P$. We have $B_{i_n} = F(B_{i_0}) \subset F(P)$. So $B_{i_0} \subset P$, F(P). But P and F(P) are conjugate, we must have F(P) = P. Thus $P \in \mathcal{P}_I^F$.

Thus

$$X_{f(I)}^{\bullet} = \prod_{P \in \mathcal{P}_{I}^{F}} X_{f(I),P}^{\bullet}$$

and

$$(i_P)_{P\in\mathcal{P}_I^F}: \coprod_{P\in\mathcal{P}_I^F} X_{f(P)}^{\bullet} \xrightarrow{\sim} X_{f(I)}^{\bullet}.$$

This isomorphism is F^{δ} -equivariant.

For $a \in \mathbb{Z}$, $0 \le a \le n = |I|$, we put

$$D_a(I) = \bigcup_{\substack{J \subset I \\ |J| \le a}} X_f^{\bullet}(J) \subset \bar{X}_f^{\bullet}(I);$$

we put $D_a(I) = \emptyset$ for a < 0. Then $D_0(I) \subset D_1(I) \subset \cdots \subset D_{n-1}(I)$ are closed subvarieties of $D_n(I) = \bar{X}_f^{\bullet}(I)$ and

$$D_a(I) - D_{a-1}(I) = \prod_{\substack{J \subset I \\ |J| = a}} X_f^{\bullet}(I).$$

Our main result is

Theorem 1 Assume that G is a simple algebraic group. Then, for any $I \subset S_F$, we have

$$\mathbb{Q}_{\ell} \cdot A^s(X^{\bullet}_{f(I),0}) = H^{2s}(X^{\bullet}_{f(I)}, \mathbb{Q}_{\ell}(s))^{\Pi}$$

and

$$N^s(X^{\bullet}_{f(I),0}) = 0$$

for $0 \leq s \leq |I|$.

Corollary Let G be a connected, reductive linear algebraic group, defined and split over \mathbb{F}_q ($\delta = 1$). Then

$$Q_{\ell} \cdot A^{1}(X_{f,0}^{\bullet}) = H^{2} \left(X_{f}^{\bullet}, \mathbb{Q}_{\ell}(1) \right)^{\Pi},$$
$$Q_{\ell} \cdot A^{r-1}(X_{f,0}^{\bullet}) = H^{2(r-1)} \left(X_{f}^{\bullet}, \mathbb{Q}_{\ell}(r-1) \right)^{\Pi},$$
$$N^{r-1}(X_{f,0}^{\bullet}) = 0.$$

4. Start of the proof

Lemma 1 (Lusztig [Lu, Section 6, Theorem 6.1(i), p. 135]) If G is a simple algebraic group, then $(F^{\delta})^*$ acts semisimply on $H^i_c(X_f)$, $i \ge 0$.

As X_f is an irreducible affine variety of dimension r, we have $H_c^i(X_f) = 0$ unless $r \leq i \leq 2r$. Let $i \in Z$, $r \leq i \leq 2r$. Let $\lambda_1, \ldots, \lambda_{n_i}$ be all the eigenvalues of $(F^{\delta})^*$ on $H_c^i(X_f)$, and for each $j \in Z$, $1 \leq j \leq n_i$, let $H_c^i(X_f)_{\lambda_j}$ be the generalized λ_j -eigenspace of $(F^{\delta})^*$ on $H_c^i(X_f)$. Then Lusztig proves that the $H_c^i(X_f)_{\lambda_j}$ are mutually non-isomorphic irreducible representations of G^F . For $1 \leq j \leq n_i$, let $v_j \in H_c^i(X_f)_{\lambda_j}$ be an eigenvector of $(F^{\delta})^*$ associated with λ_j . Then $\bar{Q}_\ell[G^F]v_j$ is a G^F -submodule of $H_c^i(X_f)_{\lambda_j}$. But, as $H_c^i(X_f)_{\lambda_j}$ is irreducible, we must have $\bar{Q}_\ell[G^F]v_j = H_c^i(X_f)_{\lambda_j}$. Therefore there are elements g_1, \ldots, g_t of G^F such that the vectors g_1v_j, \ldots, g_tv_j form a basis of the vector space $H_c^i(X_f)_{\lambda_j}$ over \bar{Q}_ℓ . Since the action of $(F^{\delta})^*$ and that of G^F commute, we see that g_1v_j, \ldots, g_tv_j are eigenvectors of $(F^{\delta})^*$. Therefore $(F^{\delta})^*$ acts semisimply on $H_c^i(X_f)_{\lambda_j}$. This holds for all j. Therefore $(F^{\delta})^*$ acts semisimply on $H_c^i(X_f) = \bigoplus_{i=1}^{n_i} H_c^i(X_f)_{\lambda_i}$.

Proposition 1 Let $s \in Z$ and let $I \subset S_F$. Then $(F^{\delta})^*$ acts semisimply on $H^i_c(X^{\bullet}_f(I))(s) = H^i_c(X^{\bullet}_f(I)) \otimes \overline{Q}(s), \ i \geq 0.$

Let $(F^{\delta})_0^*$ be the action of $(F^{\delta})^*$ on $H_c^i(X_f^{\bullet}(I))$. Then $(F^{\delta})^*$ acts on $H_c^i(X_f^{\bullet}(I))(s)$ by $(F^{\delta})_0^* \otimes (q^{\delta})^{-s}$ $(q^{\delta} = |k_0|)$. Therefore we may assume that s = 0.

We recall that there is an F^{δ} -equivariant isomorphism

$$X_f^{\bullet}(I) \xleftarrow{\sim} \prod_{P \in \mathcal{P}_I^F} X_{f(P)}.$$

Therefore there are $(F^{\delta})^*$ -equivariant isomorphisms:

$$H_{c}^{i}(X_{f}^{\bullet}(I)) \xleftarrow{\sim} H_{c}^{i}\Big(\coprod_{P \in \mathcal{P}_{I}^{F}} X_{f(P)}\Big)$$
$$\xrightarrow{\sim} \bigoplus_{P \in \mathcal{P}_{I}^{F}} H_{c}^{i}(X_{f(P)})$$
$$= \bigoplus_{P \in \mathcal{P}_{I}^{F}} H_{c}^{i}(X_{f(L_{P})}).$$

Let $P \in \mathcal{P}_I^F$. Let δ_P be the minimal positive integer such that F^{δ_P} is the identity map on W_{L_P} . Then, as F^{δ} is the identity map on W_{L_P} , we have $\delta_P \leq \delta$. Let $\delta = \delta_P t + \delta'$ with $t, \delta' \in Z, t, \delta' \geq 0, 0 \leq \delta' < \delta_P$. Let $w \in W_{L_P}$. Then $w = F^{\delta}(w) = F^{\delta_P t + \delta'}(w) = F^{\delta'}(w)$. Since $0 \leq \delta' < \delta_P$, by the minimality of δ_P , we must have $\delta' = 0$. Therefore δ_P divides δ . Thus to prove the assertion, it suffices to show that, for each $P \in \mathcal{P}_I^F$, $(F^{\delta_P})^*$ acts on $H_c^i(X_{f(L_P)})$ semisimply. Thus we are reduced to the case where $I = S_F$.

But, by the argument in (1.18) of [Lu], we are reduced to the case where G is a simple algebraic group of adjoint type. Thus the assertion follows from Lemma 1.

In the rest of this paper, we shall assume that G is a simple algebraic group.

We quote from [Lu, (7.3)] the following table on the eigenvalues of $(F^{\delta})^*$ on $H^i_c(X_f)$, $r \leq i \leq 2r$. Each table consists of r + 1 colums. In the first column (from the left) we record the eigenvalues of $(F^{\delta})^*$ occuring in $H^r_c(X_f)$, in the second column we record the eigenvalues of $(F^{\delta})^*$ occuring in $H^{r+1}_c(X_f)$ and so on. θ, i, ζ will denote a primitive root of 1 in \bar{Q}^*_{ℓ} of order 3, 4, 5 respectively.

$$A_n \ (n \ge 1): \quad 1, \quad q, \quad q^2, \dots, q^n,$$

$$B_n \ (n \ge 2): \quad 1, \quad q, \quad q^2, \dots, q^{n-2}, \qquad q^{n-1}, \quad q^n,$$

$$-q, \quad -q^2, \quad -q^3, \dots, -q^{n-1},$$

$${}^{2}A_{2n} \ (n \ge 1): \quad 1, \qquad q^{2}, \dots, q^{2n-2}, \qquad q^{2n}, \\ -q, \qquad -q^{3}, \dots, -q^{2n-1}, \qquad q^{2n-2}, \qquad q^{2n}, \qquad q^{2n+2}, \\ -q^{3}, \qquad -q^{5}, \dots, -q^{2n-1}, \qquad q^{2n-2}, \qquad q^{2n}, \qquad q^{2n+2}, \\ {}^{2}D_{n} \ (n \ge 3): \quad 1, \qquad q^{2}, \qquad q^{4}, \dots, q^{2n-2}, \qquad {}^{3}D_{4}: \qquad 1, \qquad q^{3}, \qquad q^{6}, \qquad \\ -q^{3}, \qquad -q^{3}, \qquad -q^{3}, \qquad {}^{2}E_{6}: \quad 1, \qquad q^{2}, \qquad q^{4}, \qquad q^{6}, \qquad q^{8}, \\ -q^{3}, \qquad -q^{5}, \qquad \theta q^{4}, \qquad \theta^{2}q^{4}, \qquad \theta^{2}q^{2}, \qquad \frac{i-1}{\sqrt{2}}q, \qquad \frac{i-1}{\sqrt{2}}q, \qquad \frac{i-1}{\sqrt{2}}q^{3}, \qquad \frac{-i-1}{\sqrt{2}}q^{3}, \qquad \frac{-i-1}{\sqrt{2}}q^{3}, \qquad -q^{2}, \qquad iq^{2}, \qquad -q^{2}, \\ -q^{2}, \qquad -q^{2}, \qquad -q^{2}, \qquad -q^{2}, & -\theta q^{2}, \\ -\theta q^{2}, \qquad -\theta^{2}q^{2}, \qquad -\theta^{2}q^{2}, \qquad \theta^{2}q^{2}, \qquad \theta^{2}q^$$

$${}^{2}G_{2}$$
: 1, q^{2}
 ${iq, \ -iq, \ \frac{i - \sqrt{3}}{2}q, \ \frac{-i - \sqrt{3}}{2}q, \ \frac{-i - \sqrt{3}}{2}q, \ }$

Tee following is the key lemma.

Lemma 2 Recall that G is a simple algebraic group. Let $J \subset S_F$ be such that $1 \leq |J| \leq r$. Then, for $i \in Z$, $0 \leq i \leq |J| - 1$, we have

$$H_c^{2i}(X_f^{\bullet}(J))_{(q^{\delta})^i} = 0$$

(the subspace of $H^{2i}_c(X^{\bullet}_f(J))$ on which $(F^{\delta})^*$ acts by multiplication by $(q^{\delta})^i$).

We first treat the cases ${}^{2}B_{2}$, ${}^{2}G_{2}$, ${}^{2}F_{4}$.

The case ${}^{2}B_{2}$ or ${}^{2}G_{2}$. We have r = 1 and $X_{f}^{\bullet}(J) = X_{f}^{\bullet}(S_{F}) \simeq X_{f}$. X_{f} is an irreducible affine variety of dimension 1. Therefore $H_{c}^{\bullet}(X_{f}^{\bullet}) = 0$.

The case ${}^{2}F_{4}$. We have r = 2. Let $J = S_{F}$. Then $X_{f}^{\bullet}(J) \simeq X_{f}$ and X_{f} is an irreducible affine variety of dimension 2. Therefore $H_{c}^{0}(X_{f}) = 0$. Let i = 1. Then the eigenvalues of $(F^{2})^{*}$ ($\delta = 2$) on $H_{c}^{2}(X_{f})$ are $\neq q^{2}$. Therefore $H_{c}^{2}(X_{f})_{q^{2}} = 0$.

Let |J| = 1. We have an $(F^2)^*$ -equivariant isomorphism

$$H^0_c(X^{\bullet}_f(J)) \xleftarrow{\sim} \bigoplus_{P \in \mathcal{P}^F_J} H^0_c(X_{f(P)}).$$

Let $P \in \mathcal{P}_J^F$. Then, the Coxeter graph of the adjoint group L_P^{ad} of L_P is either

 \circ or \circ

Therefore $X_{f(P)} \simeq X_{f(L_P^{ad})}$ is an irreducible affine variety of dimension 1. Therefore $H^0_c(X_{f(P)}) = 0$. Therefore $H^0_c(X_f^{\bullet}(J)) = 0$.

Next we treat the case where G is defined and split over F_q ($\delta = 1$). The case A_n ($n \ge 1$). Let $0 \le i \le |J| - 1$. We have an F^* -equivariant isomorphism

$$H_c^{2i}(X_f^{\bullet}(J)) \simeq \bigoplus_{P \in \mathcal{P}_J^F} H_c^{2i}(X_{f(P)}).$$

Let $P \in \mathcal{P}_J^F$. Then L_P^{ad} is of the form $G_1 \times \cdots \times G_m$, where, for $1 \leq j \leq m$, G_j is a simple algebraic group of type A_j with $r_j \geq 1$ and $r_1 + \cdots + r_m = |J|$. Therefore there is F-equivariant isomorphisms

$$X_{f(P)} \simeq X_{f(L_P^{ad})} \simeq X_{f_1} \times \cdots \times X_{f_m},$$

where, for $1 \leq j \leq m$, X_{f_j} is a variety for G_j similar to X_f for G. Then, by the Künneth formula, we have F^* -equivariant isomorphisms

$$H_c^{2i}(X_{f(P)}) \simeq H_c^{2i}(X_{f_1} \times \dots \times X_{f_m})$$
$$\bigoplus_{i_1 + \dots + i_m = 2i} H_c^{i_1}(X_{f_1}) \otimes \dots \otimes H_c^{i_m}(X_{f_m}).$$
(*)

On each direct summand in the last term of (*), F^* acts by the multiplication by

$$q^{i_1-r_1}q^{i_2-r_2}\dots q^{i_m-r_m} = q^{(i_1+\dots+i_m)-(r_1+\dots+r_m)}$$
$$= q^{2i-|J|} \neq q^i \qquad (\text{cf. } 0 \le i \le |J|-1).$$

Therefore

$$H_c^{2i}(X_{f(P)})_{q^i} = 0.$$

Therefore

$$H_c^{2i}(X_f^{\bullet}(J))_{q^i} \simeq \bigoplus_{P \in \mathcal{P}_J^F} H_c^{2i}(X_{f(P)})_{q^i} = 0.$$

The case B_n $(n \ge 2)$. Let $P \in \mathcal{P}_J^F$. Then L_P^{ad} is of the form $G_1 \times \cdots \times G_m$, where either

(i) for $1 \leq j \leq m-1$, G_i is a simple algebraic group of type A_{r_j} with $r_j \geq 1$ and G_m is a simple algebraic group of type B_{r_m} with $r_m \geq 2$, and

 $r_1 + \dots + r_{m-1} + r_m = |J|,$

ſ		1	1
Ľ	,	T	

(ii) for $1 \leq j \leq m$, G_j is a simple algebraic group of type A_{r_j} with $r_j \geq 1$, and $r_1 + \cdots + r_m = |J|$.

We have a similar decomposition as (*). In case (ii), F^* acts each direct summand by the multiplication by

$$q^{i_1-r_1}\dots q^{i_m-r_m} = q^{2i-|J|} \neq q^i.$$

In case (i), F^* acts by the multiplication by

$$q^{i_1-r_1}\dots q^{i_m-r_m} = q^{2i-|J|} \neq q^i$$

or

$$q^{i_1-r_1}\dots q^{i_{m-1}-r_{m-1}}(-q^{i_m-r_m+1}) = -q^{2i-|J|+1} \neq q^i.$$

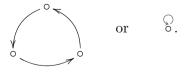
Therefore $H_c^{2i}(X_{f(P)})_{q^i} = 0$. Thus

$$H_c^{2i}(X_f^{\bullet}(J))_{q^i} \simeq \bigoplus_{P \in \mathcal{P}_J^F} H_c^{2i}(X_{f(P)})_{q^i} = 0.$$

The remaining cases D_n , E_6 , E_7 , E_8 , F_4 and G_2 can be treated similarly. Thirdly we treat the non-split case.

The case ${}^{3}D_{4}$. We have r = 2. Let $J = S_{F}$. Then $X_{f}^{\bullet}(J) \simeq X_{f}$ and X_{f} is an irreducible affine variety of dimension 2. Therefore $H_{c}^{0}(X_{f}) = 0$. Let i = 1. Then the eigenvalues of $(F^{3})^{*}$ ($\delta = 3$) on $H_{c}^{2}(X_{f})$ are $\neq q^{3}$. Therefore $H_{c}^{2}(X_{f})_{q^{3}} = 0$.

Let |J| = 1. Let $P \in \mathcal{P}_{I}^{F}$. Then the Coxeter graph of L_{P}^{ad} is either



Therefore $X_{f(P)} \simeq X_{f(L_P^{ad})}$ is an irreducible affine variety of dimension 1. Therefore $H_c^0(X_{f(P)}) = 0$. Therefore

$$H^0_c(X^{\bullet}_f(J)) \simeq \bigoplus_{P \in \mathcal{P}^F_J} H^0_c(X_{f(P)}) = 0.$$

The case ${}^{2}A_{2n}$ $(n \geq 1)$. Let $P \in \mathcal{P}_{J}^{F}$. Then L_{P}^{ad} is of the form $G_{1} \times \cdots \times G_{m}$, where either

(i) for $1 \le j \le m - 1$, (G_i, F) is "isomorphic" to (A_{r_j}, F^2) for $r_j \ge 1$ and (G_m, F) is $({}^2A_{2r_m}, F)$ with $r_j \ge 1$, and $r_1 + \dots + r_{m-1} + r_m = |J|$, or

or

(ii) for $1 \leq j \leq m$, (G_j, F) is "isomorphic" to (A_{r_j}, F^2) for $r_j \geq 1$ and $r_1 + \cdots + r_m = |J|$.

We have a similar decomposition as (*). In case (ii), on each direct summand, $(F^2)^*$ acts by the multiplication by

$$(q^2)^{i_1-r_1}\dots(q^2)^{i_m-r_m} = (q^2)^{2i-|J|} \neq (q^2)^i.$$

In case (i), $(F^2)^*$ acts by the multiplication by

$$(q^2)^{i_1-r_1}\dots(q^2)^{i_{m-1}-r_{m-1}}(q^2)^{i_m-r_m} = (q^2)^{2i-|J|} \neq (q^2)^i.$$

or

$$(q^2)^{i_1-r_1}\dots(q^2)^{i_{m-1}-r_{m-1}}(-q^{2(i_m-r_m)+1})\neq (q^2)^i.$$

Therefore $H_c^{2i}(X_{f(P)})_{(q^2)^i} = 0$. Therefore

$$H_c^{2i}(X_f^{\bullet}(J))_{(q^2)^i} \simeq \bigoplus_{P \in \mathcal{P}_J^F} H_c^{2i}(X_{f(P)})_{(q^2)^i} = 0.$$

The case ${}^{2}A_{3}$. This is the same as the case ${}^{2}D_{3}$. We have r = 2 and the eigenvalues of $(F^{2})^{*}$ on $H_{c}^{s}(X_{f})$ for $2 \leq s \leq 4$ are $1, q^{2}, q^{4}$, respectively. Thus, if $J = S_{F}$, then $X_{f}^{\bullet}(J) \simeq X_{f}$ and $H_{c}^{0}(X_{f}) = 0$ and $H_{c}^{2}(X_{f})_{q^{2}} = 0$. Let |J| = 1. Let $P \in \mathcal{P}_{J}^{F}$. Then (L_{P}^{ad}, F) is "isomorphic" to (A_{1}, F^{2}) . Therefore $X_{f(P)}$ is an irreducible affine variety of dimension 1. Therefore $H_{c}^{0}(X_{f(P)}) = 0$, and

$$H^0_c(X^{\bullet}_f(J)) \simeq \bigoplus_{P \in \mathcal{P}^F_J} H^0_c(X_{f(P)}) = 0.$$

The case ${}^{2}A_{2n+1}$ $(n \geq 2)$. The first row in the table of the eigenvalues of $(F^{2})^{*}$ on $H_{c}^{s}(X_{f})$ is the same as that of (A_{n+1}, F^{2}) and any eigenvalue of $(F^{2})^{*}$ in the second row is empty or of the form $(-1) \times (\text{power of } q)$. Therefore

$$H_c^{2i}(X_f^{\bullet}(J))_{(q^2)^i} \simeq \bigoplus_{P \in \mathcal{P}_J^F} H_c^{2i}(X_{f(P)})_{(q^2)^i} = 0.$$

The remaining cases ${}^{2}D_{n}$, ${}^{2}E_{6}$ can be treated similarly. This completes the proof of Lemma 2.

Proposition 2 Recall that G is a simple algebraic group. Let J be a subset of S_F such that $1 \leq |J| \leq r$. Then, for an integer $a, 0 \leq a \leq |J|$, and for any integer $i, 0 \leq i \leq a, i \leq |J| - 1$, $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_a(J), \mathbb{Q}_{\ell}(i))_1$.

Proposition 3 Let J be any subset of S_F . Then, for any integer $i, 0 \leq i \leq |J|$, $(F^{\delta})^*$ acts semisimply on $H^{2i}(\bar{X}_f^{\bullet}(J), \mathbb{Q}_{\ell}(i))_1$. Thus $H^{2i}(\bar{X}_f^{\bullet}(J), \mathbb{Q}_{\ell}(i))_1 = H^{2i}(\bar{X}_f^{\bullet}(J), \mathbb{Q}_{\ell}(i))^{\varphi} = H^{2i}(\bar{X}_f^{\bullet}(J), \mathbb{Q}_{\ell}(i))^{\Pi}$.

Let $1 \leq |J| \leq r$ and let $0 \leq a \leq |J|$. Then the inclusions

$$D_a(J) - D_{a-1}(J) = \prod_{\substack{J' \subset J \\ |J'| = a}} X_f^{\bullet}(J') \underset{\text{open}}{\hookrightarrow} D_a(J) \underset{\text{closed}}{\longleftrightarrow} D_{a-1}(J)$$

give $(F^{\delta})^*$ -equivariant exact sequences:

$$\begin{split} H^{2i}_{c}(X^{\bullet}_{f}(J), \mathbb{Q}_{\ell}(i))_{1} & \longrightarrow H^{2i}(D_{|J|}(J), \mathbb{Q}_{\ell}(i))_{1} \longrightarrow H^{2i}(D_{|J|-1}(J), \mathbb{Q}_{\ell}(i))_{1}, \\ \bigoplus_{\substack{J' \subset J \\ |J'| = |J| - 1}} H^{2i}_{c}(X^{\bullet}_{f}(J'), \mathbb{Q}_{\ell}(i))_{1} & \longrightarrow H^{2i}(D_{|J|-2}(J), \mathbb{Q}_{\ell}(i))_{1}, \\ & \vdots \\ \bigoplus_{\substack{J' \subset J \\ |J'| = i+1}} H^{2i}_{c}(X^{\bullet}_{f}(J'), \mathbb{Q}_{\ell}(i))_{1} & \longrightarrow H^{2i}(D_{i}(J), \mathbb{Q}_{\ell}(i))_{1}, \end{split}$$

$$\bigoplus_{\substack{J' \subset J \\ |J'|=i}} H_c^{2i}(X_f^{\bullet}(J'), \mathbb{Q}_{\ell}(i))_1$$

 $\longrightarrow H^{2i}(D_i(J), \mathbb{Q}_{\ell}(i))_1 \longrightarrow H^{2i}(D_{i-1}(J), \mathbb{Q}_{\ell}(i))_1 = 0$

By Proposition 1, we see that $(F^{\delta})^*$ acts semisimply on $\bigoplus_{\substack{J' \subset J \\ |J'| = i}} H_c^{2i}(X_f^{\bullet}(J'), \mathbb{Q}_{\ell}(i))_1$. Therefore we see from the last exact sequence that $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_i(J), \mathbb{Q}_{\ell}(i))_1$. Since $i \leq |J| - 1$, by Lemma 2, we have $H^{2i}(X_f^{\bullet}(J), \mathbb{Q}_{\ell}(i))_1 = 0$, $\bigoplus_{\substack{J' \subset J \\ |J'| = |J| - 1}} H_c^{2i}(X_f^{\bullet}(J'), \mathbb{Q}_{\ell}(i))_1 = 0$. Therefore, by the second exact sequence from the bottom, we see that $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_{i+1}(J), \mathbb{Q}_{\ell}(i))_1$. By the third exact sequence from the bottom, we see that $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_{i+1}(J), \mathbb{Q}_{\ell}(i))_1$. By the third exact sequence from the bottom, we see that $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_{i+2}(J), \mathbb{Q}_{\ell}(i))_1$ By the last exact sequence from the bottom, we see that $(F^{\delta})^*$ acts semisimply on $H^{2i}(D_{i+2}(J), \mathbb{Q}_{\ell}(i))_1$. We note that $H^{2i}(D_{i'}(J), \mathbb{Q}_{\ell}(i))_1 = 0$ for i' < i.

This proves Proposition 2.

Next we prove Proposition 3. Since $D_{|J|}(J) = \bar{X}_{f}^{\bullet}(J)$, for $1 \leq |J| \leq r$ and for $1 \leq i \leq |J| - 1$, the assertion follows from Proposition 2. Let i = |J|. Then

$$H^{2i}(\bar{X}_{f}^{\bullet}(J), \mathbb{Q}_{\ell}(i)) \xrightarrow{\sim} \bigoplus_{P \in \mathcal{P}_{I}^{F}} H^{2i}(X_{f(P)}^{\bullet}, \mathbb{Q}_{\ell}(i)) \xrightarrow{\sim} \bigoplus_{P \in \mathcal{P}_{I}^{F}} \mathbb{Q}_{\ell}$$

 $((F^{\delta})^*$ -equivariant). Thus the assertion holds for $1 \leq |J| \leq r$ and for $0 \leq i \leq |J|$.

Finally, let |J| = 0. Then $\bar{X}_{f}^{\bullet}(J) = \bar{X}_{f}^{\bullet}(\emptyset) = X_{f}^{\bullet}(\emptyset) = X_{G}^{F}$, and

$$H^0\big(\bar{X}_f^{\bullet}(\emptyset), \mathbb{Q}_\ell\big) = \bigoplus^{|X_f^{\bullet}(\emptyset)|} \mathbb{Q}_\ell,$$

on which $(F^{\delta})^*$ acts trivially.

The final assertion follows from the fact that $(F^{\delta})^* = \varphi^{-1}$ on the ℓ -adic cohomologies.

This proves Proposition 3.

5. End of the proof

Recall that G is a simple algebraic group. For an integer t, $0 \le t \le r$, I_t denotes a subset of S_F such that $|I_t| = r - t$.

There is a natural closed immersion $\bar{X}_{f}^{\bullet}(I_{1})_{0} \hookrightarrow \bar{X}_{f}^{\bullet}(I_{0})_{0} = \bar{X}_{f}^{\bullet}(S_{F})_{0} = X_{f,0}^{\bullet}$. Therefore there is a natural morphism

$$g_{1,0}: Z_{1,0} = \prod_{I_1} \bar{X}_f^{\bullet}(I_1)_0 \longrightarrow Z_{0,0} = \bar{X}_f^{\bullet}(I_0)_0.$$

For $I_2 \subset I_1$, there is a natural closed immersion $\bar{X}_f^{\bullet}(I_2)_0 \hookrightarrow \bar{X}_f^{\bullet}(I_1)_0$. Therefore there is a natural morphism

$$g_{2,0}: Z_{2,0} = \prod_{I_1} \prod_{I_2 \subset I_1} \bar{X}_f^{\bullet}(I_2)_0 \longrightarrow Z_{1,0} = \prod_{I_1} \bar{X}_f^{\bullet}(I_1)_0.$$

Similarly we obtain natural morphisms

$$g_{3,0}: Z_{3,0} = \prod_{I_1} \prod_{I_2 \subset I_1} \prod_{I_3 \subset I_2} \bar{X}_f^{\bullet}(I_3)_0 \longrightarrow Z_{2,0},$$

$$g_{4,0}: Z_{4,0} = \prod_{I_1} \prod_{I_2 \subset I_1} \prod_{I_3 \subset I_2} \prod_{I_4 \subset I_3} \bar{X}_f^{\bullet}(I_4)_0 \longrightarrow Z_{3,0},$$

$$\vdots$$

For an integer $j, j \ge 0$, let

$$Z_j = Z_{j,0} \times_{k_0} k = \prod_{I_1} \prod_{I_2 \subset I_1} \cdots \prod_{I_j \subset I_{j-1}} \bar{X}^{\bullet}_f(I_j)$$

and, for $j \ge 1$, let

$$g_j = g_{j,0} \times_{k_0} k : Z_j \longrightarrow Z_{j-1}.$$

Then, for an integer $s, 0 \leq s \leq r$, we obtain the following commutative diagram:

$$\begin{split} & Z^{0}(Z_{s,0}) \xrightarrow{\mathrm{cl}_{Z_{s,0}}^{0}} H^{0}(Z_{s},\mathbb{Q}_{\ell})^{\Pi} \\ & \underset{(g_{s,0})_{*}}{\overset{(g_{s,0})_{*}}{\bigvee}} & \underset{(g_{s,-1,0})}{\overset{(g_{s-1,0})_{*}}{\longrightarrow}} H^{2}(Z_{s-1},\mathbb{Q}_{\ell}(1))^{\Pi} \\ & \underset{(g_{s-1,0})_{*}}{\overset{(g_{s-1})_{*}}{\bigvee}} & \underset{(g_{s-2,0})_{*}}{\overset{(g_{s-1})_{*}}{\longrightarrow}} H^{4}(Z_{s-2},\mathbb{Q}_{\ell}(2))^{\Pi} \\ & \underset{(g_{s-2,0})_{*}}{\overset{(g_{s-2,0})_{*}}{\bigvee}} & \underset{(g_{s-2,0})_{*}}{\overset{(g_{s-2,0})_{*}}{\longrightarrow}} H^{2}(s-1)(Z_{1},\mathbb{Q}_{\ell}(s-1))^{\Pi} \\ & \underset{(g_{1,0})_{*}}{\overset{(g_{1,0})_{*}}{\bigvee}} & \underset{(g_{1,0})_{*}}{\overset{(g_{1,0})_{*}}{\bigvee}} H^{2s}(Z_{0},\mathbb{Q}_{\ell}(s))^{\Pi}. \end{split}$$

Firstly, since

$$\coprod_{P \in \mathcal{P}_{I_s}^F} X_{f(P)}^{\bullet} \xrightarrow{\sim} \bar{X}_f^{\bullet}(I_s)$$

is an $F^{\delta}\text{-}\text{equivariant}$ isomorphism, we have an isomorphism

$$\prod_{P \in \mathcal{P}_{I_s}^F} X_{f(P),0}^{\bullet} \xrightarrow{\sim} \bar{X}_f^{\bullet}(I_s)_0,$$

so we have isomorphisms

$$Z^{0}(Z_{s,0}) = Z^{0} \left(\prod_{I_{1}} \prod_{I_{2} \subset I_{1}} \cdots \prod_{I_{s} \subset I_{s-1}} \bar{X}_{f}^{\bullet}(I_{s})_{0} \right)$$

$$= \bigoplus_{I_{1}} \bigoplus_{I_{2} \subset I_{1}} \cdots \bigoplus_{I_{s} \subset I_{s-1}} Z^{0} \left(\bar{X}_{f}^{\bullet}(I_{s})_{0} \right)$$

$$\cong \bigoplus_{I_{1}} \bigoplus_{I_{2} \subset I_{1}} \cdots \bigoplus_{I_{s} \subset I_{s-1}} \bigoplus_{P \in \mathcal{P}_{I_{s}}^{F}} Z^{0}(X_{f(P)}^{\bullet}) \cong \bigoplus_{I_{1}} \bigoplus_{I_{2} \subset I_{1}} \cdots \bigoplus_{I_{s} \subset I_{s-1}} \bigoplus_{P \in \mathcal{P}_{I_{s}}^{F}} \mathbb{Z}^{0}(X_{f(P)}^{\bullet}) = \mathbb{Z} \left(\prod_{I_{s} \subset I_{s-1}} \prod_{P \in \mathcal{P}_{I_{s}}^{F}} \mathbb{Z}^{0}(X_{f(P)}^{\bullet}) \right)$$

and

$$H^{0}(Z_{s},Q_{\ell})^{\Pi} \cong \bigoplus_{I_{1}} \bigoplus_{I_{2} \subset I_{1}} \cdots \bigoplus_{I_{s} \subset I_{s-1}} \bigoplus_{P \in \mathcal{P}_{I_{s}}^{F}} H^{0}(X_{f(P)}^{\bullet},\mathbb{Q}_{\ell})^{\Pi}$$
$$\cong \bigoplus_{I_{1}} \bigoplus_{I_{2} \subset I_{1}} \cdots \bigoplus_{I_{s} \subset I_{s-1}} \bigoplus_{P \in \mathcal{P}_{I_{s}}^{F}} \mathbb{Q}_{\ell}.$$

Therefore, as $\operatorname{cl}^{0}_{X^{\bullet}_{f(P),0}}$ is the natural inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}_{\ell}$, we see that $\operatorname{cl}^{0}_{Z_{s,0}} \otimes \mathbb{Q}_{\ell}$ is an isomorphism.

We show that $(g_s)_*, (g_{s-1})_*, \ldots, (g_1)_*$ are surjective, which will imply that $\operatorname{cl}_{Z_{0,0}}^s \otimes \mathbb{Q}_{\ell} = \operatorname{cl}_{X_{f,0}}^s \otimes \mathbb{Q}_{\ell}$ is surjective. Let $1 \leq s \leq r$ and $1 \leq j \leq s$. Then the homomorphism

$$(g_j)_* : H^{2(s-j)}(Z_j, \mathbb{Q}_\ell(s-j))^{\prod} \longrightarrow H^{2(s-j+1)}(Z_{j-1}, \mathbb{Q}_\ell(s-j+1))^{\prod}$$

is the dual map of the homomorphism

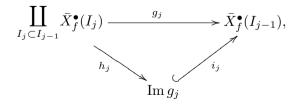
$$(g_j)^*: H^{2(r-s)}(Z_{j-1}, \mathbb{Q}_\ell(r-s))^{\Pi} \longrightarrow H^{2(r-s)}(Z_j, \mathbb{Q}_\ell(r-s))^{\Pi}$$

(cf. Proposition 3). Therefore, to see that $(g_j)_*$ is surjective, it suffices to show that $(g_i)^*$ is injective. To see it, it suffices to show that, for any I_{i-1} , the homomorphism

$$(g_j)^* : H^{2(r-s)}(\bar{X}_f^{\bullet}(I_{j-1}), \mathbb{Q}_\ell(r-s))^{\Pi} \longrightarrow H^{2(r-s)} \Big(\prod_{I_j \subset I_{j-1}} \bar{X}_f^{\bullet}(I_j), \mathbb{Q}_\ell(r-s) \Big)^{\Pi}$$

is injective $(0 \le j - 1 \le s - 1)$.

We have the following commutative diagram



where i_j is the closed immersion of $\operatorname{Im} g_j$ into $\overline{X}_{f}^{\bullet}(I_{j-1})$ and h_j is the restriction of g_j ($h_j = g_j$ but the image is restricted). Therefore we obtain the following commutative diagram:

Therefore it suffices to show that $(i_i)^*$ and $(h_i)^*$ are injective. We note that

$$\operatorname{Im} g_j = D_{r-j}(I_{j-1}).$$

In fact, let $(B_0, \ldots, B_r) \in \operatorname{Im} g_j$. Then $(B_0, \ldots, B_r) \in \overline{X}_f^{\bullet}(I_j)$ for some $I_j \subset I_{j-1}$. Let $J = \{O_i \mid 1 \leq i \leq r, B_{i-1} \neq B_i\}$. Then $a = |J| \leq r-j$, $J \subset I_{j-1}$ and $(B_0, \ldots, B_r) \in X_f^{\bullet}(J) \subset D_a(J) \subset D_{r-j}(I_{j-1})$. Conversely, let $(B_0, \ldots, B_r) \in D_{r-j}(I_{j-1})$. Then $(B_0, \ldots, B_r) \in X_f^{\bullet}(J)$ for some $J \subset I_{j-1}$ with $|J| \leq r-j$. We have $X_f^{\bullet}(J) \subset \overline{X}_f^{\bullet}(J) \subset \overline{X}_f^{\bullet}(I_j)$ for some $I_j \subset I_{j-1}$. Therefore $(B_0, \ldots, B_r) \in \operatorname{Im} g_j$.

Thus the map $(i_j)^*$ is the map

$$H^{2(r-s)}(\bar{X}_{f}^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} \longrightarrow H^{2(r-s)}(D_{r-j}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi}.$$

Since $\bar{X}_{f}^{\bullet}(I_{j-1}) = D_{r-(j-1)}(I_{j-1}), (i_{j})^{*}$ is a part of the exact sequence

$$\begin{aligned} H_c^{2(r-s)}(X_f^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} &\longrightarrow H^{2(r-s)}(D_{r-(j-1)}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} \\ &\longrightarrow H^{2(r-s)}(D_{r-j}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} \end{aligned}$$

which is obtained from the inclusions

$$X_f^{\bullet}(I_{j-1}) = D_{r-(j-1)}(I_{j-1}) - D_{r-j}(I_{j-1})$$
$$\hookrightarrow D_{r-(j-1)}(I_{j-1}) \longleftrightarrow D_{r-j}(I_{j-1}).$$

But, as r-s < r-(j-1) (cf. j-1 < s), we have $H_c^{2(r-s)}(X_f^{\bullet}(I_{j-1}))_{(q^{\delta})^{r-s}}$

= 0 by lemma 2. Therefore $H_c^{2(r-s)}(X_f^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} = H_c^{2(r-s)}(X_f^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))_1 = 0$. Therefore $(i_j)^*$ is injective.

Therefore it remains to show that the map

$$(h_j)^* : H^{2(r-s)}(D_{r-j}(I_{j-1}), \mathbb{Q}_{\ell}(r-s))^{\Pi} \longrightarrow H^{2(r-s)}\Big(\coprod_{I_j \subset I_{j-1}} \bar{X}_f^{\bullet}(I_j), \mathbb{Q}_{\ell}(r-s)\Big)^{\Pi}$$

is injective.

Suppose that r = 1. Then s = 1 and j = 1 (recall that $1 \le s \le r$ and $1 \le j \le s$). The map $(h_j)^* = (h_1)^*$ is

$$H^0(D_0(I_0), \mathbb{Q}_\ell)^{\Pi} \longrightarrow H^0\Big(\coprod_{I_1 \subset I_0} \bar{X}_f^{\bullet}(I_1), \mathbb{Q}_\ell\Big)^{\Pi}.$$

We have $D_0(I_0) = X_f^{\bullet}(\emptyset)$ and $\coprod_{I_1 \subset I_0} \overline{X}_f^{\bullet}(I_1) = X_f^{\bullet}(\emptyset)$. Therefore $(h_1)^*$ is the identity map.

Suppose that $r \ge 2$. First, let j = s:

$$h_s: \prod_{I_s \subset I_{s-1}} \bar{X}_f^{\bullet}(I_s) \longrightarrow D_{r-s}(I_{s-1}).$$

Put:

$$Y_{s} = \prod_{I_{s} \subset I_{s-1}} \bar{X}_{f}^{\bullet}(I_{s}),$$

$$U_{s} = \prod_{I_{s} \subset I_{s-1}} X_{f}^{\bullet}(I_{s}) \quad (\underset{\text{open}}{\subset} Y_{s}),$$

$$W_{s} = Y_{s} - U_{s} = \prod_{I_{s} \subset I_{s-1}} \left(\bar{X}_{f}^{\bullet}(I_{s}) - X_{f}^{\bullet}(I_{s}) \right) = \prod_{I_{s} \subset I_{s-1}} D_{r-s-1}(I_{s}).$$

Then U_s is open in $D_{r-s}(I_{s-1})$ and $D_{r-s}(I_{s-1}) - U_s = D_{r-s-1}(I_{s-1})$. There is a commutative diagram

$$U_{s} \xrightarrow{\text{open}} Y_{s} \xleftarrow{\text{closed}} W_{s}$$

$$\left\| \begin{array}{c} h_{s} \\ h_{s} \\ \end{array} \right\| \xrightarrow{h_{s} | V_{s} \\ U_{s} \xrightarrow{\text{open}} D_{r-s}(I_{s-1}) \xleftarrow{\text{closed}} D_{r-s-1}(I_{s-1}). \end{array}$$

$$(5.1)$$

We note that dim $W_s = \dim D_{r-s-1}(I_{s-1}) = r-s-1$ and 2(r-s-1) < 2(r-s) - 1 < 2(r-s). Therefore $H^{2(r-s)-1}(W_s) = H^{2(r-s)}(W_s) = H^{2(r-s)}(D_{r-s-1}(I_{s-1})) = H^{2(r-s)}(D_{r-s-1}(I_{s-1})) = 0$. Put $D = D_{r-s}(I_{s-1})$ and $D' = D_{r-s-1}(I_{s-1})$. Then we obtain from (5.1) the following commutative diagram whose rows are exact:

$$\begin{split} 0 &= H^{2(r-s)-1}(W_s, \mathbb{Q}_{\ell}(r-s)) \longrightarrow H^{2(r-s)}_c(U_s, \mathbb{Q}_{\ell}(r-s)) \\ & \underset{(h_s|W_s)^*}{\uparrow} & & \\ 0 &= H^{2(r-s)-1}(D', \mathbb{Q}_{\ell}(r-s)) \longrightarrow H^{2(r-s)}(U_s, \mathbb{Q}_{\ell}(r-s)) \\ & \longrightarrow H^{2(r-s)}(Y_s, \mathbb{Q}_{\ell}(r-s)) \longrightarrow H^{2(r-s)}(W_s, \mathbb{Q}_{\ell}(r-s)) = 0 \\ & \underset{h_s^*}{\uparrow} & & \\ & \longrightarrow H^{2(r-s)}(D, \mathbb{Q}_{\ell}(r-s)) \longrightarrow H^{2(r-s)}(D', \mathbb{Q}_{\ell}(r-s)) = 0. \end{split}$$

Therefore

$$(h_s)^* : H^{2(r-s)}(D, \mathbb{Q}_\ell(r-s)) \longrightarrow H^{2(r-s)}(Y_s, \mathbb{Q}_\ell(r-s))$$

is an isomorphism. Therefore

$$(h_s)^* : H^{2(r-s)}(D, \mathbb{Q}_\ell(r-s))^{\prod} \longrightarrow H^{2(r-s)}(Y_s, \mathbb{Q}_\ell(r-s))^{\prod}$$

is injective.

Let $1 \leq j \leq s - 1$. Put:

$$Z^{(0)} = \prod_{I_j \subset I_{j-1}} \bar{X}_f^{\bullet}(I_j) = \prod_{I_j \subset I_{j-1}} D_{r-j}(I_j),$$
$$Z^{(t)} = \prod_{I_j \subset I_{j-1}} D_{r-j-t}(I_j) \qquad (t \ge 1),$$

$$U^{(t)} = Z^{(t)} - Z^{(t+1)} = \prod_{\substack{I_j \subset I_{j-1} \\ |J| = r-j-t}} (D_{r-j-t}(I_j) - D_{r-j-t-1}(I_j))$$

$$= \prod_{\substack{I_j \subset I_{j-1} \\ |J| = r-j-t}} \prod_{\substack{J \subset I_j \\ |J| = r-j-t}} X_f^{\bullet}(J) \quad (t \ge 0) \quad (\text{open in } Z^{(t)}),$$

$$D^{(t)} = D_{r-j-t}(I_{j-1}) \quad (t \ge 0),$$

$$V^{(t)} = D^{(t)} - D^{(t+1)} = \prod_{\substack{J \subset I_{j-1} \\ |J| = r-j-t}} X_f^{\bullet}(J) \quad (t \ge 0) \quad (\text{open in } D^{(t)}).$$

For $t \ge 0$, let $h^{(t)} : Z^{(t)} \to D^{(t)}$ be the natural morphism, and let $u^{(t)} = h^{(t)} | U^{(t)} : U^{(t)} \to V^{(t)}$. Then we have the following commutative diagram $(t \ge 0)$:

$$\begin{array}{c|c} U^{(t)} & \overbrace{\text{open}} Z^{(t)} & \overbrace{\text{closed}} Z^{(t+1)} \\ u^{(t)} & & \downarrow \\ u^{(t)} & & \downarrow \\ h^{(t)} & & \downarrow \\ V^{(t)} & \overbrace{\text{open}} D^{(t)} & \overbrace{\text{closed}} D^{(t+1)}. \end{array}$$

Therefore we obtain the following commutative diagram whose rows are exact:

Let $0 \leq t \leq s - j$. We show, by descending induction on t, that $h^{(t)*}: H^{2(r-s)}(D^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} \to H^{2(r-s)}(Z^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi}$ is injective, which will imply that $(h_j)^* = h^{(0)*}$ is injective.

In fact, let t = s - j. Then, as $\dim Z^{(t+1)} = \dim D^{(t+1)} = r - j - (t+1) = r - s - 1 < (r - s) - \frac{1}{2}$, we have $H^{2(r-s)-1}(Z^{(t+1)}) = H^{2(r-s)}(Z^{(t+1)}) = H^{2(r-s)}(Z^{(t+1)}) = H^{2(r-s)-1}(D^{(t+1)}) = H^{2(r-s)}(D^{(t+1)}) = 0$. Moreover there is a morphism $v^{(t)} : V^{(t)} = \coprod_{\substack{J \subset I_{j-1} \\ |J| = r - j - t}} X^{\bullet}_{f}(J) \longrightarrow U^{(t)} = \coprod_{\substack{I_j \subset I_{j-1} \\ |J| = r - j - t}} X^{\bullet}_{f}(J)$ such that $u^{(t)}v^{(t)} = id_{V^{(t)}}$. Therefore $id_{H^{2(r-s)}_{c}(V^{(t)})} = (id_{V^{(t)}})^* = (u^{(t)}v^{(t)})^* = v^{(t)*}u^{(t)*}$, and $u^{(t)*}$ is injective. Therefore $h^{(t)*}$ is injective.

Let $0 \leq t < s - j$. Then, by Lemma 2, we have $H_c^{2(r-s)}(U^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} = H_c^{2(r-s)}(V^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} = 0$. Therefore we obtain from (5.2) the following commutative diagram whose rows are exact:

$$\begin{array}{cccc} 0 \to H^{2(r-s)}(Z^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} &\longrightarrow H^{2(r-s)}(Z^{(t+1)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} \\ & & & & & & \\ & & & & & & \\ h^{(t)*} & & & & & \\ 0 \to H^{2(r-s)}(D^{(t)}, \mathbb{Q}_{\ell}(r-s))^{\Pi} &\longrightarrow H^{2(r-s)}(D^{(t+1)}, \mathbb{Q}_{\ell}(r-s))^{\Pi}. \end{array}$$

By induction hypothesis, $h^{(t+1)*}$ is injective. Therefore $h^{(t)*}$ is injective.

We see from the above proof that the map

$$(g_j)_* : H^{2(s-j)} \Big(\prod_{I_j \subset I_{j-1}} \bar{X}_f^{\bullet}(I_j), \mathbb{Q}_\ell(s-j) \Big)^{\Pi} \\ \longrightarrow H^{2(s-j+1)} \big(\bar{X}_f^{\bullet}(I_{j-1}), \mathbb{Q}_\ell(s-j+1) \big)^{\Pi}$$

is surjective for $1 \leq s \leq r$ and $1 \leq j \leq s$. Therefore the composite

$$H^{0} = H^{2(s-s)} \left(\prod_{I_{j} \subset I_{j-1}} \prod_{I_{j+1} \subset I_{j}} \cdots \prod_{I_{s} \subset I_{s-1}} \bar{X}_{f}^{\bullet}(I_{s}), \mathbb{Q}_{\ell}(s-s) \right)^{\Pi}$$

$$\downarrow$$

$$H^{2(s-(s-1))} \left(\prod_{I_{j} \subset I_{j-1}} \prod_{I_{j+1} \subset I_{j}} \cdots \prod_{I_{s-1} \subset I_{s-2}} \bar{X}_{f}^{\bullet}(I_{s-1}), \mathbb{Q}_{\ell}(1) \right)^{\Pi}$$

$$\downarrow$$

$$\downarrow$$

$$H^{2(s-j-1)} \Big(\prod_{I_{j} \subset I_{j-1}} \prod_{I_{j+1} \subset I_{j}} \bar{X}_{f}^{\bullet}(I_{j+1}), \mathbb{Q}_{\ell}(s-j-1) \Big)^{\Pi} \\ \downarrow \\ H^{2(s-j)} \Big(\prod_{I_{j} \subset I_{j-1}} \bar{X}_{f}^{\bullet}(I_{j}), \mathbb{Q}_{\ell}(s-j) \Big)^{\Pi} \\ \downarrow \\ H = H^{2(s-j+1)} \big(\bar{X}_{f}^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(s-j+1) \big)^{\Pi}$$

is surjective. We have the following commutative diagram

where g_{0*} is the composite of

$$Z^{0}\Big(\coprod_{I_{j}\subset I_{j-1}}\cdots\coprod_{I_{s}\subset I_{s-1}}\bar{X}_{f}^{\bullet}(I_{s})_{0}\Big)\longrightarrow Z^{1}\Big(\coprod_{I_{j}\subset I_{j-1}}\cdots\coprod_{I_{s-1}\subset I_{s-2}}\bar{X}_{f}^{\bullet}(I_{s-1})_{0}\Big)$$
$$\longrightarrow\cdots\longrightarrow Z^{s-j+1}\Big(\bar{X}_{f}^{\bullet}(I_{j-1})_{0}\Big).$$

Clearly $\mathrm{cl}^0\otimes \mathbb{Q}_\ell$ is an isomorphism. Therefore

$$\operatorname{cl}_{X_{f}^{\bullet}(I_{j-1})_{0}}^{s-j+1} \otimes \mathbb{Q}_{\ell} : Z^{s-j+1} \big(\bar{X}_{f}^{\bullet}(I_{j-1})_{0} \big) \otimes \mathbb{Q}_{\ell}$$
$$\longrightarrow H^{2(s-j+1)} \big(\bar{X}_{f}^{\bullet}(I_{j-1}), \mathbb{Q}_{\ell}(s-j+1) \big)^{\Pi}$$

is surjective for $1 \leq s \leq r$ and $1 \leq j \leq s$. Therefore, for any $J \subset S_F$ with $1 \leq |J| \leq r$, and for any integer $t, 1 \leq t \leq |J|$, the map

$$\mathrm{cl}^{t}_{\bar{X}^{\bullet}_{f}(J)_{0}} \otimes \mathbb{Q}_{\ell} : Z^{t} \big(\bar{X}^{\bullet}_{f}(J)_{0} \big) \otimes \mathbb{Q}_{\ell} \longrightarrow H^{2t} \big(\bar{X}^{\bullet}_{f}(J), \mathbb{Q}_{\ell}(t) \big)^{\Pi}$$

is surjective. This is also true for $1 \leq |J| \leq r$ and for $0 \leq t \leq |J|$, and true for $J = \emptyset$ and for t = 0. Therefore, for any $J \subset S_F$ and for any integer t,

 $1 \leq t \leq |J|$, we have

$$\mathbb{Q}_{\ell} \cdot A^t \left(\bar{X}_f^{\bullet}(J)_0 \right) = H^{2t} \left(\bar{X}_f^{\bullet}(J), \mathbb{Q}_{\ell}(t) \right)^{11}.$$

In view of Propositiion 3, we see from the non-degenerateness of the pairing $\langle \ , \ \rangle_{\bar{X}^\bullet_f(J),1},$ that

$$N^t \left(\bar{X}_f^{\bullet}(J)_0 \right) = 0$$

for any $J \subset S_F$ any for any integer $t, 0 \le t \le |J|$.

This completes the proof of Theorem 1.

The corollary follows from Theorem 1 by [Ta II, Proposition (5.1), Theorem (5.2)].

References

[Bo]	Borel A., Linear algebraic groups. Benjamin, 1969.
[Bour]	Bourbaki N., Groupes et algèbres de Lie, Chapitres 4, 5 e 6. 1st ed.,
	Hermann, Paris, 1968.
[Ca]	Carter R.W., Finite groups of Lie type-Conjugacy classes and com-
	plex characters. John Wiley and Sons, 1985.
[DL]	Deligne P. and Lusztig G., Representations of reductive groups over
	finite fields. Ann. of Math. 103 (1976), 103–161.
[Fu]	Fulton W., Intersection theory. Ergebniss der Mathematik und ihren
	Grenzgebiete, 3. Folge, Band 2, Springer-Verlag, 1984.
[Lu]	Lusztig G., Coxeter orbits and eigenspaces of Frobenius. Invent.
	Math. 38 (1976), 101–159.
[Mi I]	Milne J.S., Étale cohomology. Princeton, 1980.
[Mi II]	Milne J.S., Motives over finite fields. Proceed. of Symposia in Pure
	Math. 55-1 (1994), 401–459.
[Oh]	Ohmori J., Rationality of certain cuspidal unipotent representations
	in crystalline cohomology groups. Hokkaido Math. J. 35 (2006), 547-
	563.
[SGA 4]	Grothendieck A., et al., Séminaire de géométrie algébrique du Bois-
	Marie 4, Part 3. Lecture Notes in Math. 305, Springer.
$[SGA \ 4 \ 1/2]$	Deligne P., et al., Séminaire de géométrie algébrique du Bois-Marie
. , .	$4\frac{1}{2}$. Lecture Notes in Math. 569, Springer-Verlag, 1977.
[St]	Steinberg R., Endomorphisms of linear algebraic groups. Mem.
	Amer. Math. Soc. 80, 1968.

[Ta I]	Tate J.T., Algebraic cycles and poles of zeta functions. In Arithmetic
	Algebraic Geometry, Harper and Row (1965), 93–110.

[Ta II] Tate J.T., Conjectures on algebraic cycles in l-adic cohomology. Proceed. In Symposia in Pure Math. 55-1 (1994), 71–84.

Mathematical Department of Hokkaido University of Education Iwamizawa, Campus Midorigaoka, Iwamizawa, Hokkaido, 068-8642 Japan