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Abstract. In this paper, we show the boundedness of pseudo-differential operators

of class Sm
0,0 on the Herz spaces K̇α,p

q and the Herz-type Hardy spaces HK̇α,p
q .
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1. Introduction

Beurling [3] introduced the space Aq(Rn) = K
n(1−1/q),1
q (Rn) with 1 <

q < ∞ to study convolution algebras, which are now called Beurling algebras
as a special class of the Herz spaces Kα,p

q , (See Definition 2.1). The Herz
spaces can be regarded as one of extensions of Lp(Rn) and the theory of the
Herz space is developed by Feichtinger [9], Herz [15] and Flett [10].

On the other hand, Calderón and Vaillancourt [4] showed that pseudo-
differential operators of class S0

0,0 are bounded on L2(Rn). And Miyachi

[22] showed that those of class S
−n|1/p−1/2|
0,0 are bounded from Hp(Rn) to

Lp(Rn), (0 < p < ∞).
The aim of this paper is to study the boundedness of pseudo-differential

operators of class Sm
0,0 on the Herz spaces and the Herz-type Hardy spaces.

Lu, Yabuta and Yang [21] showed that the operators having a kernel estimate
are bounded from the Herz-type Hardy spaces to the Herz spaces:

Theorem A Let T : S (Rn) → S ′(Rn) be a linear and continuous oper-
ator. Suppose that the distribution kernel of T coincides in the complement
of the diagonal with a locally integrable function k(x, y) satisfying

|k(x, y)− k(x, 0)| ≤ c
|y|δ
|x|n+δ
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when 2|y| < |x| for some δ ∈ (0, 1]. Let 0 < p < ∞, 1 < q < ∞ and
n(1− 1/q) ≤ α < n(1− 1/q) + δ. If T is bounded on Lq(Rn), then T is also
bounded from HK̇α,p

q into K̇α,p
q .

If m < −n − 1, pseudo-differential operators of class Sm
0,0, which is our

target class, satisfies the above condition on kernels. But it is not clear that
those of class Sm

0,0 with m ≥ −n − 1 satisfies the above condition or not.
The main result in this paper is the following:

Theorem 3.1 Let 0 < p < ∞, 1 < q < ∞, n(1 − 1/q) ≤ α < ∞ and
m < −α− n|1/q − 1/2|. Suppose that
( i ) 1 < q ≤ 2, l > n/2, l′ > [−m] + n/2 + 1, or
( ii ) 2 ≤ q < ∞, l > n/q, l′ > [−m− n(1/2− 1/q)] + n/2 + 1.

Then Sm
0,0(l, l

′) ⊂ L (HK̇α,p
q , K̇α,p

q ).

In Theorem 3.1, if q is close to 1 or 2 then we can take m close to −n/2.
Hence we cannot use Theorem A directly in this case.

We explain more about the Herz spaces and the mapping properties of
pseudo-differential operators on Lp(Rn) and Hp(Rn). Feichtinger [9] gave
the different norms of Beurling algebras, which is equivalent to that in Beurl-
ing [3]. And the spaces K̇α,p

q (Rn) and Kα,p
q (Rn) were introduced by Herz

[15]. Flett [10] gave another equivalent norms on K̇α,p
q (Rn) and Kα,p

q (Rn).
These spaces are useful in the analysis of mapping properties of impor-
tant operators. For example, Baernstein II and Sawyer [1] showed some
multiplier theorems on Hp(Rn) by using a norm of the Herz space as the
condition. Many authors studied the boundedness of pseudo-differential op-
erators on the Herz-type Hardy space. For example, Fan and Yang [8] stud-
ied pseudo-differential operators of class S0

1,0 on the local Herz-type Hardy
spaces hK̇α,p

q (Rn). Also there are many papers which studied several other
operators on the Herz spaces and the Herz-type Hardy spaces, [16], [18], [19],
[20] etc. . . It is well-known that Calderón and Vaillancourt [4] showed that
pseudo-differential operator of class S0

0,0 is bounded on L2(Rn). Futhermore,

Miyachi [22] showed that pseudo-differential operator of class S
−n|1/p−1/2|
0,0

is bounded from Hp(Rn) to Lp(Rn), (0 < p < ∞), by using the atomic
decomposition and the analytic interpolation theory. Here we remark that
the index −n|1/p − 1/2| is optimal. In the proof of Theorem 3.1, we will
follow the argument in [22]. However, to the best of my knowledge, there
seems no literature mentioning the result of Theorem 3.1.
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We also explain the theory of interpolation for families of quasi-Banach
spaces. Coifman, Cwikel, Rochberg, Sagher and Weiss [6], [5] discussed
the theory of interpolation for families of Banach spaces. This theory is
a natural extension of the interpolation for the pair. Hernández [12] and
Tabacco Vignati [25], [26] developed the theory for families of quasi-Banach
spaces. In [14], Hernández and Yang characterized the intermediate spaces
for families of the Herz-type Hardy spaces by using the atomic decomposition
(1 < q < ∞) established by Lu and Yang [18].

Finally we explain the structure of this paper. In Section 2, we define the
Herz spaces, the Herz-type Hardy spaces and Hörmander’s symbol classes
and recall tools which will be used in this paper. We use Lipschitz classes
on product spaces introduced by Miyachi [22] to describe smoothness of
symbols, as a substitute for Hörmander’s symbol classes. In Section 3, we
will prove the main theorem (Theorem 3.1) by using the tools in Section 2.
Also, we state a result in the non-homogeneous case. In Section 4, first we
will use the characterization of intermediate spaces for couples of the Herz-
type Hardy spaces in [13] and the duality argument to show the boundedness
of pseudo-differential operators on wider spaces.

2. Definitions and Tools

For k ∈ Z, let Bk = {x ∈ Rn | |x| ≤ 2k}, Ck = Bk\Bk−1. We denote
the characteristic function of E, measurable subset of Rn, by χE and Ck by
χk. We recall the definitions of the Herz spaces and the Herz-type Hardy
spaces.

Definition 2.1 (Herz space) Let 0 < p, q ≤ ∞ and α ∈ R. We set
( i ) K̇α,p

q (Rn) = {f ∈ Lq
loc(Rnr {0}) | ‖f‖K̇α,p

q
< ∞}: homogeneous Herz

space, where

‖f‖K̇α,p
q

=
( ∑

k∈Z
2kαp‖fχk‖p

Lq

)1/p

, and

( ii ) Kα,p
q (Rn) = {f ∈ Lq

loc(Rn) | ‖f‖Kqα,p < ∞}: non-homogeneous Herz
space, where

‖f‖Kα,p
q

=
(
‖fχB(0,1)‖p

Lq +
∑

k∈N
2kαp‖fχk‖p

Lq

)1/p

.
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The usual modifications in the definitions above are made when p = ∞.

We take a function ϕ ∈ S such that
∫

ϕ dx = 1 and set ϕ∗+(f)(x) =
supt>0 |f ∗ ϕt(x)|, where ϕt(x) = 1/tnϕ(x/t).

Definition 2.2 (Herz-type Hardy space) Let 0 < p, q ≤ ∞ and α ∈ R.
We set

( i ) HK̇α,p
q (Rn) = {f ∈ S ′ | ϕ∗+(f) ∈ K̇α,p

q }: homogeneous Herz-type
Hardy space,

‖f‖HK̇α,p
q

= ‖ϕ∗+(f)‖K̇α,p
q

, and

( ii ) HKα,p
q (Rn) = {f ∈ S ′ | ϕ∗+(f) ∈ Kα,p

q }: non-homogeneous Herz-
type Hardy space,

‖f‖HKα,p
q

= ‖ϕ∗+(f)‖Kα,p
q

.

The following basic results are well known [13], [17]: K̇0,p
p = K0,p

p = Lp,
if 0 < p ≤ ∞, HK̇0,p

p = HK0,p
p = Hp, if 0 < p < ∞. The spaces K̇α,p

q

and Kα,p
q are quasi-Banach spaces, and if p, q ≥ 1 then K̇α,p

q and Kα,p
q

are Banach spaces. The same is true for HK̇α,p
q and HKα,p

q . HK̇α,p
q and

HKα,p
q are defined independently of the choice of ϕ. When 1 ≤ p, q < ∞ and

α ∈ R, then (K̇α,p
q )∗ = K̇−α,p′

q′ where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1. In

particular, ‖f‖K̇α,p
q

= sup
{∣∣ ∫

Rn f(x)g(x)dx
∣∣ | g ∈ K̇−α,p′

q′ with ‖g‖
K̇−α,p′

q′
≤

1
}

if 1 ≤ p, q < ∞ and −n/q < α < n(1 − 1/q). Also K̇α,p
q = HK̇α,p

q , if
0 < p < ∞, 1 < q < ∞ and −n/q < α < n(1− 1/q).

For an integer k, Pk denotes the set of all polynomial functions on Rn

of degree not exceeding k. If k is a negative integer, we set Pk = 0. We say
f ⊥ Pk for f ∈ L1

loc, when fP ∈ L1 and
∫

f(x)P (x)dx = 0 for all P ∈ Pk.
Let [m] denote the integer part of real nunber m.

Proposition B ([22]) Let 0 < p, q < ∞ and −n/q < α < ∞. Then the
following are dense subspaces of HK̇α,p

q :

( i ) Xk = {f ∈ C∞0 | f ⊥ Pk} with k ≥ [α− (1− 1/q)],
( ii ) S0 = {f ∈ S | supp f̂ is a compact subset of Rn r {0}}.

Next, we recall the definition of Hörmander’s symbol classes. For ξ ∈
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Rn, we set 〈ξ〉 = (1 + |ξ|2)1/2.

Definition 2.3 Let m ∈ R and 0 ≤ δ ≤ % ≤ 1. We set
Sm

%,δ = {p ∈ C∞(Rn × Rn) | |∂α
ξ ∂β

xp(x, ξ)| ≤ Cα,β〈ξ〉m−%|α|+δ|β|, for all
multi-indexes α and β}.

For any L ∈ N ∪ {0} and p ∈ Sm
%,δ, let |p|mL = max|α+β|≤L supx,ξ∈Rn

·|∂α
ξ ∂β

xp(x, ξ)|〈ξ〉−m+%|α|−δ|β|. For p ∈ Sm
%,δ we define pseudo-differential

operator p(X, D) whose symbol is p:

p(X, D)f(x) =
1

(2π)n

∫

Rn

eixξp(x, ξ)f̂(ξ)dξ,

for any f ∈ S , where f̂ denotes the Fourier transformation of f .

For m ∈ R and L ∈ N ∪ {0}, we set

Sm
0,0(L) =

{
p ∈ CL(Rn×Rn) | |∂α

ξ ∂β
xp(x, ξ)| ≤ Cα,β〈ξ〉m, for |α+β| ≤ L,

}
.

It is trivial that (Sm
0,0(L), | · |mL ) is a Banach space. But we adopt the next

Lipschitz classes on product spaces in the main theorem, an extension of
Hörmander’s symbol classes, [22].

We define the Fourier transform of f , a function on Rn × Rn, by

F [f ](ξ, η) =
∫∫

Rn×Rn

e−i(xξ+yη)f(x, y)dxdy.

Then, the inverse Fourier transform F−1 is given by

F−1[f ](x, y) =
1

(2π)2n

∫∫

Rn×Rn

ei(xξ+yη)f(ξ, η)dξdη.

Let θ ∈ C∞0 (Rn) with θ(ξ) =


1, if |ξ| ≤ 1

0, if |ξ| ≥ 2,
θ0 = θ and θj(ξ) = θ

(
ξ
2j

) −
θ
(

ξ
2j−1

)
, for j ∈ N. Then,

∑∞
j=0 θj ≡ 1 and supp θj ⊂ {ξ ∈ Rn | 2j−1 ≤

|ξ| ≤ 2j}.
Definition 2.4 (Lipschitz classes on product spaces [22]) For m ∈ R and
non-negative integers l, l′, we set
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Sm
0,0(l, l

′)

=
{

p ∈ S ′(Rn × Rn) | ‖p‖m;l,l′

:= sup
x,ξ∈Rn

j,k∈N∪{0}

2jl2kl′
∣∣F−1[θj(y)θk(η)F [p](y, η)](x, ξ)〈ξ〉−m

∣∣ < ∞
}

.

For quasi-Banach spaces X, Y , we write Sm
0,0(l, l

′) ⊂ L(X, Y ) if and
only if ‖p(X, D)f‖Y ≤ C‖p‖m;l,l′‖f‖X , (p ∈ S , f ∈ X). Also we write
L(X) = L(X, X). Before stating our result, we recall Miyachi’s result [22].

Theorem C ([22]) Let m(p) = −n|1/p− 1/2|. Suppose that
( i ) 0 < p ≤ 2, l > n/2, l′ > n/p or
( ii ) 2 < p < ∞, l > n/p, l′ > n/2.

Then S
m(p)
0,0 (l, l′) ⊂ L (Hp, Lp).

Lu and Yang [18] showed the atomic decomposition of Herz-type Hardy
spaces, whose statement is similar to that of Hardy spaces.

Theorem D ([18]) Let 0 < p < ∞, 1 < q < ∞, n(1− 1/q) ≤ α < ∞, and
s ≥ [α − n(1 − 1/q)], s is a integer. Then f ∈ HK̇α,p

q if and only if there
exist aj ∈ Lq and complex numbers λj such that f =

∑
j∈Z λjaj in the sence

S ′, supp aj ⊂ Bj, ‖aj‖Lq ≤ |Bj |−α/n,
∫

aj(x)xβdx = 0, (0 ≤ |β| ≤ s) and

{λj}j∈Z ∈ lp. Moreover ‖f‖HK̇α,p
q

∼ inf
( ∑

j∈Z |λj |p
)1/p.

Later, we will use theorems C and D to prove the main result in the
next section.

3. Pseudo-differential operators on the Herz-type spaces

Here we state the main result.

Theorem 3.1 Let 0 < p < ∞, 1 < q < ∞, n(1 − 1/q) ≤ α < ∞ and
m < −α− n|1/q − 1/2|. Suppose that
( i ) 1 < q ≤ 2, l > n/2, l′ > [−m] + n/2 + 1, or
( ii ) 2 ≤ q < ∞, l > n/q, l′ > [−m− n(1/2− 1/q)] + n/2 + 1.

Then Sm
0,0(l, l

′) ⊂ L (HK̇α,p
q , K̇α,p

q ).

Proof. The proof follows the idea of Miyachi [22]. We take p ∈ S (Rn×Rn),
f =

∑
j∈Z λjaj ∈ HK̇α,p

q ∩S0. First we prove the case 0 < p ≤ 1. Let s be
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an integer sufficiently large. Then we have

‖p(X, D)f‖p

K̇α,p
q

≤
∑

j∈Z
|λj |p‖p(X, D)aj‖p

K̇α,p
q

.

On the other hand, we have

‖p(X, D)aj‖p

K̇α,p
q

=
∑

k∈Z
2kαp‖p(X, D)ajχk‖p

Lq

=
j+1∑

k=−∞
2kαp‖p(X, D)ajχk‖p

Lq +
∞∑

k=j+2

2kαp‖p(X, D)ajχk‖p
Lq

=: A1 + A2.

By Theorem C, A1 ≤ ∑j+1
k=−∞ 2kαp‖p(X, D)aj‖p

Lq . ‖p‖p
m;l,l′

∑j+1
k=−∞ ·

2(k−j)αp . ‖p‖p
m;l,l′ . It suffices to prove that A2 . ‖p‖p

m;l,l′ . To estimate A2

we decompose the symbol p by using the above partition of unity {θt}∞t=0 in
ξ-space:

p(x, ξ) =
∞∑

t=0

p(x, ξ)θt(ξ) =
∞∑

t=0

pt(x, ξ) where pt(x, ξ) := p(x, ξ)θt(ξ).

Also, let K(x, y) (Kt(x, y), resp.) be the kernel of the pseudo-differential
operator p(X, D) (pt(X, D), resp.): K(x, y) = (2π)−n

∫
Rn eiyξp(x, ξ)dξ

(Kt(x, y) := (2π)−n
∫
Rn eiyξpt(x, ξ)dξ, resp.).

• In the case (i): Let k ≥ j + 2.
We consider the case j ≤ 0. Let γ be a multi-index such that |γ| = [−m]+1
if k ≥ 0, = [−m] if k < 0. By using vanishing moments of order s we have

‖pt(x, ξ)ajχk‖Lq

=
( ∫

Ck

∣∣∣∣
∫

Bj

Kt(x, x− y)aj(y)dy

∣∣∣∣
q

dx

)1/q

=
( ∫

Ck

∣∣∣∣
∫

Bj

∑

|β|=s+1

(−1)s+1

β!
∂β
2 Kt(x, x− θy)yβaj(y)dy

∣∣∣∣
q

dx

)1/q
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. 2j(s+1)
∑

|β|=s+1

( ∫

Ck

( ∫

Bj

∣∣∂β
2 Kt(x, x− θy)

∣∣∣∣aj(y)
∣∣dy

)q

dx

)1/q

.

We use the notation 〈x〉 = (1 + |x|2)1/2. By Minkowski’s inequality and
Hölder’s inequality, we have

‖pt(x, ξ)ajχk‖Lq

. 2−j(α−s−1)
∑

|β|=s+1

( ∫

Bj

( ∫

Ck

∣∣∂β
2 Kt(x, x− θy)

∣∣qdx

)q′/q

dy

)1/q′

. 2−j(α−s−1)2kn(1/q−1/2)2−k|γ|

×
∑

|β|=s+1

( ∫

Bj

( ∫

Ck

〈x〉2|γ|
∣∣∂β

2 Kt(x, x− θy)
∣∣2dx

)q′/2

dy

)1/q′

.

To estimate the integral, we write

pγ′(x, ξ) = 〈ξ〉−m∂γ′

ξ p(x, ξ) ∈ S0
0,0(l, l

′ − |γ′|),

ψy,γ′,t(ξ) = e−iθyξ〈ξ〉m∂γ−γ′

ξ

(
(iξ)βθt(ξ)

)
,

gy,γ′,t(x) = F−1[ψy,γ′,t](x).

Integration by parts gives

(−i(x− θy))γ∂β
2 Kt(x, x− θy) =

∑

γ′≤γ

(
γ
γ′

)
pγ′(X, D)gy,γ′,t(x).

By Plancherel’s theorem, we get ‖gy,γ′,t‖L2 . 2t(m+s+1+n/2). Therefore an
easy computation and Theorem C yield

( ∫

Bj

( ∫

Ck

∣∣(−i(x− θy))γ
∣∣2∣∣∂β

2 Kt(x, x− θy)
∣∣2dx

)q′/2

dy

)1/q′

. ‖p‖m;l,l′2t(m+s+1+n/2)2jn(1−1/q).

Now we remark that k ≥ j + 2, x ∈ Ck and y ∈ Bj implies 〈x− θy〉 ∼ 〈x〉.
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Hence we have

( ∫

Bj

( ∫

Ck

〈x〉2|γ|
∣∣∂β

2 Kt(x, x− θy)
∣∣2dx

)2/q′

dy

)1/q′

. ‖p‖m;l,l′2t(m+s+1+n/2)2jn(1−1/q),

and

‖pt(x, ξ)ajχk‖Lq

. ‖p‖m;l,l′2−j(α−s−1−n(1−1/q))2kn(1/q−1/2)2−k|γ|2t(m+s+1+n/2). (1)

We also have the following estimate by repeating the above argument with
β = 0:

‖pt(x, ξ)ajχk‖Lq

. ‖p‖m;l,l′2−j(α−n(1−1/q))2kn(1/q−1/2)2−k|γ|2t(m+n/2). (2)

For each j ≤ 0, there exists tj ∈ N such that 2tj−12j ≤ 1 < 2tj 2j . Using
estimates (1), (2), we deduce the desired estimate in the following way:

‖p(X, D)ajχk‖Lq

≤
tj−1∑
t=0

‖pt(X, D)ajχk‖Lq +
∞∑

t=tj

‖pt(X, D)ajχk‖Lq

. ‖p‖m;l,l′2−j(α−s−1−n(1−1/q))2kn(1/q−1/2)2−k|γ|
tj−1∑
t=0

2t(m+s+1+n/2)

+ ‖p‖m;l,l′2−j(α−n(1−1/q))2kn(1/q−1/2)2−k|γ|
∞∑

t=tj

2t(m+n/2)

. ‖p‖m;l,l′2−j(α+m−n(1/2−1/q))2kn(1/q−1/2)2−k|γ|

. ‖p‖m;l,l′2−j(α+m−n(1/2−1/q))2kn(1/q−1/2)2−km.

Thus, for j ≤ 0, A2 =
∑∞

k=j+2 2kαp‖p(X, D)ajχk‖p
Lq . ‖p‖p

m;l,l′
∑∞

k=j+2 ·
2p(k−j)(α+m−n(1/2−1/q)) . ‖p‖p

m;l,l′ .
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Next we consider the case j > 0. In this case, we do not use the vanishing
moment condition or docomposition of symbol. Let γ be a multi-index such
that |γ| > α + n(1/q − 1/2) + 1.

‖p(X, D)ajχk‖Lq

≤ 2−jα2kn(1/q−1/2)2−k|γ|
( ∫

Bj

( ∫

Ck

〈x〉2|γ|∣∣K(x, x− y)
∣∣2dx

)1/q′

dy

)1/q′

.

Going throught a similar argument as above, we obtain,

( ∫

Bj

( ∫

Ck

∣∣(−i(x−y))γ
∣∣2∣∣K(x, x−y)

∣∣2dx

)q′/2

dy

)1/q′

. ‖p‖m;l,l′2jn(1−1/q).

Since 〈x− y〉 ∼ 〈x〉, we have

( ∫

Bj

( ∫

Ck

〈x〉2|γ|∣∣K(x, x− y)
∣∣2dx

)q′/2

dy

)1/q′

. ‖p‖m;l,l′2jn(1−1/q).

Hence we have

‖p(X, D)ajχk‖Lq . ‖p‖m;l,l′2−j(α−n(1−1/q))2kn(1/q−1/2)2−k|γ|. (3)

Now we write |γ| = α + n(1/q − 1/2) + ε. Then, for j > 0,

A2 =
∞∑

k=j+2

2kαp‖p(X, D)ajχk‖p
Lq

. ‖p‖p
m;l,l′

∞∑

k=j+2

2−jp(α−n(1−1/q))2kp(α+n(1/q−1/2)−|γ|)

= ‖p‖p
m;l,l′

∞∑

k=j+2

2−p(k−j)ε2−jp(α−n(1−1/q)+ε) . ‖p‖p
m;l,l′ .

We remark that [−m] + n/2 + 1 is larger than α + n/q.

• In the case (ii): Let k ≥ j + 2.
We consider the case j ≤ 0. Let γ be a multi-index such that |γ| = [−m +
n(1/q − 1/2)] + 1 if k ≥ 0, = [−m + n(1/q − 1/2)] if k < 0.
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‖p(X, D)ajχk‖Lq

=
( ∫

Ck

∣∣∣∣
∫

Bj

Kt(x, x− y)aj(y)dy

∣∣∣∣
q

dx

)1/q

. 2−j(α−s−1)
∑

|β|=s+1

( ∫

Bj

( ∫

Ck

∣∣∂β
2 Kt(x, x− θy)

∣∣qdx

)q′/q

dy

)1/q′

. 2−j(α−s−1)2−k|γ| ∑

|β|=s+1

(∫

Bj

(∫

Ck

〈x〉q|γ|∣∣∂β
2 Kt(x, x− θy)

∣∣qdx

)q′/q

dy

)1/q′

.

Since

(−i(x− θy))γ∂β
2 Kt(x, x− θy) =

∑

γ′≤γ

(
γ
γ′

)
pγ′(X, D)gy,γ′,t(x),

where

pγ′(x, ξ) = 〈ξ〉−m−n(1/2−1/q)∂γ′

ξ p(x, ξ) ∈ S
−n(1/2−1/q)
0,0 (l, l′ − γ′) ⊂ L(Lq),

ψy,γ′,t(ξ) = e−iθyξ〈ξ〉m+n(1/2−1/q)∂γ−γ′

ξ

(
(iξ)βθt(ξ)

)
,

gy,γ′,t(x) = F−1[ψy,γ′,t](x)

and

‖gy,γ′,t‖Lq . 2t(m+s+1+n(3/2−2/q)),

as a consequence, we have

( ∫

Bj

( ∫

Ck

〈x〉q|γ|∣∣∂β
2 Kt(x, x− θy)

∣∣qdx

)q′/q

dy

)1/q′

. ‖p‖m;l,l′2jn(1−1/q)2t(m+s+1+n(3/2−2/q)).

Therefore we have

‖pt(X, D)ajχk‖Lq

. ‖p‖m;l,l′2−j(α−s−1−n(1−1/q))2−k|γ|2t(m+n(3/2−2/q)). (4)
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We also have the following estimate by repeating the above argument with
β = 0;

‖pt(X, D)ajχk‖Lq . ‖p‖m;l,l′2−j(α−n(1−1/q))2−k|γ|2t(m+n(3/2−2/q)). (5)

Since the above two estimates give ‖p(X, D)ajχk‖Lq . ‖p‖m;l,l′ ·
2−j(m+α−n(1/q−1/2))2−k|γ|, we conclude A2 . ‖p‖p

m;l,l′ , for j ≤ 0.
We consider the last case, j > 0. Let |γ| > α then we set |γ| = α + ε. It

is easy to see

‖p(X, D)ajχk‖Lq

. 2−jα2−k|γ|
( ∫

Bj

( ∫

Ck

〈x〉q|γ|∣∣K(x, x− y)
∣∣qdx

)q′/qdy)1/q′

and

(−i(x− y))γK(x, x− y) = pγ(X, D)gy(x),

where

pγ(x, ξ) = 〈ξ〉−m−n(1/2−1/q)∂γ
ξ p(x, ξ) ∈ S

−n(1/2−1/q)
0,0 (l, l′ − |γ|),

ψy(ξ) = e−iyξ〈ξ〉m+n(1/2−1/q),

gy(x) = F−1[ψy](x).

We have

( ∫

Bj

( ∫

Ck

〈x〉q|γ|∣∣K(x, x− y)
∣∣qdx

)q′/q

dy

)1/q′

. ‖p‖m;l,l′2jn(1−1/q),

that is

‖p(X, D)ajχk‖Lq . ‖p‖m;l,l′2−j(α−n(1−1/q))2−k|γ|. (6)

We obtain the following estimates of A2 without difficulty, A2 . ‖p‖p
m;l,l′ .

As a result, when 0 < p ≤ 1, we get ‖p(X, D)f‖K̇α,p
q

. ‖p‖m;l,l′‖f‖HK̇α,p
q

.
Finally we consider the case 1 < p < ∞. In this case, we use the

following decomposition, and each term can be easily estimated by (1), (4)
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and (6).

‖p(X, D)f‖K̇α,p
q

.
( ∑

k∈Z
2kαp

( ∞∑

j=k−1

|λj |‖p(X, D)ajχk‖Lq

)p)1/p

+
( 2∑

k=−∞
2kαp

( k−2∑

j=−∞
|λj |‖p(X, D)ajχk‖Lq

)p)1/p

+
( ∞∑

k=3

2kαp

( −1∑

j=−∞
|λj |‖p(X, D)ajχk‖Lq

)p)1/p

+
( ∞∑

k=3

2kαp

( k−2∑

j=0

|λj |‖p(X, D)ajχk‖Lq

)p)1/p

.

This completes the proof of theorem. ¤

We show some results in the non-homogeneous case. We remak that we
can take m to be larger than that of Theorem 3.1 and HKα,p

q ( Kα,p
q if

0 < p ≤ ∞, 1 < q < ∞, −∞ < α ≤ −n/q or n(1− 1/q) ≤ α < ∞ [13].

Theorem 3.2 Let 0 < p ≤ ∞, 1 < q < ∞ and n(1 − 1/q) ≤ α < ∞.
Suppose that
( i ) 1 < q ≤ 2, m < −n/2, l > n/2, l′ > α + n/q or
( ii ) 2 < q < ∞, m < −n(3/2− 2/q), l > n/q, l′ > α + n/2.

Then Sm
0,0(l, l

′) ⊂ L (Kα,p
q ).

Proof. Theorem 3.2 has been already proved in the course of the proof of
Theorem 3.1. When we consider non-homogeneous case, we do not need
estimates of the case j < 0 in the proof of Theorem 3.1. We check the case
(i) with 0 < p ≤ 1 only.

We write

f(x) = f(x)χB(0,1)(x) +
∑

j∈N
f(x)χj(x) =

∑

j≥0

fj(x) =
∑

j≥0

λjaj(x),

where f0(x) = f(x)χB(0,1)(x), fj(x) = f(x)χj(x), (j ≥ 1), λj =
|Bj |α/n‖fj‖Lq and aj(x) = fj(x)

|Bj |α/n‖fj‖Lq
.

Hence,
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‖p(X, D)f‖p
Kα,p

q
= ‖p(X, D)fχB(0,1)‖p

Lq + 2αp‖p(X, D)fχ1‖p
Lq

+
∞∑

k=2

2kαp‖p(x,D)fχk‖p
Lq

:= A + B + C.

The term A is easily estimated as: A ≤ ∑∞
j=0 |λj |p‖p(X, D)ajχB(0,1)‖p

Lq ≤∑∞
j=0 |λj |p2−jp . ‖f‖p

Kα,p
q

.
Similarly, B . ‖f‖p

Kα,p
q

.
Finally, to estimate C we decompose it into two parts.

C =
∞∑

k=2

2kαp‖p(X, D)fχk‖p
Lq ≤

∞∑

k=2

2kαp
∞∑

j=0

|λj |p‖p(X, D)ajχk‖p
Lq

.
∞∑

k=2

2kαp
k−2∑

j=0

|λj |p‖p(X, D)ajχk‖p
Lq +

∞∑

k=2

2kαp
∞∑

j=k−1

|λj |p‖p(X, D)ajχk‖p
Lq

:= C1 + C2.

By the Lq-boundedness of p(X, D), C2 .
∑∞

k=2

∑∞
j=k−1 |λj |p2p(k−j)α .

‖f‖p
Kα,p

q
. The estimates (3) gives C1 . ‖f‖p

Kα,p
q

. Therefore we have
‖p(X, D)f‖Kα,p

q
. ‖f‖Kα,p

q
. ¤

Remark 3.1 If n(1 − 1/q) � α, then we can take −α − n|1/q − 1/2| as
the order of the symbol in Theorem 3.2.

By using the following Proposition 3.1, the symbol Sm
0,0(l, l

′) can be
written as Sm

0,0(L) in the statements of Theorem 3.1 and Theorem 3.2.

Proposition 3.1 For any m ∈ R and nonnegative integers l, l′, there exist
nonnegative integers P, Q such that ‖p‖m;l,l′ . |p|mP+Q, (p ∈ S ).

Proof. We define 〈Dy〉2 = 1 +
∑n

i=1 D2
yi

= 1 −4. And let N = [n + 1 −
m/2]+1, M = N +1, P = (n+ l)/2 if n+ l is even, = [(n+ l)/2]+1 if n+ l

is odd, Q = n + l′ if n + l′ is even, = [(n + l′)/2] + 1 if n + l′ is odd. Then
we have
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∣∣F−1[θj(y)θk(η)p̂(y, η)](x, ξ)
∣∣ =

∣∣F−1[θj(y)θk(η)] ∗ p(x, ξ)
∣∣

=
∣∣∣∣
∫∫ (

1
(2π)2n

∫∫
ei(yu+ηv)〈Dy〉2Mθj(y)〈Dη〉2Nθk(η)dydη

)

× 〈u〉−2M 〈v〉−2Np(x− u, ξ − v)dudv

∣∣∣∣

≤
∫∫ (

1
(2π)2n

∫∫
〈y〉−2P 〈Dy〉2Mθj(y)〈η〉−2Q〈Dη〉2Nθk(η)dydη

)

× CP,Q,M,N |p|mP+Q〈ξ〉m〈v〉−m〈u〉−2M 〈v〉−2Ndudv

≤ CP,Q,M,N |p|mP+Q2−jl2−kl′〈ξ〉m, (j, k ∈ Z+, x, ξ ∈ Rn). ¤

4. Interpolations

In this section, by using the interpolation theory for bilinear operators,
we get rid of the condition of α : n(1 − 1/q) ≤ α in Theorem 3.1. Further-
more, the duality argument allows us to take negative index α.

First of all, we recall the defintions of interpolation for families of quasi-
Banach spaces, [14]. Let 4 be the open unit disc in C, and T the boundary
of 4. We put a quasi-Banach space on for each θ ∈ T : (B(θ), ‖ · ‖B(θ)),
and denote by c(θ) the constants in the quasi-triangle inequalities. We say
that family {B(θ)}θ∈T is an interpolation family of quasi-Banach spaces if
each B(θ) is cotinuously embedded in a Hausdorff topological vecter space
U , the function θ → ‖b‖B(θ) is measurable for each b ∈ ⋂

θ∈T B(θ), and log
c(θ) ∈ L1(T );U is called the containing space of the given family {B(θ)}θ∈T .
We define

β =
{

b ∈
⋂

θ∈T

B(θ)
∣∣∣∣
∫

T

log+‖b‖B(θ)dθ < ∞
}

,

called the log-intersection space of the given family {B(θ)}θ∈T . Let G = G
(4, B(·)) be the space of all the β-valued analytic function of the form

g(z) =
m∑

j=1

ψj(z)bj
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for which ‖g‖G = supθ∈T ‖g(θ)‖B(θ) < ∞, where m ∈ N, ψj ∈ N+(4), the
positive Nevalinna class for 4 ([7]), and bj ∈ β, j = 1, . . . , m. For any a ∈ β

and z ∈ 4, we define

‖a‖z = inf
{‖g‖G | g ∈ G, g(z) = a

}
.

If Nz denotes the set of functions of β such that ‖a‖z = 0, the completion
B(z) of (β/Nz, ‖ ·‖z) will be called the interpolation space at z of the family
{B(θ)}θ∈T . We also denote B(z) by [B(θ)]z.

Let 0 < p0 < ∞, 1 < q0, q1 < ∞, n(1 − 1/q0) ≤ α0 < ∞, m0 <

−α0 − n|1/q0 − 1/2|, m1 = −n|1/q1 − 1/2|, and 0 < θ < 1. Then, we define
1/p(θ) = (1 − θ)/p0 + θ/q1, 1/q(θ) = (1 − θ)/q0 + θ/q1, α(θ) = (1 − θ)α0,
and m(θ) = (1− θ)m0 + θm1. Let L be an integer sufficiently large.

Following three equalities, which characterize the intermediate spaces
obtained by the complex method of interpolation for the couples or families,
are well known.

[
Sm0

0,0,(L), Sm1
0,0 (L)

]
θ

= S
m(θ)
0,0 (L) : Páivárinta and Sommersaro, [24],

[
HK̇α0,p0

q0
,HK̇0,q1

q1

]
θ

= HK̇
α(θ),p(θ)
q(θ) : Hernández and Yang, [14],

[
K̇α0,p0

q0
, K̇0,q1

q1

]
θ

= K̇
α(θ),p(θ)
q(θ) : Hernández and Yang, [13].

Next we consider the following bilinear operator:

T : Sm0
0,0 (L)×HK̇α0,p0

q0
→ K̇α0,p0

q0

or Sm1
0,0 (L)×HK̇0,q1

q1
→ K̇0,q1

q1
; (p, f) 7−→ p(X, D)f.

Theorem 4.1 In the above situation, if L is sufficiently large, then
‖T (p, f)‖

K̇
α(θ),p(θ)
q(θ)

. |p|m(θ)
L ‖f‖

HK̇
α(θ),p(θ)
q(θ)

, (p ∈ S (Rn × Rn), f ∈
HK̇

α(θ),p(θ)
q(θ) ).

Proof. We follow the argument in Theorem 4.4.1 in [2]. For the sake of
convenience, we write

A0
θ = S

m(θ)
0,0 (L), A1

θ = HK̇
α(θ),p(θ)
q(θ) , A2

θ = K̇
α(θ),p(θ)
q(θ) ,
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(B0(τ), B1(τ), B2(τ)) = (Sm0
0,0 (L),HK̇α0,p0

q0
, K̇α0,p0

q0
) if τ ∈ T0, and

(B0(τ), B1(τ), B2(τ)) = (Sm1
0,0 (L),HK̇0,p1

q1
, K̇0,p1

q1
) if τ ∈ T1, where T0 and

T1 are subsets of T so that 1
p(θ) =

∫
T0

1
p0

Pθ(τ)dτ +
∫

T1

1
p1

Pθ(τ)dτ , 1
q(θ) =∫

T0

1
q0

Pθ(τ)dτ +
∫

T1

1
q1

Pθ(τ)dτ , α(θ) =
∫

T0
α0Pθ(τ)dτ +

∫
T1

α1Pθ(τ)dτ ,
m(θ) =

∫
T0

m0Pθ(τ)dτ +
∫

T1
m1Pθ(τ)dτ and Pθ(τ) is the Poisson kernel

for evaluation at θ.
Let us be reminded that the space B(θ) defines β, G and Nz as was

explained above. We use the notations βk, Gk and Nk
z , if β, G and Nz is

defined by B(θ) = Ak
θ (k = 0, 1, 2).

It is not hard to see that Nk
θ = {0} for each k. Let ε > 0, a0 ∈ β0

and a1 ∈ β1. Then there exist f0 ∈ G0 and f1 ∈ G1 : f0 =
∑k0

i=1 ϕibi,
f1 =

∑k1
j=1 ψjcj such that f0(θ) = a0, f1(θ) = a1, ‖f0‖G0 ≤ ‖a0‖θ + ε

and ‖f1‖G1 ≤ ‖a1‖θ + ε, where ϕi, ψj ∈ N+(4) and bi ∈ β0, cj ∈
β1. Let C0 and C1 be constants in the inequalities ‖T (p, f)‖K̇

α0,p0
q0

≤
C0|p|m0

L ‖f‖HK̇
α0,p0
q0

, ‖T (p, f)‖K̇
α1,p1
q1

≤ C1|p|m1
L ‖f‖HK̇

α1,p1
q1

, and we set

g(z) = (C0 + C1)−1
∑k0

i=1

∑k1
j=1 ϕi(z)ψj(z)T (bi, cj). Then g(θ) = (C0 +

C1)−1T (a0, a1), g ∈ G2 and

‖g‖G2 = sup
τ∈T

‖g(τ)‖B2(τ) = sup
τ∈T

1
C0 + C1

∥∥∥∥T

( k0∑

i=1

ϕi(τ)bi,

k1∑

j=1

ψj(τ)cj

)∥∥∥∥
B2(τ)

≤ sup
τ∈T

∥∥∥∥
k0∑

i=1

ϕi(τ)bi

∥∥∥∥
B0(τ)

sup
τ∈T

∥∥∥∥
k1∑

j=1

ψj(τ)cj

∥∥∥∥
B1(τ)

= ‖f0‖G0‖f1‖G1 .

Hence we have

‖T (a0, a1)‖θ ≤ (C0 + C1)‖g‖G2 ≤ (C0 + C1)‖f0‖G0‖f1‖G1

≤ (C0 + C1)(‖a0‖θ + ε)(‖a1‖θ + ε),

which implies the conclusion ‖T (p, f)‖A2
θ

. |p|m(θ)
L ‖f‖A1

θ
. ¤

In particular, we consider the case q1 = 2 in Theorem 4.1. By elementary
calculation, we obtain

Corollary 4.1 Let 0 < p < ∞, 1 < q < ∞, 0 < α, 1 − 1/q − α/n <

min(1/p, 1/q, 1/2) and L be an integer sufficiently large. If m < −α −
n|1/q − 1/2|, then Sm

0,0(L) ⊂ L (HK̇α,p
q , K̇α,p

q ).
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Proof. The condition 1− 1/q − α/n < min(1/p, 1/q, 1/2) guarantees that
there exists 0 < θ < 1, 0 < p0 < ∞ and 1 < q0 < ∞ such that

1/p = (1− θ)/p0 + θ/2, 1/q = (1− θ)/q0 + θ/2

and n(1− 1/q0) ≤ α/(1− θ).

This and Theorem 4.1 complete the proof of Corollary 4.1. ¤

Remark 4.1 If 0 < p, q ≤ 2 and 1 < q, then the condition 1−1/q−α/n <

min(1/p, 1/q, 1/2) is always satisfied. The range of α in Corollary 4.1 is wider
than that of Theorem 4.1.

Remark 4.2 We remark that the conclusion of Corollary 4.1 holds if the
index L is larger than at least

[
3n
4

]
+

[
3n
4 + 1

2

[ α+n/q
1−min(1/p,1/2)− n2

2(α+n/q)

]
+1

]
+4

if 1 < q ≤ 2,
[
3n
4

]
+

[
3n
4 + 1

2

[
α

1−min(1/p,1/q)

]
+ 1

]
+ 4 if 2 < q < ∞.

The duality argument gives us the boundedness of Sm
0,0(L) on the Herz

spaces with α < 0,

Corollary 4.2 Let 1 < p, q < ∞, 0 < α < n(1 − 1/q), 1 − 1/q −
α/n < min(1/p, 1/q, 1/2), and L be an integer sufficiently large. If m <

−α − n|1/q − 1/2| then Sm
0,0(L) ⊂ L (K̇−α,p′

q′ ), where 1/p + 1/p′ = 1 and
1/q + 1/q′ = 1.

Remark 4.3 Let p be in S (Rn×Rn) and p∗ be the adjoint operator of p.
Note that the inequality |p∗|mL ≤ |p|mL+2([(n+1)/2]+1) holds. Hence, the index
L in Corollary 4.2 must be larger than L0 + 2([(n + 1)/2] + 1) where L0 is
the minimal requirement for L in Corollary 4.1.

Remark 4.4 The author believes that the complex interpolation theorem
for Herz-type Hardy spaces with q ≤ 1 holds. If the interpolation theo-
rem holds, we will be able to obtain the boundedness of pseudo-differential
operators of class Sm

0,0 on the Herz-type Hardy spaces with q ≤ 1.
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[24] Páivárinta L. and Sommersalo E., A Generalization of the Calderón-

Vaillancourt Theorem to Lp and hp. Math. Nachr. 138 (1988), 145–156.

[25] Tabacco Vignati A., Complex interpolation for families of quasi-Banach

spaces. Indiana Univ. Math. J. 37 (1988), 1–21.

[26] Tabacco Vignati A., Some techniques for the characterization of interme-

diate spaces. Ann. Scoula Norm. Sup. Pisa Cl. Sci. Serie iv 17 (1990),

323–341.

Department of Mathematics

Graduate School of Science

Osaka University

Machikaneyama-cho 1-16, Toyonaka

Osaka 560-0043, Japan

E-mail: tsutsui@cr.math.sci.osaka-u.ac.jp

http://dx.doi.org/10.1307/mmj/1029005703
http://dx.doi.org/10.2996/kmj/1138044267
http://dx.doi.org/10.1002/mana.19871330109
http://dx.doi.org/10.1007/s101140100104
http://dx.doi.org/10.1002/mana.19881380111
http://dx.doi.org/10.1512/iumj.1988.37.37001


		2009-06-07T09:13:10+0900
	Asao Arai




