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MEASURE, CATEGORY AND
CONVERGENT SERIES

Abstract

The analogy between measure and Baire category is displayed first
by a theorem of Steinhaus and its “dual,” a theorem of Piccard. These
two theorems are then applied to provide a double criterion for the un-
conditional convergence of a series in terms of the “measure size” and
the “category size” of the set of its convergent subseries. As a further
application, after a substantial preparatory section concerning essential
separability of measurable and BP -measurable functions, the results
about exhaustivity of BPr-measurable and universally measurable ad-
ditive maps on the Cantor group are established. In the last sections
of the paper, two classical theorems about countable additivity of the
universal measurable and BPr-measurable additive maps are examined.
The analogy in question is illustrated not only by the results themselves,
but also by the proofs provided.

1 Introduction

There is a long line of research motivated by the analogy between measure and
(Baire) category, see e.g. Oxtoby’s survey [28]. In particular, the analogy may
concern “dual” statements involving BP -measurable sets and measurable sets.
In those statements one would like 1st category sets to correspond to measure
zero sets, and 2nd category sets (those that are not 1st category) to sets of
positive measure. We recall that a subset of a topological space is 1st category
if it is a countable union of nowhere dense sets. An example of the duality in
question is provided by the following two classical results.
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First is the Steinhaus Theorem (going back to [32]; in the group setting,
to [35]).

Theorem 1.1. Let G be a locally compact group with (left invariant, say)
Haar measure χ and A ⊂ G. If A is of positive measure, then AA−1 is a
neighborhood of unit in G.

Here is an elementary proof due to Kestelman [22] (who still worked in
Rn), later rediscovered by Stromberg in [33].

Proof. By the inner regularity of χ, one can assume that A is compact. By
the outer regularity of χ, one finds an open set U containing A such that
χ(U \ A) < 1

2χ(A), and then a neighborhood V of unit such that V A ⊂ U .
Given z ∈ V , zA ⊂ V A ⊂ U and so

χ(U \ zA) = χ(U)− χ(zA) = χ(U)− χ(A) <
1

2
χ(A).

Hence χ(U \ (A∩ zA)) ≤ χ(U \A) +χ(U \ zA) < χ(A) < χ(U). Consequently,
χ(A∩ zA) 6= 0 and A∩ zA 6= ∅. Therefore there exists y ∈ A such that y = zx
with x ∈ A, whence yx−1 = z and z ∈ AA−1. As z was an arbitrary member
of V , this means that V ⊂ AA−1.

The dual statement is a theorem of Piccard [31], mostly known as the
Pettis Lemma (because of [30]). Kelley has it as an exercise ([21], Chapter 6,
Exercise P(b)) and calls the Banach–Kuratowski–Pettis Theorem.

Recall that a subset A in a topological space Y is said (to have the Baire
Property or) to be BP–measurable if it can be written as a symmetric differ-
ence A = O M I, where O is open and I is 1st category (in Y ).

Theorem 1.2. Let G be a topological group and A a BP -measurable subset
of G. If A is of second category, then AA−1 is a neighborhood of unit in G.

The following proof, due essentially to Bourbaki (compare the proof of [5,
p. 69, Lemme 9], shows the duality we are after.

Proof. As A is 2nd category in G, so is G. By the Banach category theorem
[28, Th. 16.1], every nonempty open set is 2nd category in G. In particular,
if A = O M I, then O is 2nd category and therefore not empty. It suffices to
show that OO−1 ⊂ AA−1. Let x ∈ OO−1. Then the open set O ∩ xO is not
empty and therefore 2nd category. Define

Z = (O ∩ xO) \ (A ∩ xA).

Since Z ⊂ (O \ A) ∪ x(O \ A), Z is 1st category. Consequently, A ∩ xA 6= ∅.
This means that x ∈ AA−1 and OO−1 ⊂ AA−1.
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These two theorems will provide a unifying tool in what follows. It is our
aim to present some results, new and old, that are “dual” in a similar way as
the theorems of Steinhaus and Piccard are. Perhaps even more importantly,
we provide proofs that display and stress that sort of duality.

2 Series

In what follows, P(A) stands for all subsets of a set A, F(A) for all its finite
subsets; N = {1, 2, . . . }, P = P(N),F = F(N) and Fm = F{m,m + 1, . . . }.
By identifying subsets of N with their characteristic functions, subfamilies of
P become subsets of the Cantor group K = {0, 1}N, i.e., we regard the set
of all sequences of 0′s and 1′s as the countable product of the group {0, 1}
with addition mod. 2. K is a compact metric Abelian group whose addition
in terms of P is the symmetric difference M of subsets in P. Putting masses
1/2 at the points 0 and 1 of {0, 1}, the corresponding product measure χ on
K is its Haar probability measure.

Using the identification, the topological properties of subfamilies in P al-
ways refer to the topological properties of the corresponding subsets of the
Cantor group.

If X is a topological Abelian group, its topology can be defined by a family
of (group) semi–norms. Then, in order to establish convergence of a (filter
or) sequence in X, it is sufficient to do it with respect to each semi–norm
separately. Equivalently, if X is Hausdorff, one can embed X into a product
of complete normed groups and one can argue with respect to each coordinate
group separately. For a possibility of such an embedding, see e.g. [6, Ch. 2,§1,
no 3, Prop. 3], where a full proof is given for the case of a locally convex space,
but the argument is general and works in a group setting as well.

From now on, unless stated otherwise, X stands for a Hausdorff topological
Abelian group and, if it is normed, then its (group) norm is denoted by ‖·‖,
i.e., X = (X, ‖·‖).

In order to set the terminology, recall a few known facts.
Let X be sequentially complete. The following conditions are equivalent for

a sequence (xn) in X.

(a) The series
∑
n xn is unconditionally convergent, i.e., converges for each

ordering of its terms.

(b) The series
∑
n xn is subseries convergent, i.e., all its partial series are

(subseries) convergent.

(c) With the convention 0 ·x = 0 and 1 ·x = x, the series
∑
εnxn converges

for all sequences (εn) of 0′s and 1′s.



414 Iwo Labuda

(d) The series
∑
n xn satisfies the Cauchy condition:

∀U ∃ m ∀ F ∈ Fm
∑
n∈F

xn ∈ U,

where U is a neighborhood of zero in X.

(e) If X is normed, then the Cauchy condition can be written as

∀ ε > 0 ∃ m ∀ F ∈ Fm
∥∥∥∑
n∈F

xn

∥∥∥ 6 ε.

• For a sequence x = (xn) in X, its set of unconditional convergence is
defined as

C(x) = C(xn) = {A ∈ P :
∑
n∈A

xn is unconditionally convergent}.

It is identified with

C(x) = {(εn) ∈ K :
∑
n

εnxn is unconditionally convergent}.

Because of the identification, we use the symbol C(x) only.

Proposition 2.1. Let X = (X, ‖·‖) be complete. For every sequence

x = (xn) ⊂ X,

the set C(x) is an Fσδ subset of K.

Proof. By using the Cauchy condition (e) above, one has

(εj) ∈ C(x) ⇐⇒ ∀ k ∃n ∀F ∈ Fn :
∥∥∥ ∑
j∈F

εjxj

∥∥∥ 6
1

k
,

hence

C(x) =

∞⋂
k=1

∞⋃
n=1

⋂
F∈Fn

{
(εj) ∈ K :

∥∥∥ ∑
j∈F

εjxj

∥∥∥ 6
1

k

}
.

As, for each finite set F , the mapping (εj)→ ‖
∑
j∈F εjxj‖ from K into R is

continuous, the sets on the right-hand side of the above formula are closed.
Consequently, C(x) is an Fσδ set.
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Theorem 2.2. Let X be sequentially complete and (xn) a sequence in X. If
C = C(xn) is either 2nd category or of positive Haar measure, then

∑
n xn is

unconditionally convergent in X.

Proof. Let C be 2nd category in P. Embed X into a product of complete
normed groups. Assume, for a moment, that X is a complete normed group.
Then, by Proposition 2.1, C is an Fσδ set in P and so, in particular it is
BP -measurable. By Theorem 1.2 the family V = C M C is a neighbourhood
of zero. Find a finite set F ∈ V, and then n so large that F ∪ H ∈ V with
H = {n, n + 1, n + 2, . . . } disjoint with F . Then F ∪ H = C1 M C2 with
C1, C2 belonging to C. Now C1 r (C1 ∩C2) and C2 r (C1 ∩C2) are clearly in
C and so their disjoint union F ∪H is in C as well. In particular,

∑∞
k=n xk is

unconditionally convergent. As this is true for every coordinate group in the
product, the original series satisfies the Cauchy condition for summability in
X and, since X is sequentially complete, is unconditionally convergent there.
If C is of positive Haar measure, the proof is the same applying Theorem
1.1.

Remark 2.3. A family I ⊂ P(A) is an ideal in A, if B ⊂ C ∈ I =⇒ B ∈ I
and B,C ∈ I =⇒ B ∪ C ∈ I. Suppose I is an ideal in N containing finite
sets. The proof above shows that if I is either 2nd category BP–measurable
or is of positive Haar measure in P, then I = P, compare [11].

Remark 2.4. By noticing that I is also a subgroup of P, one can apply instead
of the Piccard theorem an earlier result of Banach [2, Ch. I, Th. 1].

3 Essential separability

Let f be a function between topological spaces Y and X. It has the Baire
Property or is BP–measurable, if for every open set V in X, the set f−1(V ) is
BP–measurable in Y . Suppose µ is a finite (positive) measure on Y . Then f
is µ–measurable, if for every open set V in X, the set f−1(V ) is µ–measurable
in Y .

We will say that f is essentially separably valued in each of the following
two (dual) cases. In the BP–measurable case: if there exists a 1st category set
A ⊂ Y such that that f(Y r A) is separable. Dually, in the measurable case:
if there exists a set A ⊂ Y of µ–measure zero such that f(Y rA) is separable.
A subset in a topological space is called residual if it is the complement of a
1st category set.

Lemma 3.1. Let X be a metric space. If a function f : Y → X has the prop-
erty that each open cover of X admits a countable subfamily B = {B1, B2, . . . }
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such that µ(
⋃∞
n=1 f

−1(Bn)) is of full measure (resp. is residual), then f is es-
sentially separably valued.

Proof. For each k ∈ N, cover X with 1/k balls and choose countable sub-
families Bk = {Bk1, Bk2, . . . } according to the assumption of the lemma. Set
Akn = f−1(Bkn), n = 1, 2, . . . . Then Y1 =

⋂
k

⋃
nAkn is of full measure (resp.

residual) and its image X1 = f(Y1) is separable. Indeed, one can find a point
in B ∩ X1 for each ball B ∈

⋃
Bk and these points form a countable dense

subset of X1.

The following fact can already be deduced from [26], see [18]. Here, its
somewhat more modern treatment is adapted from an unpublished manuscript
of Prikry, cited as reference number 27 in [23]. We recall that a topological
space is said to be 2nd countable if it admits a countable base for open sets.

Lemma 3.2. Let Y be a 2nd countable topological space equipped with a finite
regular Borel measure µ. Let {Aγ : γ ∈ Γ} be a disjoint family of subsets of
Y such that for any γ ∈ Γ, µ(Aγ) = 0 (resp.Aγ is 1st category). If

⋃
γ∈ΓAγ

has positive measure (resp. is 2nd category having the Baire property), then
there exists ∆ ⊂ Γ such that

⋃
{Aγ : γ ∈ ∆} is not µ–measurable (resp. is not

BP–measurable) relative to
⋃
γ∈ΓAγ .

Proof. Well–order Γ and let β be the least element in Γ such that the outer
measure µ∗ of the union

⋃
γ<β Aγ is positive (resp. 2nd category). We may

assume that
⋃
γ<β Aγ is µ–measurable (resp.BP–measurable). Indeed, if not,

the lemma holds. By the definition of β, for any α < β, µ(
⋃
γ<αAγ) = 0

(resp.
⋃
γ<αAγ is 1st category). Consequently, without loss of generality, we

may assume⋃
γ<Γ

Aγ = Y and µ(
⋃
γ<β

Aγ) = 0 (resp. is 1st category) for all β < Γ.

For any β < Γ, find a Gδ set Pβ of measure zero containing
⋃
γ<β Aγ (resp. a

residual Gδ set Pβ disjoint with
⋃
γ<β Aγ). Define E ⊂ Y × Y by

E =
⋃
γ∈Γ

(Aγ × Pγ)

and take a horizontal cross–section Ey of E.
Let α be such that y ∈ Aα. Then, for any β > α, y ∈ Pβ and, consequently,

Ey ⊃
⋃
α<β<ΓAβ . Hence, Ey is of full measure, provided it is measurable. In

the category case, if β > α, y ∈
⋃
γ<β Aγ ⊂ Y rPβ , that is, Ey∩

⋃
α<β<ΓAβ =

∅, and Ey is of 1st category.
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Clearly, by the very definition of E, every vertical cross–section Ey has
measure zero (resp. is residual). We will get a contradiction with the Fu-
bini Theorem (resp. its category analogue, the Kuratowski–Ulam Theorem [28,
Chapter 15]) by showing that E is µ × µ–measurable (resp.BP–measurable)
in Y × Y .

To this end, for every β < Γ, set Pβ =
⋂∞
n=1 Pβn

, where Pβn
are open

decreasing sets, and

En =
⋃
β<Γ

(Aβ × Pβn), n ∈ N.

Then E =
⋂
En and it suffices to show that En are µ–measurable (resp.BP–

measurable).
Let G be a countable base of open sets in Y and fix En, n ∈ N. For G ∈ G,

let

BG = {Aβ : G ⊂ Pβn
}.

Write BG =
⋃
BG. As En =

⋃
G∈G(BG × G), the set En is µ–measurable

(resp. BP–measurable), if each BG is so. However, if BG is not, then the
proposition holds. Indeed, BG is then a subfamily of {Aγ : γ ∈ Γ} whose
union is not µ–measurable (resp. not BP–measurable).

Remark 3.3. The assumption of regularity of µ is automatically satisfied if Y
is a metric space.

Theorem 3.4. Let Y be a 2nd countable topological space, µ a finite regular
Borel measure on Y , X a metric space, and f : Y → X a µ–measurable
(resp.BP–measurable) map. Then f is essentially separably valued.

Proof. If µ is trivial, there is nothing to prove. Let µ(Y ) > 0 and let B
be an open cover of X. By the Stone Theorem [13, 4.4.1], there exists an
open refinement D of B which is σ–disjoint, i.e., such that D =

⋃∞
n=1Dn,

where Dn are disjoint families in X. Given n ∈ N, there is only a sequence
(Dn

k ), k = 1, 2, . . . of all sets in Dn for which µ(f−1(Dn
k )) > 0. We note

that the 2nd countability of Y is not needed here; the fact that any family of
disjoint sets of positive measure is countable is used.

Now, An = {A = f−1(D) : D ∈ Dn r {Dn
k : k ∈ N}} is a family of disjoint

µ–zero sets in Y . Since the union of any subfamily of open sets is open, the
union of any subfamily of sets in An is µ–measurable. Hence

⋃
{A : A ∈ An}

is a set of measure zero by Lemma 3.2. Denoting A =
⋃
nAn, one gets

µ(
⋃
{A : A ∈ A}) = 0. As D is a cover of Y ,

⋃
{f−1(Dn

k ) : n ∈ N, k ∈ N} is
a set of full measure in Y . But D is a refinement, so for every Dn

k one can
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find B ∈ B containing it. This defines a countable subfamily of B, making an
application of Lemma 3.1 possible which ends the proof.

Let now f be BP–measurable. We may assume that the space Y is 2nd
category, because otherwise there is nothing to prove. By the Banach Category
Theorem [28, 16.1], Y can be represented as a union of a 1st category set Y0

and its complement Y1, where Y0 is the union of all 1st category open subsets
of Y . Consider two (disjoint) members of Dn, say D1 and D2, whose inverse
images by f are both 2nd category. As f is BP -measurable, we can write
f−1(D1) = (O1 r I1) ∪ J1 and f−1(D2) = (O2 r I2) ∪ J2, where O1, O2 are
open sets and the other four sets are 1st category. Observe that O1 and O2

are 2nd category. Since O1∩O2 ⊂ I1∪I2, and the latter union is 1st category,
the open set O1 ∩O2 is contained in Y0. This means that O1 ∩Y1 and O2 ∩Y1

are disjoint nonempty open sets in Y1. Consequently, given n ∈ N, the family
of all sets in Dn whose inverse images by f are 2nd category is countable and,
therefore, can again be written (Dn

k ), k = 1, 2, . . . . This time, to conclude that
there was only a countable number of such sets, we used the fact that Y1 is
2nd countable.

Hence An = {A = f−1(D) : D ∈ Dnr{Dn
k : k ∈ N}} is a family of disjoint

1st category sets. By Lemma 3.2 again, the union of the sets in An is 1st
category. Keeping the notation from the first part of the proof, the union of
the sets in A is 1st category and so

⋃
{f−1(Dn

k ) : n ∈ N, k ∈ N} is a residual
set in Y . This permits it to finish the proof as in the first part.

Remark 3.5. Assuming appropriate separation axioms on the topology of Y ,
there exist results stronger than Theorem 3.4, see e.g. [15] and [16]. The main
reason for its inclusion in the form above is the desire to expose the duality
of our proof of the “Baire counterpart” with the proof of the “measure part.”
The latter proof can be treated as more or less standard. It can be traced
back at least as far as to the proof of Th. 2 in [3, Appendix 3].

4 Exhaustivity

Recall that X is a Hausdorff topological Abelian group and let m : P → X
be a finitely additive measure or, for short, an additive map, that is, a map
such that m(A ∪ B) = m(A) + m(B) for disjoint sets A and B. It is called
exhaustive whenever m(En)→ 0 for each sequence of disjoints sets (En) in P.

We first prove a result showing that both, BP–measurable and χ–measurable
additive maps enjoy a sort of “weak exhaustivity” property.

Proposition 4.1. Let m : P → X be a Haar measurable (resp. BP–measurable)
additive map. Then m({n})→ 0.
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Proof. By embedding X into a product of normed groups, we may assume
that X is metric. Let U be a neighborhood of 0 in X and find another
neighborhood of 0 in X such that V − V ⊂ U . As m is essentially separable
by Theorem 3.4, there is a sequence (xn) of points in X such that the inverse
images of the translates, m−1(xn + V ), cover P apart, perhaps, of a measure
zero (resp. 1st category) subset of P. Hence one of them, say m−1(xk +V ), is
of positive χ–measure (resp. 2nd category). By the Steinhaus (resp. Piccard)
Theorem, the family A = m−1(xk + V ) M m−1(xk + V ) is a neighborhood of
∅ in P.
A being a neighborhood of ∅, there exists m ∈ N so large that for n > m,

{n} ∈ A. One therefore has {n} = E M F with m(E) ∈ xk + V and
m(F ) ∈ xk + V . Since {n} is a singleton, E ⊂ F or vice versa. Suppose the
latter; then {n} = ErF and m(ErF ) = m(E)−m(F ) ∈ xk+V −(xk+V ) =
V − V . Hence, if m is large enough, m({n}) ∈ U for n > m. As U was arbi-
trary, this means that m({n})→ 0.

A set E in a topological space Y is BPr–measurable or has the Baire
property in the restricted sense, if for every subspace A of Y , the set A∩E is
BP–measurable relatively to A. A function f from Y into a topological space
X is BPr–measurable or has the Baire property in the restricted sense, if for
every open subset O in X, the set f−1(O) is BPr–measurable in Y .

Proposition 4.2. If m : P → X is BPr–measurable, then it is exhaustive.

Proof. Let (En) be a sequence of disjoint sets in P. Define the map j :
P(N)→ P by putting for each F ⊂ N

j(F ) =
⋃
n∈F

En.

To avoid confusion, denote the domain Cantor group of j by R. The map
j is a continuous injection from R into P and, in fact, a homeomorphism
onto its image, Z say, because R is compact. By the assumption on m, if
O ⊂ X is open, then m−1(O) ∩Z is BP–measurable relative to Z. Hence its
inverse image by j is still BP–measurable in R. Thus, mj : R → X is BP–
measurable. By “Baire part” of Proposition 4.1, mj({n}) = m(En)→ 0.

Recall that a (finite positive) Borel measure µ on a Hausdorff space Y
is said to be Radon measure if it is inner regular with respect to compact
sets [16]. A set E in Y is universally measurable if it is measurable for every
Radon measure µ on Y . A function f from Y into a topological space X
is universally measurable if for every open subset O in X, the set f−1(O) is
universally measurable in Y .
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For historical reasons, let us mention that the notion of universal measur-
ability was defined precisely as a measure analogue of BPr–measurability (by
Szpilrajn-Marczewski in [34] under the name of absolute measurability).

Proposition 4.3. If m : P → X is universally measurable, then it is exhaus-
tive.

Proof. Keeping the notation from the proof of the preceding Proposition 4.2,
let χ be the Haar measure on R. Further, let µ = χj−1 be its image measure
on P defined the usual way. Since µ is a Radon measure ([16, 418 I]) and m is
universally measurable, we conclude that m is χj−1-measurable. This means
that mj : R → X is χ-measurable. It follows from the Proposition 4.1 that
mj({n}) = m(En)→ 0.

5 Countable additivity

Again, X is a Hausdorff topological Abelian group throughout. Let
∑
n xn be

a subseries convergent series in X. Then the canonical measure m : P → X
(or canonical map m : K → X) connected with it, is defined by

m(E) =
∑
n∈E

xn for E ⊂ N.

An additive map m : P → X is a measure (i.e., countably additive) iff it is
continuous iff it is the canonical map of the series

∑
n xn, where xn = m({n}).

A situation of interest arises in connection with theorems of Orlicz–Pettis
type. On X two Hausdorff group topologies α and β are considered, with
α ⊂ β. One knows that a series

∑
n xn is subseries convergent in (X,α).

One seeks criteria on β so that the series is also convergent in (X,β). The
canonical map of the series, m : P → X, is α–continuous, but is, a priori, only
an additive map into (X,β).

The following theorem goes back to [25], [29] and [17].

Theorem 5.1. Let α, β be Hausdorff group topologies on X with α ⊂ β
and β sequentially complete. Suppose the identity map ι : (X,α) → (X,β) is
universally measurable. If

∑
xn is subseries convergent in (X,α), then it is

so in (X,β).

Proof. It is sufficient to show that the canonical continuous map m : P → X
associated with the series in (X,α) is exhaustive into (X,β). Indeed, then∑
n xn satisfies the Cauchy condition for summability in (X,β) and there-

fore is subseries convergent there to the same limit as in (X,α). Consider a
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Radon measure µ on P and its image measure ν = µm−1 in (X,α). As ν is
Radon ([16, 418 I]), the identity ι is ν–measurable. Hence, ιm is µ–measurable
or, which is the same, m into (X,β) is µ–measurable. We have shown that
m : P → (X,β) is universally measurable and, therefore, exhaustive by Propo-
sition 4.3.

Problem 5.2. Is the “dual statement” to the above theorem, in which one
assumes the identity ι to be BPr–measurable, true?

Remark 5.3. For the origins of the Orlicz–Pettis Theorem see [20] and [14]. As
for the Problem 5.2, there exist some results in this direction. For instance, in
[10, Theorem 2.1] the measurability assumption about ι is even weaker, but a
very strong completeness of β is needed.

If ι is Borel measurable, there is no problem. Though this case is already
covered since Borel measurable maps are universally measurable, it leads us to
a theorem of N.J.M. Andersen and J.P.R. Christensen [1]. But before we state
the theorem, let us digress and present another double result whose “Baire
part” will be needed.

Consider an equivalence relation ∼ in a product Y =
∏
i∈I Yi defined by:

a ∼ b if the set {i ∈ I : a(i) 6= b(i)} is finite.

A subset A of Y is a tail set if y ∈ A and y ∼ z implies z ∈ A. A function
f : Y → X is compatible with ∼ if it is constant on equivalence classes y∼ for
y ∈ Y .

Suppose now that Y is a product of probability spaces with the product
probability measure µ (resp.Y is a product of Baire spaces each of which has
a countable pseudo –base). For the record, a family B of non–empty open
sets in a topological space is a pseudo–base if every non–empty open set con-
tains at least one member of B. The so –called 0-1 law of probability theory
(resp. topological 0-1 law) says that, if A ⊂ Y is a µ–measurable (resp.BP–
measurable) tail set, then µ(A) = 0 or 1 (resp.A is 1st category or residual
subset of Y ), see [19, Section 46(3)], [27, Theorem 4].

Proposition 5.4. Let Y be a product of Baire spaces, each of which has a
countable pseudo–base (resp. product of probability spaces with product measure
µ), and X be a metric space. Assume f : Y → X is BP–measurable (resp.µ–
measurable) and compatible with ∼. Then f is constant on a residual (resp.µ–
measure one) subset of Y .

Proof. Let Bk be an open cover of X by balls of radius 1/k. By the already
invoked Stone Theorem [13, 4.4.1], there exists an open refinement D of Bk
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with D =
⋃∞
n=1Dn, where Dn are disjoint families in X. Given n ∈ N, let En

be the subfamily of all sets D in Dn for which f−1(D) is 2nd category (resp. of
positive measure) and therefore residual (resp. of µ–measure one). An = {A =
f−1(D) : D ∈ DnrEn} is a disjoint family of 1st category (resp. measure zero)
sets in Y and therefore, by Lemma 3.2, the union Y n0 =

⋃
{A : A ∈ An} is 1st

category (resp. measure zero) set. Hence Y0 =
⋃
{Y n0 : n ∈ N} is 1st category

(resp. measure zero) in Y . As D is a cover, E =
⋃∞
n=1 En is a family covering

Y1 = Y r Y0, a residual (measure one) set in Y . By choosing for each D ∈ E
a ball in Bk containing it, we conclude that:

For each open cover Bk of X by balls of radius 1/k there exists a 1st category
(resp. measure one) set Y0(k) and a subfamily B′k of Bk covering Y1(k) =
Y r Y0(k) such that for each B ∈ B′k, f−1(B) is residual (resp. measure one)
in Y .

In particular, as Y is a Baire space by [27, Theorem 3], we see that the
families B′k, k ∈ N, are nonempty. Choose a ball B2n1

in B′2 and note that
f−1(B2n1

) is a residual (resp. measure one) subset of Y . On the second step,
choose a ball B3n2 ∈ B′3. Again, f−1(B3n2) is residual (resp. measure one) in
Y and so is f−1(B2n1)∩f−1(B3n2). Continuing, we will find a nested sequence
of balls (Bknk

) with radius 1/k → 0 and such that Z =
⋂
{f−1(Bknk

) : k ∈ N}
is a residual (resp. measure one) set in Y . Pick y ∈ Z. Then x = f(y) =⋂∞
k=1Bknk

and f−1(x) =
⋂∞
k=1 f

−1(Bknk
) = Z. Hence f is constant on a

residual (resp. measure one) set Z.

Here is the Andersen–Christensen Theorem in its generalized (and cor-
rected, see Remark 5.6 below) form.

Theorem 5.5. Let X be sequentially complete and m : P → X a BPr–
measurable additive map. Then m is the canonical measure of the subseries
convergent series

∑
nm({n}).

In the arguments that follow, the structure of the Cantor group K as
product {0, 1}N and the continuity of m on K rather than the countable
additivity of m on P will be exploited. For this reason, it is more convenient
to think in terms of m : K → X and change the notation accordingly. The
group operation of addition mod. 2 in K is denoted by + and a, b, c, . . . are
the elements of K. Then F corresponds to F , 0 to ∅, n to the singleton {n},
ab to A ∩B, a− ab to ArB, and e will be reserved for {1, 1, . . . }.

Proof. Given m, by the Proposition 4.2 and the sequential completeness of
X, the series

∑
nm({n}) is subseries convergent. Its canonical map m′ from

K to X is continuous. Consider m′′ = m−m′ on K. It is obvious that m′′

is an additive map vanishing on F . We claim that it is BPr–measurable. As
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usual, we may embed X into a product of normed groups, and therefore it will
be enough to assume that in the next step of the proof X is metric.

Let Z ⊂ K. We need to show that (m−m′)|Z is BP–measurable. Clearly,
m|Z is BPr–measurable and m′|Z is continuous. Using Theorem 3.4, find
H1 ⊂ Z, 1st category in Z, such that m|(Z r H1) is separably valued. As
m|(Z rH1) is BP–measurable, by [24, Section 32, II] there exists a set H2,
first category in Z rH1 and therefore also in Z, such that m|(Z r (H1 ∪H2))
is continuous. Hence m−m′ is continuous apart of 1st category set which can
be taken to be an Fσ subset of Z. Let O be an open set in X. Observe that
(f − g)−1(O) can be written as a disjoint union of a 1st category set in Z and
an open subset of a Gδ in Z and so a Gδ subset of Z. It follows by [24, Section
11.IV.2] that the inverse image under consideration is a BP–measurable subset
of Z, as needed.

The proof will be complete if we can show that m′′ is identically zero. This
will be done in the next Proposition (the proposition is implicit in the original
proof of the theorem in [1]).

Remark 5.6. Andersen and Christensen claim that the assumption of sequen-
tial completeness of X is not needed. However, without any completeness
assumption on X, the countably additive and therefore continuous function
m′ takes values in the completion, X̂. Consequently, m −m′ also takes val-
ues in X̂ and we do not know whether it is BPr–measurable, a fact needed
to conclude that it vanishes. Assuming Borel measurability does not improve
the situation.

Proposition 5.7. Let X be normed, and m : K → X be an additive BPr–
measurable map. If m|F = 0, then m is identically zero.

Proof. By Proposition 5.4, m is constant on a dense Gδ subset A of K. Let
x be that constant. Observing that A ∩ e+A, as an intersection of dense Gδ
sets, is nonempty, we deduce that e = a + b with a ∈ A, b ∈ A and ab = 0
(i.e. a and b are disjoint as elements of P). It follows that m(e) = 2x. At this
point, we need the following lemma (Lemma after Theorem 2 in [7, p. 247]):

If A is a dense Gδ subset of K, then there exist a, b, c in A such that
c = a+ b with a, b disjoint.

So, if the lemma holds, x = 0 and m(N) = 0. Let now a be an arbitrary
element of K. If a ∈ F , then m(a) = 0. If a 6∈ F , then denote by A the support
of a in N, i.e., {n ∈ N : a(n) 6= 0}. The restriction of m to Ka = {0, 1}A is
again BPr–measurable. Hence, by the proof above, m(a) = 0.

It remains to prove the lemma. Here is Christensen’s proof of it. Consider
the maps g, h : K ×K → K defined by

g(a, b) = a− ab and h(a, b) = ab.
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As g, h are surjective, open and continuous, g−1(A) and h−1(A) are dense Gδ
sets in K ×K. Choose

(a, b) ∈ g−1(A) ∩ h−1(A) ∩ (A×K)

and put x = a, y = g(a, b) and z = h(a, b).

Problem 5.8. Is the “universal measurability” dual of Theorem 5.5 true?

Remark 5.9. J. P. R. Christensen (assuming the Continuum Hypothesis) claims
having an example that solves Problem 5.8 in the negative, see [8, Theorem
6.1] and the example following it. However, if true, his claim would need a
better proof.

6 Analogy breaks

We will need the following consequence of the main result of Section 3.

Corollary 6.1. Let Y be a second countable Baire space, X a metric space,
and f a function from Y to X. The following conditions are equivalent.

(a) f is BP–measurable.

(b) f is essentially separable.

(c) f is continuous apart a 1st category set.

Proof. (a) implies (b) is Theorem 3.4. (a) implies (c). There exists a 1st
category set E ⊂ Y such that the restriction f |(Y rE) has a separable image.
As Y is Baire, Y rE is dense in Y . Let O be an open set in X. By [24, §11,V,
Theorem 2], if f−1(O) is BP–measurable in Y , then f−1(O) ∩ (Y r E) is so
relative to Y rE. This means that the restriction f |(Y rE) is BP–measurable
relative to Y r E. By the proof of the necessity part of [24, §32, II], we can
find a 1st category set F in Y r E such that f |(Y r (E ∪ F )) is continuous.
But F is then also 1st category in Y , i.e., (c) holds. Now, the sufficiency part
of the just invoked proof of Kuratowski gives (c) implies (a).

The Corollary above overlaps with the main theorem of [12] (our Y does
not have to be Čech complete).

Theorem 6.2. Suppose an additive map m : K → X is BP–measurable.
Then m is exhaustive.



Measure, Category and Convergent Series 425

Proof. By embedding X into a product of normed groups, we may assume
that X is metric. Suppose that m : K → X is not exhaustive. Then there
exists a disjoint sequence of an ∈ K such that m(an) 6→ 0. In view of Corol-
lary 6.1, there exists a dense Gδ subfamily A of K on which m is continuous.
As the set F ∪{an : n ∈ N} is countable, we may assume that A is translation
invariant with respect to its elements. Let b ∈ A and define b′n = b+ an + ban
and b′′n = b + ban = b r ban. Both b′n and b′′n are in A, b′n → b and b′′n → b
there. Hence m(b′n) −m(b′′n) → 0. On the other hand, b′′n and an are dis-
joint and b′n = b′′n + an. Consequently, m(b′n) −m(b′′n) = m(an) 6→ 0. A
contradiction.

The result sharpens Proposition 4.2. But from our point of view, it is in
a sense “too good”– it is at this point that the analogy between measure and
category breaks down.

Example 6.3. Denote by A the set of points a = (εn) ∈ K for which
limn

1
n

∑
εn = 1

2 , i.e., the set of normal numbers. By Borel’s normal number
theorem [4, Theorem 1.2], χ(A) = 1. Now switch the interpretation from K to
P (and so A will correspond to A). Identifying sets with their characteristic
functions, consider lin(A) and lin(P). Let B be a set of linearly independent
vectors contained in A which is maximal with respect to inclusion in A. As
easily checked, B is a Hamel basis of lin(A). Let H be a Hamel basis consisting
of vectors in P, containing B, and spanning lin(P). Define a linear functional
m on lin(P) such that m is zero on lin(A), and is unbounded on H. This is
possible because the co–dimension of the linear subspace lin(A) in lin(P) is
infinite and the coefficients of basic vectors in HrB can be chosen arbitrarily.
Consider the restriction of m to P, keeping the notation m. The additive map
m is measurable with respect to χ (since it is χ–almost everywhere continuous),
but it is unbounded, and so it is not exhaustive on P.

Remark 6.4. The technique used to prove Theorem 6.2 is a modification of an
argument due to Andersen and Christensen (see the beginning of the proof of
[1, Theorem 1]). Example 6.3 is a somewhat polished result of Constantinescu
[9, Proposition 16].
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