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Few Sewings of Certain Crumpled n-Cubes Yield Sn

Robert J. Daverman

Abstract. For n ≥ 5, we produce a crumpled n-cube C and homeo-
morphism h of BdC to itself such that, for any homeomorphism H :
BdC → BdC sufficiently close to h, the sewing space C∪H C is not a
manifold. This contrasts starkly with a classical three-dimensional re-
sult that a dense collection of sewings of an arbitrary pair of crumpled
3-cubes yields the 3-sphere. The key new ingredient is recent work by
V. Krushkal, providing a Cantor set in the d-sphere, d ≥ 4, that cannot
be slipped off itself with a small ambient adjustment.

The objects of interest here are crumpled n-cubes, namely, any union C of an
(n − 1)-sphere � in Sn and one of its complementary domains; the sphere � is
called the boundary of C, denoted BdC, and C − � is called the interior of C,
denoted IntC. Typically the sphere � is wildly embedded in Sn.

Roughly 50 years ago, Daverman and Eaton [13] proved that near any homeo-
morphism between the boundaries of any two crumpled 3-cubes C and D, there
is another homeomorphism H , often called a sewing, that yields S3 as its sewing
space (defined in the next section). Later, Eaton [16] characterized the sewings h

of C to D that yield S3 in terms of a mismatch property: BdC and BdD must
contain homotopy taming sets TC and TD , respectively, such that h(TC)∩TD = ∅.
For sewings of crumpled n-cubes, n > 3, the mismatch property is a sufficient but
not necessary condition for a sewing to yield Sn [12; 5]. It implies that a dense
set of sewings of any two crumpled 4-cubes yields S4: a result of Ancel and
McMillan [1] established that near any sewing of crumpled 4-cubes, there is an-
other sewing that satisfies the mismatch property. The same is true for sewings of
higher-dimensional crumpled cubes, provided that one of them has a homotopy
taming set that is a countable union of Cantor sets that are tame (i.e., standardly
embedded) relative to the crumpled cube boundary.

Krushkal [21] recently established the existence of a sticky Cantor set Z in
Sd , d ≥ 4, sticky in the sense that no homeomorphism of Sd to itself close to
the identity shifts Z off itself. He did this using what is called a spun Bing–
Cantor set K and producing a homeomorphism h : Sd → Sd such that, for any
homeomorphism H : Sd → Sd sufficiently close to h, H(K) ∩ K �= ∅. His work
is the basis for the main result of this paper, Theorem 5.3, which, for n ≥ 5,
exhibits a crumpled n-cube C and sewing h : BdC → BdC such that, for any
sewing H of C to itself sufficiently close to h, the sewing space C ∪H C is not a
manifold.
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Krushkal made use of spun Bing–Cantor sets. Needing more complicated gad-
gets, we work with ramified versions of those examples. Loosely put, the ramifi-
cation process leads to a Cantor set’s worth of pairwise disjoint Cantor sets, each
embedded like the source of the ramification process. We construct a crumpled
n-cube C in Sn, the boundary of which is locally flat modulo a Cantor set X that
is embedded in both BdC and Sn as a ramified, spun Bing–Cantor set. More-
over, the interior of C will house a loop L such that every contraction of L in Sn

will contain a spun Bing–Cantor set as a subset of the Cantor set X in BdC. The
sewing h : BdC → BdC of interest will be essentially the same as that used by
Krushkal for producing a sticky Cantor set. It will follow that no sewing of C to
itself close to h yields a manifold.

This paper relies heavily on results and techniques from [7] about defining
sequences for embedded Cantor sets and compatibility of Cantor sets embedded
in manifolds of differing dimensions. We will not reprove the results from [7],
but we will take shortcuts afforded by the very simple regularity of the defining
sequences at play in this work.

The paper is organized as follows. Section 1 contains basic definitions and no-
tation. Section 2 provides background material about spun Bing decompositions
and spun Bing–Cantor sets. Section 3 treats the ramified versions of those two
concepts. Section 4 sets forth the construction of the crumpled n-cube promised in
the abstract. Finally, Section 5 indicates why sewings close to a specific sewing—
namely, the homeomorphism of BdC to itself exploited by Krushkal—do not
yield Sn.

1. Definitions and Basic Properties

The wild set W of a crumpled n-cube C is the set of points at which BdC is not
locally collared in C. A subset T of BdC is a homotopy taming set for C if each
map f : I 2 → C can be approximated, arbitrarily closely, by a map f ′ such that
f ′(I 2) ⊂ T ∪ IntC. If T is one such homotopy taming set for C and W is the wild
set of C, then T ∩ W is another homotopy taming set for C.

A sewing h of crumpled n-cubes C and D is a homeomorphism between their
boundaries. The associated sewing space, denoted C ∪h D, is the one obtained
from the disjoint union of C and D after identification of each c ∈ BdC with
h(c) ∈ BdD. The overarching concern here is to understand which sewings h

yield (and which do not yield) Sn as its sewing space.
In addition, C is called a closed n-cell-complement if Sn − IntC is an n-cell.

This is very much a feature of the specific embedding, and it is known that every
crumpled n-cube can be embedded in Sn as a closed n-cell-complement [20; 22;
9; 10]. That result is not particularly useful for this effort since the crumpled cube
of significance arises as a closed n-cell-complement.

In passing, it is worth noting that, when C is embedded as a closed n-cell-
complement, its wild set is precisely the set of points at which BdC fails to be
locally flat in Sn.
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A metric space Z satisfies the disjoint disks property if any two maps ψ1,ψ2 :
I 2 → Z can be approximated, arbitrarily closely, by maps ψ ′

1,ψ
′
2 : I 2 → Z such

that ψ ′
1(I

2) ∩ ψ ′
2(I

2) = ∅.
For spaces X and Y with Y ⊂ X, we say that Y is 1-LCC embedded in X at a

point y ∈ Y if for each neighborhood N of y, there exists a smaller neighborhood
N ′ of y such that each loop in N ′ − Y is null homotopic in N − Y . The following
result is a fundamentally important tool.

Theorem 1.1. Let C be a crumpled n-cube, and U an open subset of BdC such
that BdC is 1-LCC embedded in C at each point of U . Then U is collared in C.

Treat C as a closed n-cell-complement in Sn. Then BdC is 1-LCC embedded in
Sn at each point of U . This implies that BdC is locally flatly embedded in Sn at
each point of U (by [8] or [6] when n ≥ 5, by [19, Theorem 9.3A] when n = 4,
and by [3] when n = 3). It follows easily that BdC is locally collared in C at each
point of U . That U itself has a collar follows from [4].

Finally, we note that all sewing spaces come about as decomposition spaces
associated with relatively simple cell-like decompositions of a sphere.

Proposition 1.2. For any sewing h : BdC → BdD of crumpled n-cubes C and
D, there is a cell-like map f : Sn → C ∪h D, all nondegenerate preimages of
which are the fiber arcs of an n-dimensional annulus A ⊂ Sn.

See [15, Proposition 7.10.2]. Although the stated result is said to apply in case
n ≥ 5, the same construction works equally well when n = 3 and n = 4 since all
crumpled n-cubes can be realized as closed n-cell-complements.

2. Spun Decompositions and Spun Bing–Cantor Sets

Spun decompositions are treated in Section 28 of [11]. In simple form, they in-
volve a decomposition G of the k-cell Bk each nondegenerate element of which
meets ∂Bk . All cases treated here will have that simple form, and k will always
equal 3. For n ≥ 3, there exists a surjective map ψ : Bk × Sn−k → Sn having as
its nondegenerate point inverses the sets b × Sn−k , b ∈ ∂Bk . The associated spun
decomposition Spn−k(G) of Sn has nondegenerate elements ψ(g × Sn−k), where
g denotes a nondegenerate element of G. Here Spn−k(G) is cell-like, provided
that G is cell-like and each nondegenerate g ∈ G meets ∂Bk in a cell-like set [11,
Lemma 28.1].

The spun decompositions that arise here are the spins of a famous example
due to Bing [2]. The basis, before any spinning, is the decomposition G of a
3-cell shown in Figure 9-8 of [11]. The (n-3)-spins are known to be shrinkable
decompositions of Sn. The shrinking can be done manually, like Bing himself
did [2] with the 0-spin of G. Lininger [23] first observed that higher-dimensional
spins of Bing are shrinkable. Edwards [18] also depicted how to do the shrinking
when n = 4. Neuzil [24] has a more general result implying that the 1-spin of
Bing is shrinkable. Corollary 28.9B of [11] attests to shrinkability when n > 4.
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The images of the nondegenerate elements after the shrinking are called spun
Bing–Cantor sets.

3. Geometric Defining Sequences for Decompositions and
Cantor Sets

Given a Cantor set X in Sn, we are often interested in defining sequences
that capture features of the embedding. Alternatively, sometimes we are inter-
ested in constructing Cantor sets in a sphere with special properties, and defin-
ing sequences often serve as an effective means. We say that a sequence S =
{M0,M1,M2, . . .} is a geometric defining sequence for X if each Mj is a finite
collection of pairwise disjoint, compact n-manifolds with boundary, the union of
which contains X, each M ∈ Mj meets X, each M ′ ∈ Mj+1 lies in the interior
of some M ∈ Mj , and dj → 0 as j → ∞, where dj denotes the diameter of the
largest component of Mj . In this work, M0 will always consist of one element, a
compact connected n-manifold with boundary.

There is a closely related notion of a defining sequence S = {M0,M1,

M2, . . .} for a decomposition of Sn. In this more general setting the Mj are as be-
fore, except there is no control on diameters of components as j → ∞. Let |Mj |
denote the union of the elements of Mj . The decomposition of Sn determined by
S consists of the components of Q = ⋂

j |Mj | and the singletons from Sn − Q.
A spun Bing–Cantor set is a Cantor set K ⊂ Sn equipped with a very special

geometric defining sequence S = {M0,M1,M2, . . .} in which each element M

in each Mj is homeomorphic to Sn−2 × B2, M contains exactly two elements
M1,M2 of Mj+1, and the pair (M,M1 ∪ M2) is homeomorphic to the (n − 3)-
spin of the pair (B3, T1 ∪ T2) shown in Figure 28-3 of [11]; here T1 and T2 are
the 3-cells that meet the left and right sides, respectively, of the cube appearing in
that figure in a pair of disks. We refer to a sequence S of this type as a standard
(geometric) defining sequence for K .

4. Ramified Spun Bing–Cantor Sets

We need more complicated Cantor sets than the spun Bing examples. Ramified
versions fill that need, generating a Cantor set’s worth of spun Bing examples.
We say that a geometric defining sequence S = {M0,M1,M2, . . .} is a standard
defining sequence for a ramified, spun Bing–Cantor set X ⊂ Sn if each M in each
Mj is homeomorphic to Sn−2 ×B2, M contains exactly two elements M1,M2 of
Mj+1, when j is even, the pair (M,M1 ∪ M2) is homeomorphic to the (n − 3)-
spin of the pair (B3, T1 ∪ T2), and when j is odd, M1 ∪ M2 is embedded in M ≈
Sn−2 × B2 just like Sn−2 × (B1 ∪ B2), where B1 and B2 are disjoint subdisks of
IntB2.

Instead of first spinning, then ramifying, as just described, we could produce
the same standard defining sequence structure by first ramifying in the 3-cell and
then spinning. We chose the former approach due to its closer alignment with the
methods of [7].
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The next result justifies speaking of a standard defining sequence for a rami-
fied, spun Bing–Cantor set rather than simply for a ramified, spun Bing decom-
position.

Proposition 4.1. Every ramified, spun Bing decomposition G (arising from a
standard geometric defining sequence) of Sn is shrinkable.

Proof. For n ≥ 5, it suffices to show that Sn/G has the disjoint disks property [17]
[11] [14]. To this end, consider maps ψ1,ψ2 : I 2 → Sn/G. Using approximate
lifting properties of the decomposition map π : Sn → Sn/G [11, Theorem 16.8],
we can focus on maps �1,�2 : I 2 → Sn, where π�e is close to ψe (e ∈ {1,2}).

Choose an integer m > 0 such that the diameter of each π(M), M ∈ M2m, is
small. Note that each such M contains precisely two elements M1,M2 ∈ M2m+1,
and there exist (nondisjoint) n-cells E1 and E2 in M containing M1 and M2,
respectively, in their interiors. (They can be obtained by spinning 3-cells in B3.)
Since the complement of any interior point of an n-cell retracts to its boundary, we
can modify �1 over each E1 lying in M ∈ M2m so that the new map � ′

1 satisfies

� ′
1(I

2) ∩ IntE1 = ∅,

� ′
1|�−1

1 (Sn − |M2m|) = �1|�−1
1 (Sn − |M2m|), and

� ′
1(�

−1
1 (|M2m|)) ⊂ |M2m|.

Modify �2 similarly so that the image of � ′
2 misses IntE2. Using general position

in the complement of the Ei , we can also achieve � ′
1(I

2) ∩ � ′
2(I

2) = ∅. As a
result, π� ′

1(I
2)∩π� ′

2(I
2) = ∅, confirming that the disjoint disks property holds.

For n = 3 and n = 4, the shrinking can be done manually. The idea is simply
to ramify the shrinking of the spun Bing decomposition in that dimension. That
is, in the n = 3 case, we measure shrinking progress by a collection of disks that
chop what can be treated as the initial stage of the standard defining sequence into
small pieces, as shown in Figure 9-8 of [11, p. 70]. The elements of the (spun)
defining sequence are rearranged in that initial stage so as to meet fewer and
fewer of these dividing disks, one fewer per each successive defining sequence
stage until all solid tori at some deep stage meet at most one of these dividers. All
that it takes is to add in parallel ramifications, doubling up the linked strings of
solid tori when proceeding from one stage to the next. A similar strategy works in
the n = 4 case, since four-dimensional spun Bing decompositions are shrinkable
[23; 18; 24]. �

Let S = {M0,M1,M2, . . .} be a standard defining sequence for a ramified spun
Bing–Cantor set X in Sn. A nonempty compact subset A of X is admissible (with
respect to S ) if, whenever A meets an element M of an odd-numbered stage of
S , then it meets all components M ′ of the next stage that are contained in M , and
whenever it meets an element M ′ of an even-numbered stage, then it meets at least
one of those M ′′ from the next stage that lie in M ′. Moreover, such a compact A

is a minimal admissible subset of K if, whenever it meets an element M ′ of an
even-numbered stage, then it intersects exactly one of those components from the
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next stage that lie in M ′. It should be clear that an admissible subset A is minimal
if and only if no smaller compact subset is admissible.

The reader is invited to check the following:

Lemma 4.2. Let S = {M0,M1,M2, . . .} be a standard defining sequence for a
ramified, spun Bing–Cantor set X in a sphere S. Let M be an element of M2m,
M1 and M2 the elements of M2m+1 contained in M , and Ne either of the two
elements of M2m+2 contained in Me, e ∈ {1,2}. Then the pair (M,N1 ∪ N2)

is homeomorphic to the pair determined by Stage 0 and Stage 1 of the defining
sequence for a spun Bing–Cantor set.

The following result is essentially a specialization of [7, Lemma 4.2].

Proposition 4.3. Suppose X is a ramified spun Bing–Cantor set in a sphere S,
S = {M0,M1, . . .} is a standard defining sequence for X, and f : I 2 → S is a
map such that f (∂I 2) ⊂ S − |M0| and f |∂I 2 is not null homotopic there. Then
f (I 2) contains an admissible subset of X.

Proposition 4.4. Suppose X and X′ are ramified spun Bing–Cantor sets in
Sn and ∂Bn, respectively, L is a loop in Sn − X, and λ : X′ → X is a home-
omorphism. Then there exists an embedding e : Bn → Sn such that e|X′ = λ,
e(Bn) ∩ L = ∅ and e(∂Bn) is locally flat modulo X = e(X′).

Proof. See [7, Theorem 2.2]. �

Proposition 4.5. Let S and S ′ denote standard defining sequences for ramified
spun Bing–Cantor sets X and X′. There exists a homeomorphism η : X → X′ that
mixes their admissible subsets, in the sense that for any two admissible subsets A

of X and A′ of X′, η(A) ∩ A′ �= ∅.

Proof. This is proved in greater generality as Lemma 3.1 of [7]. Because mixing
is so essential to this endeavor, we briefly describe a construction of η in what
follows.

For notational simplicity, we ignore X′ and S ′and describe a mixing homeo-
morphism η : X → X. Our choice of η depends on a labeling of the manifolds
listed in the various stages Mm of S . The 2m elements of Mm are labeled
as Mi(1),...,i(m), where i(j) ∈ {1,2}, subject to the constraint that the two ele-
ments of Mm+1 contained in Mi(1),...,i(m) ∈ Mm are labeled as Mi(1),...,i(m),1 and
Mi(1),...,i(m),2.

Points of X are uniquely determined by an infinite sequence of 1s and 2s,
where the point corresponding to i(1), . . . , i(m), . . . is the intersection of

Mi(1) ⊃ Mi(1),i(2) ⊃ · · · ⊃ Mi(1),i(2),...,i(m) ⊃ · · · .

The mixing homeomorphism η is an infinitely iterated transpose, sending the
point corresponding to i(1), i(2), . . . , i(2k − 1), i(2k), . . . to the one correspond-
ing to i(2), i(1), . . . , i(2k), i(2k − 1), . . .. �
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Since the elements of Mm are all thickened codimension 2 spheres, η can be
obtained as a limit of homeomorphisms η2m : |M2m| → |M2m|.
Proposition 4.6. Let X and X′ be ramified spun Bing–Cantor sets in spheres S

and S′. There exists a mixing homeomorphism η : X → X′ such that, for every
minimal admissible subset A of X, η(A) is a spun Bing–Cantor set in S′.

Proof. As before, we suppress X′ and S′ and seek a spun Bing–Cantor set in S.
Look at Stages 0, 1, and 2 of the defining sequence S for X. The initial

Sn−2 × B2 at Stage 0 contains two elements M1 and M2 from Stage 1, and in
turn each Me contains Me,1,Me,2 (e = 1,2) from the Stage 2 ramification pro-
cess. Given a minimal admissible set A of X, we then have a unique i(1) ∈ {1,2}
such that A meets Mi(1) at Stage 1. By the definition of admissibility, A meets
both Mi(1),1 and Mi(!),2. The usual mixing homeomorphism η for this label-
ing associates Mi(1),1 with M1,i(1) and associates Mi(1),2 with M2,i(1). Observe
(Lemma 4.2) that M1,i(1) and M2,i(1) lie in Sn−2 × B2 just like the first stage N1

of a spun Bing decomposition (unramified).
Look next at Stages 3 and 4 of S . The element Mi(1),1 from the second stage

contains two elements Mi(1),1,1 and Mi(1),1,2 from the third stage, and, by admis-
sibility, there exists i(3) ∈ {1,2} such that A meets Mi(1),1,i(3). Again by admis-
sibility, A meets each of the elements Mi(1),1,i(3),1 and Mi(1),1,i(3),2 from Stage 4
that are contained in Mi(1),1,i(3). Similarly, A meets some Mi(1),2,i′(3) ⊂ Mi(1),2

from the third stage and meets both elements Mi(1),2,i′(3),1 and Mi(1),2,i′(3),2 from
the fourth stage that are contained in Mi(1),1,i′(3). The mixing homeomorphism η

associates these four elements from the fourth stage with

N2 = {M1,i(1),1,i(3),M1,i(1),2,i(3),M2,i(1),1,i′(3),M2,i(1),2,i′(3)}.
Observe (Lemma 4.2) that {M0,N1,N2} are arranged just like Stages 0, 1, 2 of
a spun Bing decomposition.

In the same manner, we can spell out the elements from the first 2m stages
of S that meet A and see that the mixing homeomorphism associates them with
elements arranged like the first m stages of a spun Bing decomposition. �

Corollary 4.7. Let X and X′ be ramified spun Bing–Cantor sets in spheres S

and S′. Then there exists a mixing homeomorphism η : X → X′ such that, for any
admissible subset A of X, η(A) contains a spun Bing–Cantor set in X′.

The culmination of this section is the following:

Example 4.1. A closed n-cell-complement C ⊂ Sn whose wild set W lies in
BdC as a ramified spun Bing–Cantor set, plus a loop L in IntC such that the
image of every contraction of L in Sn contains a spun Bing–Cantor set in W .
The construction starts with ramified spun Bing–Cantor sets X and X′ in Sn

and ∂Bn, respectively. Let η : X → X′ be the mixing homeomorphism promised
by Corollary 4.7. Name a loop L ⊂ Sn linking the initial sage of the defining
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sequence for X. Application of Proposition 4.4 with λ = η−1 yields an em-
bedding e : Bn → Sn − L for which e|X′ = η−1 and e(∂Bn) is locally flat
modulo X = e(X′). Here C = Sn − e(IntB). Proposition 4.5 assures that every
contraction of L in Sn contains an admissible subset of X, and Corollary 4.7
indicates that every such contraction of L contains a spun Bing–Cantor set in
W = e(X′) ⊂ e(∂Bn) = BdC.

Remark. The wild set W of C can be embedded in Sn as a ramified spun Bing–
Cantor set. However, this is a convenience, not a necessity. What is most relevant
is for the Cantor sets in BdC and in Sn to have compatible (i.e., each element at
each stage of the defining sequence contains exactly two elements from the next
stage) ramified defining sequences and for the one in BdC to be of ramified spun
Bing type.

5. Sewings That Do Not Yield Sn

Lemma 5.1. Suppose C ⊂ Sn is a closed n-cell complement, D is a crumpled n-
cube, θ : BdC → BdD is a sewing, and j : C → C∪θ D is the natural embedding
of C onto its image in the sewing space. Then there exists a map μ : C ∪θ D → Sn

such that μ|j (C) = j−1 and μ is 1–1 over μj(C) = C ⊂ Sn.

Proof. Set μ equal to j−1 on j (C). Let B denote the n-cell Sn − IntC. Extend
μ|j (C) over the copy of D in C ∪θ D so as to send D to B , and then modify
slightly so as to send IntD to IntB . �

Krushkal’s methods actually prove the following theorem, which is of the form
we shall use.

Theorem 5.2. Let M = Sk−2 × B2 be an unknotted thickened (k − 2)-sphere in
Sk , k ≥ 4, X a ramified spun Bing–Cantor set in IntM , and K1 and K2 any two
spun Bing–Cantor sets in X, where each has a standard defining sequence with
M as its initial stage. Then there exists a homeomorphism h : Sk → Sk such that,
for any homeomorphism H : Sk → Sk sufficiently close to h, H(K1) ∩ K2 �= ∅.

Theorem 5.3. For n ≥ 5, there exist a crumpled n-cube C and a sewing h :
BdC → BdC such that no sewing H sufficiently close to h yields Sn.

Proof. For notational clarity, we let each of C1 and C2 be copies of the crumpled
n-cube described in Example 4.1. Let M ≈ Sn−3 × B2 be the initial stage of the
defining sequence S for the wild set W of C relative to BdC; that is, S is a
defining sequence in BdC for the ramified, spun Bing–Cantor set W .

Let h : BdC → BdC be the homeomorphism described by Krushkal [21].
(Essentially, h repositions the core (n − 3)-sphere � for Stage 0 of S in BdC

so that h(�) meets � transversely in an (n − 5)-sphere.) The claim is that, if
H : BdC → BdC is another homeomorphism close to h, then the sewing space
C1 ∪H C2 fails to satisfy the disjoint disks property and, consequently, cannot be
a manifold.
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Each of C1 and C2 in the sewing space C1 ∪H C2 contains a copy of the special
loop L. Let μ : C1 ∪H C2 → Sn denote the map promised by Lemma 5.1 for C1.
By the construction of C, for any singular disk f1(I

2) in C1 ∪H C2 bounded by
the copy of L in C1 ⊂ C1 ∪H C2, μf1(I

2) contains a spun Bin–Cantor set K in
the wild set W ⊂ BdC. Lemma 5.1 implies that f1(I

2) itself actually contains
such a Cantor set K1 in the wild set W1 ⊂ BdC1 ⊂ C1 ∪H C2. In that sewing
space, H equates K1 ⊂ BdC1 with H(K1) ⊂ BdC2. For the same reasons, any
singular disk f2(I

2) in C1 ∪H C2 bounded by the copy of L in C2 contains a
spun Bing–Cantor set K2 in the wild set W2 of C2 ⊂ C1 ∪H C2. By Theorem 5.2,
H(K1) and K2 must intersect. Hence, C1 ∪H C2 does not have the disjoint disks
property. �

With techniques like these, we can produce a pair of crumpled n-cubes for which
the sewings that yield Sn are contained in a closed, nowhere dense subset of the
space of all sewings, under the usual sup-norm metric. However, we have no an-
swer for the following:

Question. Does there exist a pair of crumpled n-cubes C and D such that no
sewing h : BdC → BdD yields Sn?
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