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The Tangent Space of the Punctual Hilbert Scheme

Dori Bejleri & David Stapleton

Introduction

In this paper, we study the Zariski tangent space of the punctual Hilbert scheme
parameterizing subschemes of a smooth surface that are supported at a single
point. We give a lower bound on the dimension of the tangent space in general
and show that the bound is sharp for subschemes of the affine plane cut out by
monomials.

Let S be a smooth connected complex surface, and denote by S[n] the Hilbert
scheme parameterizing length n subschemes of S. Fogarty [Fog68] showed that
S[n] is smooth and irreducible. We write S(n) for the symmetric power of S. The
Hilbert–Chow morphism

h : S[n] → S(n)

that sends a length n subscheme to its cycle is invaluable in the study of S[n]. We
denote by Pn the nth punctual Hilbert scheme, which is the reduced fiber of h over
a multiplicity n cycle in S(n). Thus Pn parameterizes length n subschemes sup-
ported at one point. Note that Pn is the same for any smooth surface, so throughout
we assume that S ∼= C

2.
The Hilbert–Chow morphism and the punctual Hilbert scheme have attracted

a great deal of attention. Beauville [Bea83] has shown that if S is a K3 sur-
face, then S[n] is a holomorphic symplectic variety (one of few known exam-
ples). Mukai [Muk84] gave a description of the symplectic form in terms of the
pairing on Ext1(I, I ). For general surfaces, h gives a crepant resolution. Bri-
ançon [Bri77] has shown that Pn is irreducible, and Haiman [Hai98] has shown
that Pn is the scheme-theoretic fiber of h and that Pn is a local complete in-
tersection scheme. Iarrobino [Iar77] and Granger [Gra83] studied a stratification
of Pn into loci parameterizing subschemes having some fixed Hilbert–Samuel
function. The Betti numbers of the punctual Hilbert scheme were computed by
Ellingsrud and Stromme [ES87] by studying the action of (C∗)2 on (C2)[n].
Later Yaméogo [Yam94] studied the closure relations between the Hilbert-Samuel
strata. Iarrobino [Iar72] showed that the Hilbert scheme of length n subschemes
of Ak is reducible when k ≥ 3 and n is large, and Erman [Erm12] showed that
the (graded) Hilbert–Samuel strata can acquire arbitrary singularities. Huibregtse
[Hui79; Hui82] studied questions of irreducibility and smoothness of a variety re-
lated to Pn that consists of subschemes of S[n] whose sum in the Albanese variety
of S is constant.
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There is a natural tautological vector bundle (TS)[n] on S[n] whose fiber at
a point corresponding to the length n subscheme ξ ⊂ S is the 2n-dimensional
vector space H 0(S,TS |ξ ). In [Sta16] the second author showed that there is a
natural injection of sheaves

αn : (TS)[n] → TS[n]

that at a point [ξ ] ∈ S[n] comes from the normal sequence of ξ ⊂ S, that is,

αn|[ξ ] : H 0(S,TS |ξ ) �→ Hom(Iξ ,Oξ ).

Moreover, (TS)[n] is the log-tangent sheaf of the exceptional divisor of h. Thus it
is natural to expect that the degeneracy loci of αn are connected to the singularities
of the exceptional divisor of h. To make this precise, we relate the rank of αn to
the dimension of the Zariski tangent space of the punctual Hilbert scheme.

Theorem A. If ξ ⊂ C2 is a length n subscheme supported at the origin, then

dim(T[ξ ]Pn) ≥ 2n − rank(αn|[ξ ]) = corank(αn|[ξ ]).

Moreover, equality holds when the ideal of ξ is generated by monomials.

When ξ is a monomial subscheme, the ideal of ξ (written Iξ ⊂ C[x, y]) has an
associated Young diagram μξ ⊂ N

2 defined as

μξ := {(i, j) ∈N
2|xiyj /∈ Iξ }.

For example, when Iξ = (y4, x2y2, x3y, x7), the length of ξ is 14, and we asso-
ciate to ξ the following Young diagram:

An elementary statistic associated with μξ is given by tracing the top perimeter
of the Young diagram from the top left to the bottom right and keeping track of
the horizontal and vertical steps. For example, in the figure, we have a sequence
of horizontal steps �h = (2,1,4) and vertical steps �v = (2,1,1).
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Theorem B. If ξ is defined by monomials and μξ is the corresponding Young
diagram, then

rank(αn|[ξ ]) =
(

maximum of horizontal
steps of μξ

)
+

(
maximum of vertical

steps of μξ

)
.

In the pictured example, we have rank(αn|[ξ ]) = 4 + 2 = 6, so dimT[ξ ]Pn = 28 −
6 = 22.

To prove the inequality in Theorem A, we remark that the cokernel of the
derivative

dh : h∗�(C2)(n) → �(C2)[n]

restricted to [ξ ] ∈ Pn is the cotangent space of Pn. This follows from Haiman’s
result that Pn is the scheme-theoretic fiber of h. Moreover, (C2)[n] is equipped
with a holomorphic symplectic form [Nak99, §1.4], which gives an isomorphism
ω : T(C2)[n] ∼= �(C2)[n] . So to prove the inequality, it suffices to show that there is a
map

i : h∗�(C2)(n) → (TC2)
[n]

such that dh = ω ◦ αn ◦ i. In fact, it suffices to define i away from codimension 2,
and away from codimension 2, the map h is (étale locally) a product of the reso-
lution of an A1 singularity with a smooth variety. So the inequality follows after
a computation in the case of an A1 singularity, using the interpretation of (TC2)[n]
as the log-tangent sheaf of the exceptional divisor of h.

To carry out the computation in Theorem B, we use the description of αn|[ξ ]
coming from the normal sequence of ξ ⊂ C

2 and carry out the calculation on C
2.

To show that equality holds in Theorem A for subschemes of C2 cut out by
monomials, our main computational tool is the affine chart that Haiman intro-
duced in [Hai98] for (C2)[n] and the description Haiman gave of the cotangent
space at monomial subschemes. Using these tools, we explicitly compute the rank
of dh at points in (C2)[n] corresponding to monomial subschemes and show that,
for ξ ⊂ C

2 cut out by monomials,

rank(dh|[ξ ]) =
(

maximum of horizontal
steps of μξ

)
+

(
maximum of vertical

steps of μξ

)
.

Associating this rank to a partition μ gives a new statistic on the set of partitions.
We expect that this is an interesting combinatorial statistic, adding to the list of ge-
ometrically meaningful statistics constructed using Hilbert schemes (e.g. [Hai98;
LW09]).

We would like to thank our respective advisors Dan Abramovich and Robert
Lazarsfeld for their advice and encouragement throughout this project. We are
also grateful for conversations with Shamil Asgarli, Kenneth Ascher, Aaron
Bertram, Mark de Cataldo, Johan de Jong, Lawrence Ein, Eugene Gorsky, Tony
Iarrobino, Daniel Litt, Diane Maclagan, Mark McLean, Luca Migliorini, Mircea
Mustaţǎ, Hiraku Nakajima, John Ottem, Giulia Saccà, David Speyer, and Zili
Zhang. We would also like to express our gratitude to the referees for their helpful
comments and for pointing out relevant results from the literature.
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1. The Proof of the Inequality in Theorem A

In this section, we prove the inequality in Theorem A. We start by recalling the
main properties of the Hilbert scheme of points that we will need. Let Zn be the
universal family of the Hilbert scheme of points on S. Then Zn has two natural
projections:

S × S[n] ⊃ Zn S.

S[n]

p1

p2

If E is a vector bundle on S, then the tautological bundle associated with E is
E [n] := p2∗(p∗

1E). The map αn is obtained by looking at the normal sequence of
the inclusion Zn ⊂ S × S[n],

0 → TZn
→ TS×S[n] |Zn

∼= p∗
1(TS) ⊕ p∗

2(TS[n])
βn−→Hom(IZn

/I 2
Zn

,OZn
).

Applyingp2∗(−), we see thatp∗
1(TS)pushes forward to (TS)[n] and Hom(IZn

/I 2
Zn

,

OZn
) pushes forward to TS[n] . Then

αn := p2∗(βn|p∗
1(TS)).

The symmetric power (C2)(n) is the quotient of (C2)n by the permutation ac-
tion of the symmetric group on n elements: Sn. The Hilbert–Chow morphism

h : (C2)[n] → (C2)(n)

maps a point corresponding to a subscheme [ξ ] to the n-cycle:

h([ξ ]) =
∑

p∈Supp(ξ)

lengthC(Oξ,p) · [p].

The exceptional divisor of h, denoted by Bn, consists of nonreduced subschemes.

Remark 1. Let f : X → Y be a map of schemes, p ∈ Y a point, and f −1(p)

the scheme-theoretic fiber over p. If q ∈ f −1(p) is a point in this fiber, then the
Zariski tangent space of f −1(p) at q is

Tqf −1(p) ∼= Coker(df |q : f ∗�Y |q → �X|q)∨.

Haiman proved [Hai98, Prop. 2.10] that the variety Pn is the scheme-theoretic
fiber of h. Therefore, to compute the tangent space of Pn, it suffices to compute
the corank of dh. In particular, to prove the inequality in Theorem A, it suffices
to prove

corank(dh|[ξ ]) ≥ corank(αn|[ξ ]).
Recall that there is a holomorphic symplectic form ωn ∈ H 0((C2)[n],

∧2�(C2)[n]) on (C2)[n] [Nak99, §1.4] that gives an isomorphism ωn : T(C2)[n] ∼=
�(C2)[n] . To bound the corank of dh, it suffices to prove that the map dh factors
through ωn ◦ αn:
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(TC2)[n]

h∗�(C2)(n) �(C2)[n] .

∃
ωn ◦ αn

dh

Since ωn ◦ αn is injective, is suffices to show that ωn ◦ αn(TC2)[n] contains the
image of dh.

The following lemma proves that we can check im(dh) ⊂ ωn ◦ αn(TC2)[n] étale
locally away from a subvariety of codimension 2.

Lemma 2. Suppose that X is a smooth variety and F1,F2 ⊂ E are subsheaves of
a torsion-free sheaf on X. If F2 is reflexive, then the following are equivalent:

(1) F1 ⊂ F2 as subsheaves of E .
(2) There is an open subset V ⊂ X with codimension 2 complement such that

F1|V ⊂ F2|V as subsheaves of E |V .
(3) There is an étale neighborhood i : U → X such that the complement of V :=

i(U) has codimension 2 and i∗F1 ⊂ i∗F2 as subsheaves of i∗E .

Proof. It is clear that (1) implies (2). Now we show the reverse. We remark that
F1 is torsion-free, so it includes into its reflexive hull F1 ↪→ F∨∨

1 . The inclusion
F1|V ⊂ F2|V as submodules of E extends to a map F1|∨∨

V → F2|V by taking
double duals. This map is injective since it is injective at the generic point. Now
an inclusion of reflexive sheaves on a smooth variety outside of a codimension
2 set uniquely extends to an inclusion on the whole variety. This follows from
the fact that reflexive sheaves are normal (see [OSS11, p. 76]). Thus we have an
inclusion F∨∨

1 ⊂ F2 and consequently F1 ⊂ F∨∨
1 ⊂ F2.

Flatness of i proves that (2) implies (3). For the reverse, faithful flatness of i

mapping onto V gives an inclusion F1|V ⊂ F2|V , and V is an open set whose
complement has codimension 2. �

Let S2 = 〈(12)〉 ≤ Sn be the subgroup that exchanges 1 and 2. Denote by � ⊂
(C2)n the big diagonal fixed by S2. The quotient map σ : (C2)n → (C2)(n) factors
as

(C2)n

(C2)n/S2 (C2)(n).

σ
τ

j

After appropriate change of coordinates, (C2)n/S2 ∼= C
2/(±1) × (C2)n−1,

and the symplectic form on the smooth locus of (C2)(n) pulls back and extends to
the product symplectic form on the smooth locus of C2/(±1) × (C2)n−1. Recall
that C2/(±1) × (C2)n−1 admits a symplectic resolution

h0 × id(C2)n−1 : T ∗
P

1 × (C2)n−1 → C
2/(±1) × (C2)n−1
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by blowing up τ(�). Here T ∗
P

1 denotes the cotangent bundle of P
1 with the

standard symplectic structure ωT ∗P1 , and

h0 : T ∗
P

1 → C
2/(±1)

is the minimal resolution of the A1 surface singularity with exceptional divisor E.
Let V denote the unramified locus of j ; it is the complement of the image of

all big diagonals except �. Important to us is that the image of V in (C2)(n) con-
tains all cycles in (C2)(n) where at most two points come together. The following
lemma says that if i : U → (C2)[n] is the base change of the étale neighborhood
V along h, then U satisfies the conditions of Lemma 2(3), so that we can check
the inclusion im(dh) ⊂ ωn ◦ αn((TC2)[n]) by pulling back to U .

Lemma 3. The fiber product

U V

(C2)[n] (C2)(n)

h′

i j

h

is such that i is étale and the complement of i(U) has codimension 2. Moreover,
U ⊂ T ∗

P
1 × (C2)n−1 is such that h0 × id(C2)n−1 |U = h′, and the restriction of the

symplectic form from T ∗
P

1 × (C2)n−1 equals i∗(ωn).

Proof. This is essentially the proof that (C2)[n] admits a holomorphic symplectic
form, and we refer the interested reader to [Bea83, p. 766] or [Nak99, §1.4]. �

In [Sta16, Thm. B] the second author proved that the map αn induces an iso-
morphism of (TC2)[n] with the subsheaf DerC(− logBn), which consists of vector
fields tangent to Bn. To set up the proof of the inequality in Theorem A, we
consider the symplectic resolution of the A1-singularity and prove that the log-
tangent sheaf DerC(− logE) is isomorphic to the image dh0 as subsheaves of
�T ∗P1 .

Lemma 4. The symplectic isomorphism ωT ∗P1 : TT ∗P1
∼=−→ �T ∗P1 restricts to an

isomorphism of subsheaves

ωT ∗P1 |DerC(− logE) : DerC(− logE) → dh0(h
∗
0�C2/(±1)).

Proof. We have two short exact sequences, and we want to fill in the dashed
arrows:

TT ∗P1DerC(− logE) OE(E)

�T ∗P1 �Edh0(h
∗
0�C2/(±1))

0 0

0 0.

ωT ∗P1
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If v ∈ DerC(− logE)(U) is any logarithmic vector field, then v is tangent to E, so
for any point p ∈ E with v|p �= 0, we know that v|p generates the tangent space
of E. On the other hand, the pairing of the 1-form ωT ∗P1(v)|E with v|p vanishes
by skew symmetry of ωT ∗P1 . So the restricted 1-form ωT ∗P1(v)|E vanishes iden-
tically. Thus we can fill in the dashed arrows to obtain a commuting diagram with
an injection on the left and a surjection on the right. But the surjection on the
right is an isomorphism since these are isomorphic line bundles on E, and thus
ωT ∗P1 |DerC(− logE) is also an isomorphism. �

Proof of inequality in Theorem A. According to Remark 1, it suffices to show
that, as subsheaves of �(C2)[n] , we have the containment dh(h∗�(C2)(n) ) ⊂ ωn ◦
αn((TC2)[n]). If i : U → (C2)[n] is the étale open set from Lemma 3, then by
Lemma 2 it suffices to show that i∗(dh(h∗�(C2)(n) )) ⊂ i∗(ωn ◦ αn((TC2)[n])) as
subsheaves of i∗�(C2)[n] = �U .

Let E′ denote the exceptional divisor of h′. By Lemma 3 we have a fiber square
with i étale and i−1(Bn) = E′. It follows that

i∗(dh(h∗�(C2)(n) )) = dh′(h′ ∗�V ), and i∗(αn((TC2)
[n])) = DerC(− logE′).

For the second equality, we use the interpretation of αn((TC2)[n]) as the log-
tangent sheaf of Bn [Sta16, Thm. B]. On the one hand, the exceptional divisor
E′ = U ∩ (E × (C2)n−1) is locally a product, so the log-tangent sheaf of E′ splits
as a direct sum:

DerC(− logE′) = (p∗DerC(− logE) ⊕ q∗T(C2)n−1)|U ,

where p and q denote projection of T ∗
P

1 × (C2)n−1 onto T ∗
P

1 and (C2)n−1, re-
spectively. Moreover, h′ = (h0 × id(C2)n−1)|U , so the subsheaf dh′(h′ ∗�V ) splits
as a direct sum:

dh′(h′ ∗�V )

= (p∗dh0(h
∗
0�C2/(±1)) ⊕ q∗�(C2)n−1)|U ⊂ (p∗�T ∗P1 ⊕ q∗�(C2)n−1)|U

= �U.

Finally by Lemma 3, i∗ωn is the same as the restriction of the product sym-
plectic form on T ∗

P
1 × (C2)n−1. Therefore it suffices to check that the symplec-

tic form on T ∗
P

1 × (C2)n−1 identifies p∗dh0(h
∗
0�C2/(±1)) ⊕ q∗�(C2)n−1 with

p∗DerC(− logE) ⊕ q∗T(C2)n−1 . Since i∗ωn is a product symplectic form, it re-
spects this direct sum decomposition. The second factors are clearly identified,
and the first factors are identified by Lemma 4. �

Remark 5. This proof actually shows that there is an isomorphism

h∗(�(C2)(n) )
∨∨ ∼= (TC2)

[n],

that is, (TC2)[n] is the reflexive hull of h∗(�(C2)(n) ).
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Figure 1 The Young diagram associated with our example ξ ⊂C2

Figure 2 In our example ξ , we have �h = (1,1,3) and �v = (2,1,1)

2. Computing the Rank of αn at Monomial Subschemes

In this section, we show how to compute the rank of αn at monomial sub-
schemes, proving Theorem B. During the proof, we exhibit the computation on
an example subscheme ξ ⊂ C

2 with Iξ = (y4, xy2, x2y, x5). Throughout we let
C[ξ ] := C[x, y]/Iξ .

Proof of Theorem B. Let ξ ⊂ C
2 be a length n subscheme whose ideal Iξ is de-

fined by monomials. As in the Introduction, we associate with ξ the Young dia-
gram (see Figure 1) μ = μξ ⊂ N

2 defined as

μ := {(i, j) ∈ N
2|xiyj /∈ Iξ }.

We associate with μ the elementary statistic given by tracing the top perimeter of
μ from the top left to the bottom right and recording the horizontal steps �h and
the vertical steps �v (see Figure 2).

Our aim is to compute rank(αn|[ξ ]). There are natural isomorphisms
(TC2)[n]|[ξ ] ∼= H 0(TC2 |ξ ) ∼= C[ξ ] δ

δx
⊕ C[ξ ] δ

δy
and T(C2)[n] |[ξ ] ∼= Hom(Iξ ,C[ξ ]).

Moreover, the map αn|[ξ ] is the map in the normal sequence associated with
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Figure 3 A schematic of δ
δy up to scaling

Figure 4 A schematic of y δ
δx

up to scaling

ξ ⊂ C
2 that maps any restricted derivation δ ∈ TC2 to a homomorphism by

αn|[ξ ] : C[ξ ] δ

δx
⊕C[ξ ] δ

δy
→ Hom(Iξ ,C[ξ ]), δ �→

(
Iξ

αn|[ξ ](δ)−−−−→ C[ξ ]
f �→ δ(f )|ξ

)
.

Since Iξ is generated by monomials, we can decompose Iξ = ⊕
N2\μ C · xiyj

as a C-vector space. Moreover, the ring of functions on ξ has a monomial C-
vector space basis C[ξ ] = ⊕

μ C ·xiyj . Observe that, for any monomial derivation

xiyj δ
δx

or xiyj δ
δy

, the associated homomorphism in Hom(Iξ ,C[ξ ]) maps our
basis of Iξ to our basis of C[ξ ] up to possible scaling. This makes it possible to
understand these homomorphisms combinatorially. For example, δ

δy
acts (up to

scaling) by decreasing the power of y by 1, which on N
2 is a shift down operator

annihilating any (i, j) of the form (i,0) (see Figure 3). The derivation y δ
δx

acts
by shifting left by 1 and shifting up by 1 (see Figure 4).
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More importantly, all monomials are eigenvectors for x δ
δx

and y δ
δy

. Therefore,

the homomorphisms associated to x δ
δx

and y δ
δy

are 0 in Hom(Iξ ,C[ξ ]), and any

multiple xi+1yj δ
δx

or xiyj+1 δ
δy

for i, j > 0 is 0 as a homomorphism Iξ → C[ξ ].
So the only possible nonzero homomorphisms coming from monomial derivations
are of the form yj δ

δx
or xi δ

δy
.

Finally, we must determine which powers yj δ
δx

and xi δ
δy

give rise to nonzero

homomorphisms. The derivation yj δ
δx

acts on N
2 by shifting to the left 1 and up j .

This implies that when j ≥ max(�v), yj δ
δx

maps all xiyj for (i, j) ∈N
2 \ μ (the

ideal) to other points in N
2 \ μ (back into the ideal). Thus the associated ho-

momorphism in Hom(Iξ ,C[ξ ]) is 0. Likewise, if i ≥ max(�h), then the deriva-
tion xi δ

δy
is in the kernel of αn|[ξ ]. Lastly, it is clear that distinct monomial

homomorphisms yj δ
δx

for 0 ≤ j < max(�v) and xi δ
δy

for 0 ≤ i < max(�h)

give rise to linearly independent homomorphisms in Hom(Iξ ,C[ξ ]), proving that
rank(αn|[ξ ]) = max(�h) + max(�v). �

3. Computing the Dimension of Tangent Spaces at Monomial
Subscheme of C2

In this section, we prove equality in Theorem A when ξ ⊂ C
2 is cut out by mono-

mials. By Remark 1 and Theorem B it suffices to show the following:

Proposition 6. If ξ ⊂ C
2 is a monomial subscheme, then

rank(dh|[ξ ]) =
(

maximum of horizontal
steps of μξ

)
+

(
maximum of vertical

steps of μξ

)
.

Our main computational tool is Haiman’s affine charts centered at [ξ ]. We review
without proof the properties of the Haiman chart that we will need and refer the
interested reader to [Hai98, §2]. If μ = μξ ⊂ N

2 is the Young diagram associ-
ated with a monomial subscheme ξ ⊂ C

2, then we associate with μ the set of
monomials

Bμ := {xiyj |(i, j) ∈ μ}.
Clearly, the set Bμ forms an (unordered) C-basis for C[ξ ] := C[x, y]/Iξ . More-
over, for all [χ] ∈ (C2)[n] sufficiently close to [ξ ], the monomials in Bμ give a
C-basis for C[χ].
Definition 7. There is an open set Uμ of these [χ] ∈ (C2)[n], which we call the
Haiman chart centered at ξ , that is,

Uμ :=
{
[χ] ∈ (C2)[n]

∣∣∣∣C[χ] is spanned as a C-vector
space by monomials in Bμ

}
.

In fact, Uμ is affine [Hai98, Prop. 2.2], and its ring of functions C[Uμ] is gen-
erated by functions denoted by c

r,s
i,j (with (r, s) and (i, j) ∈ N

2). The value of
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Figure 5 In m[ξ ]/m2[ξ ], we have c22
02 �= c31

11 although the arrows have
the same slope

c
r,s
i,j ([χ]) at [χ] ∈ (C2)[n] is defined by the relation

xrys =
∑

(i,j)∈μ

c
r,s
i,j ([χ])xiyj mod Iχ .

As suggested in [Hai98, p. 210], it is convenient to represent c
r,s
i,j by an arrow in

N
2 that points from (r, s) ∈N

2 \ μ to (i, j) ∈ μ.
Let m[ξ ] ⊂ C[Uμ] denote the maximal ideal of the monomial subscheme

[ξ ] ∈ Uμ. The cotangent space m[ξ ]/m2[ξ ] is generated by classes of functions

c
r,s
i,j corresponding to arrows with heads in μ and tails in N

2 \μ. We now state the

key Haiman relations for these arrows modulo m2[ξ ]:
HR1 (see [Hai98, eq. 2.18]). Translating an arrow horizontally or vertically does

not change the class it represents modulo m2[ξ ], provided that the head re-
mains in μ and the tail remains outside of μ. Moreover, two nonzero arrows
represent the same class modulo m2[ξ ] if and only if one can be taken to the
other by a series of such translations.

HR2 (see [Hai98, eq. 2.18]). An arrow represents 0 modulo m2[ξ ] if and only if
it can be translated so that its head crosses the x-axis or y-axis and the tail
remains in N

2 \ μ.
HR3 (see [Hai98, p. 211]). In particular, any strictly southwest pointing arrow

vanishes modulo m2[ξ ].
Moreover, Haiman proved that the set of equivalence classes of nonvanishing

arrows under the Haiman relations form a basis for the cotangent space. (see Fig-
ures 5 and 6 for examples of these relations).

Let R = C[x1, . . . , xn, y1, . . . , yn]Sn be the coordinate ring of (C2)(n) =
(C2)n/Sn. This ring is generated by the polarized power sums [Wey97]:

pr,s =
n∑

i=1

xr
i y

s
i .
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Figure 6 We have the Haiman relations c12
00 = c32

20 = c41
3,−1 = 0 in

m[ξ ]/m2[ξ ], verifying HR3

Fixing a monomial xrys ∈ C[x, y], we can define a function Tr(xrys) on (C2)[n]
whose value at [χ] ∈ (C2)[n] is the trace Tr(xrys : C[χ]) of the endomorphism
xrys thought of as a C-linear operator on C[χ]. Haiman [Hai98, p. 208] shows
that

Tr(xrys) = h∗(pr,s).

Thus, at a point [ξ ] ∈ (C2)[n], the image of the map dh|[ξ ] between cotangent
sheaves is spanned by the classes of Tr(xrys) mod m2[ξ ].

Proof of Proposition 6. Let Uμ be the Haiman chart centered at ξ . We need to
compute the derivative of Tr(xrys) in m[ξ ]/m2[ξ ]. For all [χ] ∈ Uμ, we can write
xrys ∈ End(C[χ]) as a matrix using the basis Bμ. Thus we compute the trace

Tr(xrys) =
∑

(h,k)∈μ

c
r+h,s+k
h,k

as an element of C[Uμ]. By the discussion proceeding the proof, the image of
dh|[ξ ] is generated by

d(h∗(pr,s)) = d Tr(xrys) ≡
∑

(h,k)∈μ

c
r+h,s+k
h,k mod m2[ξ ].

Using the description of the cotangent space as linear combinations of equiva-
lence classes of arrows on the Young diagram μ, d(h∗(pr,s)) is a sum of arrows
of slope s/r . Whenever both s and r are nonzero, these arrows are pointing south-
west, and so by (HR3) they vanish modulo m2[ξ ].

When s = 0, d(h∗(pr,0)) is a sum of horizontal arrows of length r . If r >

max(�h), then by (HR1) we can slide each horizontal arrow up and to the right
until the head of the arrow leaves the first quadrant (see Figures 7 and 8). There-
fore, by (HR2), d(h∗(pr,0)) = 0 mod m2[ξ ]. For 1 ≤ r ≤ max(�h), we get that at
least one of these arrows is nonzero since we cannot slide any arrow of length r

past the max horizontal jump in the diagram while still keeping the head in μ. By
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Figure 7 These arrows depict d(h∗(p3,0)) modulo m2[ξ ]. Applying

(HR1), we have d(h∗(p3,0)) = 6c41
11 �= 0

Figure 8 These arrows depict d(h∗(p4,0)) modulo m2[ξ ]. By ap-
plying (HR1) and (HR2) to shift up and to the left we see that
d(h∗(p4,0)) = 0

the same argument we see that d(h∗(p0,s)) is a sum of vertical arrows of length s

and is nonzero if and only if 1 ≤ s ≤ max(�v).
Now the functions in the set

{d(h∗(pr,0)) : 1 ≤ r ≤ max(�h)} ∪ {d(h∗(p0,s)) : 1 ≤ s ≤ max(�v)}
are all linearly independent modulo m2[ξ ]. To prove this, we expand any function f

in this set in terms of Haiman’s basis. All the nonzero terms that appear in the ex-
pansion of f correspond to arrows with the same magnitude and direction. How-
ever, we can easily check that if f and g are different, then the magnitude or direc-
tion of the nonzero arrows that appear in their Haiman basis expansion are differ-
ent. Since translation preserves magnitude and direction, it follows from Haiman’s
rules that this set is linearly independent, has size max(�v)+ max(�h), and gen-
erates im(dh|[ξ ]) ⊂ m[ξ ]/m2[ξ ]. Therefore rank(dh|[ξ ]) = max(�h)+ max(�v) =
rank(αn|[ξ ]). �
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Remark 8. Theorem A gives a lower bound on the dimension of the tangent
space of Pn. On the other hand, we can obtain upper bounds by taking torus
degenerations. In particular,

2n − rank(αn|[ξ ]) ≤ dimT[ξ ]Pn ≤ min{dim(T[χ]Pn)|[ξ ] degenerates to [χ]},
where Iχ is a monomial ideal.

Remark 9. In fact, Proposition 6 holds more generally for formally monomial
subschemes, that is, ξ such that there exist formal coordinates around 0 ∈ C

2 for
which Iξ is a monomial ideal.

It follows from Theorem A that the maximally singular points of Pn are precisely
the kth-order neighborhoods of the origin.

Corollary 10. Let m be the maximal ideal of 0 ∈ C
2. If dimT[ξ ]Pn = 2n − 2,

then Iξ = mk for some k.

Proof. We have an induced action of (C∗)2 on (C2)[n] with fixed points corre-
sponding to monomial subschemes and fixing Pn. Consider a one-parameter sub-
group σ :C∗ → (C∗)2 that acts on (C2)[n] with the same fixed points. The limits

lim
t→0

σ(t) · [ξ ] = [χ] and lim
t→∞σ(t) · [ξ ] = [ζ ]

exist by properness of Pn, and they are monomial subschemes. Then by Remark 8
we have

2n − 2 = dimT[ξ ]Pn ≤ dimT[χ]Pn and 2n − 2 = dimT[ξ ]Pn ≤ dimT[ζ ]Pn.

Thus rank(αn|[χ]) = rank(αn|[ζ ]) ≤ 2. This is only possible if the Young diagrams
μχ and μζ are staircases, that is, Iχ = Iζ = mk and ζ = χ . Thus both of the
degenerations occur in the Haiman chart Uχ , and so the degeneration gives a map
from P

1 to Uχ . Since Uχ is affine, the map is constant, and Iξ = Iχ = mk . �

Corollary 11. If xy ∈ Iξ , then dimT[ξ ]Pn ≤ n + 1.

Proof. The fact that xy ∈ Iξ implies that the only Haiman charts that contain [ξ ]
correspond to Young diagrams that are hooks. Therefore ξ can only degenerate to
monomial schemes with hooks for Young diagrams. An easy computation using
Theorem A and Theorem B shows that if χ ⊂ C

2 is a monomial subscheme with
a hook for a Young diagram, then dimT[χ]Pn = n − 1 or n + 1. Then we are done
by Remark 8. �

Example 12. Let ξ ⊂ C
2 be the length n subscheme supported at the origin and

defined by the ideal Iξ := (xp + yq, xy) + mn, where we assume that p,q ≥ 2,
p + q = n, and m is the maximal ideal of 0 ∈ C

2. Granger [Gra83, Prop. III.4]
shows that analytically locally around [ξ ] ∈ Pn, the punctual Hilbert scheme is a
product:

Pn
∼=anal.loc. Z × Cp,q,
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where Cp,q ⊂ C
2 is the curve defined by xp + yq = 0, and Z is smooth of di-

mension n − 2. In particular, the tangent space is n-dimensional. In this setting,
an explicit calculation shows that rank(αn|[ξ ]) = n. Therefore the corank of αn|[ξ ]
computes the dimension of T[ξ ]Pn.

Remark 13. In particular, Example 12 shows that the upper bounds from torus
degeneration coming from Remark 8 are not sharp. Indeed, a simple combina-
torial argument shows that there are no length n monomial subschemes χ ⊂ C

2

such that rank(αn|[χ]) = n.

Example 14. Recall that a subscheme ξ ⊂ C
2 is curvilinear if it is contained

in a smooth curve. A short calculation shows that the only possible monomial
subschemes that are smooth points of the punctual Hilbert scheme correspond
to Young diagrams that have dimensions 1 × n or n × 1, that is, the curvilinear
subschemes.

In fact, Granger [Gra83, Thm. III-1] shows that the smooth locus of Pn is
precisely the locus [ξ ] ∈ Pn such that ξ ⊂ C

2 is curvilinear. To do this, Granger
proves that the locus of subschemes that are isomorphic to the subschemes from
Example 12 are dense in the locus of noncurvilinear subschemes (assuming that
n ≥ 4), and the analytic local picture from Example 12 shows that these are sin-
gular points. We expect that by applying the methods of Granger and Iarrobino
we might be able to expand on the results and examples in our paper. Indeed, we
might be able to verify that the dimension of the tangent space of Pn equals the
corank of αn in new cases or, perhaps more interestingly, find an example where
they are different.
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