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SO(n) Covariant Local Tensor Valuations on Polytopes

Daniel Hug & Rolf Schneider

Abstract. The Minkowski tensors are valuations on the space of
convex bodies in R

n with values in a space of symmetric tensors,
having additional covariance and continuity properties. They are ex-
tensions of the intrinsic volumes, and as these, they are the sub-
ject of classification theorems and admit localizations in the form
of measure-valued valuations. For these local tensor valuations, re-
stricted to convex polytopes, a classification theorem has been proved
recently under the assumption of isometry covariance, but without any
continuity assumption. This characterization result is extended here,
replacing the covariance under orthogonal transformations by invari-
ance under proper rotations only. This yields additional local tensor
valuations on polytopes in dimensions two and three, but not in higher
dimensions. In this paper, they are completely classified.

1. Introduction

A valuation on the space Kn of convex bodies in R
n is a mapping ϕ from Kn into

some Abelian group such that

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

whenever K,L,K ∪ L ∈Kn. The best known examples are the intrinsic volumes
or Minkowski functionals. They arise as the suitably normalized coefficients of
the polynomial in ρ that expresses, for a given convex body K , the volume of the
outer parallel body of K at distance ρ ≥ 0. The celebrated characterization theo-
rem of Hadwiger states that every rigid motion invariant continuous real-valued
valuation on Kn is a linear combination of the intrinsic volumes. This theorem
was the first culmination of a rich theory of valuations on convex bodies (for the
older history, see the surveys [15] and [17]), which in the last two decades has
again been widened and deepened considerably. For an introduction and for ref-
erences, we refer to [24], in particular, Chapter 6 and Section 10.16. A survey on
recent developments is given by Alesker [3].

A natural extension of the intrinsic volumes is obtained if the volume is re-
placed by a higher moment. If the integral∫

K

x ⊗ · · · ⊗ x dx,
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where the integrand is an r-fold tensor product (r ∈ N), is evaluated for the outer
parallel body of K at distance ρ, we again obtain a polynomial in ρ, and its co-
efficients can be expressed as sums of symmetric tensors, which are functions
of K . Suitably normalized, these yield the so-called Minkowski tensors. They are
tensor-valued valuations on Kn with additional continuity and isometry covari-
ance properties. (For brief introductions, we refer to [24], Section 5.4.2, and to
[10].) After some sporadic treatments (e.g., [19; 20]), a thorough investigation
of the Minkowski tensors began with the work of McMullen [16], who studied
them on polytopes. Alesker [2] (based on his work in [1]) extended Hadwiger’s
classification theorem, showing that the real vector space of continuous, isometry
covariant tensor valuations on Kn of given rank is spanned by suitable Minkowski
tensors, multiplied by powers of the metric tensor. Questions of linear indepen-
dence, leading to the determination of dimensions and bases, were treated in [11].
Minkowski tensors were studied and used in integral geometry ([5; 12; 22; 25]), in
stochastic geometry, stereology and image analysis ([7; 8; 14; 26]), and for lower
dimensions and ranks, they were applied in physics ([4; 18; 27; 28; 29]). We also
refer the reader to lecture notes [13].

Just as the intrinsic volumes have local versions, the support measures (with
curvature and area measures as marginal measures), so the Minkowski tensors
have local versions. They associate with every convex body a series of tensor-
valued measures. The mappings defined in this way are valuations with the ad-
ditional properties of weak continuity, isometry covariance, and local determi-
nation. A corresponding classification theorem was proved in [9], based on the
previous investigation [23] concerning the case of polytopes. This approach has
some interesting features. First, on polytopes, a complete classification is pos-
sible without any continuity assumption. In [9], it was determined which of the
obtained local tensor valuation mappings have weakly continuous extensions to
all convex bodies. Second, the valuation property need not be assumed, but is a
consequence of the classification theorem.

The isometry covariance assumed in these characterization results has two
components, translation covariance (a certain polynomial behavior under trans-
lations) and covariance with respect to the orthogonal group O(n). Covariance
with respect to other groups is also of interest. Recently, Haberl and Parapatits [6]
were able to classify all measurable SL(n) covariant symmetric tensor valuations
on convex polytopes containing the origin in the interior. In the opposite direc-
tion (a smaller group than O(n)), it was shown by Saienko [21], under continuity
and smoothness assumptions, that the classification of the local tensor valuations
does not change for n ≥ 4 if O(n) covariance is replaced by SO(n) covariance.
In the physically relevant dimensions two and three, however, he surprisingly dis-
covered additional local tensor valuations. The purpose of this paper is to study
SO(n) covariant local tensor valuations on polytopes without assuming any con-
tinuity property and also to obtain the valuation property as a consequence. Thus,
the aim is to extend the results of [23] replacing the orthogonal group O(n) by
the group SO(n) of proper rotations. The main result is Theorem 2. We will study



SO(n) Covariant Local Tensor Valuations on Polytopes 639

elsewhere which of the newly found mappings have a weakly continuous exten-
sion to all convex bodies.

After collecting some notation in Section 2, we formulate our results in Sec-
tion 3. The proof is prepared by some auxiliary results in Section 4 and the re-
finement of two lemmas from [23] in Section 5. The main result is then proved in
Section 6.

2. Notation

We work in the n-dimensional Euclidean space R
n (n ≥ 2) with scalar product

〈·, ·〉 and induced norm ‖·‖. Its unit sphere is Sn−1, and we write �n := R
n×S

n−1

and equip this with the product topology. By G(n, k) we denote the Grassman-
nian of k-dimensional linear subspaces of Rn, k ∈ {0, . . . , n}. For L ∈ G(n, k),
we write SL := S

n−1 ∩ L. The orthogonal complement of L ∈ G(n, k) is de-
noted by L⊥. By Hk we denote the k-dimensional Hausdorff measure on Rn, and
Hn−1(Sn−1) defines the constant ωn = 2πn/2/�(n/2). For a topological space S,
we denote by B(S) the σ -algebra of its Borel sets. For S ⊂ R

n, the set of bounded
Borel sets in S is denoted by Bb(S).

The orthogonal group O(n) of Rn is the group of all linear mappings of Rn

into itself preserving the scalar product, and SO(n) is the subgroup of rotations,
which also preserve the orientation.

By Pn we denote the set of (convex and nonempty) polytopes in R
n. For k ∈

{0, . . . , n}, the set of k-dimensional faces of the polytope P is denoted by Fk(P ).
For F ∈ Fk(P ), the subspace L(F) ∈ G(n, k), the direction space of F , is the
translate, passing through 0, of the affine hull of F . The set ν(P,F ) ⊂ SL(F)⊥ is
the set of outer unit normal vectors of P at its face F . The generalized normal
bundle (or normal cycle) of P is the subset NorP ⊂ �n consisting of all pairs
(x,u) such that x is a boundary point of P and u is an outer unit normal vector of
P at x.

This paper rests heavily on the previous papers [23] and [9] on local tensor
valuations and uses much of their terminology. We recall here briefly the under-
lying conventions on tensors. For p ∈ N0, we denote by T

p the real vector space
of symmetric tensors of rank p (or symmetric p-tensors for short) on Rn. The
scalar product 〈·, ·〉 of Rn is used to identify R

n with its dual space, so that each
vector a ∈ R

n is identified with the linear functional x �→ 〈a, x〉, x ∈ R
n. Thus,

T
1 is identified with R

n (and T
0 with R), and for p ≥ 1, each tensor T ∈ T

p is
a symmetric p-linear functional on R

n. The symmetric tensor product a � b is
always abbreviated by ab, and for x ∈ R

n, the r-fold symmetric tensor product
x � · · · � x is denoted by xr .

The metric tensor Q on R
n is defined by Q(x,y) := 〈x, y〉 for x, y ∈ R

n.
For a subspace L ∈ G(n, k), we denote by T

p(L) the space of symmetric p-
tensors on L. We must distinguish between Q(L), the metric tensor on L with
Q(L)(a, b) := 〈a, b〉 for a, b ∈ L, and the tensor QL defined by

QL(a, b) := 〈πLa,πLb〉 for a, b ∈ R
n,
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where πL : Rn → L denotes the orthogonal projection. The mapping π∗
L :⋃

p∈N0
T

p(L) → ⋃
p∈N0

T
p is defined by (π∗

LT )(a1, . . . , ap) := T (πLa1, . . . ,

πLap), a1, . . . , ap ∈Rn, for T ∈ Tp(L). In particular, π∗
LQ(L) = QL. (This nota-

tion is different from that used in [23].)

3. Formulation of Results

The Minkowski tensors of a convex body K ∈Kn are given by



r,s
k (K) = 1

r!s!
ωn−k

ωn−k+s

∫
�n

xrus�k(K,d(x,u))

for k = 0, . . . , n − 1 and r, s ∈ N0. We refer to [24], Section 4.2, for the support
measures �0(K, ·), . . . ,�n−1(K, ·) appearing here and to [24], Section 5.4, for
a brief introduction to the Minkowski tensors. The local Minkowski tensors are
defined by

φ
r,s
k (K,η) = 1

r!s!
ωn−k

ωn−k+s

∫
η

xrus�k(K,d(x,u))

for η ∈ B(�n). If P ∈ Pn is a polytope, the special form of the support measures
yields a more explicit expression, namely

φ
r,s
k (P,η) = C

r,s
n,k

∑
F∈Fk(P )

∫
F

∫
ν(P,F )

1η(x,u)xrusHn−k−1(du)Hk(dx),

where we now use the abbreviation

C
r,s
n,k := (r!s!ωn−k+s)

−1,

and where the function 1η is the characteristic function of η. The attempt to
characterize these local tensor valuations on polytopes by their basic properties
revealed in [23] that these properties are also shared by the generalized local
Minkowski tensors. For a polytope P ∈ Pn, these are defined by

φ
r,s,j
k (P,η)

:= C
r,s
n,k

∑
F∈Fk(P )

Q
j

L(F)

∫
F

∫
ν(P,F )

1η(x,u)xrusHn−k−1(du)Hk(dx) (1)

for η ∈ B(�n), k ∈ {0, . . . , n − 1}, r, s ∈ N0, and for j ∈ N0 if k > 0 but only
for j = 0 if k = 0. Recall that xrus in (1) denotes a symmetric tensor product
and that also the product of Q

j

L(F) with the subsequent tensor-valued integral is a
symmetric tensor product.

For fixed k, r , s, j and with p := 2j +r +s, the tensor φ
r,s,j
k defines a mapping

� : Pn × B(�n) → T
p . For such a mapping �, the following properties are of

interest. It is called translation covariant of degree q ≤ p if

�(P + t, η + t) =
q∑

j=0

�p−j (P,η)
tj

j ! (2)
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with tensors �p−j (P,η) ∈ T
p−j for P ∈ Pn, η ∈ B(�n), and t ∈ R

n. Here
η + t := {(x + t, u) : (x,u) ∈ η}, and �p = �. If � is translation covariant of
degree zero, it is called translation invariant, and � is just called translation co-
variant if it is translation covariant of some degree q ≤ p. The mapping � is
called SO(n) covariant if �(ϑP,ϑη) = ϑ�(P,η) for P ∈ Pn, η ∈ B(�n), and
ϑ ∈ SO(n), where ϑη := {(ϑx,ϑu) : (x,u) ∈ η}. Here the operation of SO(n) on
T

p is defined by (ϑT )(x1, . . . , xp) := T (ϑ−1x1, . . . , ϑ
−1xp) for x1, . . . , xp ∈ R

n

and ϑ ∈ SO(n). Similarly, O(n) covariance is defined. Finally, the mapping � is
locally defined if η ∩ NorP = η′ ∩ NorP ′ with P,P ′ ∈ Pn and η,η′ ∈ B(�n)

implies �(P,η) = �(P ′, η′).
The mapping defined by �(P,η) := φ

r,s,j
k (P,η) for fixed k, r , s, j has the

following properties. For each P ∈ Pn, �(P, ·) is a T
p-valued measure with p =

2j + r + s. The mapping � is translation covariant, O(n) covariant, and locally
defined. These properties do not change (except that the rank must be adjusted) if
� is multiplied (symmetrically) by a power of the metric tensor.

The following theorem was essentially proved in [23] with some simplifica-
tions and supplements provided in [9].

Theorem 1. For p ∈N0, let Tp(Pn) denote the real vector space of all mappings
� : Pn ×B(�n) → T

p with the following properties:

(a) �(P, ·) is a T
p-valued measure for each P ∈Pn,

(b) � is translation covariant and O(n) covariant, and
(c) � is locally defined.

Then a basis of Tp(Pn) is given by the mappings Qmφ
r,s,j
k , where m,r, s, j ∈ N0

satisfy 2m + 2j + r + s = p, k ∈ {0, . . . , n − 1}, and j = 0 if k ∈ {0, n − 1}.
The purpose of the following is to extend this characterization of local tensor valu-
ations on polytopes from O(n) to SO(n) covariance. It was discovered by Saienko
[21] that, under this weaker assumption, there are additional tensor valuations in
dimensions two and three.

In the following, the spaces R
2 and R

3 are endowed with fixed orientations.
Let P ∈ P3. For each edge F ∈ F1(P ), we choose a unit vector vF ∈ L(F). For
u ∈ SL(F)⊥ , let vF × u =: u denote the vector product of vF and u in R

3; thus u

is the unique unit vector such that (vF ,u,u) is a positively oriented orthonormal
basis of R3. We define

φ̃r,s,j (P ,η)

:=
∑

F∈F1(P )

Q
j

L(F)vF

∫
F

∫
ν(P,F )

1η(x,u)xr (vF × u)usH1(du)H1(dx) (3)

=
∑

F∈F1(P )

v
2j+1
F

∫
F

∫
ν(P,F )

1η(x,u)xr (vF × u)usH1(du)H1(dx) (4)

for η ∈ B(�3) and r, s, j ∈ N0. Here we have used that QL(F) = v2
F since

dimF = 1. The tensor φ̃r,s,j (P ,η) is well defined since it does not change if
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the vector vF is replaced by −vF . Since

φ̃r,s,j (P + t, η + t) =
r∑

i=0

(
r

i

)
φ̃r−i,s,j (P ,η)t i (5)

for t ∈ R
3, the mapping φ̃r,s,j is translation covariant. It is also SO(3) covariant

since ϑvF × ϑu = ϑ(vF × u) for ϑ ∈ SO(3).
Now let n = 2. For u ∈ S

1, let u ∈ S
1 be the unique vector for which (u,u)

is a positively oriented orthonormal basis of R2. For P ∈ P2, k ∈ {0,1}, and η ∈
B(�2), we define

φ̃
r,s
k (P,η) :=

∑
F∈Fk(P )

∫
F

∫
ν(P,F )

1η(x,u)xruusH1−k(du)Hk(dx). (6)

Of course, if dimP = 2 and F ∈ F1(P ), then ν(P,F ) = {uF } with a unique
vector uF , and we have

φ̃
r,s
1 (P,η) =

∑
F∈F1(P )

uF us
F

∫
F

1η(x,uF )xrH1(dx).

If dimP = 1 and F ∈ F1(P ), then P = F and ν(P,F ) = {±uF }, and therefore

φ̃
r,s
1 (P,η) =

∫
F

[1η(x,uF )uF us
F + 1η(x,−uF )(−uF )(−uF )s]xrH1(dx).

For the case k = 0, we note that, for F ∈F0(P ), we have F = {xF }, and hence

φ̃
r,s
0 (P,η) =

∑
F∈F0(P )

xr
F

∫
ν(P,F )

1η(xF ,u)uusH1(du).

The translation covariance and SO(2) covariance of φ̃
r,s
k are easy to check.

The mappings φ̃r,s,j (·, η) and φ̃
r,s
k (·, η) (k = 0,1) defined on polytopes in R

3

and R
2, respectively, are valuations. This is proved as it was done for the map-

pings φ
r,s,j
k (·, η) in [9, Theorem 3.3].

The following result is the counterpart to Theorem 1 with the rotation group
SO(n) instead of the orthogonal group O(n).

Theorem 2. For p ∈N0, let T̃p(Pn) denote the real vector space of all mappings
� : Pn ×B(�n) → T

p with the following properties:

(a) �(P, ·) is a T
p-valued measure for each P ∈Pn,

(b) � is translation covariant and SO(n) covariant, and
(c) � is locally defined.

Then a basis of T̃p(Pn) is given by the mappings Qmφ
r,s,j
k , where m,r, s, j ∈

N0 satisfy 2m + 2j + r + s = p, k ∈ {0, . . . , n − 1}, and j = 0 if k ∈ {0, n − 1},
together with

• if n ≥ 4, no more mappings,
• if n = 3, the mappings Qmφ̃r,s,j , where m,r, s, j ∈ N0 satisfy 2m + 2j + r +

s + 2 = p,
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• if n = 2, the mappings Qmφ̃
r,s
k , where m,r, s ∈ N0 satisfy 2m + r + s + 1 = p

and k ∈ {0,1}.
As in [9] (and similarly earlier in Alesker’s work [2]), this general result follows
from its particular case where � is translation invariant. Therefore, we formu-
late this case separately, deleting the assertion of linear independence, which we
discuss in the next section.

Theorem 3. Let p ∈ N0. Let � : Pn × B(�n) → T
p be a mapping with the fol-

lowing properties:

(a) �(P, ·) is a T
p-valued measure for each P ∈Pn,

(b) � is translation invariant and SO(n) covariant, and
(c) � is locally defined.

Then � is a linear combination, with constant coefficients, of the mappings
Qmφ

0,s,j
k , where m,s, j ∈ N0 satisfy 2m + 2j + s = p, k ∈ {0, . . . , n − 1}, and

j = 0 if k ∈ {0, n − 1}, together with

• if n ≥ 4, no more mappings,
• if n = 3, the mappings Qmφ̃0,s,j , where m,s, j ∈ N0 satisfy 2m + 2j + s +

2 = p,
• if n = 2, the mappings Qmφ̃

0,s
k , where m,s ∈ N0 satisfy 2m + s + 1 = p and

k ∈ {0,1}.
In the next section, we prove the linear independence result contained in Theo-
rem 2 and show how Theorem 2 follows from Theorem 3 (and Proposition 1). In
Section 5, we extend two lemmas of [23] from O(n) covariance to SO(n) covari-
ance. The proof of Theorem 3 then follows in Section 6.

4. Auxiliary Results

First, we explain how Theorem 2 is deduced from Theorem 3 and Proposition 1.
Each of φ

r,s,j
k if n ≥ 2, each of φ̃r,s,j if n = 3, and each of φ̃

r,s
k if n = 2 is a

mapping � : Pn ×B(�n) → T
p (for suitable p) that has the following properties:

(a) �(P, ·) is a T
p-valued measure for each P ∈Pn,

(b) � is translation covariant of some degree q ≤ p and SO(n) covariant, and
(c) � is locally defined.

It follows from [9, Lemmas 3.1, 3.2] that each �p−j appearing in (2) satisfies

�p−j (P + t, η + t) =
q−j∑
r=0

�p−j−r (P ,η)
tr

r!
for j = 0, . . . , q and that �p−j has again the properties (a), (b), (c). In particular,
the choice j = q yields that �p−q is translation invariant. It is now clear that the
procedure described in [9, pp. 1534–1535] allows us to deduce Theorem 2 from
Theorem 3 (and Proposition 1).

We turn to linear independence.
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Proposition 1. Let p ∈ N0. The local tensor valuations Qmφ
r,s,j
k with m,r, s,

j ∈ N0, 2m + 2j + r + s = p, k ∈ {0, . . . , n − 1}, and j = 0 if k ∈ {0, n − 1},
together with

• if n = 3, the local tensor valuations Qmφ̃r,s,j with m,r, s, j ∈ N0, 2m + 2j +
r + s + 2 = p,

• if n = 2, the local tensor valuations Qmφ̃
r,s
k with m,r, s ∈N0, 2m+ r + s +1 =

p, k ∈ {0,1},
are linearly independent.

Proof. For n ≥ 4, the assertion is covered by [9, Thm. 3.1]. For the remaining
cases n ∈ {2,3}, we extend the proof of that theorem.

Case 1: n = 3.
Assume the linear relation∑

m,r,s,j,k
2m+2j+r+s=p

akmrsjQ
mφ

r,s,j
k +

∑
m,r,s,j

2m+2j+r+s+2=p

bmrsjQ
mφ̃r,s,j = 0 (7)

with akmrsj , bmrsj ∈ R and with a0mrsj = a2mrsj = 0 for j �= 0. Evaluating this at
(ϑP,ϑη), with arbitrary P ∈ P3, η ∈ B(�3), and ϑ ∈ O(3), we obtain

ϑ

[ ∑
m,r,s,j,k

2m+2j+r+s=p

akmrsjQ
mφ

r,s,j
k (P,η)

+ (detϑ)
∑

m,r,s,j
2m+2j+r+s+2=p

bmrsjQ
mφ̃r,s,j (P ,η)

]
= 0

by the covariance properties of φ
r,s,j
k and φ̃r,s,j . This shows that the tensor in

brackets is zero, and since we can choose detϑ = 1 and detϑ = −1, we conclude
that ∑

m,r,s,j,k
2m+2j+r+s=p

akmrsjQ
mφ

r,s,j
k = 0 (8)

and ∑
m,r,s,j

2m+2j+r+s+2=p

bmrsjQ
mφ̃r,s,j = 0. (9)

The proof of [9, Thm. 3.1] shows that (8) implies that all coefficients akmrsj are
zero. Hence, in the following, we need only deal with relation (9).

Let F ∈ P3 be a one-dimensional polytope and consider sets of the form η =
β × ω with Borel sets β ⊂ relint F and ω ⊂ SL(F)⊥ . Expression (4) yields

φ̃r,s,j (F,β × ω) = v
2j+1
F

∫
β

xrH1(dx)

∫
ω

(vF × u)usH1(du),

and hence (9) gives∑
m,r,s,j

2m+2j+r+s+2=p

bmrsjQ
mv

2j+1
F

∫
β

xrH1(dx)

∫
ω

(vF × u)usH1(du) = 0.
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Since this holds for all F , β , ω as specified, we can argue as in the proof of [9,
Thm. 3.1] and conclude that, for each fixed r , we have∑

m,s,j
2m+2j+s+2=p−r

bmrsjQ
mv

2j+1
F (vF × u)us = 0 (10)

for all u ∈ SL(F)⊥ .
Let (e1, e2, e3) be a positively oriented orthonormal basis of R3 such that e1 =

vF . We apply (10) to the (p − r)-tuple

(x, . . . , x︸ ︷︷ ︸
p−r

) with x = x1e1 + x2e2 + x3e3 ∈R
3.

This gives∑
m,s,j

2m+2j+s+2=p−r

bmrsj (x
2
1 + x2

2 + x2
3)mx

2j+1
1 (−u3x2 + u2x3)(u2x2 + u3x3)

s = 0

for all u2, u3 ∈ R such that u2e2 + u3e3 ∈ S
2. Denoting by θ the angle from

u2e2 + u3e3 to x2e2 + x3e3, we can write the last equation as∑
s≥0

βs(x
2
2 + x2

3)
s+1

2 sin θ coss θ = 0 (11)

with
βs =

∑
m,j

2m+2j+2=p−r−s

bmrsj (x
2
1 + x2

2 + x2
3)mx

2j+1
1 .

Since (11) holds for all θ ∈ R, it follows that βs = 0 for all s. Now the proof of
[9, Thm. 3.1] shows that all coefficients bmrsj are zero.

Case 2: n = 2.
Then φ

r,s,j
k �= 0 only for k ∈ {0,1} and hence also only for j = 0. Therefore,

we assume the linear relation∑
m,r,s,k

2m+r+s=p

akmrsQ
mφ

r,s,0
k +

∑
m,r,s,k

2m+r+s+1=p

bkmrsQ
mφ̃

r,s
k = 0 (12)

with akmrs, bkmrs ∈ R and k ∈ {0,1}. Similarly as in Case 1, we obtain that all
coefficients akmrs are zero, and hence we need only deal with the relation∑

m,r,s,k
2m+r+s+1=p

bkmrsQ
mφ̃

r,s
k = 0. (13)

Let F ∈ P2 be a d-dimensional polytope, d ∈ {0,1}, and consider sets of the
form η = β × ω with Borel sets β ⊂ relintF and ω ⊂ SL(F)⊥ .

Subcase 2a: d = 0. Then φ̃
r,s
1 (F,β × ω) = 0. It follows from (13) that∑

m,r,s
2m+r+s+1=p

b0mrsQ
m

∫
β

xrH0(dx)

∫
ω

uusH1(du) = 0.
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Since this holds for all F , β , ω as specified, we obtain for each fixed r that∑
m,s

2m+s+1=p−r

b0mrsQ
muus = 0 (14)

for all u ∈ S
1. We now choose the orthogonal basis (e1, e2) of R2 such that e1 = u

and e2 = u. Applying (14) to the (p − r)-tuple

(x, . . . , x︸ ︷︷ ︸
p−r

) with x = x1e1 + x2e2 ∈ R
2,

we obtain
�(p−r−1)/2�∑

m=0

dm(x2
1 + x2

2)mx2x
p−r−2m−1
1 = 0

with dm = b0mr(p−r−2m−1). This yields that all coefficients dm are zero, and hence
all coefficients in (12) with k = 0 are zero.

Subcase 2b: d = 1. Then φ̃
r,s
0 (F,β × ω) = 0. We choose ω = {uF }, where uF

is one of the two unit normal vectors of F . Then from (13) applied to (F,β × ω)

we obtain ∑
m,r,s

2m+r+s+1=p

b1mrsQ
muF us

F

∫
β

xrH1(dx) = 0.

As before, for each fixed r , this yields∑
m,s

2m+s+1=p−r

b1mrsQ
muF us

F = 0. (15)

We choose the orthogonal basis (e1, e2) of R2 such that e1 = uF and e2 = uF .
Applying (15) to the (p − r)-tuple

(x, . . . , x︸ ︷︷ ︸
p−r

) with x = x1e1 + x2e2 ∈ R
2,

we obtain ∑
m,s

2m+s+1=p−r

b1mrs(x
2
1 + x2

2)mx2x
s
1 = 0.

Now we can conclude as before that all coefficients in (15) and hence all coeffi-
cients in (12) with k = 1 are zero. �

5. Some Refined Lemmas

In this section, we extend Lemmas 3 and 4 in [23], essentially from O(n) covari-
ance to SO(n) covariance. (We remark that in Lemma 3 of [23], the group SO(n)

should be replaced by O(n) since this is used in the proof. This does not affect the
rest of the paper, where Lemma 3 is only applied with O(n).)
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Lemma 1. Let L ∈ G(n, k) with k ∈ {1, . . . , n − 1}, and let r ∈N0 and T ∈ T
r .

(a) Let k ≥ 2. If ϑT = T for each ϑ ∈ SO(n) that fixes L⊥ pointwise, then

T =
�r/2�∑
j=0

Q
j
Lπ∗

L⊥T (r−2j) (16)

with tensors T (r−2j) ∈ T
r−2j (L⊥), j = 0, . . . , �r/2�.

(b) Let k = 1. Let vL be a unit vector spanning L. Then

T =
r∑

j=0

v
j
Lπ∗

L⊥T (r−j)

with tensors T (m) ∈ T
m(L⊥).

Proof. Given an orthonormal basis (e1, . . . , en) of Rn, we associate with T ∈ T
r ,

represented in coordinates by

T =
∑

1≤i1≤···≤ir≤n

ti1...ir ei1 · · · eir ,

the polynomial on R
n defined by

pT (y) =
∑

1≤i1≤···≤ir≤n

ti1...ir yi1 · · ·yir , y =
n∑

i=1

yiei . (17)

The mapping T �→ pT is a vector space isomorphism between T
r and the vector

space of homogeneous polynomials of degree r on Rn. It is compatible with the
operation of the orthogonal group, that is, it satisfies pϑT (y) = pT (ϑ−1y) for
y ∈R

n and ϑ ∈ O(n).
We choose the orthonormal basis (e1, . . . , en) in such a way that e1, . . . , ek

span the subspace L and ek+1, . . . , en span its orthogonal complement L⊥.
(a) Let assumption (a) be satisfied. Then the polynomial pT defined by (17)

satisfies pT (ϑ−1y) = pϑT (y) = pT (y) for each ϑ ∈ SO(n) fixing L⊥ pointwise.
For ρ > 0 and ζk+1, . . . , ζn ∈R, the group of such rotations is transitive on the set

{y = y1e1 + · · · + ynen ∈ R
n : y2

1 + · · · + y2
k = ρ2, yk+1 = ζk+1, . . . , yn = ζn}.

(Here it is used that k ≥ 2.) Therefore, the proof of Lemma 3 in [23] yields the
assertion.

(b) Now let k = 1. Then we can assume that e1 = vL and write

pT (y) =
∑

1≤i1≤···≤ir≤n

ti1...ir yi1 · · ·yir

=
r∑

j=0

y
j

1

∑
2≤ij+1≤···≤ir≤n

t1...1ij+1...ir yij+1 · · ·yir .
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We define the tensor T (r−j) ∈ T
r−j (L⊥) by

T (r−j) :=
∑

2≤ij+1≤···≤ir≤n

t1...1ij+1...ir eij+1 . . . eir

and obtain assertion (b). �

For a T
r -valued Borel measure F on S

n−1, we say that it intertwines orthogo-
nal transformations if F(θB) = (θF )(B) for all B ∈ B(Sn−1) and all orthogo-
nal transformations θ ∈ O(n). We say that F intertwines rotations if F(ϑB) =
(ϑF )(B) for all B ∈ B(Sn−1) and all rotations ϑ ∈ SO(n). (Note that this termi-
nology differs from that in [23].)

We recall Lemma 4 from [23].

Lemma 2. Let n ∈ N, r ∈N0, and let F : B(Sn−1) → T
r be a T

r -valued measure
that intertwines orthogonal transformations. Then

F(B) =
�r/2�∑
j=0

ajQ
j

∫
B

ur−2jHn−1(du) (18)

for B ∈ B(Sn−1) with real constants aj , j = 0, . . . , �r/2�.

In [23], this lemma was proved for n ≥ 2. If n = 1, then S
0 = {e,−e} and

F({e}) = a(e)er , F({−e}) = a(−e)er with real constants a(e), a(−e). If θ ∈
O(1) satisfies θe = −e, then F(θ{e}) = θF ({e}) yields a(−e) = (−1)ra(e). With
a0 = a(e) and aj = 0 for j > 0, F can also be written in the form (18).

The following lemma concerns rotations only.

Lemma 3. Let r ∈ N0, and let F : B(Sn−1) → T
r be a T

r -valued measure that
intertwines rotations.

(a) If n ≥ 3, then

F(B) =
�r/2�∑
j=0

ajQ
j

∫
B

ur−2jHn−1(du) (19)

for B ∈ B(Sn−1) with real constants aj , j = 0, . . . , �r/2�.
(b) Let n = 2. Fix an orientation of R2, and for u ∈ S

1, let u be the unit vector
such that (u,u) is a positively oriented orthonormal basis of R2. Then

F(B) =
r∑

j=0

aj

∫
B

ujur−jH1(du)

for B ∈ B(S1) with real constants aj .

Proof. We modify the argumentation in the proof of [23, Lemma 4], replacing the
group O(n) by SO(n). We fix a vector u ∈ Sn−1 and denote by Bu,ρ the spherical
cap with center u and spherical radius ρ ∈ (0,π/2). Let T := F(Bu,ρ). Then
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ϑT = T for all rotations ϑ ∈ SO(n) fixing u. We choose the orthonormal basis
(e1, . . . , en) such that en = u.

(a) If n ≥ 3, then dimu⊥ ≥ 2. Therefore, the proof of [23, Lemma 4] goes
through if we apply in L = u⊥ part (a) of the present Lemma 1 (instead of [23,
Lemma 3]).

(b) Now we assume that n = 2. (Note that Q = u2 + u2 in this case, so that
no factor Qj is required.) We apply Lemma 1(b) with L = u⊥ and vL = u. This
gives

T =
r∑

j=0

ujπ∗
L⊥T (r−j)

with tensors T (r−j) ∈ T
r−j (lin{u}). Since every tensor in T

r−j (lin{u}) is of the
form bju

r−j with a real constant bj (and since the tensor T (r−j) depends on u

and ρ), we obtain that

F(Bu,ρ) =
r∑

j=0

bj (u,ρ)ujur−j .

This holds for all u ∈ S
1 and does not depend on the choice of the basis.

Since F intertwines rotations, we have ϑF(Bu,ρ) = F(ϑBu,ρ) = F(Bϑu,ρ) for
ϑ ∈ SO(2). This can be written as

r∑
j=0

bj (u,ρ)(ϑu)j (ϑu)r−j =
r∑

j=0

bj (ϑu,ρ)(ϑu)j (ϑu)r−j .

The tensors (ϑu)j (ϑu)r−j , j = 0, . . . , r , are linearly independent, and hence
bj (u,ρ) =: bj (ρ) does not depend on u.

For given u ∈ S
1, we can choose e2 = u and then obtain, for m ∈ {0, . . . , r},(

r

m

)
F(Bu,ρ)(−e1, . . . ,−e1︸ ︷︷ ︸

m

, e2, . . . , e2︸ ︷︷ ︸
r−m

) = bm(ρ).

Now we have all the ingredients to finish the proof in the same way as [23,
Lemma 4] was proved. �

6. Proof of Theorem 3

To prove Theorem 3, we assume that � : Pn × B(�n) → T
p is a mapping that

has the following properties:

(a) �(P, ·) is a T
p-valued measure for each P ∈Pn,

(b) � is translation invariant and SO(n) covariant, and
(c) � is locally defined.

We reduce the proof of Theorem 3 to the classification of a simpler type of
tensor-valued mappings. Let k ∈ {0, . . . , n − 1}, and let L ∈ G(n, k). Let A ∈
Bb(L) and B ∈ B(Sn−1). Let P ⊂ L be a polytope with A ⊂ P . Then A × (B ∩
L⊥) ⊂ NorP , and since � is locally defined, �(P,A × (B ∩ L⊥)) =: ϕ(A,B)

does not depend on P . Since each coordinate of ϕ(·,B) with respect to some
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basis is a locally finite Borel measure that is invariant under translations of L into
itself, it follows that ϕ(A,B) = Hk(A)�k(L,B) with a tensor �k(L,B). This
defines a mapping

�k : G(n, k) ×B(Sn−1) → T
p.

From the properties of � it follows that this mapping has the following proper-
ties:

(a′) �k(L, ·) is a T
p-valued measure for each L ∈ G(n, k),

(b′) �k is SO(n) covariant in the sense that

�k(ϑL,ϑB) = ϑ�k(L,B) for ϑ ∈ SO(n), (20)

(c′) �k(L,B) = �k(L,B ∩ L⊥) for L ∈ G(n, k) and B ∈ B(Sn−1).

Now let P ∈ Pn, A ∈ B(Rn), and B ∈ B(Sn−1). Since �(P, ·) is concentrated
on NorP (see [9, Lemma 3.3], whose proof does not use O(n) covariance) and

(A × B) ∩ NorP =
n−1⋃
k=0

⋃
F∈Fk(P )

(A ∩ relintF) × (B ∩ ν(P,F ))

is a disjoint union, we have

�(P,A × B) = �(P, (A × B) ∩ NorP)

=
n−1∑
k=0

∑
F∈Fk(P )

�(P, (A ∩ relintF) × (B ∩ ν(P,F )))

=
n−1∑
k=0

∑
F∈Fk(P )

Hk(A ∩ relintF)�k(L(F ),B ∩ ν(P,F )). (21)

This is the reason why we want to determine �k(L,B).
To classify these mappings, let k ∈ {0, . . . , n − 1}, L ∈ G(n, k), and B ∈

B(Sn−1).
Case 1: k = 0. Then L⊥ = R

n, and �0({0}, ·) : B(Sn−1) → T
p is a T

p-valued
measure that, by (20), intertwines rotations.

Subcase 1a: n ≥ 3. Lemma 3(a) gives

�0({0},B) =
�p/2�∑
j=0

ajQ
j

∫
B

up−2jHn−1(du) (22)

with real constants aj .
Subcase 1b: n = 2. Lemma 3(b) gives

�0({0},B) =
p∑

j=0

aj

∫
B

ujup−jH1(du) (23)

with real constants aj .
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Case 2: k ≥ 2. If ϑ ∈ SO(n) fixes L⊥ pointwise, then ϑL = L, and it follows
from (20) (together with (c′)) that T := �k(L,B) satisfies ϑT = T . Therefore,
we infer from Lemma 1(a) that

�k(L,B) =
�p/2�∑
j=0

Q
j
Lπ∗

L⊥T (p−2j)(L,B) (24)

with tensors T (p−2j)(L,B) ∈ T
p−2j (L⊥), j = 0, . . . , �p/2�.

Let y ∈ L ∩ S
n−1 and x1, . . . , xp ∈ L⊥. For q ∈ {0, . . . , �p/2�}, we apply both

sides of (24) to the p-tuple (y, . . . , y, x1, . . . , xp−2q) and obtain

�k(L,B)(y, . . . , y, x1, . . . , xp−2q)

=
(

p

2q

)−1

T (p−2q)(L,B)(x1, . . . , xp−2q). (25)

Let ϑ ∈ SO(n) and B ∈ B(SL⊥). Let y ∈ L ∩ S
n−1, x1, . . . , xp−2j ∈ L⊥, and

j ∈ {0, . . . , �p
2 �}. Then, using (25), (20), the definition of the operation of ϑ on

tensors, and then again (25), we get

T (p−2j)(ϑL,ϑB)(ϑx1, . . . , ϑxp−2j )

=
(

p

2j

)
�k(ϑL,ϑB)(ϑy, . . . , ϑy,ϑx1, . . . , ϑxp−2j )

=
(

p

2j

)
[ϑ�k(L,B)](ϑy, . . . , ϑy,ϑx1, . . . , ϑxp−2j )

=
(

p

2j

)
�k(L,B)(y, . . . , y, x1, . . . , xp−2j )

= T (p−2j)(L,B)(x1, . . . , xp−2j ). (26)

Let iL : L →R
n be the inclusion map. Later, we have to observe that

i∗
ϑL⊥ϑπ∗

L⊥Q(L⊥) = i∗
ϑL⊥ϑQL⊥ = i∗

ϑL⊥QϑL⊥ = Q(ϑL⊥).

Since ϑxi ∈ ϑL⊥ for i ∈ {1, . . . , p − 2j}, we have

[i∗
ϑL⊥ϑπ∗

L⊥T (p−2j)(L,B)](ϑx1, . . . , ϑxp−2j )

= [ϑπ∗
L⊥T (p−2j)(L,B)](ϑx1, . . . , ϑxp−2j )

= [π∗
L⊥T (p−2j)(L,B)](x1, . . . , xp−2j )

= T (p−2j)(L,B)(x1, . . . , xp−2j ).

Thus, we finally get

T (p−2j)(ϑL,ϑB) = i∗
ϑL⊥ϑπ∗

L⊥T (p−2j)(L,B), (27)

where both sides are considered as tensors in T
p−2j (ϑL⊥). (Of course, the effect

of i∗
ϑL⊥ and π∗

L⊥ on the right side of (27) is trivial if the appropriate domain is
considered in each case.)
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Let θ ∈ O(L⊥) (the orthogonal group of L⊥). We can choose a rotation ϑ ∈
SO(n) such that the restriction of ϑ to L⊥ coincides with θ and ϑL = L. Then
(26) (or (27)) implies that

T (p−2j)(L, θB) = θT (p−2j)(L,B), (28)

were again both sides are considered as tensors in T
p−2j (L⊥).

Because of (28), it follows from Lemma 2 (applied in L⊥) that

T (p−2j)(L,B) =
�p/2�−j∑

i=0

αipj (L)Qi
(L⊥)

∫
B

up−2j−2iHn−k−1(du) (29)

with real constants αipj (L) (recall that B ∈ B(SL⊥)).
To show that the coefficients αipj (L) in (29) are independent of L, we fix

a k-dimensional linear subspace L0 and put αipj (L0) =: αkipj . For a given k-
dimensional subspace L, there is a rotation ϑ ∈ SO(n) with L = ϑL0. From (27)
and (29) we obtain, for B ∈ B(SL⊥) and B0 = ϑ−1B ∈ B(SL⊥

0
),

T (p−2j)(L,B) = T (p−2j)(ϑL0, ϑB0) = i∗
ϑL⊥

0
ϑπ∗

L⊥
0
T (p−2j)(L0,B0)

= i∗
ϑL⊥

0
ϑ

�p/2�−j∑
i=0

αipj (L0)Q
i

L⊥
0

∫
B0

up−2j−2iHn−k−1(du)

=
�p/2�−j∑

i=0

αkipjQ
i

(ϑL⊥
0 )

∫
ϑB0

up−2j−2iHn−k−1(du)

=
�p/2�−j∑

i=0

αkipjQ
i
(L⊥)

∫
B

up−2j−2iHn−k−1(du). (30)

Relations (24) and (30) now yield

�k(L,B) =
�p/2�∑
j=0

Q
j
L

�p/2�−j∑
i=0

αkipjQ
i
L⊥

∫
B

up−2j−2iHn−k−1(du).

Inserting QL⊥ = Q − QL, expanding, and regrouping, we see that

�k(L,B) =
�p/2�∑
a=0

�p/2�∑
b=a

cpkabQ
aQb−a

L

∫
B

up−2bHn−k−1(du) (31)

with real constants cpkab .
Case 3: k = 1. Again, we assume that B ∈ B(SL⊥). Instead of (24), we can

only infer from Lemma 1(b) that, after choosing a unit vector vL spanning L, we
have

�1(L,B) =
p∑

j=0

v
j
Lπ∗

L⊥T (p−j)(L,B) (32)
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with tensors T (p−j)(L,B) ∈ T
p−j (L⊥), j = 0, . . . , p. Let x1, . . . , xp ∈ L⊥. For

q ∈ {0, . . . , p}, we apply both sides of (32) to the p-tuple

(vL, . . . , vL︸ ︷︷ ︸
q

, x1, . . . , xp−q) (33)

and obtain

�1(L,B)(vL, . . . , vL, x1, . . . , xp−q)

=
(

p

q

)−1

T (p−q)(L,B)(x1, . . . , xp−q). (34)

Again, T (p−q)(L,B) is a T
p−q(L⊥)-valued measure on SL⊥ . It intertwines rota-

tions of L⊥.
Subcase 3a: n ≥ 4. Then dimL⊥ ≥ 3. Hence, we can apply Lemma 3(a) in L⊥

and obtain that

T (p−q)(L,B) =
� p−q

2 �∑
i=0

βpqi(L)Qi
(L⊥)

∫
B

up−q−2iHn−2(du). (35)

In the same way as (30) was deduced, we conclude that

T (p−q)(L,B) =
� p−q

2 �∑
i=0

βpqiQ
i
(L⊥)

∫
B

up−q−2iHn−2(du) (36)

with constants βpqi . Relations (32) and (36) yield

�1(L,B) =
p∑

j=0

v
j
L

� p−j
2 �∑

i=0

βpjiQ
i
L⊥

∫
B

up−j−2iHn−2(du). (37)

Since v2
L = QL, we distinguish whether j is even or odd and write (37) as

�1(L,B) = �
(0)
1 (L,B) + �

(1)
1 (L,B)

with

�
(0)
1 (L,B) =

�p/2�∑
a=0

Qa
L

�p/2�−a∑
i=0

βp(2a)iQ
i
L⊥

∫
B

up−2a−2iHn−2(du),

�
(1)
1 (L,B) =

� p−1
2 �∑

b=0

Qb
LvL

� p−1
2 �−b∑
i=0

βp(2b+1)iQ
i
L⊥ (38)

×
∫

B

up−2b−1−2iHn−2(du).

We can choose a rotation ϑ ∈ SO(n) such that ϑvL = −vL and that the restric-
tion of ϑ to L⊥ is a reflection of L⊥ into itself. Moreover, we specialize B to B ′
such that ϑB ′ = B ′. Then the last equation yields ϑ�

(1)
1 (L,B ′) = −�

(1)
1 (L,B ′),

whereas the rotation covariance of �1 and of �
(0)
1 yields ϑ�

(1)
1 (L,B ′) =
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�
(1)
1 (L,B ′). Thus, we obtain �

(1)
1 (L,B ′) = 0 for all B ′ ∈ B(SL⊥) with ϑB ′ = B ′.

Inserting (33), with various q , into (38) for B ′ (for which it is zero), we deduce
that

� p−1
2 �−b∑
i=0

βp(2b+1)iQ
i
L⊥

∫
B ′

up−2b−1−2iHn−2(du) = 0

for b = 0, . . . , �p−1
2 �. Here B ′ can be any Borel set in SL⊥ which is invariant

under some reflection of SL⊥ . Therefore, we can deduce that

� p−1
2 �−b∑
i=0

βp(2b+1)iQ
i
L⊥up−2b−1−2i = 0

for all u ∈ SL⊥ . As in the proof of Proposition 1, we conclude that all coeffi-
cients βp(2b+1)i are zero. It follows that �

(1)
1 (L,B) = 0 for all B , and therefore

�1(L,B) = �
(0)
1 (L,B). Since QL⊥ = Q − QL, we obtain

�1(L,B) =
�p/2�∑
a=0

�p/2�∑
b=a

cp1abQ
aQb−a

L

∫
B

up−2bHn−2(du) (39)

with real constants cp1ab .
Subcase 3b: n = 3. The choice of the unit vector vL ∈ L in Case 3 determines

(together with the given orientation of R3) an orientation of L⊥. For a given unit
vector u ∈ L⊥, let u ∈ L⊥ be the unique unit vector such that (vL,u,u) is an
orthonormal basis of R3. In other words, u = vL × u, where × means the vector
product.

Lemma 3(b), applied in L⊥, yields

T (p−q)(L,B) =
p−q∑
i=0

ai(L)

∫
B

uiup−q−iH1(du)

with constants ai(L). Arguments as used previously in Case 2 show that ai(L) =
ai is independent of L. With this and (32), we get

�1(L,B) =
p∑

q=0

v
q
L

p−q∑
i=0

ai

∫
B

(vL × u)iup−q−iH1(du). (40)

We write

�1 = �
(00)
1 + �

(10)
1 + �

(01)
1 + �

(11)
1 ,

where �
(10)
1 = �

(01)
1 = 0 if p = 0, �

(11)
1 = 0 if p ≤ 1, and otherwise

�
(αβ)

1 (L,B) :=
p∑

q=0
q≡αmod2

v
q
L

p−q∑
i=0

i≡βmod2

ai

∫
B

(vL × u)iup−q−iH1(du)
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for α,β ∈ {0,1}. Using that v2
L = QL, (vL × u)2 = QL⊥ − u2, and Q = QL +

QL⊥ , we get

�
(00)
1 (L,B) =

�p/2�∑
j=0

Q
j
L

�p/2�−j∑
m=0

bm

∫
B

(Q − QL − u2)mup−2j−2mH1(du).

After expanding and regrouping, this can be written as

�
(00)
1 (L,B) =

�p/2�∑
a=0

�p/2�∑
b=a

apabQ
aQb−a

L

∫
B

up−2bH1(du). (41)

In the same way, we obtain the representations

�
(10)
1 (L,B) =

� p−1
2 �∑

a=0

� p−1
2 �∑

b=a

bpabQ
aQb−a

L vL

∫
B

up−2b−1H1(du) if p ≥ 1,

�
(01)
1 (L,B) =

� p−1
2 �∑

a=0

� p−1
2 �∑

b=a

cpabQ
aQb−a

L

∫
B

(vL × u)up−2b−1H1(du) if p ≥ 1,

�
(11)
1 (L,B) =

� p−2
2 �∑

a=0

� p−2
2 �∑

b=a

dpabQ
aQb−a

L vL

∫
B

(vL × u)up−2b−2H1(du) if p ≥ 2.

Arguing as in Subcase 3a, we can show that �
(10)
1 (L,B) + �

(01)
1 (L,B) = 0. It

follows that

�1(L,B) =
� p

2 �∑
a=0

� p
2 �∑

b=a

apabQ
aQb−a

L

∫
B

up−2bH1(du)

+
� p

2 �−1∑
a=0

� p
2 �−1∑
b=a

dpabQ
aQb−a

L vL

∫
B

(vL × u)up−2b−2H1(du). (42)

Subcase 3c: n = 2. By (32),

�1(L,B) =
p∑

q=0

v
q
Lπ∗

L⊥T (p−q)(L,B) (43)

with T (p−q)(L,B) ∈ T
p−q(L⊥). We can assume that vL = uL, where uL is one

of the two unit normal vectors of L. Then B ⊂ {uL,−uL}, and

T (p−q)(L,B) = cp−q(L,B)u
p−q
L .

As before, we have

T (p−q)(ϑL,ϑB) = ϑT (p−q)(L,B) for ϑ ∈ SO(2). (44)

First, suppose that B = {uL}. Using (44) for the rotation ϑ with ϑuL = −uL, we
see that cp−q(L, {−uL}) = cp−q(L, {uL}) =: cp−q(L). Thus, for this B , we can
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write (43) in the form

�1(L,B) =
p∑

q=0

cp−q(L)

∫
B

uqup−qH0(du).

This also holds for B = {−uL}, and since �1(L, {uL,−uL}) = �1(L, {uL}) +
�1(L, {−uL}), it holds for arbitrary B ∈ B(SL⊥). Now we can deduce as in Case 2
that cp−q(L) := cp−q is also independent of L. Since u2 + u2 = Q, we obtain

�1(L,B) =
�p/2�∑
a=0

αaQ
a

∫
B

up−2aH0(du)

+
� p−1

2 �∑
a=0

βaQ
a

∫
B

uup−2a−1H0(du). (45)

The representations (22), (23), (31), (39), (42), (45) obtained for �k now allow
us to evaluate (21).

Let P ∈ Pn, A ∈ B(Rn), and B ∈ B(�n). We first consider the case n = 3.
Using (22) for k = 0, (42) for k = 1, and (31) for k = 2, we can write (21) in the
form

�(P,A × B)

=
∑

F∈F0(P )

H0(A ∩ relintF)

×
� p

2 �∑
j=0

ajQ
j

∫
B∩ν(P,F )

up−2jH2(du)

+
∑

F∈F1(P )

H1(A ∩ relintF)

×
{� p

2 �∑
a=0

� p
2 �∑

b=a

apabQ
aQb−a

L(F )

∫
B∩ν(P,F )

up−2bH1(du)

+
� p

2 �−1∑
a=0

� p
2 �−1∑
b=a

dpabQ
aQb−a

L(F )vL(F)

×
∫

B∩ν(P,F )

(vL(F) × u)up−2b−2H1(du)

}

+
∑

F∈F2(P )

H2(A ∩ relintF)

� p
2 �∑

a=0

� p
2 �∑

b=a

cp2abQ
aQb−a

L(F )

×
∫

B∩ν(P,F )

up−2bH0(du).
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From (1) and (3) we have∑
f ∈F0(P )

H0(A ∩ relintF)Qj

∫
B∩ν(P,F )

up−2jH2(du)

= const · Qjφ
0,p−2j,0
0 (P,A × B),∑

F∈F1(P )

H1(A ∩ relintF)QaQb−a
L(F )

∫
B∩ν(P,F )

up−2bH1(du)

= const · Qaφ
0,p−2b,b−a

1 (P,A × B),∑
F∈F1(P )

H1(A ∩ relintF)QaQb−a
L(F )vL(F)

∫
B∩ν(P,F )

(vL(F) × u)up−2b−2H1(du)

= const · Qaφ̃0,p−2b−2,b−a(P,A × B),∑
F∈F2(P )

H2(A ∩ relintF)QaQb−a
L(F )

∫
B∩ν(P,F )

up−2bH0(du)

= const · Qaφ
0,p−2b,b−a

2 (P,A × B).

This shows that �(P,A×B) is a linear combination of expressions Qmφ
0,s,j
k (P,

A × B) and Qmφ̃0,s,j (P ,A × B) with coefficients independent of P , A, B

and with indices as specified in Theorem 3. Since �(P, ·), Qmφ
0,s,j
k (P, ·), and

Qmφ̃0,s,j (P , ·) are measures on B(�n), the relations still hold if A × B is re-
placed by a general η ∈ B(�n). This proves Theorem 3 in the case n = 3.

The proof for n ≥ 4 is analogous using (22) for k = 0, (39) for k = 1, and (31)
for k ≥ 2. Also, the proof for n = 2 is analogous, where (23) is used for k = 0 and
(45) for k = 1. This finishes the proof of Theorem 3.

Acknowledgment. We thank the referee for careful reading and suggesting a
simplification in the proof of Proposition 1.

References

[1] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math.
149 (1999), 977–1005.

[2] , Description of continuous isometry covariant valuations on convex sets,
Geom. Dedicata 74 (1999), 241–248.

[3] , New structures on valuations and applications. Integral geometry and val-
uations, Adv. Courses Math. CRM Barcelona, pp. 1–45, Birkhäuser/Springer, Basel,
2014.

[4] C. Beisbart, R. Dahlke, K. Mecke, and H. Wagner, Vector- and tensor-valued de-
scriptors for spatial patterns (K. Mecke, D. Stoyan eds.), Morphology of condensed
matter, Lecture Notes in Phys., 600, pp. 238–260, Springer, Berlin, 2002.

[5] A. Bernig and D. Hug, Kinematic formulas for tensor valuations, J. Reine Angew.
Math., (to appear), arXiv:1402.2750v1. doi:10.1515/crelle-2015-0023.

[6] C. Haberl and L. Parapatits, Centro-affine tensor valuations, Adv. Math. 316 (2017),
806–865.

http://arxiv.org/abs/arXiv:1402.2750v1
http://dx.doi.org/10.1515/crelle-2015-0023


658 Daniel Hug & Rolf Schneider

[7] J. Hörrmann, D. Hug, M. Klatt, and K. Mecke, Minkowski tensor density formulas
for Boolean models, Adv. in Appl. Math. 55 (2014), 48–85.

[8] D. Hug, M. Kiderlen, and A. M. Svane, Voronoi-based estimation of Minkowski ten-
sors from finite point samples, Discrete Comput. Geom. 57 (2017), 545–570.

[9] D. Hug and R. Schneider, Local tensor valuations, Geom. Funct. Anal. 24 (2014),
1516–1564.

[10] , Tensor valuations and their local versions, Tensor valuations and their appli-
cations in stochastic geometry and imaging, Lecture Notes in Math., 2177, pp. 27–65,
Springer International Publishing, 2017.

[11] D. Hug, R. Schneider, and R. Schuster, The space of isometry covariant tensor val-
uations, Algebra i Analiz 19 (2007), 194–224, = St. Petersburg Math. J., 19, 2008,
137–158.

[12] , Integral geometry of tensor valuations, Adv. in Appl. Math. 41 (2008), 482–
509.

[13] M. Kiderlen and E. B. V. Jensen eds., Tensor valuations and their applications in sto-
chastic geometry and imaging, Lecture Notes in Math., 2177, Springer International
Publishing, 2017. doi:10.1007/978-3-319-51951-7.

[14] A. Kousholt, M. Kiderlen, and D. Hug, Surface tensor estimation from linear sec-
tions, Math. Nachr. 288 (2015), 1647–1672.

[15] P. McMullen, Valuations and dissections (P. M. Gruber, J. M. Wills eds.), Handbook
of convex geometry, B, pp. 933–988, North-Holland, Amsterdam, 1993.

[16] , Isometry covariant valuations on convex bodies, Rend. Circ. Mat. Palermo
(2) Suppl. 50 (1997), 259–271.

[17] P. McMullen and R. Schneider, Valuations on convex bodies (P. M. Gruber,
J. M. Wills eds.), Convexity and its applications, pp. 170–247, Birkhäuser, Basel,
1983.

[18] W. Mickel, S. C. Kapfer, G. E. Schröder–Turk, and K. Mecke, Shortcoming of the
bond orientational order parameters for the analysis of disordered particulate mat-
ter, J. Chem. Phys. 138 (2013), no. 4, 044501.

[19] H. R. Müller, Über Momente ersten und zweiten Grades in der Integralgeometrie,
Rend. Circ. Mat. Palermo (2) 2 (1953), 1–21.

[20] K. Przesławski, Integral representations of mixed volumes and mixed tensors, Rend.
Circ. Mat. Palermo (2) Suppl. 50 (1997), 299–314.

[21] M. Saienko, Tensor-valued valuations and curvature measures in Euclidean spaces,
Ph.D. thesis, Goethe-Universität Frankfurt, 2016.

[22] R. Schneider, Tensor valuations on convex bodies and integral geometry, Rend. Circ.
Mat. Palermo (2) Suppl. 65 (2000), 295–316.

[23] , Local tensor valuations on convex polytopes, Monatsh. Math. 171 (2013),
459–479.

[24] , Convex bodies: the Brunn–Minkowski theory, second edition, Encyclopedia
Math. Appl., 151, Cambridge University Press, Cambridge, 2014.

[25] R. Schneider and R. Schuster, Tensor valuations on convex bodies and integral ge-
ometry, II, Rend. Circ. Mat. Palermo (2) Suppl. 70 (2002), 295–314.

[26] , Particle orientation from section stereology, Rend. Circ. Mat. Palermo (2)
Suppl. 77 (2006), 623–633.

[27] G. E. Schröder–Turk, S. Kapfer, B. Breidenbach, C. Beisbart, and K. Mecke, Tenso-
rial Minkowski functionals and anisotropy measures for planar patterns, J. Microsc.
238 (2010), 57–74.

http://dx.doi.org/10.1007/978-3-319-51951-7


SO(n) Covariant Local Tensor Valuations on Polytopes 659

[28] G. E. Schröder–Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller,
M. J. F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichels-
dorfer, W. Peukert, W. Schwieger, and K. Mecke, Minkowski tensor shape analysis
of cellular, granular and porous structures, Adv. Mater., Spec. Issue: Hierarchical
Struct. Towards Funct. 23 (2011), 2535–2553.

[29] G. E. Schröder–Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach,
D. Hug, and K. Mecke, Minkowski tensors of anisotropic spatial structure, New J.
Phys. 15 (2013), 083028, (38 pp).

D. Hug
Department of Mathematics
Karlsruhe Institute of Technology
D-76128 Karlsruhe
Germany

daniel.hug@kit.edu

R. Schneider
Albert-Ludwigs-Universität
Mathematisches Institut
D-79104 Freiburg i. Br.
Germany

rolf.schneider@math.uni-freiburg.de

mailto:daniel.hug@kit.edu
mailto:rolf.schneider@math.uni-freiburg.de

	Introduction
	Notation
	Formulation of Results
	Auxiliary Results
	Some Reﬁned Lemmas
	Proof of Theorem 3
	Acknowledgment
	References
	Author's Addresses

