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Difference Nevanlinna Theories with
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Dedicated to the memory of J. Milne Anderson.

Abstract. By extending the idea of a difference operator with a fixed
step to a varying-step difference operator, we establish a difference
Nevanlinna theory for meromorphic functions with steps tending to
zero (vanishing period) and a difference Nevanlinna theory for finite-
order meromorphic functions with steps tending to infinity (infinite
period). We can recover the classical little Picard theorem from the
vanishing period theory, but we require additional finite-order growth
restriction for meromorphic functions from the infinite period theory.
Then we give some applications of our theories to exhibit connections
between discrete equations and and their continuous analogues.

1. Introduction

Halburd and Korhonen [9] established a new Picard-type theorem and Picard val-
ues with respect to difference operator �f (z) = f (z + 1) − f (z) for finite-order
meromorphic functions defined on C versus the classical Picard theorem and Pi-
card values. More specifically, their theory allows them to show that if there are
three points aj , j = 1,2,3, in Ĉ such that each preimage f −1(aj ) is an infinite se-
quence consisting of points lying on a straight line on which any two consecutive
points differ by a fixed difference c (but is otherwise arbitrary), then the function
must be a periodic function with period c. This result can be considered as a dis-
crete version of the classical little Picard theorem for finite-order meromorphic
functions. A crucial tool of their theory, which follows from their difference-type
Nevanlinna theory for finite-order meromorphic functions, is the difference loga-
rithmic derivative lemma [8] (see also [3]), that is,

m

(
r,

f (z + c)

f (z)

)
= o(T (r, f )),

where c is a fixed nonzero constant. Instead of a fixed c, we define g(z, c) :=
f (z + c), where (z, c) ∈ C

2. Then f (z + c) is a meromorphic function in C
2.
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Moreover, a difference operator with varying steps is defined by

�fc := f (z + c) − f (z)

= g(z, c) − g(z,0), (z, c) ∈C
2. (1.1)

The first author of the current paper and Ruijsenaars [5] showed that, for a
nonzero meromorphic function f (z) and c ∈C,

m(r,f (z + c)) <
R + 2r

R − 2r
m(R,f ) +

L∑
l=0

1

2π

∫ 2π

0
log

∣∣∣∣R2 − bl(re
iφ + c)

R(reiφ + c − bl)

∣∣∣∣dφ,

where |c| < r , and b0, . . . , bL are poles of f (z) in |z| < R, which implies the
following uniform bound:

m(r,f (z + c)) ≤ 5m(3r, f ) + log 4 · n(3r, f )

whenever |c| < r .
This uniform bound still holds if we restrict c, for example, to such that 0 <

|c| < 1
r

or
√

r < |c| < r when r > 1, which will lead to vanishing steps and infinite
steps when r is sufficiently large, that is, 0 < |c| < 1

r
and

√
r < |c| < r will result

in c → 0 and c → ∞, respectively, as r → ∞. This motivates us to establish the
corresponding difference Nevanlinna theories.

We consider the cases with vanishing period and infinite period, that is, when
c → 0 and c → ∞, respectively. On the one hand, if we denote c = η as it tends to
zero via a sequence ηn → 0, then the period guaranteed by the Halburd–Korhonen
theory for each n would tend to zero in a formal manner. Thus, the periodic func-
tion with a vanishing period, when suitably defined, would formally reduce to
a constant. On the other hand, if we denote c = ω as it tends to infinity via a se-
quence ωn → ∞, then, similarly, the period, as asserted by the Halburd–Korhonen
theory, for each n would become infinite, and the distance between any two con-
secutive points on each of the three preimage infinite sequences would become
sparse and eventually reduce to a single point at most formally in the limit. In
both cases described, we would formally recover the original little Picard theo-
rem (namely, the inverse image of each of three Picard values must be at most a
finite set).

In this paper, we rigorously establish that the formal considerations indeed
hold under certain senses. The upshot is that we can recover the classical little
Picard theorem as η → 0 without the finite-order restriction and with the finite-
order restriction as ω → ∞. In fact, our argument for our vanishing-period results
is independent of the Halburd–Korhonen theory; we apply methods similar to our
earlier works [3; 4] and the Halburd–Korhonen theory [9; 2] in the infinite-period
results. We remark that the previous finite-order restriction in the infinite-period
case is necessary because it is unlikely that such results would hold for general
meromorphic functions. However, the rates at which η → 0 and ω → ∞ in the
consideration of vanishing and infinite periods, respectively, generally depend on
the growth of f .
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Hitherto we shall use the notation η for c when we consider the vanishing-
period case, and use the notation ω for c when we consider the infinite-period
case. Thus, when the rates at which η → 0 and ω → ∞ are suitably chosen and
the Picard exceptional values are suitably defined, we have obtained:

(1) when a meromorphic function f has three Picard exceptional values with
respect to a varying-step difference operator with vanishing period, then f is
a constant (Theorem 4.7);

(2) when a finite-order meromorphic function f with three Picard exceptional
values with respect to a varying-step difference operator of infinite period,
then f is a constant (Theorem 5.5).

Case (1) gives an alternative proof of the original little Picard theorem. Case (2)
requires an additional finite-order restriction.

Let f (z) be a meromorphic function, η ∈ C be a variable. For each fixed
r := |z|. we introduce the symbols mη(r, f (z + η)), Nη(r, f (z + η)), and
Tη(r, f (z + η)) instead of m(r,f (z + η)), N(r,f (z + η)), and T (r, f (z + η))

when we want to emphasize that they are also functions of η. But we still have
mη(r, f (z + η)) = m(r,f (z + η)), Nη(r, f (z + η)) = N(r,f (z + η)), etc. Our
main estimates are as follows.

Let f be an arbitrary meromorphic function, and 0 < |η| < α1(r), where
r = |z|,

α1(r) = min{log−1/2 r,1/(n(r + 1))2}, n(r) = n(r, f ) + n(r,1/f ).

Then, for each fixed r , we obtain

mη

(
r,

f (z + η)

f (z)

)
= o(1)

as η → 0. If, in addition, f has no pole in D(0, h) \ {0} for some positive h and
0 < |η| < α2(r), where

α2(r) = min

{
r, log−1/2 r,

h

2
,

1∑
0<|bμ|<r+ 1

2
1/|bμ|

}
,

where (bμ)μ∈N is the sequence of poles of f (z), then, for each fixed r ,

Nη(r, f (z + η)) = N(r,f (z)) + ε1(r),

where |ε1(r)| ≤ n(0, f (z)) log r + 3.
Although these results hold without the finite-order restriction, the upper

bounds of |η|, that is, α1(r) and α2(r), which tend to zero as r → ∞, are related
to the growth of f .

When f has positive finite order σ and ω is suitably restricted by 0 < |ω| < rβ

with 0 < β < 1, then we have

m

(
r,

f (z + ω)

f (z)

)
= O(rσ−(1−β)(1−ε)+ε)

and
N(r,f (z + ω)) = N(r,f (z)) + O(rσ−(1−β)+ε)
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when σ ≥ 1 and

N(r,f (z + ω)) = N(r,f (z)) + O(rβ)

when 0 < σ < 1 for all r outside a set of finite logarithmic measure. We have also
obtained corresponding estimates for meromorphic functions with finite logarith-
mic order.

Finally, we show a different kind of vanishing-period result for finite-order
meromorphic function:

lim
r→∞ lim

η→0
mη

(
r,

1

η

(
f (z + η)

f (z)
− 1

))
= O(log r),

thus recovering Nevanlinna’s original logarithmic derivative estimate for finite-
order functions via another approach independent of previous methods, although
we do not have an immediate application of this result.

The paper is organized as follows. We state the main theorems in Sections 2
and 3. We establish Nevanlinna theory for difference operator in terms of vanish-
ing and infinite periods in Sections 4 and 5, respectively. We recall some known
results in Section 6. The proofs of main results are given in Sections 7–12. We
exhibit some applications of our results to obtain classical differential equation
results from their difference counterparts in Section 13. A reformulation of log-
arithmic derivative lemma and its proof are given in Section 14. We shall use
Nevanlinna’s notation freely throughout this paper. See [11; 19] for their mean-
ings.

2. Main Results for Vanishing Period

In this section, our main results are for fixed r := |z|. In this sense, m(r,
f (z+η)
f (z)

),
N(r,f (z + η)), and T (r, f (z + η)) are functions of η. We sometimes write
mη(r,

f (z+η)
f (z)

), Nη(r, f (z + η)), and Tη(r, f (z + η)) when we want to emphasize
the dependence on η.

Theorem 2.1. Let f (z) be a meromorphic function in C, and r = |z| be fixed.
Then we have

lim
η→0

mη

(
r,

f (z + η)

f (z)

)
+ lim

η→0
mη

(
r,

f (z)

f (z + η)

)
= 0. (2.1)

Moreover, if 0 < |η| < α1(r), where

α1(r) = min{log−1/2 r,1/(n(r + 1))2}, n(r) = n(r, f ) + n(r,1/f ), (2.2)

then

lim
r→∞mη

(
r,

f (z + η)

f (z)

)
+ lim

r→∞mη

(
r,

f (z)

f (z + η)

)
= 0. (2.3)

From the theorem we deduce the following corollary.
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Corollary 2.2. Let f (z) be a meromorphic function. Then, for arbitrary fixed
0 < r = |z|,

lim
η→0

mη(r, f (z + η)) = m(r,f (z)). (2.4)

Our next result relates the counting function and its varying steps.

Theorem 2.3. Let f (z) be a meromorphic function in C, let r = |z| be such that
0 < |η| < α2(r), where

α2(r) = min

{
r, log−1/2 r,

h

2
,

1∑
0<|bμ|<r+ 1

2
1/|bμ|

}
, (2.5)

where (bμ)μ∈N is the sequence of poles of f (z), and let h ∈ (0,1) be such that
f (z) has no poles in D(0, h) \ {0}. Then

Nη(r, f (z + η)) = N(r,f (z)) + ε1(r), (2.6)

where |ε1(r)| ≤ n(0, f (z)) log r + 3.

Combining these asymptotic relations, we obtain the following estimate for the
Nevanlinna characteristic function.

Theorem 2.4. Let f (z) be a meromorphic function in C. Then, for each fixed
r = |z|, there exists β(r) > 0 with limr→∞ β(r) = 0 such that

Tη(r, f (z + η)) = T (r, f (z)) + ε(r) (2.7)

whenever 0 < |η| < β(r), where |ε(r)| ≤ n(0, f (z)) log r + 4.

Remark 2.5. We may choose β(r) = min{α1(r), α2(r)}.
To beter understand these asymptotic relations, we give the following remark.

Remark 2.6. Miles showed in [15] that the deficiency of a meromorphic function
may change when choosing different origins. But, for a fixed η, Chiang and Feng
[3] showed the asymptotic relations

N(r,f (z + η)) = N(r,f ) + O(rλ−1+ε) + O(log r) (2.8)

and
T (r, f (z + η)) = T (r, f ) + O(rσ−1+ε) + O(log r) (2.9)

for finite-order meromorphic function f (z), where λ denotes the exponent of con-
vergence of poles of f (z). This implies that the deficiency does not change after
shifting the origin if the difference between the order and lower order is less than
unity. By applying estimates (2.8) and (2.9) we can easily obtain an alternative
proof of an earlier result of Valiron [18] that if a finite-order meromorphic func-
tion has the difference between its order and lower order less than unity, then the
deficiency at the origin, that is, δ(0), is invariant against any finite shift. This re-
sult of Valiron no longer holds in general; see Miles [15]. However, Theorems 2.3
and 2.4 indicate that the deficiency remains the same by allowing the period to
tend to zero without any restriction of order.
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3. Main Results for Infinite Period

In this section, we distinguish two cases of meromorphic functions, those with
finite positive order and those with zero order of growth. In the former, the vary-
ing steps ω are restricted by 0 < |ω| < rβ , where the constant β depends on the
growth order of f . In the latter, we have 0 < |ω| < log1/2 r . The ω is otherwise
free to vary within the given upper bounds. For example, |ω| can tend to zero or to
infinity as r → ∞. In case we choose ω to be constant, the results for finite-order
meromorphic functions essentially agree with the results in Chiang and Feng
[3]. We shall stick to the standard notations m(r,

f (z+ω)
f (z)

), N(r,f (z + ω)), and
T (r, f (z + ω)) with the understanding that ω is free to vary with respect to an
upper bound, which may depend on f in this section.

Theorem 3.1. Let f (z) be a meromorphic function of finite order σ , 0 < β < 1,
and 0 < |ω| < rβ . Then, given 0 < ε < (1 − β)/(2 − β), we have

m

(
r,

f (z + ω)

f (z)

)
+ m

(
r,

f (z)

f (z + ω)

)
= O(rσ−(1−β)(1−ε)+ε). (3.1)

We note that the upper bound and the latter consideration in this section remains
valid even as ω → 0 or remains constant, say, ω = 1.

Similarly, we have asymptotic relations for the Nevanlinna counting function
and characteristic function of infinite period.

Theorem 3.2. Let f (z) be a meromorphic function of finite order σ = σ(f ).

(i) If σ ≥ 1, 0 < β < 1, and 0 < |ω| < rβ , then there exists 0 < ε < β ′, where
β ′ = min{(σ − 1)(1 − β)/β,1 − β}, such that

N(r,f (z + ω)) = N(r,f ) + O(rσ−(1−β)+ε) (3.2)

outside a set of finite logarithmic measure.
(ii) If 0 < σ < 1, 0 < β < σ , and 0 < |ω| < rβ , then we have

N(r,f (z + ω)) = N(r,f ) + O(rβ) (3.3)

outside a set of finite logarithmic measure.
(iii) If σ = 0, 0 < |ω| < log1/2 r for r > 1, and 0 < |ω| < 1 for r ≤ 1, then we

have
N(r,f (z + ω)) = N(r,f ) + O(log r) (3.4)

outside a set of finite logarithmic measure.

Corollary 3.3. Let f (z) be a meromorphic function of finite logarithmic order
σlog = lim supr→∞ log+ T (r, f )/log log r > 1, and 0 < |ω| < logβ r , where 1 <

β < σlog. Then we have

N(r,f (z + ω)) = N(r,f ) + O(logβ r) (3.5)

outside a set of finite logarithmic measure.

From Theorems 3.1 and 3.2 and Corollary 3.3 we deduce the following theorem.
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Theorem 3.4. Let f (z) be a meromorphic function of finite order σ = σ(f ), and
let ε > 0 be a positive constant.

(i) If σ ≥ 1, 0 < β < 1, 0 < |ω| < rβ , and 0 < ε < β ′′, where β ′′ = min{(σ −
1)(1 − β)/β, (1 − β)/(2 − β)}, then we have

T (r, f (z + ω)) = T (r, f ) + O(rσ−(1−β)(1−ε)+ε) (3.6)

outside a set of finite logarithmic measure.
(ii) If 0 < σ < 1, 0 < β < σ , and 0 < |ω| < rβ , then we have

T (r, f (z + ω)) = T (r, f ) + O(rβ) (3.7)

outside a set of finite logarithmic measure.
(iii) Moreover, if σ = 0, 0 < |ω| < log1/2 r for r > 1, and 0 < |ω| < 1 for r ≤ 1,

then we have

T (r, f (z + ω)) = T (r, f ) + O(log r) (3.8)

outside a set of finite logarithmic measure.

Then we immediately have the following corollary.

Corollary 3.5. Let f (z) be a meromorphic function of finite logarithmic order
σlog > 1. Suppose 0 < |ω| < logβ r with 1 < β < σlog. Then we have

T (r, f (z + ω)) = T (r, f ) + O(logβ r) (3.9)

outside a set of finite logarithmic measure.

4. Nevanlinna Theory for Difference Operator with Vanishing Period

In this section, we assume that the step size c = η in (1.1) is nonzero and its upper
bound tends to zero as z → ∞.

Theorem 4.1. Let f (z) be a meromorphic function such that �ηf 	≡ 0 for all z,
let p ≥ 2 be a positive integer, and let a1, . . . , ap be p distinct points in C. Then
there exists δ(r) > 0 such that

m(r,f ) +
p∑

k=1

m(r,1/(f − ak)) ≤ 2T (r, f ) − N�η(r, f ) + γ (4.1)

whenever 0 < |η| < δ(r), where γ is a constant that depends on a1, . . . , ap and r

but is independent of z, and where

N�η(r, f ) := 2N(r,f ) − N(r,�ηf ) + N(r,1/�ηf ). (4.2)

Proof. In the proof, we denote by γ1, γ2, . . . some definite constants that depend
on a1, . . . , ap and r but are independent of z. Setting

P(f ) =
p∏

k=1

(f − ak),
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we have
p∑

k=1

m(r,1/(f − ak)) =
p∑

k=1

T (r,1/(f − ak)) −
p∑

k=1

N(r,1/(f − ak))

= pT (r, f ) − N(r,1/P (f )) + γ1

= T (r,P (f )) − N(r,1/P (f )) + γ2

= m(r,1/P (f )) + γ2.

We deduce from (2.1) of Theorem 2.1 that, for each fixed r > 0, there is δ(r) >

0 such that

m

(
r,

f (z + η)

f (z)

)
≤ 1

whenever 0 < |η| < δ(r). Then

m

(
r,

�ηf

f − ak

)
≤ γ3,

which implies that

m

(
r,

�ηf

P (f )

)
≤ γ4.

We deduce
p∑

k=1

m

(
r,

1

f − ak

)
≤ m

(
r,

1

�ηf

)
+ γ = T (r,�ηf ) − N

(
r,

1

�ηf

)
+ γ5

= m

(
r, f · �ηf

f

)
+ N(r,�ηf ) − N

(
r,

1

�ηf

)
+ γ5

≤ m(r,f ) + N(r,�ηf ) − N

(
r,

1

�ηf

)
+ γ6.

Hence, there exist δ(r) > 0 and a constant γ such that

m(r,f ) +
p∑

j=1

m

(
r,

1

f − aj

)
≤ 2T (r, f ) − N�ηz

(r, f ) + γ

whenever 0 < |η| < δ(r), where

N�η(r, f ) := 2N(r,f ) − N(r,�ηf ) + N

(
r,

1

�ηf

)
. �

Definition 4.2. Let f (z) be a meromorphic function, and a be a finite complex
number. Then

(i) n�η(r,1/(f − a)) is the number of common zeros of f − a and �ηf in

D(0, r) := {z : |z| ≤ r} (counting multiplicity), and we define the multiplicity
to be the minimum of those of f − a and �ηf for such points;

(ii) n�η(r, f ) := n�η(r;0;1/f ), which stands for the number of common zeros

of 1/f and �η1/f in D(0, r) (counting multiplicity), and the multiplicity is
defined to be the minimum of those of 1/f and �η1/f for such points.
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Definition 4.3. We define the varying-step difference integrated counting func-
tion of f (z) as

N�η

(
r,

1

f − a

)
:=

∫ r

0

n�η(t,
1

f −a
) − n�η(0, 1

f −a
)

t
dt

+ n�η

(
0,

1

f − a

)
log r, (4.3)

N�η(r, f ) :=
∫ r

0

n�η(t, f ) − n�η(0, f )

t
dt

+ n�η(0, f ) log r. (4.4)

Besides,

Ñ�η(r,1/(f − a)) := N(r,1/(f − a)) − N�η(r,1/(f − a)), (4.5)

Ñ�η(r, f ) := N(r,f ) − N�η(r, f ). (4.6)

We have the following second main theorem for varying-step difference operator
with vanishing period.

Theorem 4.4. Let f (z) be a meromorphic function such that �ηf 	≡ 0 in
D(0, r) := {z : |z| ≤ r}. Let a1, . . . , ap be p ≥ 2 distinct points in C. Then, there
exists δ′(r) > 0 such that

(p − 1)T (r, f ) ≤ Ñ�η(r, f ) +
p∑

k=1

Ñ�η(r,1/(f − ak)) + ε̂(r) (4.7)

whenever 0 < |η| < δ′(r), where |ε̂(r)| ≤ n(0, f (z)) log r + γ with constant γ

depending only on a1, . . . , ap and r but independent of z, and limr→∞ δ′(r) = 0.

Proof. We deduce from Theorem 4.1, after adding
∑p

i=1 N(r,1/(f − ai)) and
applying Nevanlinna’s first fundamental theorem, that

(p − 1)T (r, f ) ≤
p∑

k=1

N(r,1/(f − ak)) + N(r,�ηf )

− N(r,1/�ηf ) − N(r,f ) + γ (4.8)

whenever 0 < |η| < δ(r).
According to Definition 4.3, we have

p∑
k=1

N(r,1/(f − ak)) −
p∑

k=1

Ñ�η(r,1/(f − ak))

=
p∑

k=1

N�η(r,1/(f − ak)) ≤ N(r,1/�ηf ),

and hence
p∑

k=1

N(r,1/(f − ak)) − N(r,1/�ηf ) ≤
p∑

k=1

Ñ�η(r,1/(f − ak)). (4.9)
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Moreover, if z = z0 is a common pole of f (z) and f (z + η) with multiplicity m1
and m2, respectively, then we can write

f (z) = g(z)

(z − z0)m1
, f (z + η) = h(z)

(z − z0)m2
,

where both g(z) and h(z) are analytic at z = z0 and g(z0) 	= 0 and h(z0) 	= 0.
Without loss of generality, we may assume that m1 ≥ m2. Thus,

�ηf := f (z + η) − f (z) = (z − z0)
m1−m2h(z) − g(z)

(z − z0)m1

and

�η

1

f
:= 1

f (z + η)
− 1

f (z)
= (z − z0)

m2[g(z) − (z − z0)
m1−m2h(z)]

h(z)g(z)
.

If m1 > m2, then the multiplicity for the pole of �ηf and the zero of �η
1
f

at
z = z0 are m1 and m2, respectively, from which it follows that the minimum mul-
tiplicity of the zero of 1

f
and �η

1
f

at z = z0 is m2. If m1 = m2, then we can write
h(z) − g(z) = (z − z0)

m · d(z), where m is a nonnegative integer, d(z) is analytic
at z = z0, and d(z0) 	= 0. Thus, the multiplicity for the pole of �ηf at z = z0 is
m1 − m if m1 ≥ m and is 0 if m1 < m, whereas similar consideration for the zero
of �η

1
f

at z = z0 is m1 + m, which implies that the minimum multiplicity of 1
f

and �η
1
f

at z = z0 is m1. Hence, we deduce

N(r,�ηf ) + N�η(r, f ) ≤ N(r,f ) + N(r,f (z + η)),

and Theorem 2.3 guarantees that we can find 0 < δ′(r) < δ(r) such that

N(r,�ηf ) − N(r,f ) ≤ Ñ�η(r, f ) + ε1(r) (4.10)

whenever 0 < |η| < δ′(r). Combining (4.8), (4.9), and (4.10), we deduce

(p − 1)T (r, f ) ≤ Ñ�η(r, f ) +
p∑

k=1

Ñ�η(r,1/(f − ak)) + ε̂(r)

whenever 0 < |η| < δ′(r), where |ε̂(r)| ≤ n(0, f (z)) log r + γ . �

4.1. Defect Relation and Little Picard’s Theorem for Varying-Step Difference
Operator

We define the multiplicity index and ramification index for a varying-step differ-
ence operator with vanishing period to be

ϑ�η(a,f ) := lim inf
r→∞

N�η(r,1/(f − a))

T (r, f )

and

��η(a,f ) := 1 − lim sup
r→∞

Ñ�η(r,1/(f − a))

T (r, f )
.

Then Theorem 4.4 immediately implies the following corollary.
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Corollary 4.5. Let f (z) be a transcendental meromorphic function such that
�ηf 	≡ 0. Then ∑

a∈Ĉ
(δ(a, f ) + ϑ�η(a,f )) ≤

∑
a∈Ĉ

��η(a,f ) ≤ 2.

Next, we shall define Picard exceptional values for a varying-step difference op-
erator with vanishing period.

Definition 4.6. We call a ∈ Ĉ is a Picard exceptional value for a varying-step
difference operator with vanishing period of f (z) if there is a sequence ηn → 0
as n → ∞ such that Ñ�ηn

(r,1/(f − a)) = O(1).

We have the following Picard theorem for a varying-step difference operator with
vanishing period.

Theorem 4.7. Let f (z) be a meromorphic function having three Picard excep-
tional values for a varying-step difference operator with vanishing period. Then
f (z) is a constant.

Proof. Without loss of generality, we may assume that the three exceptional val-
ues are 0, 1, and ∞. According to Theorem 4.4, we can find δ′(r) > 0 such that

T (r, f ) ≤ Ñ�η(r, f ) + Ñ�η(r,1/f ) + Ñ�η(r,1/(f − 1)) + ε̂(r)

whenever 0 < |η| < δ′(r), where |ε̂(r)| ≤ n(0, f (z)) log r + γ with bounded con-
stant γ .

If f (z) is a transcendental meromorphic function, then

lim
r→∞

T (r, f )

log r
= ∞.

Thus, there exists r0 > 0 such that

T (r, f ) > 2ε̂(r)

whenever r ≥ r0. For each r ≥ r0, since limn→∞ ηn = 0 (ηn 	= 0), there exists
N(r) > 0 such that 0 < |ηn| < δ′(r) whenever n > N(r). Note that

Ñ�ηn
(r, f ) = Ñ�ηn

(r,1/f ) = Ñ�ηn
(r,1/(f − 1)) = 0

whenever n > N(r). Thus, T (r, f ) ≤ ε̂(r), which is a contradiction.
Hence, �ηnf ≡ 0 on {z : |z| ≤ r} whenever n > N(r).
We claim that f (z) is an entire function. Otherwise, there would exist z1 such

that f (z1) = ∞, which implies that 1/f (z1 + ηn) = 1/f (z1) = 0 whenever n >

N(r1), where r1 ≥ max{r0, |z1|}. Note that if limn→∞ ηn = 0 (ηn 	= 0), then z1 is
a nonisolated zero, which is a contradiction. So f (z) must be an entire function.

Moreover, we have f (ηn) = f (0) whenever n > N(r0). By the identity the-
orem we deduce that f (z) ≡ f (0) on C, which is impossible because of the as-
sumption that f (z) is transcendental.

Therefore, f (z) is a rational function, which must reduce to a constant. �
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5. Nevanlinna Theory for Difference Operator with Infinite Period

When considering analogous Picard exceptional values for varying-step operators
with infinite periods, the second main theorem that we state next allows ω to vary
within the upper bound rβ . However, we need to further restrict ω to rβ/4 < |ω| <
rβ if f (z) is of finite positive order and to log1/8 r < |ω| < log1/2 r if f (z) is of
order zero.

Definition 5.1. Let f (z) be a meromorphic function of finite order σ , and
r = |z|. If σ > 0, then we define a varying-step difference operator by �ωf :=
f (z+ω)−f (z), where 0 < |ω| < rβ , 0 < β < min{1, σ }. If σ = 0, then we define
�ωf := f (z + ω) − f (z), where 0 < |ω| < log1/2 r for r > 1, and 0 < |ω| < 1
for r ≤ 1.

Based on this definition, we have the following versions of the second main theo-
rem.

Theorem 5.2. Let f (z) be a meromorphic function of finite order σ such that
�ωf 	≡ 0. Let a1, . . . , ap be p ≥ 2 distinct points in C. Then

m(r,f ) +
p∑

j=1

m(r,1/(f − aj ))

≤ 2T (r, f ) − N�ω(r, f ) + o(T (r, f )) + O(log r) (5.1)

outside a set of finite logarithmic measure, where

N�ω(r, f ) := 2N(r,f ) − N(r,�ωf ) + N(r,1/�ωf ). (5.2)

Theorem 5.3. Let f (z) be a meromorphic function of finite order σ such that
�ωf 	≡ 0. Let a1, . . . , ap be p ≥ 2 distinct points in C. Then

(p − 1)T (r, f ) ≤ Ñ�ω(r, f ) +
p∑

j=1

Ñ�ω(r,1/(f − aj ))

+ o(T (r, f )) + O(log r) (5.3)

outside a set of finite logarithmic measure.

An analogue of Picard exceptional values is defined as follows.

Definition 5.4. Let f (z) be a meromorphic function of finite order σ . We call
a ∈ Ĉ a Picard exceptional value for a varying-step difference operator with infi-
nite period if Ñ�ω(r,1/(f − a)) = O(1):

(i) if σ > 0, then
(a) |ω| = |z|β/2, 0 < β < min{1, σ }, for |z| > 1, and |z + ω| < |z| − |z|β/4,
(b) |ω| = |z|/2 for |z| ≤ 1, and |z + ω| < 3

4 |z|;
(ii) if σ = 0, then

(a) |ω| = log1/4 |z| for |z| > 1, and |z + ω| < |z| − log1/8 |z|,
(b) |ω| = |z|/2 for |z| ≤ 1, and |z + ω| < 3

4 |z|.
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z0

r0 = |z0| − |z0|β/4z1 := z0 + ω0

r1 = |z1| − |z1|β/4

z2 := z1 + ω1

Figure 1 This figure shows the locations of three successive points
that lie on the preimage of a Picard exceptional value for a varying-
step difference operator with infinite period, where zn → 0 as n → ∞

Here is an illustration of an example of the sequence (Figure 1).
Then we have the following Picard theorem for difference operator with infi-

nite period.

Theorem 5.5. Let f (z) be a meromorphic function of finite order σ . Suppose that
f has three Picard exceptional values with respect to a varying-step difference
operator with infinite period. Then f (z) is a constant.

Proof. Without loss of generality, we may assume that the three exceptional val-
ues are 0, 1, and ∞. We deduce from Theorem 5.3 that if �ωf 	≡ 0, then

T (r, f ) ≤ o(T (r, f )) + O(log r).

This is a contradiction unless either f (z + ω) ≡ f (z) and f (z) is a transcenden-
tal meromorphic function or f (z) is a rational function. We first show that in the
latter case, f must must reduce to a constant. Otherwise, the definition of Pi-
card exceptional values for varying-steps difference operator with infinite period
would imply that the f has an infinite sequence of zeros/poles/a-points, which is
a contradiction.

Next, we consider the case of f (z) being a transcendental meromorphic func-
tion with f (z + ω) ≡ f (z). We claim that f (z) must be an entire function. With-
out loss of generality, we may assume that argω = − arg z, which is guaranteed
under the assumption |z + ω| < |z| − |z|β/4 and |z + ω| < 3

4 |z| for |z| > 1 and
|z| ≤ 1, respectively, when σ > 0, and |z+ω| < |z|− log1/8 |z| and |z+ω| < 3

4 |z|
for |z| > 1 and |z| ≤ 1, respectively, when σ = 0.
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Indeed, if z = μ1 	= 0 is a pole of f (z), then, by f (z + ω) ≡ f (z), there is a
sequence {μn}∞n=1 of poles of f (z) with limn→∞ μn = 0. Thus, z = 0 is a noniso-
lated singularity of f (z), which contradicts with f (z) being meromorphic. Hence,
the only possible pole of f (z) is z = 0. Then we write f (z) = g(z)/zm, where m

is the multiplicity of the pole z = 0, g(z) is an entire function, and g(0) 	= 0.
Since f (z) is transcendental, we can find a finite complex number α such that
the set {z : f (z) = α} is infinite. Thus, we can choose 0 	= ν1 ∈ {z : f (z) = α}.
By f (z + ω) ≡ f (z) we have a sequence of α-points {νn}∞n=1 of f (z) with
limn→∞ νn = 0. So g(νn) = νm

n f (νn) = α · νm
n . Note that g(z) is entire, so we

deduce that g(0) = 0, which is a contradiction with g(0) 	= 0. Hence, f (z) is an
entire function.

Set M = {z : |z| ≤ 10}. Then f (M) is bounded. For each z ∈ C \ M , we can
find z0 ∈ M such that f (z) = f (z0). Thus, f (z) is bounded, which implies that
f (z) is a constant. This contradicts with f (z) being transcendental.

Combining the two cases, we obtain that f (z) is a constant. �

6. Preliminaries

Lemma 6.1 (see [12, p. 60]). Let 0 < α < 1. Then( n∑
k=1

xk

)α

≤
n∑

k=1

xα
k , (6.1)

where xk ≥ 0 (k = 1,2, . . . , n).

Lemma 6.2 (see [12, p. 60]). Let ϕ(x) be a positive function on [a, b]. Then
logϕ(x) is integrable, and

1

b − a

∫ b

a

logϕ(x)dx ≤ log

[
1

b − a

∫ b

a

ϕ(x) dx

]
. (6.2)

Lemma 6.3 (see [12, p. 62]). Let 0 < α < 1. Then, for every complex number ω,
we have

1

2π

∫ 2π

0

1

|reiθ − ω|α dθ ≤ 1

(1 − α)rα
. (6.3)

Lemma 6.4 (see [12, p. 62]). Let f (z) be a meromorphic function. Then∣∣∣∣f ′(z)
f (z)

∣∣∣∣ ≤ 8R

(R − r)2

(
T (R,f ) + T

(
R,

1

f

))

+
∑

|au|<R

2

|z − au| +
∑

|bv |<R

2

|z − bv| , (6.4)

where {au} and {bv} are the sets of zeros and poles of f (z) in D(0,R), respec-
tively.
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Lemma 6.5 (see [16]). Let f (z) be a nonconstant meromorphic function. Then,
for all irreducible rational functions in f (z),

R(f ) = P(f )

Q(f )
=

∑p

i=0 ai(z)f
i(z)∑q

j=0 bj (z)f j (z)
, (6.5)

where {ai(z)} and {bj (z)} are small functions of f (z), and ap(z) 	≡ 0, bq(z) 	≡ 0.
Then,

T (r,R(f )) = max{p,q}T (r, f ) + S(r, f ). (6.6)

Here, we say a meromorphic function g(z) is a small function of f (z) if T (r, g) =
o(T (r, f )).

Lemma 6.6 (see [3]). Let 0 < α ≤ 1. Then there exists a constant Cα > 0 depend-
ing only on α such that

log(1 + x) ≤ Cαxα (6.7)

for x ≥ 0. In particular, C1 = 1.

Lemma 6.7 (see [3]). Let 0 < α ≤ 1, and let Cα be as in Lemma 6.6. Then, for
any two complex numbers z1 and z2 not vanishing simultaneously, we have the
inequality ∣∣∣∣log

∣∣∣∣z1

z2

∣∣∣∣
∣∣∣∣ ≤ Cα

(∣∣∣∣z1 − z2

z2

∣∣∣∣α +
∣∣∣∣z2 − z1

z1

∣∣∣∣α
)

. (6.8)

Lemma 6.8 (see [7]). Let z1, z2, . . . be an infinite sequence of complex numbers
that has no finite limit point and is ordered by increasing moduli. Let n(t) denote
the number of the points {zk} that lie in |z| ≤ t . Let α > 1 be a given real constant.
Then there exists a set E ⊂ (1,∞) of finite logarithmic measure such that if |z| /∈
E ∪ [0,1], then ∑

|zk |≤αr

1

|z − zk| < α2 n(α2r)

r
logα r logn(α2r), (6.9)

where r = |z|.

7. Proof of Theorem 2.1

Proof. We distinguish two cases.
Case 1. Suppose that f (z) has no poles and zeros in D(0, r + 1) := {z : |z| <

r + 1}. Thus, we can choose |η| ∈ (0, 1
2 ) such that z + η ∈ D(0, r + 1) for all z on

{z : |z| = r}. It follows that f (z + η)/f (z) is analytic on an open set containing
{z : |z| ≤ r}. Thus f is uniformly continuous on the compact set {z : |z| ≤ r} and
hence on {z : |z| = r}. Since limη→0 f (z + η)/f (z) = 1, for arbitrary ε > 0, there
exists h1(r, ε) > 0 such that ∣∣∣∣f (z + η)

f (z)

∣∣∣∣ < 1 + ε
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whenever |η| < h1(r, ε), where limr→∞ h1(r, ε) = 0. Hence,

mη

(
r,

f (z + η)

f (z)

)
< log(1 + ε) ≤ ε

whenever |η| < h1(r, ε).
Therefore,

lim
η→0

mη

(
r,

f (z + η)

f (z)

)
= 0. (7.1)

Similarly, we have

lim
η→0

mη

(
r,

f (z)

f (z + η)

)
= 0.

We also deduce

lim
r→∞mη

(
r,

f (z + η)

f (z)

)
≤ ε < 2ε

since η → 0, and therefore we can apply (7.1). Hence,

lim
r→∞mη

(
r,

f (z + η)

f (z)

)
= 0 and lim

r→∞mη

(
r,

f (z)

f (z + η)

)
= 0.

Case 2. Suppose that f (z) has poles and zeros in D(0, r + 1). We define

F(z) = f (z)

∏N
v=1(z − bv)∏M
u=1(z − au)

,

where au (u = 1,2, . . . ,M) and bv (v = 1,2, . . . ,N ) are the zeros and poles of
f (z) in D(0, r + 1), respectively. Thus, F(z) has no poles and zeros in D(0,

r + 1). For all z satisfying |z| = r , we can also choose |η| ∈ (0, 1
2 ) such that

z + η ∈ D(0, r + 1). Moreover,

F(z + η) = f (z + η)

∏N
v=1(z + η − bv)∏M
u=1(z + η − au)

.

Then,

f (z + η)

f (z)
= F(z + η)

F (z)

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

.

It follows from Lemma 6.3 and Lemma 6.7 with 0 < α < 1 that∣∣∣∣log

∣∣∣∣f (z + η)

f (z)

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣log

∣∣∣∣F(z + η)

F (z)

∣∣∣∣
∣∣∣∣ +

M∑
u=1

∣∣∣∣log

∣∣∣∣z + η − au

z − au

∣∣∣∣
∣∣∣∣

+
N∑

v=1

∣∣∣∣log

∣∣∣∣ z − bv

z + η − bv

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣log

∣∣∣∣F(z + η)

F (z)

∣∣∣∣
∣∣∣∣ + Cα|η|α

[ M∑
u=1

(
1

|z − au|α + 1

|z + η − au|α
)

+
N∑

v=1

(
1

|z − bv|α + 1

|z + η − bv|α
)]

.
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Thus,

mη

(
r,

f (z + η)

f (z)

)
+ mη

(
r,

f (z)

f (z + η)

)

≤ mη

(
r,

F (z + η)

F (z)

)
+ mη

(
r,

F (z)

F (z + η)

)

+ Cα|η|α
M∑

u=1

(
1

2π

∫ 2π

0

1

|reiθ − au|α dθ

+ 1

2π

∫ 2π

0

1

|reiθ + η − au|α dθ

)

+ Cα|η|α
N∑

v=1

(
1

2π

∫ 2π

0

1

|reiθ − bv|α dθ

+ 1

2π

∫ 2π

0

1

|reiθ + η − bv|α dθ

)

≤ mη

(
r,

F (z + η)

F (z)

)
+ mη

(
r,

F (z)

F (z + η)

)
+ 2Cα|η|α

(1 − α)rα
(M + N)

≤ mη

(
r,

F (z + η)

F (z)

)
+ mη

(
r,

F (z)

F (z + η)

)

+ 2Cα|η|α
(1 − α)rα

[
n(r + 1, f ) + n

(
r + 1,

1

f

)]
. (7.2)

Since F is free of zeros and poles in |z| < r , we can apply Case 1 to F and
combine this with the last inequality (7.2) to deduce

lim
η→0

mη

(
r,

f (z + η)

f (z)

)
= 0 and lim

η→0
mη

(
r,

f (z)

f (z + η)

)
= 0.

On the other hand, we choose α = 1
2 in (7.2), and since 0 < |η| < α1(r), where

α1(r) = min{log−1/2 r,1/(n(r + 1))2}, n(r) = n(r, f ) + n(r,1/f ), we have

mη

(
r,

f (z + η)

f (z)

)
+ mη

(
r,

f (z)

f (z + η)

)

≤ mη

(
r,

F (z + η)

F (z)

)
+ mη

(
r,

F (z)

F (z + η)

)
+ 4C1/2

r1/2
,

which clearly tends to zero as r → ∞. This proves (2.3). �

8. Proof of Corollary 2.2

Proof. Since (2.1) holds for each positive real number r , for any given ε > 0,
there exists h(r, ε) > 0 such that

mη

(
r,

f (z + η)

f (z)

)
< ε and mη

(
r,

f (z)

f (z + η)

)
< ε



468 Yik-Man Chiang & Xu-Dan Luo

whenever |η| < h(r, ε). Note that

m(r,f (z)) ≤ mη

(
r,

f (z)

f (z + η)

)
+ mη(r, f (z + η))

≤ m(r,f (z)) + mη

(
r,

f (z)

f (z + η)

)
+ mη

(
r,

f (z + η)

f (z)

)
,

that is,

−mη

(
r,

f (z)

f (z + η)

)
≤ mη(r, f (z + η)) − m(r,f (z)) ≤ mη

(
r,

f (z + η)

f (z)

)
.

This implies

|mη(r, f (z + η)) − m(r,f (z))|
≤ mη

(
r,

f (z)

f (z + η)

)
+ mη

(
r,

f (z + η)

f (z)

)
< 2ε

whenever |η| < h(r, ε). Therefore

lim
η→0

mη(r, f (z + η)) = m(r,f (z)). �

9. Proof of Theorem 2.3

Proof. Let α2(r) be defined in (2.5). Since 0 < |η| < α2(r), we have n(0, f (z +
η)) = 0.

Applying the argument in [3, (5.1), (5.2), (5.3), and (5.4)], we deduce

|Nη(r, f (z + η)) − N(r,f (z))|
≤ |η|

( ∑
0<|bμ−η|<r,

bμ 	=0

1

|bμ − η| +
∑

0<|bμ|<r,
bμ−η 	=0

1

|bμ|
)

+ n(0, f (z)) log r. (9.1)

Note that f (z) has no poles in D(0, h) \ {0}, which implies that∑
0<|bμ−η|≤|η|,

bμ 	=0

1

|bμ − η| = 0

under the assumption 0 < |η| < α2(r). Thus,∑
0<|bμ−η|<r,

bμ 	=0

1

|bμ − η| =
∑

0<|bμ−η|≤|η|,
bμ 	=0

1

|bμ − η| +
∑

|η|<|bμ−η|<r

1

|bμ − η|

≤
∑

|η|<|bμ−η|<r

1

|bμ| ·
(

1 +
∣∣∣∣ η

bμ − η

∣∣∣∣
)

≤ 2
∑

|η|<|bμ−η|<r

1

|bμ| ≤ 2
∑

0<|bμ|<r+|η|

1

|bμ| . (9.2)
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From (9.1) and (9.2) we deduce

|Nη(r, f (z + η)) − N(r,f (z))|
≤ 3|η|

( ∑
0<|bμ|<r+|η|

1

|bμ|
)

+ n(0, f (z)) log r.

Since 0 < |η| < α2(r), we have

|Nη(r, f (z + η)) − N(r,f (z))| ≤ n(0, f (z)) log r + 3.

Hence,
Nη(r, f (z + η)) = N(r,f (z)) + ε1(r),

where |ε1(r)| ≤ n(0, f (z)) log r + 3. �

10. Proof of Theorem 2.4

Proof. It follows from the proofs of Theorem 2.1 and Theorem 2.3 that, for
each r > 0, there exists β(r) > 0 such that whenever 0 < |η| < β(r) :=
min{α1(r), α2(r)} (see the remark after Theorem 2.4),

Tη(r, f (z + η)) = mη(r, f (z + η)) + Nη(r, f (z + η))

≤ m(r,f (z)) + mη

(
r,

f (z + η)

f (z)

)
+ Nη(r, f (z + η))

= T (r, f (z)) + ε1(r) + 1,

where |ε1(r)| ≤ n(0, f (z)) log r + 3. Similarly, we have

T (r, f (z)) ≤ Tη(r, f (z + η)) + ε1(r) + 1.

This proves (2.7). �

11. Proof of Theorem 3.1

Proof. Since f (z) is of finite order σ , we have

T (r, f ) = O(rσ+ε).

By choosing R = 2r , R′ = 3r , and α = 1 − ε in [3, Thm. 2.4] we have

m

(
r,

f (z + ω)

f (z)

)
+ m

(
r,

f (z)

f (z + ω)

)
= O(rσ−(1−β)(1−ε)+ε). �

12. Proof of Theorem 3.2

Proof. (1) If σ is nonzero, then we again apply [3, (5.1)–(5.4)] to obtain

|N(r,f (z + ω)) − N(r,f (z))|
≤ |ω|

( ∑
0<|bμ−ω|<r,

bμ 	=0

1

|bμ − ω| +
∑

0<|bμ|<r,
bμ−ω 	=0

1

|bμ|
)

+ O(log r).
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Note that if |ω| < rβ < r and r > 1, then∑
0<|bμ−ω|<r,

bμ 	=0

1

|bμ − ω| =
∑

0<|bμ−ω|≤|ω|,
bμ 	=0

1

|bμ − ω| +
∑

|ω|<|bμ−ω|<r

1

|bμ − ω| . (12.1)

Lemma 6.8 implies, with α = 2, that∑
0<|bμ−ω|≤|ω|,

bμ 	=0

1

|bμ − ω| ≤
∑

|bμ|≤2|ω|

1

|ω − bμ|

≤ 4 · n(4|ω|)
|ω| · log2 |ω| · logn(4|ω|)

= O(|ω|σ−1+ε · log3 |ω|) (12.2)

when |ω| is sufficiently large and outside a set of finite logarithmic measure
of |ω|.

Since ∑
|ω|<|bμ−ω|<r

1

|bμ − ω| ≤
∑

|ω|<|bμ−η|<r

1

|bμ| ·
(

1 +
∣∣∣∣ ω

bμ − ω

∣∣∣∣
)

<
∑

|ω|<|bμ−ω|<r

2

|bμ| ≤
∑

0<|bμ|<2r

2

|bμ| , (12.3)

we get

|N(r,f (z + ω)) − N(r,f (z))|
≤ 3|ω|

( ∑
0<|bμ|<2r

1

|bμ|
)

+ O(|ω|σ+ε · log3 |ω|) + O(log r). (12.4)

But a standard argument (see e.g. [3, (5.9)–(5.12)] implies that∑
0<|bμ|<2r

1

|bμ| = O(rσ−1+ε)

when σ ≥ 1 and ∑
0<|bμ|<2r

1

|bμ| = O(1) (12.5)

when σ < 1.
Thus, when σ ≥ 1, we choose 0 < ε < min{(σ − 1)(1 − β)/β,1 − β}.

Hence,

N(r,f (z + ω)) = N(r,f ) + O(rβ(σ+ε) · log3 r)

+ O(rσ−(1−β)+ε) + O(log r) (12.6)

outside a set of finite logarithmic measure of |ω| and hence of |r|. Since ε < 1−β ,
this, together with (12.6), gives (3.2).
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On the other hand, when 0 < σ < 1, (12.4) becomes

N(r,f (z + ω)) = N(r,f ) + O(rβ) + O(rβ(σ+ε) · log3 r) + O(log r). (12.7)

We choose 0 < ε < 1 − σ in (12.6). Since the term (12.5) becomes bounded, the
assumption on ε means that the term O(rβ) is dominant over the term rβ(σ+ε),
and so (3.3) follows.

(2) If σ = σ(f ) = 0, then we choose |ω| < log1/2 r < r for r > 1. It follows
similarly from (12.1) and Lemma 6.8 with a different ε, 0 < ε < 1, that (12.2)
holds with σ = 0.

It follows from (12.3) that (12.4) holds with σ = 0.
Note that σ = σ(f ) = 0, so that (12.5) applies. Hence,

N(r,f (z + ω)) = N(r,f ) + O(logε/2 r · log3 log r) + O(log r)

= N(r,f ) + O(log r)

outside a set of finite logarithmic measure. �

13. Applications of Vanishing Period

It is known that we can recover the classical Painlevé equations from the cor-
responding discrete Painlevé equations [17] taking suitable limits of specifically
designated change of variables. See for example, [10] and [6]. We further consider
limits of different types between certain discrete equations and their continuous
counterparts by making use of what we have established in this paper.

Example 13.1. If the difference equation

f (z + η) − f (z) = R(f (z), z, η)

= a0(z, η) + a1(z, η)f (z) + · · · + ap(z, η)f p(z)

b0(z, η) + b1(z, η)f (z) + · · · + bq(z, η)f q(z)
(13.1)

with rational coefficients ai(z, η) (i = 1, . . . , p) and bj (z, η) (j = 1, . . . , q) ad-
mits a transcendental meromorphic solution f (z) that is independent of η, where
η is a nonzero parameter such that

lim
η→0

R(f (z), z, η)

η
= R̂(f (z), z),

when taken as a formal limit, is a rational function of f (z) with rational coeffi-
cients. Then, q = 0 and p ≤ 2. Moreover, (13.1) will be reduced into a Riccati
differential equation of the form f ′(z) = a(z)+ b(z)f (z)+ c(z)f 2(z) with ratio-
nal coefficients.

Proof. It follows from (13.1) after division of both sides by η and an application
of Lemma 6.5 that

max{p,q}T (r, f (z)) = T (r,R(f (z), z, η)) + O(log |η|) + S(r, f (z))

= T (r, f (z + η) − f (z)) + O(log |η|) + S(r, f (z))

≤ T (r, f (z + η)) + T (r, f (z)) + O(log |η|) + S(r, f (z)).
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We deduce from Theorem 2.4 that

max{p,q}T (r, f (z)) ≤ 2T (r, f (z)) + O(log |η|) + ε(r) + S(r, f (z)). (13.2)

We choose |η| = min{α1(r), α2(r)}/2, where α1(r) and α2(r) were defined in
(2.2) and (2.5), respectively. Note that if f has at most finitely many zeros, and
we are done. If, however, f has infinitely many zeros, then we have, for a suitably
chosen δ > 0, that∑

0<|bμ|<r+1/2

1

|bμ| = n(r + 1/2)

r + 1/2
+

∫ r+1/2

δ

n(t)

t2
dt + O(1)

≥ n(r + 1/2)

r + 1/2
+ O(1) +

∫ r+1/2

r/2+1/4

n(t)

t2
dt

≥ n(r + 1/2)

r + 1/2
+ O(1) +

(
r + 1

2
− r

2
− 1

4

)
n(r/2 + 1/4)

(r + 1/2)2

= n(r + 1/2)

r + 1/2
+ O(1) +

(
1

2
+ o(1)

)
n(r/2 + 1/4)

r
, (13.3)

from which and from (13.2) we deduce that max{p,q} ≤ 2.
On the other hand, note that (13.1) can be written as

f (z + η) − f (z)

η
= R(f (z), z, η)

η
.

Letting η → 0 as a formal limit, we obtain

f ′(z) = R̂(f (z), z), (13.4)

which is an equation considered by Malmquist. Since this equation admits a mero-
morphic solution under our assumption, Malmquist’s theorem (see [14, p. 193])
implies that equation (13.4) reduces to a Riccati differential equation of the form

f ′(z) = a(z) + b(z)f (z) + c(z)f 2(z)

with rational coefficients. Therefore, q = 0 and p ≤ 2. �

Example 13.2. Suppose that the difference equation

f (z + η1 + η2) − f (z + η1) − f (z + η2) + f (z)

= R(f (z), z, η1, η2)

= a0(z, η1, η2) + a1(z, η1, η2)f (z) + · · · + ap(z, η1, η2)f
p(z)

b0(z, η1, η2) + b1(z, η1, η2)f (z) + · · · + bq(z, η1, η2)f q(z)
(13.5)

with rational coefficients ai(z, η1, η2) (i = 1, . . . , p) and bj (z, η1, η2) (j =
1, . . . , q) admits a transcendental meromorphic solution f (z) independent of η1

and η2 such that both

lim
η1→0

R(f (z), z, η1, η2)

η1
= R1(f (z), z, η2)
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and

lim
η2→0

lim
η1→0

= R(f (z), z, η1, η2)

η1η2
= lim

η2→0

R1(f (z), z, η2)

η2
= R2(f (z), z)

are rational functions of f (z) with rational coefficients. Then either (13.5) will
be reduced to Painlevé equations (I) or (II) after taking limits, which implies that
q = 0 and p ≤ 3, or (13.5) will be transformed into a reducible second-order
differential equation or that without the Painlevé property.

Proof. We deduce from (13.5) and Lemma 6.5 that

max{p,q}T (r, f (z)) = T (r,R(f (z), z, η1, η2)) + O(log |η1|)
+ O(log |η2|) + S(r, f (z))

= T (r, f (z + η1 + η2) − f (z + η1) − f (z + η2) + f (z))

+ O(log |η1|) + O(log |η2|) + S(r, f (z))

≤ Tη1+η2(r, f (z + η1 + η2)) + Tη1(r, f (z + η1))

+ Tη2(r, f (z + η2)) + T (r, f (z))

+ O(log |η1|) + O(log |η2|) + S(r, f (z)).

We deduce from Theorem 2.4 that

max{p,q}T (r, f (z)) ≤ 4T (r, f (z)) + O(log |η1|)
+ O(log |η2|) + 3ε(r) + S(r, f (z)). (13.6)

We choose |η1| = |η2| = min{α1(r), α2(r)}/2, where α1(r) and α2(r) are defined
in (2.2) and (2.5), respectively. According to (13.3), Theorem 2.4 applies, from
which and from (13.6) we deduce that max{p,q} ≤ 4.

On the other hand, note that (13.5) can be written as

f (z + η2 + η1) − f (z + η2)

η1
− f (z + η1) − f (z)

η1
= R(f (z), z, η1, η2)

η1
.

Letting η1 → 0 as a formal limit, we get

f ′(z + η2) − f ′(z)
η2

= 1

η2
· R1(f (z), z, η2).

Letting η2 → 0 as a formal limit, we have

f ′′(z) = R2(f (z), z). (13.7)

Then (see, e.g., [13, Section 14.4]) either (13.7) is a reducible second-order dif-
ferential equation, which can be solved by known special functions, or that with-
out the Painlevé property, or it is PI : f ′′(z) = 6f 2(z) + z or PII : f ′′(z) =
2f 3(z) + zf (z) + α, where α is a constant.

In the second case, we deduce that q = 0 and p ≤ 3. �

The following theorem is a limiting analogue of the Clunie lemma. Although the
basic idea goes back to Clunie [14], we apply our Theorem 2.1 instead of the
logarithmic derivative estimate [14] and the logarithmic difference estimate [3].
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Theorem 13.3. Let f (z) be a nonconstant meromorphic solution of

f n(z)P (z, f ) = Q(z,f ),

where P(z,f ) and Q(z,f ) are difference polynomials in f (z), and its steps of
shifts are nonzero parameters. If the degree of Q(z,f ) is at most n, then

lim
�→0

m(r,P (z, f )) = o(T (r, f )),

where � is the set of all these steps in P(z,f ). Here, � → 0 means that the
maximum length of the steps tends to zero.

14. A Reformulation of Logarithmic Derivative Lemma

We give an alternative derivation of Nevanlinna’s original logarithmic derivative
lemma m(r,f ′/f ) = O(log r) via a formal limiting process of a new difference-
type estimate of

m

(
r,

1

η

(
f (z + η)

f (z)
− 1

))
−→ m

(
r,

f ′

f

)
, η → 0.

Theorem 14.1. Let f (z) be a meromorphic function, r , R, and R′ be positive
real numbers satisfying 0 < r < R < R′, and 0 < α < 1 be a constant. Then

lim
η→0

mη

(
r,

1

η

(
f (z + η)

f (z)
− 1

))

≤ 1

α
log

(
1 + 8Rα

(R − r)2α

(
T α(R,f ) + T α

(
R,

1

f

))

+ 3(N(R′, f ) + N(R′, 1
f
))

(1 − α)rα log R′
R

)

+ 1

α
log

(
2α + N(R′, f ) + N(R′, 1

f
)

(1 − α)rα log R′
R

)
+ 2 log 2. (14.1)

Proof. We distinguish two cases.
Case 1. If f (z) has no zeros and poles in D(0,R), then f (z) is analytic on

D(0,R) := {z : |z| < R}. Thus, for all z satisfying |z| = r < R, we can choose |η|
(> 0) sufficiently small such that z + η ∈ D(0,R) and

f (z + η) − f (z) = ηf ′(z) + o(η)

as η → 0. So
1

η

(
f (z + η)

f (z)
− 1

)
= f ′(z)

f (z)
+ o(η)

η

1

f (z)
.

Since f (z) has no zeros in D(0,R), 1/f (z) is analytic on D(0,R) and continuous
on D(0,R). By the maximum modulus principle, there exists M1 > 0 such that
|1/f (z)| < M1 for all z ∈ D(0,R).
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We further choose |η| (> 0) sufficiently small such that | o(η)
η

1
f (z)

| < 1
2 for all

z ∈ D(0,R). Hence, when |η| (> 0) is sufficiently small, we have

mη

(
r,

1

η

(
f (z + η)

f (z)
− 1

))
≤ m

(
r,

f ′(z)
f (z)

)
+ m

(
r,

o(η)

η

1

f (z)

)
+ log 2

≤ m

(
r,

f ′(z)
f (z)

)
+ log 2. (14.2)

Case 2. If f (z) has zeros and poles in D(0,R), then we define

F(z) = f (z)

∏N
v=1(z − bv)∏M
u=1(z − au)

, (14.3)

where au (u = 1,2, . . . ,M) and bv (v = 1,2, . . . ,N ) are the zeros and poles of
f (z) on D(0,R), respectively. Thus, F(z) is free of poles and zeros on D(0,R).

For all z satisfying |z| = r < R, we can choose |η| (> 0) sufficiently small
such that z + η ∈ D(0,R). We deduce

1

η

(
f (z + η)

f (z)
− 1

)
= 1

η

(
F(z + η)

F (z)
− 1

)
+ F(z + η)

F (z)

· 1

η

( M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

)
. (14.4)

From (14.3) we have

logF(z) = logf (z) +
N∑

v=1

log(z − bv) −
M∑

u=1

log(z − au) + 2kπi (14.5)

for some k ∈ Z. Taking logarithmic derivatives on both sides of (14.3) and an
application of Lemma 6.4 allow us to deduce

∣∣∣∣F ′(z)
F (z)

∣∣∣∣ ≤
∣∣∣∣f ′(z)
f (z)

∣∣∣∣ +
N∑

v=1

1

|z − bv| +
M∑

u=1

1

|z − au|

≤ 8R

(R − r)2

(
T (R,f ) + T

(
R,

1

f

))
+

∑
|au|<R

2

|z − au|

+
∑

|bv |<R

2

|z − bv| +
N∑

v=1

1

|z − bv| +
M∑

u=1

1

|z − au|

≤ 8R

(R − r)2

(
T (R,f ) + T

(
R,

1

f

))

+
N∑

v=1

3

|z − bv| +
M∑

u=1

3

|z − au| . (14.6)
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Taking log+ of both sides of (14.6) and applying Lemma 6.1 with 0 < α < 1
yields

log+
∣∣∣∣F ′(z)
F (z)

∣∣∣∣ ≤ 1

α
log

(
1 +

∣∣∣∣F ′(z)
F (z)

∣∣∣∣
)α

≤ 1

α
log

(
1 + 8R

(R − r)2

(
T (R,f ) + T

(
R,

1

f

))

+
N∑

v=1

3

|z − bv| +
M∑

u=1

3

|z − au|
)α

≤ 1

α
log

(
1 + 8Rα

(R − r)2α

(
T α(R,f ) + T α

(
R,

1

f

))

+
N∑

v=1

3

|z − bv|α +
M∑

u=1

3

|z − au|α
)

. (14.7)

A straightforward application of Lemma 6.2 and Lemma 6.3 to (14.7) gives the
estimate

m

(
r,

F ′(z)
F (z)

)
≤ 1

α
log

(
1 + 8Rα

(R − r)2α

(
T α(R,f ) + T α

(
R,

1

f

))

+ 3

(1 − α)rα
(M + N)

)
. (14.8)

Noting that 0 < R < R′, we have

n(R,f ) ≤ N(R′, f )

log R′
R

and n

(
R,

1

f

)
≤ N(R′, 1

f
)

log R′
R

. (14.9)

Combining (14.8) and (14.9), we deduce that

m

(
r,

F ′(z)
F (z)

)
≤ 1

α
log

(
1 + 8Rα

(R − r)2α

(
T α(R,f ) + T α

(
R,

1

f

))

+ 3(N(R′, f ) + N(R′, 1
f
))

(1 − α)rα log R′
R

)
. (14.10)

On the other hand, an application of L’Hospital’s rule yields

lim
η→0

1

η

( M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

)
=

M∑
u=1

1

z − au

−
N∑

v=1

1

z − bv

,

so that

lim
η→0

∣∣∣∣1

η
·

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

∣∣∣∣ <

M∑
u=1

1

|z − au| +
N∑

v=1

1

|z − bv| + 1.
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Hence, there exists h > 0 such that∣∣∣∣1

η
·

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

∣∣∣∣
<

M∑
u=1

1

|z − au| +
N∑

v=1

1

|z − bv| + 1 (14.11)

whenever 0 < |η| < h. We apply Lemma 6.1 to (14.11) to deduce

log+
∣∣∣∣1

η
·

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

∣∣∣∣
≤ 1

α
log

(
1 +

∣∣∣∣1

η
·

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

∣∣∣∣
)α

≤ 1

α
log

(
2 +

M∑
u=1

1

|z − au| +
N∑

v=1

1

|z − bv|
)α

≤ 1

α
log

(
2α +

M∑
u=1

1

|z − au|α +
N∑

v=1

1

|z − bv|α
)

. (14.12)

Applying again Lemma 6.2, Lemma 6.3, and (14.9) to (14.12) enables us to de-
duce

mη

(
r,

1

η
·

M∏
u=1

z + η − au

z − au

N∏
v=1

z − bv

z + η − bv

− 1

)

≤ 1

α
log

(
2α +

M∑
u=1

1

2π

∫ 2π

0

1

|reiθ − au|α dθ

+
N∑

v=1

1

2π

∫ 2π

0

1

|reiθ − bv|α dθ

)

≤ 1

α
log

(
2α + 1

(1 − α)rα
(M + N)

)

= 1

α
log

(
2α + 1

(1 − α)rα

(
n(R,f ) + n

(
R,

1

f

)))

≤ 1

α
log

(
2α + N(R′, f ) + N(R′, 1

f
)

(1 − α)rα log R′
R

)
. (14.13)

Since F(z) is free of zeros and poles in D(0,R), we can apply case 1 of Theo-
rem 2.1, which asserts that

lim
η→0

mη

(
r,

F (z + η)

F (z)

)
= 0.
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In particular, we can apply Case 1 with (14.2) to F(z) so that

m

(
r,

1

η

(
F(z + η)

F (z)
− 1

))
≤ m

(
r,

F ′(z)
F (z)

)
+ log 2 (14.14)

when |η| is sufficiently small.
Then, inequality (14.1) follows from (14.4), (14.10), (14.13), and (14.14). �

In particular, we have the following corollary for finite-order meromorphic func-
tions.

Corollary 14.2. Let f (z) be a meromorphic function of finite order σ . Then

lim
r→∞ lim

η→0
mη

(
r,

1

η

(
f (z + η)

f (z)
− 1

))
= O(log r) when σ ≥ 1; (14.15)

lim
r→∞ lim

η→0
mη

(
r,

1

η

(
f (z + η)

f (z)
− 1

))
= O(1) when σ < 1. (14.16)

Proof. Since f (z) is a nonconstant meromorphic function of finite order σ , given
0 < ε < 2, we have

T (r, f ) ≤ rσ+ε/2

when r is sufficiently large. We choose α = 1 − ε
2 , R = 2r , and R′ = 3r in Theo-

rem 14.1. Then the stated limits follow. �

15. Concluding Remarks

This paper has established a way that allows us to recover the classical little Picard
theorem for meromorphic functions from the corresponding little Picard theorem
for difference operators. One way to consider the original little Picard theorem is
that it is a consequence of the meromorphic function belonging to the kernel of
a differential operator. Our formulations of Nevanlinna theories enable us to see
that the meromorphic functions belonging to the kernels of vanishing and infinite-
period varying-step difference operators must reduce to constants. This allows us
to treat the classical results as limiting cases of the discrete analogues. As the
discrete–continuous interplay has always been a new source of inspiration (see
e.g. [1; 17]), the current paper offers a concrete approach to achieve this interplay
between discrete and continuous operators by Nevanlinna theory.
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