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Equivariantly Uniformly Rational Varieties

Charlie Petitjean

Abstract. We introduce equivariant versions of uniform rationality:
given an algebraic group G, a G-variety is called G-uniformly rational
(resp. G-linearly uniformly rational) if every point has a G-invariant
open neighborhood equivariantly isomorphic to a G-invariant open
subset of the affine space endowed with a G-action (resp. linear G-
action). We establish a criterion for Gm-uniform rationality of smooth
affine varieties equipped with hyperbolic Gm-actions with a unique
fixed point, formulated in terms of their Altmann–Hausen presenta-
tion. We prove the Gm-uniform rationality of Koras–Russell three-
folds of the first kind, and we also give an example of a non-Gm-
uniformly rational but smooth rational Gm-threefold associated with
pairs of plane rational curves birationally nonequivalent to a union of
lines.

Introduction

A uniformly rational variety is a variety for which every point has a Zariski open
neighborhood isomorphic to an open subset of an affine space. A uniformly ratio-
nal variety is in particular a smooth rational variety, but the converse is an open
question [10, p. 885].

In this article, we introduce stronger equivariant versions of this notion, in
which we require in addition that the open subsets are stable under certain al-
gebraic group actions. The main motivation is that for such varieties, uniform
rationality, equivariant or not, can essentially be reduced to rationality questions
at the quotient level. We construct examples of smooth rational but not equivari-
antly uniformly rational varieties; the question of their uniform rationality is still
open. We also establish equivariant uniform rationality of large families of affine
threefolds.

We focus mainly on actions of algebraic tori T. The complexity of a T-action on
a variety is the codimension of a general orbit; in the case of a faithful action, the
complexity is thus simply dim(X) − dim(T). The complexity zero corresponds
to toric varieties, which are well known to be uniformly rational when smooth.
In fact, they are even T-linearly uniformly rational in the sense of Definition 4.
The same conclusion holds for smooth rational T-varieties of complexity one by
a result of [18, Chapter 4]. In addition, by [3, Theorem 5] any smooth complete
rational T-variety of complexity one admits a covering by finitely many open
charts isomorphic to the affine space.
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In this article, as a step toward the understanding of T-varieties of higher
complexity, we study the situation of affine threefolds equipped with hyper-
bolic Gm-actions. We use the general description developed by Altmann, Hausen,
and Süss [1; 2] in terms of pairs (Y,D), where Y is a variety of dimension
dim(X) − dim(T), and D is a so-called polyhedral divisor on Y . In our situation,
Y is a rational surface, and our main result, Theorem 16, allows us to translate
equivariant uniform rationality into a question of birational geometry of curves
on rational surfaces.

The article is organized as follows. In Section 1, we introduce equivariant
versions of uniform rationality and summarize A-H presentations of affine Gm-
varieties. Section 2 explains how to use these presentations for the study of uni-
form rationality of these varieties. In Section 3, we focus on families of Gm-
rational threefolds, we show, for example, that all Koras–Russell threefolds of
the first kind and certain ones of the second kind (see [19; 14]) are equivariantly
uniformly rational and therefore uniformly rational. In Section 4, we find exam-
ples of smooth rational Gm-threefolds including other Koras–Russell threefolds
that are not equivariantly uniformly rational. It is not known if these varieties
are uniformly rational without any group action. In the last section, we introduce
a weaker notion of equivariant uniform rationality, and we illustrate differences
between all these notions.

The author would like to thank Karol Palka and Jérémy Blanc for helpful dis-
cussions concerning Section 3.2.

1. Preliminaries

1.1. Basic Examples of Uniformly Rational Varieties

Recall that a variety of dimension n is called uniformly rational if every point
has a Zariski open neighborhood isomorphic to an open subset of An. Some par-
tial results are known; for instance, every smooth complete rational surface is
uniformly rational. In fact, it follows from [6; 5] that the blowup of a uniformly
rational variety along a smooth subvariety is again uniformly rational. Since open
subsets of uniformly rational varieties are uniformly rational, it follows that every
open subset of the blowup of a uniformly rational variety along a smooth subva-
riety is again uniformly rational. In particular, this holds for affine modifications
of uniformly rational varieties along smooth subvarieties.

Definition 1 ([15; 8]). Let (X,D,Z) be a triple consisting of a variety X, an
effective Cartier divisor D on X, and a closed subscheme Z with ideal sheaf
IZ ⊂ OX(−D). The affine modification of the variety X along D with center Z

is the scheme X′ = X̃Z \ D′ where D′ is the proper transform of D in the blowup
X̃Z → X of X along Z.

A particular type of affine modification is the hyperbolic modification of a variety
X with center at a closed subscheme Z ⊂ X (see [25]): It is defined as the affine
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modification of X×A1 with center Z ×{0} and divisor X×{0}. As an immediate
corollary of [6, Proposition 2.6], we obtain the following result:

Proposition 2. Affine modifications and hyperbolic modifications of uniformly
rational varieties along smooth centers are again uniformly rational.

Example 3. Let An = Spec(C[x1, . . . , xn]), and let I = (f, g) be the defining
ideal of a smooth subvariety in An. Then the affine modification of An with center
I = (f, g) and divisor D = {f = 0} is isomorphic to the subvariety X′ ⊂ An+1

defined by the equation

{g(x1, . . . , xn) − yf (x1, . . . , xn) = 0} ⊂ An+1 = Spec(C[x1, . . . , xn, y]).
It is a uniformly rational variety.

1.2. Equivariantly Uniformly Rational Varieties

Let G be an affine algebraic group, and let X be a G-variety, that is, an algebraic
variety endowed with a G-action. We introduce equivariant versions of uniform
rationality.

Definition 4. Let X be a G-variety, and x ∈ X.

i) We say that X is G-linearly rational at the point x if there exists a G-
stable open neighborhood Ux of x, a linear representation of G → GLn(V ), and
a G-stable open subset U ′ ⊂ V � An such that Ux is equivariantly isomorphic to
U ′.

ii) We say that X is G-rational at the point x if there exists an open G-
stable neighborhood Ux of x, an action of G on An, and an open G-stable subset
U ′ ⊂ An such that Ux is equivariantly isomorphic to U ′.

iii) A G-variety that is G-linearly rational (respectively G-rational) at each
point is called G-linearly uniformly rational (respectively G-uniformly rational).

iv) A G-variety that admits a unique fixed point x0 by the G-action is called
G-linearly rational (respectively G-rational) if it is G-linearly rational (respec-
tively G-rational) at x0.

G-linearly uniformly rational or just G-uniformly rational varieties are always
uniformly rational. The converse is trivially false: for instance, the point [1 : 0]
in P1 does not admit any Ga-invariant affine open neighborhood for the action
defined by t · [u : v] → [u + tv : v].

For algebraic tori T, as already mentioned in the Introduction, it is a classical
fact that smooth toric varieties are T-linearly uniformly rational. Moreover, it is
known that every effective T-action on An is linearizable for dim(T) ≥ n − 1
(see [12] for n = 2 and [4] for the general case), and in another direction every
algebraic Gm-action on A3 is linearizable [14]. As a consequence, we obtain the
following:
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Theorem 5. For T-varieties of complexity 0, 1 and for Gm-threefolds, the prop-
erties of being T-linearly uniformly rational and T-uniformly rational are equiv-
alent.

1.3. Hyperbolic Gm-Actions on Smooth Varieties

By a theorem of Sumihiro [23] every normal Gm-variety X admits a cover by
affine Gm-stable open subsets. This reduces the study of Gm-linearly uniformly
rational varieties to the affine case. Recall that the coordinate ring A of an
affine Gm-variety X is Z-graded in a natural way by its subspaces An := {f ∈
A/f (λ · x) = λnf (x),∀λ ∈ Gm} of semiinvariants of weight n. In particular, A0

is the ring of invariant functions on X. If X is smooth with positively graded coor-
dinate ring, then by [17], X has the structure of a vector bundle over its fixed point
locus XGm , and hence the question whether X is Gm-linearly uniformly rational
becomes intimately related to the uniform rationality of XGm . In this subsection,
we consequently focus on hyperbolic Gm-actions. We summarize the correspon-
dence between smooth affine varieties X endowed with an effective hyperbolic
Gm-action and pairs (Y,D) where Y is a variety, which we call A-H quotient, and
D is a so-called segmental divisor on Y . All the definitions and constructions are
adapted from [1].

Definition 6. A Gm-action is said to be hyperbolic if there is at least one n1 < 0
and one n2 > 0 such that An1 and An2 are nonzero.

Definition 7. Let X = Spec(A) be a smooth affine variety equipped with a hy-
perbolic Gm-action.

i) We denote by q : X → Y0(X) := X//Gm = Spec(A0) the categorical quo-
tient of X.

ii) The A-H quotient Y(X) of X is the blowup π : Y(X) → Y0(X) of Y0(X)

with center at the closed subscheme defined by the ideal I = 〈Ad · A−d〉, where
d > 0 is chosen such that

⊕
n∈Z Adn is generated by A0 and A±d . It is a normal

semiprojective variety (see [1]). By [24, Theorem 1.9 and Proposition 1.4], Y(X)

is isomorphic to the fiber product of the schemes Y±(X) = ProjA0
(
⊕

n∈Z≥0
A±n)

over Y0(X).

In the remainder of the paper, we use the notation π : ṼI → V to refer to the
blowup of an affine variety V with center at the closed subscheme defined by the
ideal I ⊂ �(V,OV ).

Definition 8. A segmental divisor D on a normal algebraic variety Y is a formal
finite sum D = ∑[ai, bi] ⊗ Di , where Di are prime Weil divisors on Y , and
[ai, bi] are closed intervals with rational bounds ai ≤ bi .

The set of all closed intervals with rational bounds admits a structure of
Abelian semigroup for the Minkowski sum, the Minkowski sum of two intervals
[ai, bi] and [aj , bj ] being the interval [ai + aj , bi + bj ].
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Every element n ∈ Z determines a map from segmental divisors to the group of
Weil Q-divisors on Y :

D =
∑

[ai, bi] ⊗ Di →D(n) =
∑

qiDi,

where for all i, qi ∈ Q is the minimum of nai and nbi .

Definition 9. A proper-segmental divisor (ps-divisor) D on a variety Y is a
segmental divisor on Y such that for every n ∈ Z, D(n) satisfies the following
properties:

1) D(n) is a Q-Cartier divisor on Y .
2) D(n) is semiample, that is, for some p ∈ Z>0, Y is covered by complements

of supports of effective divisors linearly equivalent to D(pn).
3) D(n) is big, that is, for some p ∈ Z>0, there exists an effective divisor D

linearly equivalent to D(pn) such that Y \ Supp(D) is affine.

In the particular case of hyperbolic Gm-action, the main theorem of [1] can be
reformulated as follows.

Theorem 10. For any ps-divisor D on a normal semiprojective variety Y , the
scheme

S(Y,D) = Spec

(⊕
n∈Z

�(Y,OY (D(n)))

)

is a normal affine variety of dimension dim(Y ) + 1 endowed with an effective
hyperbolic Gm-action whose A-H quotient Y(S(Y,D)) is birationally isomor-
phic to Y . Conversely, any normal affine variety X endowed with an effective
hyperbolic Gm-action is isomorphic to S(Y (X),D) for a suitable ps-divisor D on
Y(X).

Remark 11. Alternatively (see [7; 9]), any finitely generated Z-graded algebra A

can be written in the form

A =
⊕
n<0

�(Y,OY (nD−)) ⊕ �(Y,OY ) ⊕
⊕
n>0

�(Y,OY (nD+)),

where (Y,D+,D−) is a triple consisting of a normal variety Y and suitable
Q-divisors D+ and D− on it. These two presentations are obtained from each
other by setting D− = D(−1), D+ = D(1), and conversely D = {1}D+ +
[0,1](−D− − D+).

Remark 12. A method to determine a possible ps-divisor D such that X �
S(Y,D) is to embed X as a Gm-stable subvariety of an affine toric variety (see
[1, Section 11]). The calculation is then reduced to the toric case by considering
an embedding in An endowed with a linear action of a torus T of sufficiently large
dimension n. The inclusion of Gm ↪→ T corresponds to an inclusion of the lat-
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tice Z of one-parameter subgroups of Gm in the lattice Zn = N of one-parameter
subgroups of T. We obtain the exact sequence

0 Z
F

N = Zn

P

s

N = Zn/Z 0 ,

where F is given by the induced action of Gm on An, and s is a section of F . Let vi

for i = 1, . . . , n be the first integral vectors of the unidimensional cones generated
by the ith column vectors of P considered as rays in the lattice N � Zn−1. Let
Z be the toric variety of dimension dim(An) − dim(T), determined by the fan in
N whose cones are generated the vi for i = 1, . . . , n. Then each vi corresponds
to a T′-invariant divisor where T′ = Spec(C[N∨]. By [1, Section 11] Z contains
the A-H quotient of X as a closed subset, and the support of Di is obtained by
restricting the T′-invariant divisor corresponding to vi to Y . If X is the affine
space endowed with a linear action of Gm, then Z is itself the A-H quotient of
An. The segment associated to the divisor Di is equal to s(Rn

≥0 ∩ P −1(vi)). The
section s can further be chosen so that the number of nonzero coefficients in the
associated matrix is minimal. The ps-divisor D from such a section will be called
minimal. We would like to point out that this notion is more restrictive than that
given in [1]; in particular, every minimal ps-divisor in our sense is also in the
sense of [1].

2. Algebro-Combinatorial Criteria for Gm-Linear Rationality

Given a a smooth rational variety X endowed with a hyperbolic Gm-action that
admits a unique fixed point x0, we develop in this section a method to test whether
X is Gm-rational.

Definition 13 ([1, Definition 8.3]). Let Y and Y ′ be normal semiprojective vari-
eties, and let D′ = ∑[a′

i , b
′
i] ⊗ D′

i and D = ∑[ai, bi] ⊗ Di be ps-divisors on Y ′
and Y , respectively.

i) Let ϕ : Y → Y ′ be a morphism such that ϕ(Y ) is not contained in Supp(D′
i )

for any i. The polyhedral pull-back of D′ is defined by ϕ∗(D′) := ∑[a′
i , b

′
i] ⊗

ϕ∗(D′
i ), where ϕ∗(D′

i ) is the usual pull-back of D′
i .

ii) Let ϕ : Y → Y ′ be a proper dominant map. The polyhedral push-forward of
D is defined by ϕ∗(D) := ∑[ai, bi] ⊗ ϕ∗(Di), where ϕ∗(Di) is the usual push-
forward of Di .

Let ϕ : Y → Y ′ be a birational morphism, and let D′ be a divisor on Y ′. Then we
decompose the pull-back of D′ by ϕ as follows: ϕ∗(D′) = (ϕ−1)∗(D′)+R, where
(ϕ−1)∗(D′) is the strict transform of D′, and R is supported in the exceptional
locus of ϕ.

Definition 14. Two pairs (Yi,Di), i = 1,2, consisting of a variety Yi and a
Cartier divisor Di on Yi are called birationally equivalent if there exist a variety
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Z and two proper birational morphisms ϕi : Z → Yi such that the strict trans-
forms (ϕ−1

1 )∗(D1) and (ϕ−1
2 )∗(D2) of D1 and D2, respectively, are equal. For

ps-divisors, we extend this notion in the natural way to pairs (Yi,Di ) consist-
ing of a semiprojective variety Yi and a ps-divisor Di on Yi using the polyhedral
pull-back defined before.

Since we consider hyperbolic Gm-actions with a unique fixed point, the construc-
tion of the A-H quotient Y as in Definition 7 ensures that Y(X) has only one ex-
ceptional divisor E over Y0(X). We denote by D̂ the segmental divisor obtained
from the ps-divisor D corresponding to X by removing all irreducible components
whose supports do not intersect E. The following example illustrate a situation
for which D̂ �= D.

Example 15. Let S be the affine surface defined by {x2y + x = z2} ⊂
A3 = Spec(C[x, y, z]), and let X := S × A1 be the cylinder over S en-
dowed with the hyperbolic Gm-action induced by the linear one λ(x, y, z, t) →
(λ6x,λ−6y,λ3z,λ2t) on A4 = Spec(C[x, y, z, t]). Using the method described in
Remark 12, we find that X is equivariantly isomorphic to S(Ã2

(u,v),D) with

D =
{

1

2

}
D1 +

{
1

2

}
D2 −

{
1

3

}
D3 +

[
0,

1

6

]
E,

where E is the exceptional divisor of the blowup π : Ã2
(u,v) → A2 � Spec(C[u,

v]) � Spec(C[yt3, yx]), and where D1, D2, and D3 are the strict transforms of the
curves L1 = {v = 0}, L2 = {1+v = 0}, and L3 = {u = 0} in A2 = Spec(C[u,v]).
The divisor D2 does not intersect the exceptional divisor E, and so

D̂ =
{

1

2

}
D1 −

{
1

3

}
D3 +

[
0,

1

6

]
E.

Theorem 16. Let X be a smooth affine rational variety endowed with a hyper-
bolic Gm-action with a unique fixed point x0. Then X is Gm-rational if and only
if the following holds:

1) There exists pairs (Y,D) and (Y ′,D′) such that S(Y,D) is equivariantly
isomorphic to X and S(Y ′,D′) is equivariantly isomorphic to An endowed with a
hyperbolic Gm-action.

2) The pairs (Y, D̂) and (Y ′, D̂′) are birationally equivalent.

Proof. Suppose that X is Gm-rational, so that there exist an open Gm-stable
neighborhood Ux0 of x0, an action of Gm on An, an open Gm-stable subvariety
U ′ ⊂ An, and an equivariant isomorphism ϕ : Ux0 → U ′. We can always reduce
to the case where Ux0 and U ′ are principal open sets. Indeed, Ux0 is the comple-
ment of a closed stable subvariety of X determined by an ideal I = (f0, . . . , fk)

where each fi ∈ �(X,OX) is semiinvariant. Since Ux0 contains x0, at least one
of the fi does not vanish at x0. Denoting this function by f , the principal open
subset Xf := X \ V (f ) is contained in Ux0 . The restriction of ϕ to Xf induces
an isomorphism between Xf and ϕ(Xf ). This yields a divisor U ′ \ϕ(Xf ) on U ′.



252 Charlie Petitjean

Since An is factorial, this divisor is the restriction of a principal divisor Div(f ′)
on An for a certain regular function f ′. By construction, ϕ induces an equivariant
isomorphism between Xf and An

f ′ .
Note that any nonconstant semiinvariant function f ∈ �(X,OX) such that

f (x0) �= 0 is actually invariant. Indeed, letting w be the weight of f , we have
λ · f (x0) = λwf (x0) = f (λ−1 · x0) = f (x0) for all λ ∈ Gm, and so w = 0.

Let (Y,D) be the pair corresponding to X with D minimal in the sense de-
fined in Remark 12. We can identify every invariant function f on X nonva-
nishing at x0 with an element f of �(Y,OY ) such that V (f ) ⊂ Y does not
contain any irreducible component of Supp(D̂). Indeed, every such invariant func-
tion corresponds via the algebraic quotient morphism q : X → Y0 to a function
on �(Y0,OY0) that does not vanish at q(x0). Since the center of the blowup
π : Y → Y0 is supported by q(x0), we can in turn identify f with a regular func-
tion on Y . We denote by Yf the corresponding open subset of Y where f does
not vanish, so that Y(Xf ) = Yf with our assumption.

By [2, Proposition 3.3], for a ps-divisor D on a normal semiprojective variety
Y , let Df be the localization of D by f . Then Df is a ps-divisor on Yf , and the
canonical map Df → D describes the open embedding Xf → X.

Denoting i : Yf ↪→ Y the canonical open embedding, we say that the
pair (Yf ,Df = i∗(D)) describes the equivariant open embedding j : Xf �
S(Yf , i∗(D)) ↪→ X, and we have the following diagram:

Xf

j

q

X = S(Y,D)

q

Xf //Gm = Y 0,f Y0 = X//Gm

Yf
i

π|Y ′

Y = BlI (Y0).

π

A similar description holds for the principal invariant open subset An
f ′ of An en-

dowed with a hyperbolic Gm-action. We denote the A-H quotient Y(An
f ′) of An

f ′
simply by Y ′

f ′ and the corresponding ps-divisor by D′
f ′ .

By [1, Corollary 8.12] Xf and An
f ′ are equivariantly isomorphic if and only if

there exist a normal semiprojective variety Y ′′, birational morphisms σ1 : Yf →
Y ′′ and σ2 : Y ′

f ′ → Y ′′, and a ps-divisor D′′ on Y ′′such that D ∼= σ ∗
1 (D′′) and

D′
f ′ ∼= σ ∗

2 (D′′). Since σ1 is projective and birational, it either contracts the unique
exceptional divisor E of Yf over Y0,f , or it is an isomorphism. But if σ1 con-
tracts E, then S(Y ′′,D′′) is not equivariantly isomorphic to Xf by Definition 7.
Therefore σ1 is an isomorphism. The same holds for σ2.

Since Df and D′
f ′ are minimal, the pairs (Yf ,Df ) and (Y ′

f ′ ,D′
f ′) are equiva-

lent, that is, there exists an isomorphism � : Yf → Y ′
f ′ such that (�−1)∗(D′

f ′) =
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Df . This implies that the pairs (Y, D̂) and (Y ′, D̂′) are birationally equivalent,
and we obtain the commutative diagram

S(Y ′,D′) = An

q

An
f ′ � Xf

j

q

j ′
X = S(Y,D)

q

An//Gm = Y ′
0 Y ′

0,f ′ � Y 0,f X//Gm = Y0

Y ′ Y ′
f ′ � Yf

ii′
Y.

Conversely, assume that X = S(Y,D) and An = S(Y ′,D′) endowed with an
hyperbolic Gm-action are such that the pairs (Y, D̂) and (Y ′, D̂′) are birationally
equivalent. We can further assume that there exists a birational map between Y

and Y ′ that restricts to an isomorphism φ : Yg → Y ′
g′ between the principal open

sets Yg of Y and Y ′
g′ of Y ′ corresponding to suitable functions g ∈ Γ (Y,OY ) and

g′ ∈ Γ (Y ′,OY ′) whose zero loci do not intersect the exceptional divisors of Y →
Y0 and Y ′ → Y ′

0, respectively. Similarly as before, the function g can be identi-
fied with an invariant function on X that does not vanish at x0. By [2, Proposi-
tion 3.3] the pair (Yg,Dg) describes the equivariant open embedding Xg � S(Yg,

Dg) ↪→ X. In the same way, g′ corresponds to an invariant function on An, and the
pair (Yg′ ,Dg′) describes the equivariant open embedding An

g′ � S(Y ′
g′ ,D′

g′) ↪→
An. This gives the result. �

3. Examples of Gm-Uniformly Rational Threefolds

In the particular case of affine threefolds, Gm-linear uniform rationality is reduced
(by the previous section) to a problem of birational geometry in dimension 2.
Indeed, using Theorem 16, the question may then be considered at the level of the
A-H quotients that are rational semiprojective surfaces.

3.1. Hyperbolic Gm-Action on A3

Using this presentation and the fact that every algebraic Gm-action on A3 =
Spec(C[x, y, z]) is linearizable [14], we are able to characterize hyperbolic Gm-
actions on A3 in terms of their A-H presentations. Indeed, let Gm × A3 → A3

be an effective hyperbolic Gm-action given by λ · (x, y, z) → (λax,λby,λ−cz)

with (a, b, c) ∈ Z3
>0. After a suitable Gm-invariant cyclic cover along coordinate

axes, we can assume that A3//Gm � A2, and the relation between such cyclic
covers and the A-H presentations of the T-varieties are controlled by [21]. Let
(α,β, γ ) ∈ Z3 be such that αa + βb − γ c = 1. Let ρ(a, c) be the greatest com-
mon divisor of a and c, let ρ(b, c) be the greatest common divisor of b and c,
and let δ be the greatest common divisor of a

ρ(a,c)
and b

ρ(b,c)
Then we have the

following:
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Proposition 17. Up to equivariant cyclic covers, every A3 endowed with a hy-
perbolic Gm-action is equivariantly isomorphic to the Gm-variety S(Y,D) with Y

and D defined as follows:

i) Y is isomorphic to a blowup π : Ã2 →A2 of A2 at the origin.
ii) D is of the form

D =
{

αρ(a, c)

c

}
⊗ D1 +

{
βρ(b, c)

c

}
⊗ D2 +

[
γ

δ
,
γ

δ
+ 1

δc

]
⊗ E,

where D1 and D2 are strict transforms of the coordinate axes, and E is the ex-
ceptional divisor of π .

Proof. Let A3 be endowed with a linear action of Gm. The A-H presentation is
obtained from the exact sequence

0 Z
F

Z3
P

s

Z2 0

by the method described in Remark 12, where F = t (a, b,−c), s = (α,β, γ ), and

P =
(

c
ρ(a,c)

0 a
ρ(a,c)

0 c
ρ(b,c)

b
ρ(b,c)

)
.

The algebraic quotient of A3 for an hyperbolic Gm-action is isomorphic to
A2//μ where μ is a finite cyclic group [11]; thus the A-H quotient Y(A3) is by
construction a blowup of A2//μ. In this case, Y(A3) is smooth and corresponds
to the toric variety Z defined in Remark 12, that is, a blowup of A2 whose center
is supported at the origin.

Let now us consider each vi for i = 1, . . . ,3 as in Remark 12, that is, the first
integral vectors of the unidimensional cones generated by the ith column vectors
of

P =
(

c
ρ(a,c)

0 a
ρ(a,c)

0 c
ρ(b,c)

b
ρ(b,c)

)
.

The first two v1 = (
1
0

)
and v2 = (

0
1

)
as rays defining a toric variety correspond

to the generators of A2; thus the associated divisors are the strict transforms of
the coordinate axes, and the last on v3 corresponds to the exceptional divisor.
To determine the associated coefficients, we used the formula [ai, bi] = s(Rn

≥0 ∩
P −1(vi)) given in Remark 12. �

Example 18 ([22, Example 1.4.8]). The presentation of A3 = Spec(C[x, y, z])
equipped with the hyperbolic Gm-action λ · (x, y, z) = (λ2x,λ3y,λ−6z) is
S(Ã2

(u,v),D) with π : Ã2
(u,v) → A2 the blowup of A2 = Spec(C[u,v]) at the origin

and

D =
{
−1

3

}
D1 +

{
1

2

}
D2 +

[
0,

1

6

]
E,

where E is the exceptional divisor of the blowup, and D1 and D2 are the strict
transforms of the lines {u = 0} and {v = 0} in A2, respectively. Indeed, A3//Gm =
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Spec(C[u,v]), and d > 0 in Definition 7 has to be chosen so that
⊕

n∈Z Adn is
generated by A0 and A±d . This is the case if d is the least common multiple of
the weights of the Gm-action on A3. Thus, d = 6, and Y(X) is the blowup of
A2 = Spec(C[u,v]) with center at the closed subscheme with ideal (u, v), that is,
the origin with our choice of coordinates.

3.2. Gm-Linear Uniform Rationality

In this subsection, we prove that some hypersurfaces of A4 are Gm-linearly uni-
formly rational. In particular, every Koras–Russell threefold of the first kind X is
Gm-linearly uniformly rational. These varieties are defined by equations of the
form

{x + xdy + zα2 + tα3 = 0} ⊂ A4 = Spec(C[x, y, z, t]),
where d ≥ 2, and α2 and α3 are coprime. They are smooth rational and endowed
with hyperbolic Gm-actions with algebraic quotients isomorphic to A2//μ where
μ is a finite cyclic group. They have been classified by Koras and Russell in the
context of the linearization problem for Gm-actions on A3 [14].

These threefolds can be viewed as affine modifications of A3 = Spec(C[x,

z, t]) along the principal divisor Df = {f = 0} with center I = (f, g) where f =
−xd and g = x +zα2 + tα3 . But since the center is supported on the cuspidal curve
included in the plane {x = 0} and given by the equation: C = {x = zα2 + tα3 = 0}
(see [25]), their uniform rationality does not follow directly from Corollary 2.

3.2.1. A General Construction. Here we give a general criterion to decide the
Gm-uniform rationality of certain threefolds, arising as stable hypersurfaces of
A4 endowed with a linear Gm-action. Since X is rational, its A-H quotient Y(X)

is also rational.
The aim is to use the notion of birational equivalence of ps-divisors to construct

an isomorphism between a Gm-stable open set of the variety X with a correspond-
ing stable open subset of A3. By Theorem 16 and Proposition 17, the technique
is to consider a well-chosen sequence of birational transformations Y(X) → Ã2

that maps the support of the ps-divisor corresponding to the threefolds X on to the
strict transforms of the coordinate lines and the exceptional divisor in Ã2. More-
over, since we look for Gm-stable open subset of X containing the fixed point, it
is enough to consider a birational map Y0(X) → A2 that sends a pair of curves to
the coordinates axes of A2.

Let p ∈ C[v] be a polynomial of degree k ≥ 1 such that p(0) = 0, let α2, α3,
and d be integers such that dα3 and α2 are coprime. Let X be a hypersurface in
A4 = Spec(C[x, y, z, t]) defined by one of the following equations:

X = {yd−1zα2 + tα3 + p(xy)/y = 0} ⊂ A4 = Spec(C[x, y, z, t]).
Every such X is endowed with a hyperbolic Gm-action induced by the lin-

ear action on A4 defined by λ · (x, y, z, t) = (λα2α3x,λ−α2α3y,λdα3z,λα2 t). The
unique fixed point for this action is the origin of A4 and is a point of X.
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Theorem 19. With the previous notation, we have:

1) X is equivariantly isomorphic to S(Ã2
(u,vd )

,D) with

D =
{

a

α2

}
D1 +

{
b

α3

}
D2 +

[
0,

1

α2α3

]
E,

where E is the exceptional divisor of the blowup π : Ã2
(u,vd )

→ A2 = Spec(C[u,

v]), D1 and D2 are the strict transforms of the curves L1 = {u = 0} and L2 = {u+
p(v) = 0} in A2, respectively, and (a, b) ∈ Z2 are chosen so that adα3 +bα2 = 1.

2) X is smooth if and only if L1 + L2 is an SNC divisor in A2.
3) Under these conditions, X is Gm-linearly rational at (0,0,0,0).

Proof. 1) The A-H presentation is obtained from the exact sequence:

0 Z
F

Z4
P

s

Z3 0

by the method described in Remark 12, where F = t (α2α3,−α2α3, dα3, α2),

P =
⎛
⎝ 1 1 0 0

0 d α2 0
0 1 0 α3

⎞
⎠ ,

and s = (0,0, a, b) is chosen such that adα3 + bα2 = 1.
The corresponding toric variety Z is the blowup of A3 = Spec(C[u,v,w])

along the subscheme defined by the ideal I = (u, vd, vd−1w, . . . , vwd−1,wd),
and Y corresponds to the strict transform by π : Ã3

I → A3 � A4//Gm of the sur-
face {u + w + p(v) = 0} � Spec(C[u,v]), that is, Y � Ã2

(u,vd )
(see [21, Sec-

tion 3.1]).
The ps-divisor D is of the form {a/α2}D1 + {b/α3}D2 + [0,1/(α2α3)]E,

where D1 corresponds to the restriction to Y of the toric divisor given by the
ray v3, and D2 corresponds to the restriction to Y of the toric divisor given
by the ray v4, that is, the strict transforms of the curves {u = ydzα2 = 0} and
{w = ytα3 = −u − p(v) = 0} in A2, respectively. The divisor E corresponds to
the divisor given by v2, that is, the exceptional divisor of π : Ã2

(u,vd )
→ A2.

2) Since p(0) = 0, the equation of X takes the form

yd−1zα2 + tα3 + x

k∏
i=1

(xy + αi) = 0,

and using the Jacobian criterion, we conclude that X is smooth if and only if
αi �= αj for i �= j .

3) Let D = L1 + L2 ⊂ A2
(u,v), and let A2

(u,v) ↪→ P2[u:v:w] be the embedding of

A2 as the complement of the line at the infinity L∞ = {w = 0}. We denote by
D̄ = L̄1 + L̄2 the closure of D in P2

(u:v:w)
(see Figure 1). The only singularity

is at the intersection of L̄2 and L∞. After a sequence of elementary birational
transformations, we reach the kth Hirzebruch surface Fk = P(OP1 ⊕ OP1(k)).
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Figure 1 Embedding in P2 of the divisor in P2

Figure 2 First sequence of blowups and contractions to obtain a
smooth normal crossing divisor in Fk

The proper transform of L̄2 is a smooth curve intersecting the section of negative
self-intersection transversally (see Figure 2). The second step is the blowup of
all the intersection points between L̄1 and L̄2 except the point corresponding to
the origin in A2, followed by the contraction of the proper transform of the fiber
passing through each points of the blowup (see Figure 3). The final configuration
is then the Hirzebruch surface F1 in which the proper transforms of L̄1 and L̄2

have self-intersection 1 and intersect each other in a unique point. Then P2 and
the desired divisor are obtained from F1 by contracting the negative section (see
Figure 4).



258 Charlie Petitjean

Figure 3 Intermediate step, resolution of the crossings, to obtain a
divisor in Fk−2

Figure 4 Final resolution to obtain a divisor in P2

This resolution gives a birational map from the A-H quotient of X to the A-H
quotient of A3 that induces an isomorphism in a neighborhood of the origin of
A2. By Theorem 16 this gives a Gm-equivariant isomorphism between an open
neighborhood of the origin in X and on open neighborhood of the origin in A3.

Let p(v) = v(1 + g(v)) be the polynomial that appears in the statement, and
let φ be the birational map defined by

φ : (u, v) → (−u′(g(v′ + u′) + 1), v′ + u′).
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Its inverse is defined by

φ−1 : (u′, v′) →
(

− u

1 + g(v)
, v + u

1 + g(v)

)
.

Then φ(u + p(v)) = v′(g(v′ + u′) + 1), and we obtain

Y(An) i
Y ′ = Ã2

(u,vd )
\ V (1 + g(v))

� Ã2
(u′,v′d )

\ V (g(v′ + u′) + 1)

i′ Y(X)

and i : Y ′ ↪→ Ã2
(u,vd )

. Then S(Y ′, i∗(D)) = U is an equivariant open neighbor-
hood of the fixed point in X, which is moreover equivariantly isomorphic to an
open subset of A3 = Spec(C[Y,Z,T ]) endowed with the hyperbolic Gm-action.
The action on A3 is defined by λ · (Y,Z,T ) = (λ−α2α3Y,λdα3Z,λα2T ) using
Proposition 17. �

Remark 20. In the particular case where L1 +L2 is not a smooth normal crossing
divisor in A2, that is, the point 2 of the Theorem 19 is not satisfied, but the crossing
of L1 and L2 at the origin is transversal, S(Y,D) is equivariantly isomorphic to
a normal but not smooth Gm-variety V with a unique fixed point contained in
its regular locus. The same process as before can be applied, and the variety V

admits an open Gm-stable neighborhood of the fixed point isomorphic to a Gm-
stable neighborhood of the fixed point of A3 endowed with a linear hyperbolic
Gm-action.

In other words, V is Gm-linearly rational, but not uniformly rational, since it
is singular.

3.2.2. Applications. Specifying the coefficients of the polynomial p ∈ C[v] de-
fined in the previous subsection, we list below particular hypersurfaces of A4 that
are Gm-uniformly rational.

Proposition 21. The following hypersurfaces in A4 = Spec(C[x, y, z, t]) are
Gm-linearly rational:

X1 = {x + xkyk−1 + zα2 + tα3 = 0},
X2 = {x + yd−1(xd + zα2 ) + tα3 = 0},

considering the equivariant isomorphisms ψ1 and ψ2, respectively, in the proof.

Proof. Applying Theorem 19, X1 corresponds to the choice d = 1 and p(v) =
v + vk , and X2 corresponds to the choice d ≥ 2 and p(v) = v + vd .

1) An explicit isomorphism ψ1 : X1 \V (1 + (xy)d−1) → A3 \V (1 + (YZα2 +
YT α3)d−1) is given by

ψ1 :

⎛
⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎠ →

⎛
⎝Y

Z

T

⎞
⎠ =

⎛
⎝−y/(1 + (xy)d−1)

z

t

⎞
⎠ .
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Its inverse ψ−1
1 is given by

ψ−1
1 :

⎛
⎝Y

Z

T

⎞
⎠ →

⎛
⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−(Zα2 + T α3)/(1 + (YZα2 + YT α3)d−1)

−Y(1 + (YZα2 + YT α3)d−1)

Z

T

⎞
⎟⎟⎠ .

2) An explicit isomorphism ψ2 : X2 \V (1+ (xy)d−1) →A3 \V (1+ (Y dZα2 +
YT α3)d−1) is given by

ψ2 :

⎛
⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎠ →

⎛
⎝Y

Z

T

⎞
⎠ =

⎛
⎝−y/(1 + (xy)d−1)

z

t

⎞
⎠ .

Its inverse ψ−1
2 is given by

ψ−1
2 :

⎛
⎝Y

Z

T

⎞
⎠ →

⎛
⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−Yd−1Zα2 − T α3/(1 + (Y dZα2 + YT α3)d−1)

−Y(1 + (YZdα2 + YT α3)d−1)

Z

T

⎞
⎟⎟⎠ .

�

Theorem 22. All Koras–Russell threefolds of the first kind {x+xky+zα2 + tα3 =
0} in A4 = Spec(C[x, y, z, t]) are Gm-linearly uniformly rational, considering
the equivariant isomorphism ψ in the proof.

Proof. Let X = {x +xky +zα2 + tα3 = 0} be a Koras–Russell threefold of the first
kind, let U be the principal open subset of X where x does not vanish, and let V
be the principal open subset of X where 1 +yxd−1 does not vanish. The principal
open subsets U = Xx and V = X1+yxd−1 form a covering of X by Gm-stable open
subsets.

Since Γ (U ,OU ) = C[x, x−1, y, z, t]/(x + xky + zα2 + tα3) � C[x, x−1, z, t],
X is Gm-linearly rational at every point of U .

By Proposition 21 we have an explicit Gm-equivariant isomorphism between
an open neighborhood of the fixed point in X1 = {x + xkyk−1 + zα2 + tα3 = 0}
and an open subset of A3. Moreover, X1 admits an action of the cyclic group
μk−1 given by ε · (x, y, z, t) → (x, εy, z, t) such that the action of μk−1 factors
through that of Gm. Thus the quotient for the action of the cyclic group and the
isomorphism obtained in Proposition 21 commute. In this case, the quotient of
A3 for the action of μk−1 is still isomorphic to A3. Since X1//μk−1 � X, the
Gm-equivariant map ψ1 given in Proposition 21 descends to a Gm-equivariant
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isomorphism ψ :

X1 \ V (1 + (xy)k−1)
ψ

//μk−1

A3 \ V (1 + (YZα2 + YT α3)k−1)

//μd−1

X \ V (1 + yxk−1)
ψ

A3 \ V (1 + Y(Zα2 + T α3)).

.

�

Remark 23. The variety X is endowed with a hyperbolic Gm-action, the Gm-
stable principal open subset V = X1+yxd−1 is isomorphic to a principal open sub-
set of A3 endowed with a hyperbolic Gm-action, but the Gm-stable principal open
subset U = Xx is isomorphic to a principal open subset of A3 endowed with a
Gm-action with positive weights only.

Proposition 24. The Koras–Russell threefolds of the second kind given by the
equations

X = {x + y(xd + zα2 )l + tα3 = 0}
in A4 = Spec(C[x, y, z, t]) with l = 1 or l = 2 or d = 2 are Gm-linearly uni-
formly rational.

Proof. In the case l = 1, we consider the Gm-uniformly rational variety

X2 = {x + yd−1(xd + zα2 ) + tα3 = 0}
given in Proposition 21. The cyclic group μd−1 on X2 acts via ε · (x, y, z, t) →
(x, εy, z, t), and this action factors through that of Gm. Thus the quotient for the
action of cyclic group and the isomorphism obtained in Proposition 21 commute.
The conclusion follows by the same method as in the proof of Theorem 22.

Let Xd−1 = {x + ydl−1(xd + zα2 )l + tα3 = 0} → X be the cyclic cover of
order dl − 1 of X branched along the divisor {y = 0}. The A-H presentation of
Xd−1(see [21]) is S(Ã2

(u,vd )
,D) with

D =
{

a

α2

}
Dα3 +

{
b

α3

}
Dα2 +

[
0,

1

α2α3

]
E,

where E is the exceptional divisor of the blowup π : Ã2
(u,vd )

→ A2 � Spec(C[u,

v]) � Spec(C[ydzα2 , yx]), and where Dα2 and Dα3 are the strict transforms of
the curves L1 = {v + (u + vd)l) = 0} and L2 = {u = 0} in A2 = Spec(C[u,v]),
respectively, (a, b) ∈ Z2, being chosen so that adα3 + bα2 = 1.

First of all, variables l and d can be exchanged, just considering the automor-
phism of A2 = Spec(C[u,v]) that sends u on u− (v −ul)d and v on v −ul . Then
v + (u + vd)l) is sent on v. From now we will assume that l = 2.

By showing that Xd−1 is Gm-linearly rational we can explicit a birational map
between X and A3. This map will be an equivariant isomorphism between an
open subset of X containing the fixed point and an open subset of A3. The di-
visor D = L1 + L2 is birationally equivalent to D′ = {uv = 0} via be the bi-
rational endomorphism ϕ of A2 = Spec(C[u,v]) defined by u → (u(1 + (v −
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u2)2d−1))/(1 − u(v − u2)d−1) and v → v − u2. Thus Xd−1 is Gm-linearly ratio-
nal. Moreover, the application ϕ is μ2d−1-equivariant, considering the action of
μ2d−1 given by ε · (u, v) → (εdu, εv). The desired result is now obtained by the
same technique as in Theorem 22. �

4. Examples of Non-Gm-Rational Varieties

Since the property to be G-uniformly rational is more restrictive than being only
uniformly rational, it is not surprising that there are smooth and rational G-
varieties that are not G-uniformly rational. In this section, we exhibit some Gm-
varieties that are smooth and rational but not not Gm-uniformly rational. However,
it is not known if these varieties are uniformly rational. This provides candidates
to show that the uniform rationality conjecture has a negative answer.

Proposition 25. Let C ⊂ A2 be a smooth affine curve of positive genus passing
through the origin with multiplicity one, and let X be a Gm-variety equivariantly
isomorphic to S(Ã2

(u,v)
,D) with D = { 1

p
}D +[0, 1

p
]E, where E is the exceptional

divisor of the blowup, and D is the strict transform of C. Then X is a smooth
rational Gm-variety but not a Gm-uniformly rational variety.

Proof. This is a direct consequence of the classification of hyperbolic Gm-actions
on A3 given in Proposition 17. In this case, the irreducible components of the
support of the ps-divisors are all rational. But the variety S(Ã2

(u,v),D) given in
[21, Proposition 3.1] admits the support of D in the support of its ps-divisors.
Since the support of D is not rational, it follows that the varieties obtained by
this construction are not Gm-linearly rational and thus not Gm-uniformly rational
since the two properties are equivalent in the case of Gm-varieties of complexity
two (see Theorem 5). �

Example 26. Let V (h) be a smooth affine curve of positive genus passing
through the origin with multiplicity one. Then the hypersurface {h(xy, zy)/y +
tp = 0} is stable in A4 = Spec(C[x, y, z, t]) for the linear Gm-action given by
λ · (x, y, z, t) = (λpx,λ−py,λpz,λt). This variety is smooth using the Jacobian
criterion and rational since its algebraic quotient is rational but not Gm-uniformly
rational.

4.1. Numerical Obstruction for Rectifiability of Curves

For a Gm-variety S(Y,D), the nonrationality of the irreducible components of the
support of D (see Proposition 25) is not the only obstruction to being Gm-rational.
There exist divisors D = L1 + L2 where Li is isomorphic to A1 for i = 1,2
and such that D is not birationally equivalent to D′ = {uv = 0}. Such D can be
used to construct a Gm-variety S(Y,D) where the irreducible components of the
support of the ps-divisors are all rational and such that S(Y,D) is not Gm-rational.
To prove the existence of such D, we will use an invariant, the Kumar–Murthy
dimension (see [20]). Recall that a pair (X,D) is said smooth if X is a smooth
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projective surface and D is an SNC divisor on X. For every divisor D on a smooth
projective variety, we define the Iitaka dimension κ(X,D) := sup dimφ|nD|(X)

in the case where |nD| �= ∅ for some n, and κ(X,D) := −∞ otherwise, where
φ|nD| : X ��� PN is the rational map associated with the linear system |nD| on X.

Lemma 27. Let D0 = ∑k
i=1 Di be a reduced divisor on a complete surface X0

with Di irreducible for each i ≥ 0. For any birational morphism π : X → X0
such that the pair (X,DX) is smooth, with DX the strict transform of D, the
value κ(X,2KX + DX) does not depend on the choice of π .

Proof. By the Zariski strong factorization theorem it suffices to show that this
dimension is invariant under blowups. Let (X,DX) be a resolution of the pair
(X0,D0) such that X is smooth and DX is SNC. Let π : X̃ → X be the blowup
of a point p in X. Since DX is SNC, there are three possible cases: p /∈ DX , p is
contained in a unique irreducible component of DX , or p is a point of intersection
of two irreducible components DX . We have then for any integer n: n(2K

X̃
+

D
X̃
) = π∗(n(2KX + DX)) + n(2 − m)E,m = 2,1,0 respectively. Therefore,

�(X,O(n(2K
X̃

+ D
X̃
))) = �(X,O(π∗(n(2KX + DX) + (2 − m)E)))

= �(X,O(π∗(n(2KX + DX)))),

and so, by the projection formula ([13, II.5]), �(X,O(π∗(n(2KX + DX)))) �
�(X,O(n(2KX + DX))) for any integer n. �

Definition 28. The Kumar–Murthy dimension kM(X0,D0) of (X0,D0) is the
Iitaka dimension κ(X,2KX +DX) where π : X → X0 is any birational morphism
such that the pair (X,DX) is smooth.

Definition 29. A pair (Y,D) (as in Definition 14) is birationally rectifiable if it
is birationally equivalent to the union of k ≤ N = dim(Y ) general hyperplanes in
PN . Note in particular that Y is rational and that the irreducible components of D

are either rational or uniruled.

Since, the Kumar–Murthy dimension of the pair (P2,D), where D is a union of
two distinct lines, is equal to −∞, we obtain the following:

Proposition 30. If a reduced divisor D = D1 + D2 in P2 is birationally rectifi-
able, then kM(P2,D) = −∞.

Example 31. Let C = {u+ (v +u2)2 = 0} and C′ = {αv(v −β)+u = 0} be two
curves in A2 = Spec(C[u,v]) where (α,β) ∈ C2 are generic parameters chosen
such that C and C′ intersect normally. Let C̄ and C̄′ be the closures in P2 of C

and C′, respectively, and let D = C̄ + C̄′. Then:

i) C and C′ are isomorphic to A1,
ii) kM(P2,D) �= −∞.

Proof. Proof of Proposition 30 The curve C′ is clearly isomorphic to A1. In the
case of C, consider the following two automorphisms: ψ1 : (u, v) → (u, v + u2)



264 Charlie Petitjean

and ψ2 : (u, v) → (u + v2, v). Then the composition ψ2 ◦ ψ1 :
{

u → u + (u + v2)2

v → v + u2

sends C on a coordinate axe. A minimal log-resolution π : S7 → P2 of C̄ ∪ C̄′ is
obtained by performing a sequence of seven blowups, five of them with centers
lying over the singular point of C̄ and the remaining two over the singular point
of C̄′ (see Figure 5).

Figure 5 Resolution of (P2, (C̄ + C̄′), the divisors Ei and E′
i

are
exceptional divisors obtained blowing-up C̄ ∩L∞ and C̄′ ∩L∞ num-
bered according to the order of their extraction

Using the ramification formula for the successive blowups occurring in π , we
find that the canonical divisor of S7 is equal to KS7 = −3l + E1 + 2E2 + 3E3 +
6E4 + 10E5 + E′

1 + 2E′
2, where l denotes the proper transform of a general line

in P2. The total transform of the divisor C̄ + C̄′ is equal to π∗(C̄ + C̄′) = C̄ +
2E1 + 4E2 + 6E3 + 11E4 + 18E5 + C̄′ + E′

1 + 2E′
2, where we have identified C̄

and C̄′ with their proper transforms in S7.
Since C̄ is of degree 4 and C̄′ is of degree 2, the proper transform of C̄ + C̄′

in S7 is linearly equivalent to 6l and we obtain

2KS7 + D = 2KS7 + π∗(C̄ + C̄′)
− (2E1 + 4E2 + 6E3 + 11E4 + 18E5 + E′

1 + 2E′
2)

= E4 + 2E5 + E′
1 + 2E′

2,

which is an effective divisor. Thus kM(P2,D) �= −∞, and by Proposition 30, D

is not birationally rectifiable. �
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4.2. Application

Let X be the subvariety of A5 = Spec(C[w,x, y, z, t]) defined by two equa-
tions {w + y(x + yw2)2 + tα3 = 0} and {αx(yx − β) + w + zα2) = 0}, where
(α,β) ∈ C2 are the same parameters as in Example 31. This variety is endowed
with a hyperbolic Gm-action induced by the linear one on A5, λ · (w,x, y, z, t) =
(λα2α3w,λα2α3x,λ−α2α3y,λα3z,λα2 t). Moreover, it is equivariantly isomorphic
to the hypersurface in A4 = Spec(C[x, y, z, t]) defined by {zα2 − αx(xy − β) +
y(x + y(zα2 − αx(xy − β))2)2 + tα3 = 0}.
Theorem 32. The threefold X is a smooth rational Gm-variety but not a Gm-
uniformly rational variety.

Proof. The A-H presentation of X is given by S(Ã2
(u,v),D) with

D =
{

a

α2

}
D1 +

{
b

α3

}
D2 +

[
0,

1

α2α3

]
E,

where E is the exceptional divisor of the blowup π : Ã2
(u,v)

→ A2, D1 and D2

are the strict transform of the curves C and C′ of Example 31, and (a, b) ∈ Z2

are such that aα3 + bα2 = 1. The presentation comes from the fact that X is
endowed with an action of μα2 × μα3 factoring through that of Gm and given by
(ε, ξ) · (x, y, z, t) → (x, y, εz, ξ t).

X

X//μα2 X//μα3

By [21, Example 3.1], X//μα2 is equivariantly isomorphic to S(Ã2
(u,v), {1/α3} ×

D2 + [0,1/α3]E), and X//μα3 is equivariantly isomorphic to S(Ã2
(u,v), {1/α2} ×

D1 +[0,1/α2]E). In fact, X//μα2 is equivariantly isomorphic to A3 = Spec(C[x,

y, t]) with the Gm-action defined via λ ·(x, y, t) = (λα3x,λ−α3y,λt), and X//μα3

is equivariantly isomorphic to A3 = Spec(C[x, y, z]) with the Gm-action defined
via λ · (x, y, z) = (λα2x,λ−α2y,λz). In particular, X is a Koras–Russell threefold
(see [19; 14; 21]). Now the result follows from Proposition 30 and Example 31.

�

5. Weak Equivariant Rationality

The property to be G-linearly uniformly rational is very restrictive. We will now
introduce a weaker notion.

Definition 33. A G-variety X is called weakly G-rational at a point x if there
exist an open G-stable neighborhood Ux of x, an open subvariety V of An

equipped with a G-action, and a G-equivariant isomorphism between Ux and V .
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We said that X is weakly G-uniformly rational if it is weakly G-rational at every
point.

Note that, in contrast with Definition 4 ii), we only require that V ⊂ An is en-
dowed with a G-action, in particular, it need not be the restriction of a G-action
on An. In summary, we have a sequence of implications between these different
notions of G-rationality: G-linearly uniformly rational implies G-uniformly ratio-
nal„ which implies G-weakly uniformly rational, which finally implies uniformly
rational.

Theorem 34. Let S ⊂ A3 = Spec(C[x, y, z]) be the surface defined by the equa-
tion z2 + y2 + x3 − 1 = 0, equipped with the μ2-action τ · (x, y, z) → (x, y,−z)

on A3, where τ is the nontrivial element of μ2. Then S is weakly μ2-uniformly
rational but not μ2-uniformly rational.

Proof. The surface S is the cyclic cover of A2 of order 2 branched along the
smooth affine elliptic curve C = {y2 + x3 − 1 = 0} ⊂ A2. By construction the
inverse image of C in S is equal to the fixed points set of the involution. It follows
that S is not μ2 rational at the point p = (1,0,0). Indeed, every μ2-action on A2

being linearizable (see [16, Theorem 4.3]), the set of its fixed points is rational.
Therefore there is no μ2-stable open neighborhood of p that is equivariantly iso-
morphic to a stable open subset of A2 endowed with an μ2-action. However, there
is an open subset U of A2 that can be endowed with an μ2-action such that U is
equivariantly isomorphic to an μ2-stable open neighborhood of p.

Indeed, letting u = z + y and v = z − y, S is isomorphic to the surface defined
in A3 = Spec(C[u,v, x]) by the equation {uv − x3 + 1 = 0}. The open subset
V1 = S \ {1 + x + x2 = u = 0} is isomorphic to A2 with coordinates u and v/(1 +
x + x2) = (x − 1)/u = w. Let V = S \ {1 + x + x2 = 0} be an open subset in V1,
and let x = uw + 1. Then V has the following coordinate ring:

C

[
u,w,

1

(uw + 1)2 + uw + 1 + 1

]
= C

[
u,w,

1

(uw)2 + 3uw + 3

]
.

The open subset V contains the point p and is stable by the action of μ2 defined
by

τ · (u, v) = (w((uw)2 + 3uw + 3), u((uw)2 + 3uw + 3)−1).

So S is μ2-weakly rational but not μ2-rational. �
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