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Zero Distribution of Random Sparse Polynomials

Turgay Bayraktar

Abstract. We study the asymptotic zero distribution of random Lau-
rent polynomials whose supports are contained in dilates of a fixed
integral polytope P as their degree grow. We consider a large class
of probability distributions including those induced from i.i.d. random
coefficients whose distribution law has bounded density with logarith-
mically decaying tails and moderate measures defined over the space
of Laurent polynomials. We obtain a quantitative localized version of
the Bernstein–Kouchnirenko theorem.

1. Introduction

Recall that the Newton polytope of a Laurent polynomial f (z1, . . . , zm) ∈
C[z±1

1 , . . . , z±1
m ] is the convex hull (in R

m) of the exponents of monomials in
f (z). It is well known that for a system (f1, . . . , fm) of Laurent polynomials in
general position, the common zeros is a discrete set in (C∗)m := (C \ {0})m and
that the number of simultaneous zeros of such a system is given by the mixed
volume of Newton polytopes of fi [Ber75; Kou76]. In this work, we study the
asymptotic behavior of zeros of the systems of random Laurent polynomials with
prescribed Newton polytope as their degree grow. More precisely, we consider
Laurent polynomials whose supports are contained in dilates NP for a fixed inte-
gral polytope P ⊂ R

m with nonempty interior. Random Laurent polynomials with
independent identically distributed (i.i.d.) coefficients whose distribution law is
absolutely continuous with respect to Lebesgue measure and has logarithmically
decaying tails arise as a particular case. In particular, standard real and complex
Gaussians are among the examples of such distributions. In another direction,
moderate measures defined on the space of Laurent polynomials also fall into
framework of this paper.

Computation of simultaneous zeros of deterministic and Gaussian systems of
sparse polynomials has been studied by various authors (see e.g. [HS95; Roj96;
MR04; DGS14]) by using mostly methods of algebraic and toric geometry. In
this work, we employ methods of pluripotential theory (cf. [SZ04; DS06a; BS07;
CM15; BL15; Bay16]), which is extensively used in the dynamical study of holo-
morphic maps (see [FS95] and references therein). Along the way, we develop a
pluripotential theory for plurisubharmonic (psh for short) functions that are dom-
inated by the support function of P (up to a constant) in logarithmic coordinates
on (C∗)m. We remark that the class of psh functions that we work with is a gener-
alization of the Lelong class, which corresponds here to the particular case P = �
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where � is the standard unit simplex in R
m. For a weighted compact set (K,q),

that is, a nonpluripolar compact set K ⊂ (C∗)m and a continuous weight function
q : (C∗)m →R, we define a weighted global extremal function VP,K,q on (C∗)m.
Then for given integral polytopes Pi with nonempty interior, we show that the
mixed complex Monge–Ampére measure MAC(VP1,K,q , . . . , VPm,K,q) of the ex-
tremal functions VPi,K,q is well defined on (C∗)m and is of total mass equal to
the mixed volume of P1, . . . ,Pm. We use Bergman kernel asymptotics to prove
that the normalized expected zero current along simultaneous zero set of inde-
pendent random Laurent polynomials converges weakly to the external product
ddcVP1,K,q ∧ · · · ∧ ddcVPk,K,q in any codimension (Theorem 1.1). Moreover, if
P ⊂ R

m
≥0, then the expected distribution of zeros has a self-averaging property

in the sense that almost surely the normalized zero currents are asymptotic to
ddcVP1,K,q ∧ · · · ∧ ddcVPk,K,q . In particular, almost surely the number of zeros
of m independent Laurent polynomials (f1, . . . , fm) in an open set U � (C∗)m is
asymptotic to NmMAC(VP1,K,q , . . . , VPm,K,q)(U) (Theorem 1.2). As a result, we
obtain a quantitative localized version of the Bernstein–Kouchnirenko theorem.
In the last section, we obtain a generalization of these results (Theorem 1.4) for
certain unbounded closed subsets K ⊂ (C∗)m and certain weight functions q . Re-
call that in the latter setting the zero distribution of Gaussian Laurent polynomials
is studied by Shiffman and Zelditch [SZ04]. More precisely, the setting of [SZ04]
corresponds here to the particular case P ⊂ p� for some p ∈ Z+, K = (C∗)m,
and q(z) = p

2 log(1 + ‖z‖2).
For a Laurent polynomial f , the amoeba Af is by definition [GKZ94] the

image of the zero locus of f under the map Log(z1, . . . , zm) = (log |z1|, . . . ,
log |zm|). Amoebas are useful tools in several areas such as complex analysis, real
algebraic geometry, and tropical algebra (see e.g. [PR04; FPT00; Mik05; Mik04]
and references therein). Complex plane curve amoebas were studied by Passare
and Rullgård [PR04], who proved that area of such amoebas is bounded by a con-
stant times the volume of Newton polytope of f . In certain cases, we can obtain
the asymptotic distribution of amoebas from our results.

1.1. Statement of Results

Recall that a Laurent polynomial is of the form

f (z) =
∑
J

aJ zJ ∈ C[z±1
1 , . . . , z±1

m ],

where aJ ∈ C and zJ := z
j1
1 . . . z

jm
m . The set Sf := {J ∈ Z

m : aJ 	= 0} is called the
support of f , and the convex hull of Sf in R

m is called the Newton polytope of f .
For an integral polytope P (i.e. convex hull of a finite subset of Zm), we denote
the space of Laurent polynomials whose Newton polytope is contained in P by

Poly(P ) := {f ∈ C[z±1
1 , . . . , z±1

m ] : Sf ⊂ P }.
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Such polynomials are called sparse polynomials in the literature. For each
N ∈ Z+, we denote the N -dilate of P by NP. We let P1, . . . ,Pm denote in-
tegral polytopes with nonempty interior, and we denote their mixed volume by
D := MVm(P1, . . . ,Pm). We assume that the mixed volume is normalized so that
MVm(�) := MVm(�, . . . ,�) = 1, where � := {t ∈ R

m
≥0 : ∑m

j=1 tj = 1} denotes
the standard unit simplex in Rm.

We are interested in asymptotic patterns of the zero distribution of Laurent
polynomial systems (f 1

N, . . . , f m
N ) such that Sf i

N
⊂ NPi as N → ∞. It follows

from the Bernstein–Kouchnirenko theorem [Ber75; Kou76] that for systems in
general position, the set of common zeros consists of isolated points in (C∗)m
and the number of simultaneous roots of the system counting multiplicities is
given by DNm.

For a weighted compact set (K,q), that is, a nonpluripolar compact set K ⊂
(C∗)m and a continuous function q : (C∗)m → R, we define the weighted global
extremal function

VP,K,q := sup
{
ψ ∈ Psh((C∗)m) : ψ(z) ≤ max

J∈P
log |zJ | + Cψ on (C∗)m and

ψ ≤ q on K
}
.

We remark that in the particular case P = �, the function V�,K,q coincides with
the upper envelope of the Lelong class of psh functions defined in [ST97, App. B].
It follows that VP,K,q is a locally bounded psh function on (C∗)m and grows like
the support function of P in logarithmic coordinates (see Section 2.2.1 for de-
tails). By definition, a weighted compact set (K,q) is regular if VP,K,q is contin-
uous. Throughout this note, we assume that (K,q) is a regular weighted compact
set. Unit polydisc and round sphere in C

m are among the examples of regular
compact sets.

For a measure τ supported in K , we fix an orthonormal basis (ONB) {FN
j }dN

j=1
for Poly(NP) with respect to the inner product

〈f,g〉 :=
∫

K

f (z)g(z)e−2Nq(z) dτ (z). (1.1)

Then a Laurent polynomial fN can be written uniquely as

fN =
dN∑
j=1

ajF
N
j ,

where dN = dim(Poly(NP)). Throughout this note, we assume that the Bergman
functions associated with Poly(P )

B(τ, q)(z) := sup
‖f ‖

L2(e−2q τ)
=1

|f (z)|e−q(z)

have subexponential growth, that is,

sup
z∈K

B(τ,Nq)(z) = O(eNε)
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for all ε > 0 and N � 1. Such measures τ , which always exist on regular
weighted compact sets (K,q) when P ⊂ R

m
≥0, are called Bernstein–Markov (BM)

measures in the literature (see Section 2.4 for details).

Randomization of Poly(NP)

We identify Poly(NP) with CdN and endow it with a probability measure σN . We
assume that the measure σN does not put any mass on pluripolar sets. We remark
that the probability space (Poly(NP), σN) depends on the choice of ONB (i.e. the
unitary identification Poly(NP) � C

dN given by (1.1)) unless σN is the Gaussian
induced by (1.1). However, the asymptotic distribution of zeros is independent of
the choice of this identification (cf. Theorems 1.1 and 1.2). We also remark that
our results apply in a quite general setting including random sparse polynomials
with independent identically distributed (i.i.d.) coefficients whose distribution law
has bounded density and logarithmically decaying tails (Proposition 3.1) as well
as moderate measures (Proposition 3.2) supported on the unit sphere S2dN−1 with
respect to the L2 norm induced by (1.1).

It follows from Bertini’s theorem that for generic systems (f 1
N, . . . , f k

N) of
Laurent polynomials, their zero locuses are smooth and intersect transversely. In
particular,

Zf 1
N ,...,f k

N
:= {z ∈ (C∗)m : f 1

N(z) = · · · = f k
N(z) = 0}

is smooth and of codimension k in (C∗)m. We let [Zf 1
N ,...,f k

N
] denote the current

of integration along the zero set Zf 1
N ,...,f k

N
. For generic systems (f 1

N, . . . , f k
N),

the current N−k[Zf 1
N ,...,f k

N
] has finite mass on (C∗)m bounded by the mixed vol-

ume MVm(P1, . . . ,Pk,�, . . . ,�) (see Remark 2.8), and hence the expected zero
current

〈E[Zf 1
N ,...,f k

N
],�〉

:=
∫

Poly(NP1)×···×Poly(NPk)

〈[Zf 1
N ,...,f k

N
],�〉dσN(f 1

N) . . . dσN(f k
N)

is well defined on test forms � ∈Dm−k,m−k((C
∗)m).

Theorem 1.1. Let Pi ⊂ R
m be an integral polytope with nonempty interior for

each i = 1, . . . ,m, and (K,q) be a regular weighted compact set. If

sup
u∈S2dN −1

∣∣∣∣
∫
C

dN

log |〈a,u〉|dσN(a)

∣∣∣∣ = o(N) as N → ∞, (A1)

then for each 1 ≤ k ≤ m,

N−k
E[Zf 1

N ,...,f k
N
] → ddc(VP1,K,q) ∧ · · · ∧ ddc(VPk,K,q)

weakly on (C∗)m as N → ∞. In particular, the expected number of zeros

N−m
E[#{z ∈ U : f 1

N(z) = · · · = f m
N (z) = 0}] →

∫
U

MAC(VP1,K,q , . . . , VPm,K,q)
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as N → ∞ for every smoothly bounded domain U ⊂ (C∗)m.

Here MAC(VP1,K,q , . . . , VPm,K,q) denotes the mixed complex Monge–Ampére
measure of the extremal functions VP1,K,q , . . . , VPm,K,q (see Section 2.2.2 for
details).

In the particular case P ⊂ p� for some p ∈ Z+, we can identify Poly(NP)

with a subspace �NP of H 0(Pm,O(pN)), where O(1) → P
m denotes the hyper-

plane bundle on the complex projective space P
m. Then we consider the product

space P = ∏∞
N=1 �NP endowed with the product measure. Thus, elements of P

are random sequences of global holomorphic sections of powers of O(p). Next,
we obtain the following self-averaging property of random zero currents.

Theorem 1.2. Let Pi ⊂ R
m
≥0 be an integral polytope with nonempty interior for

each i = 1, . . . ,m, and (K,q) be a regular weighted compact set. If
∞∑

N=1

σN(a ∈ C
dN : log‖a‖ > Nε) < ∞ for every ε > 0 (A2)

and, for every u ∈ S2dN−1,
∞∑

N=1

σN(a ∈ C
dN : log |〈a,u〉| < −Nt) < ∞ for every t > 0, (A3)

then, for each 1 ≤ k ≤ m, almost surely

N−k[Zf 1
N ,...,f k

N
] → ddc(VP1,K,q) ∧ · · · ∧ ddc(VPk,K,q)

weakly on (C∗)m as N → ∞.

In particular, when k = m, it follows from Proposition 2.7 that the total mass∫
(C∗)m

MAC(VP1,K,q , . . . , VPm,K,q) = MVm(P1, . . . ,Pm).

Hence, almost surely the number of zeros in a domain U ⊂ (C∗)m of m in-
dependent random Laurent polynomials is asymptotic to NmMAC(VP1,K,q , . . . ,

VPm,K,q)(U). Thus, Theorem 1.2 gives a quantitative localized version of the
Bernstein–Kouchnirenko theorem.

1.2. Comparison with the Results in the Literature

Recall that a random Kac polynomial is of the form

fN(z) =
N∑

j=0

aj z
j ,

where coefficients aj are independent complex Gaussian random variables of
mean zero and variance one. A classical result of Kac and Hammersley [Kac43;
Ham56] asserts that normalized zeros of Kac random polynomials of large degree
tend to accumulate on the unit circle S1 = {|z| = 1}. This ensemble of random
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polynomials has been extensively studied (see e.g. [LO43; HN08; SV95; IZ13]).
Recently, Ibragimov, and Zaporozhets [IZ13] proved that

E[log(1 + |aj |)] < ∞
is a necessary and sufficient condition for zeros of random Kac polynomials to
accumulate near the unit circle (see also the recent work [TV15] on local univer-
sality of zeros). Shiffman and Zelditch [SZ03] remarked that it was an implicit
choice of an inner product (see (1.1)) that produced this concentration of zeros
of Kac polynomials around the unit circle S1. More generally, they proved that
for a simply connected domain 	 � C

m with real analytic boundary ∂	 and a
fixed ONB {FN

j }n+1
j=1, zeros of random polynomials with i.i.d. standard complex

Gaussian coefficients

fN(z) =
N+1∑
j=1

ajF
N
j (z)

concentrate near the boundary ∂	 as N → ∞.
The asymptotic zero distribution of multivariate random polynomials has been

studied by several authors (see e.g. [SZ99; SZ04; BS07; Shi08; DS06a; BL15;
Bay16], and references therein). In particular, if the random coefficients aJ in
f i

N are i.i.d. standard complex Gaussian, then we recover [BS07, Thm. 3.1] (see
also [BL15, Thm. 7.3] and [Bay16, Thm. 1.2] for more general distributions). On
the other hand, Dinh and Sibony [DS06a] studied the equidistribution problem by
using formalism of meromorphic transforms. They considered moderate measures
on the projectivized space PPoly(N�), which arise here as a particular case.
Recall that the Monge–Ampère measure of a Hölder continuous qpsh function is
among the examples of moderate measures (see [DNS10] for details).

Theorems 1.1 and 1.2 can be also considered as global universality results
in the sense that they extend some earlier known results for the Gaussian dis-
tributions to setting of distributions that have logarithmically decaying tails. For
instance, letting K = (S1)m the real torus and q(z) ≡ 0, we see that the mono-
mials {zJ }J∈NP∩Zm form an ONB for Poly(NP) with respect to the normalized
Lebesgue measure on the real torus. Moreover, endowing Poly(NP) with com-
plex (or real) Gaussian distribution with mean zero and a (positive definite and
diagonal) variance matrix C for each 1 ≤ k ≤ m, we observe that

N−k
E[Zf 1

N ,...,f k
N
] = ωNP1 ∧ · · · ∧ ωNPk

,

where ωNPi
= 1

2ddc
∑

J∈NPi∩Zm log |zJ |2 is a Kähler form for sufficiently
large N , and we obtain [MR04, Thm. 2]. Then Example 2.5, together with Theo-
rem 1.1, yields

N−k
E[Zf 1

N ,...,f m
N

] → MVm(P1, . . . ,Pm)

(2π)m
dθ1 . . . dθm weakly as N → ∞.

Hence, we recover [DGS14, Thm. 1.8].
Next, we provide the following example to illustrate the impact of the choice

of (P,K) on zero distribution.
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Example 1.3. Let P = Conv((0,0), (0,1), (1,1), (T ,0)) ⊂ R
2,

P

x

y

(T ,0)

(0,1)
(1,1)

where T ≥ 2 is an integer, and K = S3 is the unit sphere in C
2. Then, taking

q ≡ 0, we see that

cJ zJ :=
(

(j1 + j2 + 1)!
j1!j2!

)1/2

z
j1
1 z

j2
2 for J = (j1, j2) ∈ NP

form an ONB for Poly(NP) with respect to the inner product induced from L2(σ ),
where σ is the probability surface area measure on S3. Then a random sparse
polynomial is of the form

fN(z) =
∑

J∈NP

aJ cJ zJ , (1.2)

and by Theorem 1.2 almost surely

N−2
∑

ζ∈Z
f 1
N

,f 2
N

δζ → MAC(VP,K).

weakly as N → ∞, where the measure MAC(VP,K) is the complex Monge–
Ampére of the unweighted (i.e. q ≡ 0) global extremal function VP,K . By Propo-
sition 2.6 the measure MAC(VP,K) is supported in S3. However, unlike the case
P = �, the mass of MAC(VP,K) is not uniformly distributed on S3 (see Figures 1
and 2).

Figures 1 and 2 illustrate the zero distribution of independent system of two
random polynomials of the form (1.2) whose coefficients are complex i.i.d. stan-
dard Gaussian and respectively Pareto-distributed with T = 5 and N = 10.

In the last part of this work, we obtain a generalization of Theorem 1.1 for certain
unbounded closed sets K ⊂ (C∗)m and weakly admissible weight functions q (see
Section 5 for details):

Theorem 1.4. Let Pi ⊂ R
m
≥0 be an integral polytope with nonempty interior, and

(K,qi) be a regular weighted closed set with qi : (C∗)m →R a weakly admissible
continuous weight function for each i = 1, . . . , k ≤ m. Assume that conditions
(A2) and (A3) hold. Then

N−k
E[Zf 1

N ,...,f k
N
] → ddc(VP1,K,q1) ∧ · · · ∧ ddc(VPk,K,qk

)
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Figure 1 Standard Gaussian

Figure 2 Pareto distribution with P{|a| > R} ∼ R−3

weakly as N → ∞. Moreover, almost surely

N−k[Zf 1
N ,...,f k

N
] → ddc(VP1,K,q1) ∧ · · · ∧ ddc(VPk,K,qk

)

weakly on (C∗)m as N → ∞.

In the particular case where Pi ⊂ p� for some p ∈ Z+ and K = (C∗)m together
with q(z) = p

2 log(1+‖z‖2), the zero distribution of random Laurent polynomials
with i.i.d. standard complex Gaussian coefficients was studied by Shiffman and
Zelditch [SZ04; Shi08]. It follows from [SZ04, Thm. 4.1] that VK,Pi ,q is contin-
uous on (C∗)m; in particular, (K,q) is a regular weighted set (see Example 5.4
for details). Hence, Theorem 1.4 applies in this setting, and we recover [SZ04,
Thm. 1.4] and [Shi08, Thm. 1.5]. Specializing further, if P := P1 = · · · = Pm,



Zero Distribution of Random Sparse Polynomials 397

then by Proposition 2.6 we see that asymptotically the zeros of random polynomi-
als concentrate in the region AP := μ−1

p (P ◦), which is called classically allowed
region in [SZ04], where

μp : (C∗)m → R
m,

μp(z) =
(

p|z1|2
1 + ‖z‖2

, . . . ,
p|zm|2

1 + ‖z‖2

)
.

Example 1.5. Let P = Conv((0,0), (0,1), (1,1), (1,0)) ⊂ R2 be the unit square.

P

x

y

21

2

1

We also let K = (C∗)2 and q(z) = log(1 + ‖z‖2) (i.e. p = 2). It follows form
[SZ04, Example 1] that the classically allowed region is given by

AP = {(z1, z2) ∈ (C∗)m : |z1|2 − 1 < |z2|2 < |z1|2 + 1}
and

VP,K,q(z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(1 + ‖z‖2)

for z ∈AP ,
1
2 log |z2|2 + 1

2 log(1 + |z1|2) + log 2

for |z2|2 ≥ |z1|2 + 1,
1
2 log |z1|2 + 1

2 log(1 + |z2|2) + log 2

for |z1|2 ≥ |z2|2 + 1.

(1.3)

Hence, (K,q) is a regular weighted closed set, and Theorem 1.2 applies. More-
over,

cJ zJ :=
(

(N + 2)!
2!(N − |J |)!j1! . . . j2!

)1/2

z
j1
1 z

j2
2

form an ONB for Poly(NP) with respect to the inner product

〈f,g〉 : =
∫

(C∗)2
f (z)g(z)e−2Nq(z)ω2

FS

=
∫

(C∗)2
f (z)g(z)

2

π2(1 + ‖z‖2)2N+3
dz.

Thus a random polynomial in the present setting is of the form

fN(z) =
∑

J∈NP

aJ cJ zJ , (1.4)
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and by Theorem 1.4 almost surely

N−2
∑

ζ∈Z
f 1
N

,f 2
N

δζ → 1A
2

π2(1 + ‖z‖2)3
dz.

1.3. Connection with Toric Varieties

Recall that an integral polytope P ⊂ R
m is called Delzant if a neighborhood of

any vertex of P is SL(m,Z) equivalent to {xi ≥ 0 : i = 1, . . . ,m} ⊂ R
m. A theo-

rem of Delzant asserts that if P is an integral Delzant polytope, then we can con-
struct a toric variety XP , which is a projective manifold, and an ample line bundle
L → XP such that 1

2ddc
∑

J∈NP∩Zm log |zJ |2 is a Kähler metric on (C∗)m, and it
extends to a smooth global Kähler metric on the toric variety XP for sufficiently
large N . Moreover, the space of global holomorphic sections H 0(XP ,L⊗N) can
be identified with Poly(NP). In this setting, the asymptotic distribution of zeros
was obtained in [Bay16, Thm. 1.1] (see also [SZ99] for the Gaussian setting).

2. Preliminaries

2.1. Lattice Points, Polytopes, and Convex Analysis

In what follows, Rm+ (respectively R
m
≥0) denotes the set of points in the real Eu-

clidean space with positive (respectively nonnegative) coordinates. By an inte-
gral polytope we mean the convex hull Conv(A) in Rm of a nonempty finite set
A ⊂ Z

m. We let � denote the standard unit simplex � = Conv(0, e1, . . . , em),
where ei denote the standard basis elements in Z

m. For two nonempty convex
sets P1, P2, we denote their Minkowski sum by

P1 + P2 := {x1 + x2 : x1 ∈ P1, x2 ∈ P2}.
In the present section, we let P ⊂ R

m be a convex body, that is, a compact convex
set with nonempty interior P ◦. Let Volm denote the volume of a subset of R

m

with respect to the Lebesgue measure normalized so that Volm(�) = 1
m! .

A theorem by Minkowski and Steiner asserts that Volm(N1P1 + · · · + NkPk)

is a homogeneous polynomial of degree m in the variables N1, . . . ,Nk ∈
Z+ (see e.g. [CLO05, Sect. 4] for details). In the particular case k = m,
the coefficient of the monomial N1 · · ·Nm in the homogenous expansion of
Volm(N1P1 + · · · + NmPm) is called the mixed volume of P1, . . . ,Pm and de-
noted by MVm(P1, . . . ,Pm). We can compute the mixed volume of convex sets
P1, . . . ,Pm by means of the polarization formula

MVm(P1, . . . ,Pm) =
m∑

k=1

∑
1≤j1≤···≤jk≤m

(−1)m−k Volm(Pj1 + · · · + Pjk
).

In particular, if P = P1 = · · · = Pm, then

MVm(P ) := MVm(P, . . . ,P ) = m!Volm(P ).

In the particular case, MVm(�) = 1.
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We denote the support function ϕP : Rm → R of a convex body P by

ϕP (x) = sup
p∈P

〈x,p〉,

which is a one-homogenous convex function. We denote by dϕ|x the subgradient
of ϕ at x ∈R

m. Recall that dϕ|x is a closed convex set in R
m defined by

dϕ|x := {p ∈ R
m : ϕ(y) ≥ ϕ(x) + 〈p,y − x〉 for every y ∈ R

m}.
We remark that if ϕ is differentiable at x, then dϕ|x is a point and coincides with
∇ϕ(x). In the sequel, we let dϕ(E) denote the image of E ⊂ R

m under the sub-
gradient.

2.1.1. Real Monge–Ampére of a Convex Function. Following [RT77], we define
the real Monge–Ampére (or Monge–Ampére in the sense of Aleksandrov) of a
finite convex function ϕ by

MAR(ϕ)(E) := m!
∫

dϕ(E)

d Volm (2.1)

for a Borel sets E ⊂ R
m. The role of normalization constant m! will be explained

in (2.2.2). If ϕ ∈ C2(Rm), then its real Monge–Ampére coincides with its Hessian,
that is,

MAR(ϕ)(E) = m!
∫

E

det

(
∂2ϕ

∂xixj

)
dx. (2.2)

Moreover, for a convex function ϕ ∈ C2(Rm), we can also define the real Monge–
Ampére as

MAR(ϕ) := d(ϕx1) ∧ · · · ∧ d(ϕxm),

where ϕxi
:= ∂ϕ/∂xi . In fact, endowing the cone of convex functions with the

topology of locally uniform convergence and the space of measures on R
m with

the topology of weak convergence, it follows from [RT77] that the operator MAR

extends as a continuous symmetric multilinear operator, and the equality

MAR(ϕ) = MAR(ϕ)

remains valid for merely convex functions ϕ. Finally, following [PR04], we can
define the mixed real Monge–Ampére of convex functions ϕ1, . . . , ϕm by means
of the polarization formula

MAR(ϕ1, . . . , ϕm) := 1

m!
m∑

k=1

∑
1≤j1≤···≤jk≤m

(−1)m−kMAR(ϕj1 + · · ·+ϕjk
). (2.3)

The following result provides a key link between mixed volume and the (mixed)
real Monge–Ampére operator. We refer the reader to [PR04, Prop. 3] and [BB13,
Lemma 2.5] for the proof.

Proposition 2.1. Let Pi ⊂ R
m be a convex body, and ϕi be a convex function on

R
m such that ϕi − ϕPi

is bounded for each i = 1, . . . ,m. Then the total mass∫
Rm

MAR(ϕ1, . . . , ϕm) = MVm(P1, . . . ,Pm).
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2.2. Pluripotential Theory

Let C∗ := C\ {0}, and let ‖z‖ denote the Euclidean norm of z ∈ C
m. For a convex

body P ⊂ R
m, we denote

HP (z) := max
J∈P

log |zJ |,

where we use the multidimensional notation zJ := z
j1
1 . . . z

jm
m and J =

(j1, . . . , jm) ∈ Z
m. Clearly, HP is a psh function on (C∗)m. Indeed, HP coin-

cides with ϕP , the support function of P in the logarithmic coordinates on (C∗)m.
Namely, letting

Log : (C∗)m :→ R
m,

Log(z) = (log |z1|, . . . , log |zm|),
we see that HP (z) = ϕP ◦ Log(z) for z ∈ (C∗)m. For instance, if P = � then
H�(z) = maxi=1,...,m log+ |zi |.

We let L(Cm) (respectively L+(Cm)) denote the Lelong class, that is, the set
of psh functions ψ on C

m such that ψ(z) ≤ log+ ‖z‖ + Cψ (respectively ψ(z) −
log+ ‖z‖ is bounded). Following [Ber09], we also define the following classes of
psh functions:

LP := {ψ ∈ Psh((C∗)m) : ψ ≤ HP + Cψ on (C∗)m},
LP,+ := {ψ ∈ LP : ψ ≥ HP + C′

ψ on (C∗)m}.
We say that a function ψ ∈ LP is m-circled if ψ(z) = ψ(|z1|, . . . , |zm|), that is,
ψ is invariant under the action of the real torus (S1)m. We denote the set of all
m-circled functions in LP by Lc

P . The class LP is a generalization of the Lelong
class L(Cm), which corresponds to the case P = �. Indeed, since every ψ ∈ L�

is locally bounded from above near points of the set {z ∈ C
m : z1 · · · zm = 0}, it

extends to a psh function ψ̃ on C
m. Moreover, since

max
J∈�

log |zJ | = max
i=1,...,m

log+ |zi | ≤ log+ ‖z‖,

the extension ψ̃ ∈ L(Cm).
The following lemma will be useful in the sequel.

Lemma 2.2. Let P be a convex body, and ψ ∈ LP,+. Then, for every p ∈ P ◦,
there exist κ,Cψ > 0 such that

ψ(z) ≥ κ max
j=1,...,m

log |zj | + log |zp| − Cψ for every z ∈ (C∗)m.

Proof. Let ϕP (x) denote the support function of P . Fixing a small ball
B(p,κ) ⊂ P ◦, by definition we have ϕ�

P ≡ 0 on B(p,κ). Since (ϕ�
P )� = ϕP ,

this implies that

ϕP (x) ≥ sup
q∈B(p,κ)

〈q, x〉
= sup

y∈B(0,1)

〈κy, x〉 + 〈p,x〉 = κ‖x‖ + 〈p,x〉.
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Hence, since HP (z) = ϕP (Log(z)) for z ∈ (C∗)m, we obtain

HP (z) ≥ κ max
j=1,...,m

| log |zj || + log |zp|,
which implies the assertion. �

2.2.1. Global Extremal Function. In this section, let K ⊂ (C∗)m be a nonpluripo-
lar compact set, and q : (C∗)m → R be a continuous function. We define the
weighted global extremal function V ∗

P,K,q to be the usc regularization of

VP,K,q := sup{ψ ∈ LP : ψ ≤ q on K}.
We remark that in the particular case P = �, the function V ∗

�,K,q coincides with
the weighted global extremal function defined in [ST97, Appendix B]. Moreover,
specializing further, in the unweighted case (i.e. q ≡ 0), V ∗

�,K is the pluricom-
plex Green function of K (cf. [Kli91, Sect. 5]). A standard argument shows that
V ∗

P,K,q ∈ LP,+. In particular, V ∗
P,K,q ∈ Psh((C∗)m)∩L∞

loc((C
∗)m). The following

example is a consequence of standard arguments (cf. [Kli91, Sect. 5]).

Example 2.3. For P = [a, b] ⊂ R, K = S1 the unit circle, and q ≡ 0, we have

VP,S1(z) = max{a log |z|, b log |z|} = HP (z) for z ∈ C
∗.

This implies that (more generally) for a convex polytope P ⊂ Rm, K = (S1)m ⊂
(C∗)m the real torus, and q ≡ 0, the (unweighted) global extremal function

VP,(S1)m(z) = HP (z) = max
J∈P

log |zJ | for z ∈ (C∗)m.

In particular, VP,(S1)m is continuous.

2.2.2. Complex Monge–Ampére versus Real Monge–Ampére. In what follows,
we denote d = ∂ + ∂̄ and dc = i

2π
(∂̄ − ∂), so that ddc = i

π
∂∂̄ . It is well known

that the relation between complex Monge–Ampére of an m-circled psh function
and the real Monge–Ampŕe of it (in the logarithmic coordinates) is given by

Log∗(MAC(ψ)) = MAR(ϕ), (2.4)

that is, for a Borel set E ⊂ R
m,∫

E

MAR(ϕ) =
∫

Log−1(E)

MAC(ψ).

Furthermore, by the results of [RT77; BT82], equality (2.4) holds for every locally
bounded m-circled psh function ψ on (C∗)m. Then (2.4), together with polariza-
tion formula for a complex Monge–Ampére, implies that

m∧
i=1

ddcψi = 1

m!
m∑

j=1

∑
1≤i1≤···≤ij

(−1)m−j MAC(ψi1 + · · · + ψij ),

and (2.3) implies that for locally bounded m-circled psh functions ψ1, . . . ,ψm,

Log∗
( m∧

i=1

ddcψi

)
= MAR(ϕ1, . . . , ϕm),
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where ϕi(x) = ψi(z) is the corresponding convex function defined as before.
Thus, the following is an immediate consequence of Proposition 2.1.

Proposition 2.4. Let ψi ∈ Lc
Pi ,+ for i = 1, . . . ,m. Then the total mass of the

mixed complex Monge–Ampére∫
(C∗)m

m∧
i=1

ddcψi = MVm(P1, . . . ,Pm).

By Example 2.3 and Proposition 2.4 we obtain the following:

Example 2.5. Let Pi ⊂ R
m be convex polytopes for i = 1, . . . ,m, K = (S1)m

the real torus, and q ≡ 0. Then the mixed complex Monge–Ampére
m∧

i=1

ddc(VPi,K) = MVm(P1, . . . ,Pm)

(2π)m
dθ1 . . . dθm.

Recall that the extremal function V := V ∗
P,K,q is a locally bounded psh function

on (C∗)m. Thus, by [BT82] its complex Monge–Ampére measure

MAC(V ) := ddc(V ) ∧ · · · ∧ ddc(V )

is well defined and does not charge pluripolar subsets of (C∗)m. We de-
note the support of a complex Monge–Ampére of the extremal function by
supp(MAC(V )). The following result is classical and follows from [PR04,
Prop. 3] and [BB13, Lemma 2.5].

Proposition 2.6. Let P be a convex body and (K,q) be a regular weighted
compact set. Then

supp(MAC(VP,K,q)) ⊂ {z ∈ K : VP,K,q(z) = q(z)}.
In particular, if K is circled and q ∈ Lc

P,+ ∩ C2((C∗)m), then

Log(supp(MAC(V ))) ⊂ ∇ϕ−1(P ◦), (2.5)

where ϕ is the convex function defined by the relation q(z) = ϕ(Log(z)).

A remarkable property of the Lelong class functions ψ ∈ L(Cm) ∩ L∞
loc(C

m) is
that the total mass

∫
Cm MAC(ψ) ≤ 1. Moreover, if ψ ∈ L+(Cm), then∫

Cm

MAC(ψ) =
∫
Cm

MAC

(
1

2
log(1 + ‖z‖2)

)
= 1, (2.6)

which was observed in [Tay83]. Equality (2.6) is a consequence of the comparison
theorem (see [Kli91, Sect. 5] for details and references).

In what follows, we let ω := 1
2ddc log(1 + ‖z‖2) denote the restriction of the

Fubini–Study form to (C∗)m and

� := ddcH�(z) = ddc
(

max
i=1,...,m

log+ |zi |
)
.
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We also denote the product of annuli by

Aρ,R := {z ∈ (C∗)m : ρ < |zi | < R for each i = 1, . . . ,m} for ρ,R > 0.

Next, we obtain a generalized version of [Tay83] to our setting.

Proposition 2.7. Let Pi ⊂ R
m be a convex body, and ui, vi ∈ LPi

∩ L∞
loc((C

∗)m)

be such that
ui(z) ≤ vi(z) + Ci for z ∈ (C∗)m

for each i = 1, . . . , k. Then the total masses∫
(C∗)m

k∧
i=1

ddcui ∧ �m−k ≤
∫

(C∗)m

k∧
i=1

ddcvi ∧ �m−k.

In particular, if ui ∈ LPi,+ for each i = 1, . . . , k, then the total mass of the mixed
Monge–Ampére∫

(C∗)m
ddcu1 ∧ · · · ∧ ddcuk ∧ �m−k = MVm(P1, . . . ,Pk,�, . . . ,�).

Proof. Since the complex Monge–Ampére is a symmetric operator by replacing
vi with ui successively in the ith step, it suffices to prove the assertion for the case
vi = ui for 2 ≤ i ≤ k.

We fix a convex body Q ⊂ R
m such that 0 ∈ Q◦. Then by Lemma 2.2, replac-

ing v1 by v′
1 := v1 + εHQ for ε > 0 if necessary, we may assume that

u1 − v′
1 → −∞

as ‖z‖ → ∞ and as |zj | → 0 for some j ∈ {1, . . . ,m}. Now, we define

ψN = max{u1, v
′
1 − N}.

Note that ψN = v′
1 − N near the boundary of the set Aρ,R for sufficiently large

R > 0 and small ρ > 0. Thus, by Stokes’ theorem we obtain∫
(C∗)m

ddcv′
1 ∧

k∧
i=2

ddcvi ∧ �m−k ≥
∫

Aρ,R

ddcv′
1 ∧

k∧
i=2

ddcvi ∧ �m−k

=
∫

Aρ,R

ddcψN ∧
k∧

i=2

ddcvi ∧ �m−k.

Since ψN decreases to u1 as N → ∞, by the Bedford–Taylor theorem [BT82] on
the continuity of Monge–Ampére measures along decreasing sequences we infer
that ∫

(C∗)m
ddcv′

1 ∧
k∧

i=2

ddcvi ∧ �m−k ≥
∫

Aρ,R

ddcu1 ∧
k∧

i=2

ddcvi ∧ �m−k.

Finally, since R � 1, ρ > 0, and ε > 0 are arbitrary, letting R → ∞, ρ → 0, and
ε → 0 in v′

1 = v1 + εHQ, respectively, we obtain the first assertion.
To prove the second assertion we let vi = HPi

and apply the first part together
with Proposition 2.4. �
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Remark 2.8. We remark that the condition ui ∈ L∞
loc((C

∗)m) in Proposition 2.7
is used to make sure that the mixed complex Monge–Ampére is well defined.
Thus, we infer that for ψ ∈ LP , the total mass of MAC(ψ) is finite as soon as it is
well defined on (C∗)m. Note that by Bertini’s theorem for generic f i

N ∈ Poly(NPi )

their zero sets Zf i
N

are smooth and intersect transversely. It follows from [Dem09,

Sect. III, Thm. 4.5] that for systems (f 1
N, . . . , f k

N), in general position the current
of integration

[Zf 1
N ,...,f k

N
] = ddc log |f 1

N | ∧ · · · ∧ ddc log |f k
N |

is well defined and has locally finite mass. Thus, it follows from Proposition 2.7
that

1

Nk

∫
(C∗)m

[Zf 1
N ,...,f k

N
] ∧ ωm−k ≤ MVm(P1, . . . ,Pk,�, . . . ,�), (2.7)

which was also observed in [Ras03, Cor. 6.1] when P ⊂ R
m
≥0.

2.3. A Siciak–Zaharyuta Theorem

We start with a basic result, which is an easy consequence of Cauchy’s estimates
on the product of annuli

Aρ,R := {z ∈ (C∗)m : ρ < |zi | < R for each i = 1, . . . ,m} for 0 < ρ < R

together with a Liouville-type argument.

Proposition 2.9. Let P ⊂ R
m be an integral polytope, and f ∈ O((C∗)m) be

such that ∫
(C∗)m

|f (z)|2e−2NHP (z)(1 + |z|2)−r dz < ∞
for some 0 ≤ r � 1. Then f is a Laurent polynomial such that its support
Sf ⊂ NP.

Throughout this section, we denote V := V ∗
P,K,q , where K and q are as in (2.2.1),

and P ⊂ R
m is an integral polytope with nonempty interior. Next, we define

�N := sup
z∈(C∗)m

{
|fN(z)| : fN ∈ Poly(NP) and max

z∈K
|fN(z)|e−Nq(z) ≤ 1

}
.

Note that �N ·�M ≤ �N+M , which implies that limN→∞ 1
N

log�N(z) exists for
z ∈ (C∗)m. Observe also that for each fN ∈ Poly(NP), the function 1

N
log |fN(z)|

belongs to LP . Hence, limN→∞ 1
N

log�N ≤ V on (C∗)m. If P is the unit simplex
�, then it follows from seminal works of Siciak and Zaharyuta (see [Kli91] for
details) that

lim
N→∞

1

N
log�N = VK,q

pointwise on C
m. We obtain a slightly stronger version of this result in the present

setting.
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Theorem 2.10. Let P ⊂ R
m be an integral polytope with nonempty interior, and

(K,q) be a regular weighted compact set. Then

VP,K,q = lim
N→∞

1

N
log�N

locally uniformly on (C∗)m.

As the proof of Theorem 2.10 uses standard techniques (cf. [Hör90; Kli91]), we
omit it here and refer the reader to ArXiv version [Bay] of this manuscript.

2.4. Bernstein–Markov Measures

Next, we turn our attention to the L2 space of weighted polynomials. A measure
τ supported in K is called a Bernstein–Markov measure for the triple (P,K,q)

if it satisfies the weighted Bernstein–Markov inequality: there exists constants
MN > 0 such that, for every fN ∈ Poly(NP),

max
K

|fNe−Nq | ≤ MN‖fNe−Nq‖L2(τ )

and lim supN→∞(MN)1/N = 1. This roughly means that the sup-norm and L2(τ )-
norm on Poly(NP) are asymptotically equivalent. We remark that if P ⊂ p�, then
any BM measure (for polynomials of degree at most N) induces a BM measure
for our setting. For instance, for P = �, it follows from [NZ83] that the complex
Monge–Ampére of the unweighted (i.e. q ≡ 0) global extremal function V ∗

K of a
regular compact set K satisfies the BM inequality.

Next, we fix an orthonormal basis {Fj }dN

j=1 for Poly(NP) with respect the inner

product induced from L2(e−2Nqτ). Then associated Bergman kernel is given by

SN(z,w) =
dN∑
j=1

Fj (z)Fj (w),

where dN = dim Poly(NP).
The following result was proved in [BS07, Lemma 3.4] for the case P = �.

Their argument generalizes to our setting mutatis mutandis.

Proposition 2.11. Let P be an integral polytope with nonempty interior, K ⊂
(C∗)m be a compact set, and q : (C∗)m → R be a continuous weight function
such that V := VP,K,q is continuous. If τ is a BM measure supported on K , then

1

2N
logSN(z, z) → VP,K,q(z)

uniformly on compact subsets of (C∗)m

3. Expected Distribution of Zeros

Recall that if P ⊂ R
m is an integral polytope, then

#(NP ∩Z
m) = dim(Poly(NP)) = Vol(P )Nm + o(Nm), (3.1)

where the latter is known as the Ehrhart polynomial of P [Ehr67].
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We identify each fN ∈ Poly(NP) with a point in C
dN by

�N : Poly(NP) → C
dN ,

fN =
dN∑
j=1

aN
j Fj → aN := (aN

j ).

First, we prove that conditions (A1), (A2), and (A3) hold for random sparse poly-
nomials with i.i.d. coefficients under a mild moment condition:

Proposition 3.1 (i.i.d. coefficients). Assume that aj are i.i.d. complex- (or
real-)valued random variables whose distribution law P is of the form P = φ(z) dz

(or P = φ(x)dx), where φ is a real-valued bounded function satisfying

P{z ∈ C
m : log |z| > R} ≤ C

Rρ
for R ≥ 1

for some ρ > m + 1. Then the dN -fold product measure σN on C
dN induced by P

satisfies conditions (A1), (A2), and (A3).

Proof. (A1) is a direct consequence of [Bay16, Lemma 3.1]. To show (A2), we
note that, for N � 1 and ε > 0,

σN {a ∈C
dN : ‖a‖ > eεN } ≤ σN

{
a ∈C

dN : ‖a‖ >
√

dNeεN/2}
≤ σN {a ∈C

dN : |aj | > e(ε/2)N for some j}
≤ CεdN

Nρ
,

where the latter is summable.
Finally, for fixed u ∈ S2dN−1, we may assume that |u1| ≥ 1/

√
dN , and applying

the change of variables w1 = ∑dN

j=1 ajuj , w2 = a2, . . . , wdN
= adN

, we see that

σN {a ∈C
dN : |〈a,u〉| < e−tN }

=
∫
C

dN −1

∫
|w1|≤e−tN

1

|u1|2 φ

(
w1 − w2u2 − · · · − wdN

udN

u1

)
dλ(w1) dσN−1

≤ CπdNe−2tN .

Since the latter is summable, (A3) follows. �

Let X be a complex manifold, and σ be a positive measure on X. Following
[DNS10], we say that σ is (locally) moderate if for any open set U ⊂ X, a compact
set K ⊂ U , and a compact family F of psh functions there exist constants c,
α > 0 such that ∫

K

e−αψ dσ ≤ c ∀ψ ∈ F . (3.2)

Note that σ does not put any mass on pluripolar sets. The existence of c, α in (3.2)
is equivalent to the existence of c′α′ > 0 satisfying

σ {z ∈ K : ψ(z) < −t} ≤ c′e−α′t (3.3)
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for t ≥ 0 and ψ ∈ F . Next, we observe that moderate measures also fall into the
framework of our main results.

Proposition 3.2 (Moderate measures). Let σN be a moderate measure supported
on S2dN−1. Then σN satisfies conditions (A1), (A2), and (A3).

Proof. Since supp(σN) ⊂ S2dN−1, condition (A2) is automatically satisfied.
Moreover, for every u ∈ S2dN−1, the function ψu : CdN → R defined by

ψu(w) = log |〈w,u〉|
is psh, and supS2dN −1 ψu = 0. Since σN is moderate, letting F = {ψu : u ∈
S2dN−1}, it follows from (3.3) that there exist C, α > 0 such that

σN {w ∈ C
dN : log |〈w,u〉| < −R} ≤ Ce−αR for R > 0

for every u ∈ S2dN−1. This verifies (A3).
Since∫

C
dN

| log |〈a,u〉||dσN(a) ≤ 1 +
∫ ∞

0
σN {a ∈ C

dN : |〈a,u〉| < e−t }dt,

(A1) follows. �

For a complex manifold Y , we denote the set of bidegree (m−k,m−k) test forms,
that is, smooth forms with compact support by Dm−k,m−k(Y ). Then a bidegree
(k, k) current is a continuous linear functional on Dm−k,m−k(Y ) with respect to
the weak topology. We denote the set of bidegree (k, k) currents by Dk,k(Y ). We
refer the reader to the manuscript [Dem09] for detailed information regarding the
theory of currents.

For each fN ∈ Poly(NP), we let [ZfN
] denote the current of integration along

regular points of the zero locus of fN and denote the action of it on a test form � ∈
Dm−1,m−1(Y ) by 〈[ZfN

],�〉. Then the expected zero current of random Laurent
polynomials fN ∈ Poly(NP) was defined in the introduction by

〈E[ZfN
],�〉 =

∫
Poly(NP)

〈[ZfN
],�〉dσN(fN).

The next lemma provides a link between Bergman kernels and expected distri-
bution of zeros of random sparse polynomials.

Proposition 3.3. Let P ⊂ R
m be an integral polytope with nonempty interior.

Then there exists a real closed (1,1) current TN ∈ D(1,1)((C∗)m) such that for
every test form � ∈ D(m−1,m−1)((C

∗)m),

1

N
〈E[ZfN

],�〉 = 1

2N
〈ddc(logSN(z, z)),�〉 + 〈TN,�〉

and TN → 0 weakly as N → ∞. In particular,

1

N
E[ZfN

] → ddcVP,K,q

weakly as N → ∞.
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Proof. It follows from the Poincaré–Lelong formula that

[ZfN
] = ddc log |fN |.

Writing fN = ∑dN

j=1 ajF
N
j =: 〈(aN), (FN

j )〉, where {FN
j } is a fixed ONB for

Poly(NP), and letting uN(z) := (FN
1 (z)/

√
SN(z, z), . . . ,FN

dN
(z)/

√
SN(z, z)) for

z ∈ (C∗)m, by Fubini’s theorem we obtain

1

N
〈E[ZfN

],�〉 =
∫
C

dN

〈
1

2N
ddc logSN(z, z),�

〉
dPN(aN)

+ 1

N

∫
(C∗)m

ddc�

∫
C

dN

log |〈aN,uN(z)〉|dPN(aN)

=: 1

2N
〈ddc(logSN(z, z)),�〉 + 〈TN,�〉.

Moreover,

|〈TN,�〉| ≤ 1

N
‖ddc�‖∞ sup

u∈S2dN −1

∣∣∣∣
∫
C

dN

log |〈a,u〉|dσN(a)

∣∣∣∣,
where ‖ddc�‖∞ denotes the sum of the sup norms of the coefficients of the
smooth form ddc�. Thus, the first assertion follows from (A1).

Now, the second assertion is an immediate consequence of Proposition 2.11.
�

For an algebraic submanifold Y ⊂ (C∗)m, we let Zf|Y := {z ∈ Y : f (z) = 0} de-
note the restriction of the zero locus of f on Y . The following is a well-known
probabilistic version of the Poincaré–Lelong formula (see [SZ04, Sect. 5] and
[Bay16, Sect. 3]).

Proposition 3.4. The expected zero current of independent random Laurent poly-
nomials f i

N ∈ Poly(NPi ), 1 ≤ i ≤ k, is given by

E[Zf 1
N ,...,f k

N
] =

k∧
i=1

E[Zf i
N
].

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Note that for every continuous (m−1,m−1) form � with
compact support in (C∗)m,

|〈ZfN
,�〉| ≤ 〈ZfN

,ωm−1〉‖�‖∞ ≤ MVm(P1,�, . . . ,�)‖�‖∞.

By approximating � with smooth forms it suffices to consider test forms on
(C∗)m.

We prove the theorem by induction on bidegrees. The case k = 1 was obtained
in Proposition 3.3.

Let us denote

α
j
N := 1

2N
ddc logS

j
N(z, z), (3.4)
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where S
j
N(z,w) is the Bergman kernel for Poly(NPj ). We claim that for every

test form � ∈Dm−k,m−k((C
∗)m),

1

Nk
〈E[Zf 1,...,f k ],�〉 =

〈 k∧
j=1

α
j
N,�

〉
+ 〈T k

N,�〉,

where T k
N is a real closed (k, k) current such that T k

N → 0 weakly as N → ∞.
Assume that the claim holds for k − 1. By Bertini’s theorem for generic f k

N ∈
Poly(NPk), its zero locus Zf k

N
is smooth and has codimension one in (C∗)m.

Then, using the notation in Proposition 3.3 and applying induction hypothesis,
we have

1

Nk

∫
Z

f k
N

〈[Z
f 1

N ,...,f k−1
N

],�〉dσN(f 1
N) . . . dσN(f k−1

N )

= 1

Nk

∫
Z

f k
N

〈E[Z
f 1

N ,...,f k−1
N

],�〉

=
∫

Z
f k
N

(k−1∧
j=1

α
j
N ∧ � + 〈T k−1

N ,�〉
)

,

where

|〈(T k−1
N )|Z

f k
N

,�|Z
f k
N

〉| ≤ ‖T k−1
N ‖‖ddc�|Z

f k
N

‖∞

≤ ‖T k−1
N ‖‖ddc�‖∞

∫
Z

f k
N

ωm−1

≤ ‖T k−1
N ‖‖ddc�‖∞MVm(Pk,�, . . . ,�),

and ‖T k−1
N ‖ denotes the mass of T k−1

N . Now, taking the average over f k
N ∈

Poly(NPk) and using the estimate for the case k = 1, we obtain

1

Nk
〈E[Zf 1

N ,...,f k
N
],�〉 =

〈 k∧
j=1

α
j
N,�

〉
+

〈
T 1

N,

k−1∧
j=1

α
j
N ∧ �

〉

+
∫

Poly(NPk)

〈(T k−1
N )|Z

f k
N

,�|Z
f k
N

〉dσN(f k
N)

=
〈 k∧
j=1

α
j
N,�

〉
+ C�,N ,

where

C�,N =
〈
T 1

N,

k−1∧
j=1

α
j
N ∧ �

〉
+

∫
Poly(NPk)

〈(T k−1
N )|Z

f k
N

,�|Z
f k
N

〉dσN(f k
N).
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Then by Proposition 3.3 we have

|C�,N | ≤
∣∣∣∣
〈
T 1

N,

k−1∧
j=1

α
j
N ∧ �

〉∣∣∣∣ +
∣∣∣∣
∫

Poly(NPk)

〈T k−1
N ,�|Z

f k
N

〉dσN(f k
N)

∣∣∣∣
≤ ‖T 1

N‖‖ddc�‖∞MVm(P1, . . . ,Pk−1,�, . . . ,�)

+ ‖T k−1
N ‖‖ddc�‖∞MVm(Pk,�, . . . ,�).

Thus, the assertion follows from this estimate, induction hypothesis, and the
uniform convergence of Bergman kernels to weighted global extremal function
(Proposition 2.11) together with a theorem of Bedford and Taylor [BT82] on con-
vergence of Mongé–Ampere measures along uniformly convergent sequences of
psh functions. �

4. Self-Averaging

In this section, we prove Theorem 1.2. Let Pm denote the complex projective
space, and let ωFS be the Fubini–Study form. We also denote by dV the volume
form induced by ωFS. Recall that an usc function ϕ ∈ L1(Pm,dV ) is called ωFS-
psh if ωFS + ddcϕ ≥ 0 in the sense of currents. It is well know that (see e.g.
[Dem09]) there is a 1–1 correspondence between the Lelong class of psh functions
L(Cm) and the set of ωFS-psh functions given by the natural identification

u ∈ L(Cm) → ϕ(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(z) − 1
2 log(1 + ‖z‖2)

for z ∈C
m,

lim supw∈Cm→z u(w) − 1
2 log(1 + ‖w‖2)

for z ∈ H∞,

(4.1)

where Pm = Cm ∪H∞, and H∞ denotes the hyperplane at infinity. Note that since
P

m is compact, there are no global psh functions other than the constant ones.
On the other hand, we can associate each ωFS-psh function ϕ with its curvature
current ωFS + ddcϕ, which yields compactness properties of ωFS-psh functions.
We use the later properties quite often in this section. In addition, working in the
compact setting makes the usage of integration by parts more simple since there
is no boundary.

We denote the hyperplane bundle L → P
m by L := O(1), which is endowed

with the Fubini–Study metric hFS In the sequel, we identify C
m with the affine

piece in P
m. Then the elements of H 0(Pm,O(N)) can be identified with the ho-

mogenous polynomials in m + 1 variables of degree N . Thus, restricting them
to C

m, we may identify H 0(Pm,O(N)) with the space of polynomials Poly(N�)

of total degree at most N , and the smooth metric hFS can be represented by the
weight function 1

2 log(1 + ‖z‖2) on C
m. For each sN ∈ H 0(Pm,O(N)), we let

‖sN(z)‖NhFS denote the pointwise norm of sN evaluated with respect to the met-
ric hFS. Then by (4.1), for each fN ∈ Poly(N�), the function 1

N
log |fN | can be

naturally identified with 1
N

log‖sN‖NhFS .
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For P ⊂ R
m
≥0, denoting p = max{p1 + · · · + pm : (p1, . . . , pm) ∈ P } (so that

P ⊂ p�), we may identify Poly(NP) with a subspace of H 0(Pm,O(pN)) and
denote it by �NP. The BM measure τ induces the inner product on the space
H 0(Pm,O(pN)) defined by

‖sN‖2 :=
∫

K

‖sN(z)‖2
pNhFS

dτ(z).

For a fixed ONB {SN
j }, we also let

SN(z, z) =
dN∑
j=1

‖SN
j (z)‖2

NhFS

denote the restriction of the associated Bergman kernel to the diagonal. We remark
that the Bergman kernel asymptotics generalize the current setting (see [Bay16,
Prop. 2.9]). We can endow �NP with dN -fold product measure σN , and we endow
the product space P = ∏∞

N=1 �NP with the product measure P∞. Note that the
elements of the probability space (P,P∞) are sequences of random holomorphic
sections. For each sN ∈ �NP denoting its zero divisor by ZsN , it follows from the
Poincaré–Lelong formula that

[ZsN ] = pNωFS + ddc log‖sN‖pNhFS .

We remark that [ZsN ] coincides with the (unique) extension of the current of
integration ddc log |fN | through the hyperplane at infinity H∞. Finally, by (4.1)
the function VP,K,q also extends to a pωFS-psh function on P

m, which we denote
by VP,pωFS and define its curvature current by

TP,K,q := pωFS + ddcVP,pωFS .

Slicing and Regularization of Currents

Let Y be a complex manifold of dimension n, and πY : Y × P
m → Y , πPm : Y ×

P
m → P

m denote the projections onto the factors. Given a positive closed (k, k)

current R on Y × P
m, it follows from [Fed69] (see also [DS06b]) that the slices

Ry := 〈R,πY , y〉 exist for a.e. y ∈ Y . The currents Ry (if it exists) is a positive
closed (k, k) current on {y} × P

m. For instance, if R is a continuous form, then
Ry is just restriction of R on {y}×P

m. We can identify Ry with a positive closed
(k, k) current on Pm whose mass is independent of y [DS09, Lemma 2.4.1].

Following [DS09], we say that the map y → Ry defines a structural variety
in the set of positive closed (k, k) currents on P

m. We also say that a structural
variety is special if the slice Ry exists for every y ∈ Y and the map y → Ry is
continuous with respect to weak topology of currents. In this work, we focus on
the following special structural disc: Consider the holomorphic map

H : Aut(Pm) × P
m → P

m

defined by H(τ, z) = τ−1(z). Given a positive closed (k, k) current R on P
m, we

define R := H ∗(R). Then it is easy to see that the slice Rτ = τ∗(R) for each
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τ ∈ Aut(Pm). This in particular implies that τ → Rτ is continuous and {Rτ }τ
defines a special structural variety [DS09, Prop. 2.5.1].

We let � ⊂ C denote the unit disc. We fix a holomorphic chart Y for Aut(Pm)

and denote the local holomorphic coordinates by y, where ‖y‖ < 1, and y = 0
corresponds to the identity map id ∈ Aut(Pm). We also let τy ∈ Aut(Pm) denote
the automorphism that corresponds to a local coordinate y. Next, we fix a positive
smooth function ψ with compact support in {‖y‖ < 1} such that

∫
ψ(y)dy = 1

and define ψθ(y) := |θ |−2nψ(
y
|θ | ) for θ ∈ �. Note that ψθ(y)dy is an approxi-

mate identity for the Dirac mass at 0. Finally, we define the current R∧π∗
Y (ψθ dy)

by

〈R ∧ π∗
Y (ψθ dy),�〉 :=

∫
〈Ry,�〉ψθ(y)dy

=
∫

〈Rτθy ,�〉ψ(y)dy,

where � is an (m − k,m − k) test form on Y × Pm Note that the slice of R ∧
π∗

Y (ψθ dy) can be identified with the current Rθ whose action on the (m− k,m−
k) test form � on P

m defined by

〈Rθ,�〉 :=
∫

〈(τy)∗R,�〉ψθ(y)dy

=
∫

〈(τθy)∗R,�〉ψ(y)dy

by setting � = π∗
Pm(�).

Proposition 4.1. Let R be a positive closed (k, k) current on P
m, and � be a

smooth (m − k,m − k) form on P
m such that ddc� ≥ 0. Then

(i) Rθ is a smooth positive (k, k) form for θ ∈ �∗. The current Rθ depends
continuously on R. Moreover, Rθ → R weakly as θ → 0.

(ii) There exists C > 0 such that |〈Rθ,�〉| ≤ C‖�‖∞‖R‖ for every θ ∈ �.
(iii) ϕ(θ) := 〈Rθ,�〉 is a continuous subharmonic function on �.

Proof. Part (i) is proved in [DS09, Prop. 2.1.6]. Adding a large multiple of ωFS
to �, we may assume that 0 ≤ � ≤ CωFS for some C > 0. Since each Rθ is
positive closed and its mass is independent of θ , (ii) follows. For part (iii), let
� := π∗

Pm(�) and observe that � = (πY )∗(R ∧ �) is of bidegree (0,0) on Y

satisfying
ddc� = (πY )∗(R ∧ ddc�) ≥ 0.

This implies that � coincides with a psh function on Y . Note that for fixed y ∈ Y ,
we have ϕ(θ) = �(θy) for θ ∈ �, and thus ϕ is subharmonic. The continuity
follows from (i). �

Proof of Theorem 1.2. The proof is based on induction.
Case k = 1: It suffices to show that 1

N
log |fN(z)| → VP,K,q in L1

loc((C
∗)m).

First, observe that for every ε > 0, by (A2) and the Borel–Cantelli lemma there
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exists a set A ⊂ P of probability one such that for every sequence {fN } ∈ A ,
we have

log |fN(z)| = log |〈aN,uN(z)〉| + 1

2
logSN(z, z)

≤ εN + 1

2
logSN(z, z),

which implies that (
lim sup
N→∞

1

N
log |fN(z)|

)∗
≤ VP,K,q(z).

Note that by (A3), the Borel–Cantelli lemma, and Proposition 2.11, for every
z ∈ (C∗)m, there exists a set Az ⊂ P of probability one such that for every
{fN } ∈ Az,

lim inf
N→∞

1

N
log |fN(z)| ≥ VP,K,q(z). (4.2)

Next, we fix a countable dense subset zk ∈ (C∗)m and define B := A ∩
(
⋂∞

k=1 Azk
). Clearly, B has probability one. To finish the proof, letting {fN } ∈ B,

we assume on the contrary that 1
N

log |fN(z)| 	→ VP,K,q in L1
loc((C

∗)m). Then
there exist a subsequence fNk

and an open set U � (C∗)m such that ‖fNk
−

VP,K,q‖L1(U) > ε. Since VP,K,q is locally bounded above, so is 1
N

log |fNk
|. Then

by the Hartogs lemma, either 1
N

log |fNk
| converges uniformly to −∞, or it has

a subsequence that converges in L1(U). If the former occurred, then there would
exist n0 ∈N such that for N ≥ n0 and z ∈ U ,

1

N
log |fN(z)| ≤ VP,K,q(z).

However, this contradicts (4.2). Hence, there exists a subsequence such that
(1/Nk) log |fNk

| → v in L1(U). Then by (4.2) we have that v∗ is psh, v∗ ≤ VP,K,q

on U , and v∗ 	= VP,K,q . Since VP,K,q is continuous, the set U ′ := {z ∈ U :
v∗(z) < VP,K,q(z)} is an open set. Hence there exists zk ∈ U ′, but this contra-
dicts (4.2).

Case k > 1: We assume that the the claim holds for k−1. By Bertini’s theorem
for generic f k

N ∈ Poly(NPk), their zero loci Zf k
N

are smooth and intersect transver-

sally. In particular, denoting fkN := (f 1
N, . . . , f k

N), the current of integration [ZfkN
]

has locally finite mass, and

[ZfkN
] = [Zf 1

N
] ∧ [Zf 2

N ,...,f k
N
].

Let � be a smooth (m − k,m − k) form on P
m. Writing the test form � as � =

�+ − �− for some smooth forms �± where ddc�± ≥ 0, we may and we do
assume that ddc� ≥ 0. We also denote by [Zf 2

N ,...,f k
N
]θ the θ -regularization of

the current of integration [Zf 2
N ,...,f k

N
]. It follows from Proposition 4.1 that

uN(θ) := 1

Nk
〈[Zf 1

N
] ∧ [Zf 2

N ,...,f k
N
]θ ,�〉 = 1

Nk
〈[Zf 2

N ,...,f k
N
]θ , [Zf 1

N
] ∧ �〉
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defines a continuous subharmonic function on �. Moreover, by (A2), the Borel–
Cantelli lemma, and the Cauchy–Schwarz inequality we have

uN(θ) = 1

Nk
〈[Zf 2

N ,...,f k
N
]θ ,pNωFS ∧ �〉 + 1

Nk
〈[Zf 2

N ,...,f k
N
]θ , log‖s1

N‖pNhFS�〉

≤ 1

Nk
〈[Zf 2

N ,...,f k
N
]θ ,pNωFS ∧ �〉 + ε

Nk−1
〈[Zf 2

N ,...,f k
N
]θ ,�〉

+ 1

Nk

〈[Zf 2
N ,...,f k

N
]θ , log

√
SN(z, z),�

〉
.

Then by [DS09, Prop. 4.2.6], the induction hypothesis, and uniform convergence
of Bergman functions SN(z, z) implies that(

lim sup
N→∞

uN(θ)
)∗ ≤ v(θ) := 〈TP,K,q ∧ (T k−1

P,K,q)θ ,�〉 for θ ∈ �,

where (T k−1
P,K,q)θ denotes θ -regularization of T k−1

P,K,q . In particular,

lim sup
N→∞

〈
1

Nk
[ZfkN

],�
〉
≤ 〈T k

P,K,q ,�〉.

On the other hand, [Zf 2
N ,...,f k

N
]θ is a smooth positive current, and since 1

N
[Zf 1

N
] →

TP,K,q weakly by Proposition 4.1, we have

lim
N→∞uN(θ) = v(θ) for every θ ∈ �∗. (4.3)

We claim that the equality holds on �. Indeed, if not, then there exist a subse-
quence Nk and a subharmonic function ϕ such that uNk

→ ϕ in L1
loc(�) and

ϕ(0) =
(

lim sup
Nk→∞

uNk
(0)

)∗
< v(0).

By this argument, ϕ(θ) ≤ v(θ) for θ ∈ �. Hence, by the continuity of v the set

O := {θ ∈ � : ϕ(θ) < v(θ)}
is open. But this contradicts (4.3). �

5. Unbounded Case

In this section, we obtain generalizations of Theorem 1.1 and 1.2 for certain un-
bounded closed subsets K ⊂ (C∗)m. Throughout this section, we assume that
P ⊂ R

m
≥0 is an integral polytope with nonempty interior. In the sequel, we let

p := max{p1 + · · · + pm : (p1, . . . , pm) ∈ P }, so that P ⊂ p�.
A lower semicontinuous function q : Cm → R for which {z ∈ K : q(z) < ∞}

is nonpluripolar is called weakly admissible if there exists M ∈ (−∞,∞) such
that

lim inf
z∈K,‖z‖→∞q(z) − p

2
log(1 + ‖z‖2) = M.

We say that q is a continuous weakly admissible weight function for K if it is
weakly admissible and extends to a continuous pωFS-psh function. In particu-
lar, q is induced by a continuous metric on O(p). A weighted closed set (K,q)
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is called a regular weighted closed set if the global extremal function VP,K,q

extends to a continuous pωFS-psh function on P
m. We remark that if q is a

weakly admissible weight function for K = (C∗)m, then the set of polynomials
Poly(NP) ⊂ L2(e−2Nq dV ), where dV = h(z) dz denotes a probability volume
form on C

m (e.g. dV = 1
m!ω

m
FS). Then Theorem 2.10 carries over to the present

setting, and we obtain the following:

Theorem 5.1. Let P ⊂ R
m
≥0 be an integral polytope with nonempty interior,

(K,q) be a regular weighted closed set, and q : Cm → R be a weakly admis-
sible continuous weight function. Then

VP,K,q = lim
N→∞

1

N
log�N

locally uniformly on (C∗)m.

Next, we fix an ONB {Fj
N } for Poly(NP) with respect to the inner product induced

from

〈f,g〉 :=
∫

(C∗)m
f (z)g(z)e−2Nq(z) dV .

We also let SN(z,w) denote the associated Bergman kernel (cf. [Bay16,
Sect. 1.1]). We remark that the volume form dV satisfies the weighted Berstein–
Markov inequality on (C∗)m and the argument in [BS07] (see also [SZ04,
Prop. 4.2]) generalizes to our setting, and we obtain the following:

Proposition 5.2. Let P ⊂ R
m
≥0 be an integral polytope with nonempty interior,

(K,q) be a regular weighted closed set, and q :Cm → R be a weakly admissible
continuous weight function. Then

1

2N
logSN(z, z) → VP,K,q

uniformly on compact subsets of (C∗)m.

We remark that condition (A2) together with (A3) imply (A1). Hence, following
the arguments in proofs of Theorems 1.1 and 1.2, we obtain the following:

Theorem 5.3. Let Pj ⊂ R
m
≥0 be an integral polytope with nonempty interior,

(K,qj ) be a regular weighted closed set, and qj : Cm → R be a weakly admissi-
ble continuous weight function for each 1 ≤ j ≤ k. If condition (A1) holds, then

N−k
E[Zf 1

N ,...,f k
N
] → ddc(VP1,K,q1) ∧ · · · ∧ ddc(VPk,K,qk

)

weakly as N → ∞.
Moreover, if (A2) and (A3) hold, then almost surely

N−kZf 1
N ,...,f k

N
→ ddc(VP1,K,q1) ∧ · · · ∧ ddc(VPk,K,qk

)

weakly as N → ∞.

Next, we provide an example (from [SZ04]) which falls in the framework of The-
orem 5.3:
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Example 5.4. Let P ⊂ R
m
≥0 be an integral polytope with nonempty interior,

K = (C∗)m, and q(z) = p
2 log(1 + ‖z‖2), where p := max{p1 + · · · + pm :

(p1, . . . , pm) ∈ P }. For each x ∈ P , we denote the normal cone to P at x by

Cx := {u ∈ R
m : 〈u,x〉 = ϕP (u)},

where ϕP is the support function of P . Then by [SZ04, Lemma 4.3], for every
z ∈ (C∗)m, there exists unique τz ∈ R

m and r(z) ∈ P such that

μp(e−τz/2 · z) = r(z) and τz ∈ Cr(z),

where x ·z := (x1z1, . . . , xmzm) denotes Rm+ action on (C∗)m, and μP denotes the
moment map defined in the introduction. Furthermore, by [SZ04, Thm. 4.1]

VP,pωFS(z) =

⎧⎪⎨
⎪⎩

0 for z ∈AP ,
1
2 〈r(z), τz〉 − p

2 log[(1 + ‖z‖2)/(1 + ‖e−τz/2 · z‖2)]
for z ∈ (C∗)m\AP

extends as a continuous pωFS-psh function on P
m. In particular, the weighted

global extremal function is given by

VP,q(z) =
{

p
2 log(1 + ‖z‖2) for z ∈ AP ,
1
2 〈r(z), τz〉 + p

2 log[1 + ‖e−τz/2 · z‖2] for z ∈ (C∗)m\AP .
(5.1)

Letting

〈f,g〉 :=
∫

(C∗)m
f (z)g(z)e−2Nq(z)ωm

FS,

we see that

cJ zJ :=
(

(N + m)!
m!(N − |J |)!j1! . . . jm!

)1/2

z
j1
1 . . . z

jm
m for J ∈ NP

(where |J | = j1 + · · · + jm) form an ONB for Poly(NP), and a random Laurent
polynomial in this context is of the form

fN(z) =
∑

J∈NP

aJ cJ zJ .

Thus, Theorem 5.3 applies (with P = P1 = P2), and almost surely

N−m
∑

ζ∈Z
f 1
N

,...,f m
N

δζ → MAC(VP,q) weakly as N → ∞.
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