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Rational Singularities, ω-Multiplier Ideals,
and Cores of Ideals

Kohsuke Shibata

Abstract. We define the ω-multiplier ideals on a normal variety. The
main goal of this paper is to introduce an ω-multiplier ideal and prove
its properties. We give characterizations of two-dimensional rational
singularities by means of ω-multiplier ideals and cores of ideals.

1. Introduction

In this paper, we always assume that a ring is a domain essentially of finite type
over C and a variety is an irreducible reduced separated scheme of finite type
over C.

Rees and Sally [27] introduced the cores of ideals. Okuma, Watanabe, and
Yoshida [26] characterized a two-dimensional local ring with rational singularity
via cores of ideals. However, in the higher-dimensional case, we have a counterex-
ample to such a characterization. We give another characterization of a local ring
with rational singularity of arbitrary dimension via cores of ideals. We, namely,
will prove the following:

Theorem 1.1. Let (A,m) be an n-dimensional Cohen–Macaulay local ring with
an isolated singularity. Then A is a rational singularity if and only if In ⊂ core(I )

for any m-primary ideal I .

By this theorem, we show that a Cohen–Macaulay local ring with an isolated
singularity has a rational singularity if the Briançon–Skoda theorem holds for the
ring. Lipman and Teissier [23] showed that the Briançon–Skoda theorem holds
for a local ring with rational singularities. Therefore a Cohen–Macaulay local ring
with an isolated singularity has a rational singularity if and only if the Briançon–
Skoda theorem holds for the ring.

The multiplier ideals are fundamental tools in birational geometry. In this pa-
per, we introduce a new notion of an “ω-multiplier ideal”, which has similar prop-
erties and works in a slightly different way than a multiplier ideal. The main goal
of this paper is to prove the properties of ω-multiplier ideals and show some ap-
plications.

For the definition of the multiplier ideals, we use the discrepancies. In order for
the discrepancy to be well defined, we need to assume that the variety is normal
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and Q-Gorenstein. The advantage of ω-multiplier ideals is that they can be defined
on any normal variety. If a variety X is normal Gorenstein, then the ω-multiplier
ideal J ω(X,ac) is equal to the usual multiplier ideal J (X,ac) for any ideal a.

One of the most important theorems of the multiplier ideals is the Skoda the-
orem. We will prove that the Skoda theorem of ω-multiplier ideals of a local ring
with a rational singularity.

Proposition 1.2. Let (A,m) be a two-dimensional local ring with a rational
singularity, a be an m-primary ideal, and J be a reduction of a. Then, for n ∈ Z≥2,

J ω(A,an) = aJ ω(A,an−1) = JJ ω(A,an−1).

Huneke and Swanson [11] proved many properties of cores of ideals of a two-
dimensional regular local ring and the relationships between the core of an ideal
and a multiplier ideal of a two-dimensional regular local ring. We generalize their
results to rational singularities using ω-multiplier ideals. We will prove the fol-
lowing:

Proposition 1.3. Let (A,m) be a two-dimensional local ring with a rational
singularity, and a be an integrally closed m-primary ideal. Then

(1) core(a) = J ω(A,a2) = aJ ω(A,a).
(2) e(a) = �(A/ core(a)) − 2�(A/J ω(A,a)).
(3) J ω(A, core(a)) = (J ω(A,a))2.
(4) core(an) = a2n−1J ω(A,a).
(5) coren(a) = a(J ω(A,a))2n−1. In particular, core(core(a)) = a(J ω(A,a))3.

Demailly, Ein, and Lazarsfeld [4] proved the subadditivity theorem for multiplier
ideals on nonsingular varieties. This theorem gives many applications of com-
mutative algebra and algebraic geometry. Takagi and Watanabe [30] proved that
the subadditivity theorem holds for a two-dimensional log terminal local ring.
Moreover, they showed the characterization of a two-dimensional log terminal
local ring via the subadditivity of multiplier ideals. Hence it makes sense to con-
sider the subadditivity of ω-multiplier ideals. We show the characterization of
a two-dimensional local ring with a rational singularity via the subadditivity of
ω-multiplier ideals.

Theorem 1.4. Let (A,m) be a two-dimensional normal local ring. Then X =
SpecA has a rational singularity if and only if the subadditivity theorem of ω-
multiplier ideals holds, that is, for any two ideals a, b⊂ OX ,

J ω(X,ab) ⊂ J ω(X,a)J ω(X,b).

To use the subadditivity of ω-multiplier ideals, we investigate the subadditivity
of cores of ideals. We show the characterization of a two-dimensional local ring
with a rational singularity via the subadditivity of cores of ideals.

Corollary 1.5. Let (A,m) be a two-dimensional normal local ring. Then X =
SpecA has a rational singularity if and only if the subadditivity theorem of cores
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of ideals holds, that is, for any two m-primary integral closed ideals a, b⊂ OX ,

core(ab) ⊂ core(a) core(b).

Moreover, Takagi and Watanabe [30] showed that a two-dimensional normal ring
is regular if the strong subadditivity theorem of multiplier ideals for the ring holds.
We consider the problem of a version of ω-multiplier ideals. We will prove the
following:

Proposition 1.6. Let (A,m) be a two-dimensional normal local ring essentially
of finite type over C. Then X = SpecA is regular if and only if the strong subad-
ditivity theorem of ω-multiplier ideals holds, that is, for any two ideals a, b ⊂ OX

and any rational number c, d > 0,

J ω(X,acbd) ⊂ J ω(X,ac)J ω(X,bd).

A multiplier ideal is an integrally closed ideal. It is natural to ask whether an
integrally closed ideal is a multiplier ideal. In general, multiplier ideals are not
integrally closed ideals (see [20; 21]). Favre and Jonsson [8] and Lipman and
Watanabe [24] gave an answer to this question when a ring is two-dimensional
regular local ring: they showed that all integrally closed ideals on a regular lo-
cal ring are multiplier ideals. Moreover, Tucker [31] generalized the result to a
log terminal local ring. On the other hand, we generalize this theorem to ratio-
nal singularities by using ω-multiplier ideals. In other words, we will prove the
following:

Theorem 1.7. Let (A,m) be a two-dimensional local normal ring. Suppose
X = SpecA is a rational singularity. Then every integrally closed ideal is an
ω-multiplier ideal.

In Section 2, we define rational singularities, the Mather–Jacobian discrepancy
and cores of ideals, and collect their results.

In Section 3, we define ω-multiplier ideals and prove their properties. Further,
we characterize a local ring with a rational singularity of arbitrary dimension via
cores of ideals.

In Section 4, we study ω-multiplier ideals of a two-dimensional local ring with
a rational singularity. In Section 4.1, we discuss various relationships between
the core of an ideal and an ω-multiplier ideal of a two-dimensional local ring
with a rational singularity. In Section 4.2, we investigate when the subadditivity
theorem of ω-multiplier ideals holds in the two-dimensional case. In Section 4.3,
we show that all integrally closed ideals on surface with a rational singularity are
ω-multiplier ideals.

2. Preliminaries

2.1. Rational Singularities and Du Bois Singularities

In this section, we define rational singularities and Du Bois singularities.
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Definition 2.1. We say that a local ring A has rational singularities if A is normal
and there exists a desingularizaion Y → SpecA with Hi(Y,OY ) = 0 for every
i > 0.

The following is well known as a characterization of rational singularities in char-
acteristic zero (see, e.g., [17]).

Proposition 2.2 (Kempf’s criterion for rational singularities). Let A be a normal
local Cohen–Macaulay ring essentially of finite type over a field of characteris-
tic 0. The scheme X = SpecA has rational singularities if and only if there exists
a desingularizaion Y → X with f∗ωY = ωX , where ωY and ωX are the canonical
sheaves of Y and X, respectively.

Definition 2.3. Suppose that X is a reduced scheme embedded as a closed sub-
scheme of a smooth scheme Y . Let f : Ỹ → Y be a log resolution of (Y,X) that is
an isomorphism outside of X. Let E denote (f −1(X))red. Then X is said to have
Du Bois singularities if the natural map OX → Rf∗OE is a quasi-isomorphism.

First Du Bois singularities are introduced by Steenbrink with a different defini-
tion in [29], but Schwede [28] showed that it is equivalent to the condition in
Definition 2.3.

Kovács, Schwede, and Smith characterized normal Cohen–Macaulay Du Bois
singularities.

Theorem 2.4 ([18, Thm. 3.1]). Suppose that X is normal and Cohen–Macaulay.
Let π : Y → X be any log resolution and denote the reduced exceptional divisor
of π by G. Then X has Du Bois singularities if and only if π∗ωY (G) = ωX .

Using this theorem, we easily to see that Cohen–Macaulay log canonical singu-
larities are Du Bois singularities and that Gorenstein Du Bois singularities are log
canonical singularities.

Remark 2.5. Kollár and Kovács [16] showed that log canonical singularities are
Du Bois singularities even if the singularities are not Cohen–Macaulay.

2.2. Mather–Jacobian Minimal Log Discrepancy

We start by recalling the definition and basic properties of Mather–Jacobian log
discrepancy defined in [5; 6]. We refer to [5] for further details. Let X be a variety
of dimension dimX = n. The sheaf �n

X is invertible over the smooth locus Xreg

of X, and hence the projection

π : P(�n
X) → X

is an isomorphism over Xreg. The Nash blow-up X̂ → X is defined as the closure
of π−1(Xreg) in P(�n

X).
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If V ⊃ X is an n-dimensional reduced, locally complete intersection scheme,
then the Nash blow-up π : X̂ → X is isomorphic to the blow-up of the ideal jV |X ,
where jV is the Jacobian ideal of V (see Proposition 2.4 in [2]).

Definition 2.6. Let f : Y → X be a resolution of singularities of X that factors
through the Nash blow-up of X. The image of the canonical homomorphism

f ∗(�n
X) → �n

Y

is an invertible sheaf of the form Jacf �n
Y , where Jacf is the relative Jacobian,

which is an invertible ideal on Y and defines an effective divisor supported on the
exceptional locus of f . The divisor is called the Mather discrepancy divisor and
denoted by K̂Y/X .

Remark 2.7. Let X be an n-dimensional normal variety, and V ⊃ X be an n-
dimensional reduced, locally complete intersection scheme. If f : Y → X is a
log resolution of jV |X such that jV |XOY = OY (−JV ), then we have K̂Y/X =
KY + JV − f ∗(KV |X) (see [2]).

Definition 2.8. Let f : Y → X be a log resolution of jX , where jX is the Jacobian
ideal of a variety X. We denote by JY/X the effective divisor on Y such that
jXOY = OY (−JY/X). This divisor is called the Jacobian discrepancy divisor.

Here, we note that every log resolution of jX factors through the Nash blow-up;
see, for example, Remark 2.3 in [6].

Definition 2.9. Let X be an n-dimensional normal variety, and V be a reduced
locally complete intersection n-dimensional scheme containing X. The ideal dX,V

is the ideal such that

Im(ωX → ωV |X) = dX,V ⊗ ωV |X.

Remark 2.10. Let M be a smooth variety containing X and V . Consider the
ideals IX and IV of X and V in M . Then, as OV -modules, we have

ωX ⊗ ω−1
V = HomOV

(OX,OV ) = (IV : IX)/IV ,

and therefore
dX,V = ((IV : IX) + IX)/IX.

In other words, if we write V = X ∪ X′, where X′ is the residual part of V with
respect to X (given by the ideal (IV : IX)), then dX,V is the ideal defining the
intersection X ∩ X′ in X.

Definition 2.11. Let X be a normal variety. The lci-defect ideal of X is defined
to be

dX =
∑
V

dX,V ,

where the sum is taken over all reduced, locally complete intersection schemes
V ⊃ X of the same dimension.
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Remark 2.12. The support of the lci-defect ideal of X is locally a noncomplete
intersection locus of X. In particular, dX = OX if X is locally a complete inter-
section.

Definition 2.13. A normal variety X is said to be Q-Gorenstein if its canonical
divisor KX is Q-Cartier.

Definition 2.14. Let X be an n-dimensional normal Q-Gorenstein variety, and
V be a reduced locally complete intersection n-dimensional scheme containing
X. Let r be a positive integer such that rKX is Cartier. The ideal dr,X,V is the
ideal such that

Im(OX(rKX) → (ωV |X)⊗r ) = dr,X,V ⊗ (ωV |X)⊗r .

Definition 2.15. Let X be a normal Q-Gorenstein variety. Let r be a positive
integer such that rKX is Cartier. The lci-defect ideal of level r of X is defined to
be

dr,X =
∑
V

dr,X,V ,

where the sum is taken over all reduced, locally complete intersection schemes
V ⊃ X of the same dimension.

Proposition 2.16 ([2, Prop. 2.12]). Let X be a normal Q-Gorenstein variety. Let
r be a positive integer such that rKX is Cartier. Then dr

X ⊂ dr,X .

Remark 2.17. If X is Gorenstein, then dX = d1,X . In general, however,
dr
X �= dr,X .

Definition 2.18. Let X be a normal Q-Gorenstein variety. Let a1, . . . ,ar be
nonzero ideals on X, and t1, . . . , tr ∈ R. Given a log resolution f : Y → X of
a1 · · ·ar , we denote by Z1, . . . ,Zr the effective divisors on Y such that aiOY =
OY (−Zi) for 1 ≤ i ≤ r . For a prime divisor E over X such that E appears on Y ,
we define the log discrepancy at E as

a(E;X,a
t1
1 · · ·atr

r ) := ordE(KY/X) − ordE(t1Z1 + · · · + trZr) + 1.

Definition 2.19. Let a1, . . . ,ar be nonzero ideals on X, and t1, . . . , tr ∈ R.
Given a log resolution f : Y → X of jXa1 · · ·ar , we denote by Z1, . . . ,Zr the
effective divisors on Y such that aiOY = OY (−Zi) for 1 ≤ i ≤ r . For a prime
divisor E over X such that E appears on Y , we define the Mather–Jacobian-log
discrepancy at E as

aMJ(E;X,a
t1
1 · · ·atr

r ) := ordE(K̂Y/X − JY/X − t1Z1 − · · · − trZr) + 1.

Remark 2.20. If X is normal and locally a complete intersection, then aMJ(E;X,

a
t1
1 · · ·atr

r ) = a(E;X,a
t1
1 · · ·atr

r ). Indeed, in this case the image of the canonical
map �n

X → ωX is jXωX , hence, K̂Y/X − JY/X = KY/X . In particular, we see that
aMJ(E;X,a

t1
1 · · ·atr

r ) = a(E;X,a
t1
1 · · ·atr

r ) if X is smooth.
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Note that the Mather–Jacobian log discrepancy at a prime divisor E does not
depend on the choice of f . We denote ordE K̂Y/X by k̂E .

Definition 2.21. Let X be a normal Q-Gorenstein variety, a1, . . . ,ar be nonzero
ideals on X, and t1, . . . , tr ∈ R. Then (X,a

t1
1 · · ·atr

r ) is canonical (resp. log
canonical) if for every exceptional prime divisor E over X, the inequality
a(E;X,a

t1
1 · · ·atr

r ) ≥ 1 (resp. ≥ 0) holds.

Definition 2.22. Let X be a variety, a1, . . . ,ar be nonzero ideals on X, and
t1, . . . , tr ∈R. Then (X,a

t1
1 · · ·atr

r ) is MJ-canonical (resp. MJ-log canonical) if for
every exceptional prime divisor E over X, the inequality aMJ(E;X,a

t1
1 · · ·atr

r ) ≥ 1
(resp. ≥ 0) holds.

Remark 2.23. Fix a log resolution Y → X of jXa1, . . . ,ar . Then (X,a1 · · ·ar )

is MJ-canonical (resp. MJ-log canonical) if and only if aMJ(E;X,a
t1
1 · · ·atr

r ) ≥ 1
(resp. ≥ 0) for all exceptional prime divisors E on Y . This is proved by using the
fact that

K̂Y ′/X − JY ′/X = KY ′/Y + g∗(K̂Y/X − JY/X)

for a sequence Y ′ g−→ Y
f−→ X of such log resolution of jXa1, . . . ,ar .

Definition 2.24. Let X be a normal Q-Gorenstein variety, a1, . . . ,ar be nonzero
ideals on X, and t1, . . . , tr ∈ R. Let f : Y → X be a log resolution of a1, . . . ,ar .
Define Z1, . . . ,Zr by aiOY = OY (−Zi) for 1 ≤ i ≤ r . Then we can define the
multiplier ideal as follows:

J (X,a
t1
1 · · ·atr

r ) = f∗OY (�KY/X − t1Z1 − · · · − trZr�).
Definition 2.25. Let X be a normal Q-Gorenstein variety. X is said to be a log
terminal singularities if J (X,OX) = OX .

Remark 2.26. Log terminal singularities are rational singularities.

Definition 2.27. Let X be a variety, a1, . . . ,ar be nonzero ideals on X, and
t1, . . . , tr ∈ R. Let f : Y → X be a log resolution of jXa1, . . . ,ar . Define
Z1, . . . ,Zr by aiOY = OY (−Zi) for 1 ≤ i ≤ r . Then we can define the Mather–
Jacobian multiplier ideal (or MJ-multiplier ideal for short) as follows:

JMJ(X,a
t1
1 · · ·atr

r ) = f∗OY (K̂Y/X − JY/X − [t1Z1 − · · · − trZr ]).
Remark 2.28. Multiplier ideals and Mather–Jacobian multiplier ideals are inde-
pendent of the choice of a log resolution.

Proposition 2.29 ([2; 6]). If X is MJ-canonical, then it is normal and has ratio-
nal singularities.

Proposition 2.30 ([2]). If X is MJ-log canonical, then it has Du Bois singulari-
ties.



316 Kohsuke Shibata

There are the relations between jet scheme and Mather–Jacobian minimal log
discrepancy (see [2; 5; 15]). For the theory on jet schemes and arc space, see, for
example, [7].

2.3. Cores of Ideals

In this section, we define cores of ideals and collect their results.

Definition 2.31. Let A be a ring, and I be an ideal of A. An ideal J ⊂ I is called
a reduction of I if there is a positive number r such that JI r = I r+1. An ideal
J ⊂ I is called a minimal reduction of I if J is minimal among the reductions
of I .

Definition 2.32. Let A be a ring, and I be an ideal of A. Let f : Y → X =
SpecA be the normalized blowing up of I such that IOY = OY (−F). The integral
closure of I is defined to be f∗OY (−F). We denote it by I .

Definition 2.33. Let X be an n-dimensional scheme. Suppose that a dualizing
complex for X exists. A canonical sheaf ωX for X is defined to be the coherent
sheaf given by (−n)th cohomology of a normalized dualizing complex for X.

Remark 2.34. Dualizing complexes exist for any equidimensional scheme essen-
tially of finite type over an affine Gorenstein scheme (see [10]). If X is a normal
algebraic variety, then the usual notion of the canonical sheaf provides the canon-
ical sheaf of X. In the case, X = SpecA where A is a local ring, and ωX coincides
with the sheafification of the canonical module ωA.

Let f : Y → X be a birational morphism of integral schemes. Then the trace map
Trf : f∗ωY → ωX is injective, and it is important to observe that in this case we
can consider Trf as an inclusion f∗ωY ⊂ ωX .

Hyry and Villamayor [14] proved the following lemma.

Lemma 2.35 ([14, Lemma 2.2]). Let (A,m) be a local ring. Let f : Y → X =
SpecA be a proper birational morphism such that Y has rational singularities.
Then H 0(Y,ωY ) ⊂ H 0(Z,ωZ) for any proper birational morphism g : Z → X. It
follows, in particular, that H 0(Y,ωY ) = H 0(Z,ωZ) if Z has rational singulari-
ties.

Definition 2.36. Let A be a Noetherian local ring, and I an ideal. The core of I ,
denoted core(I ), is the intersection of all its reductions.

Definition 2.37. Let (A,m) be a local ring. An ideal I of A is equimultiple if a
minimal reduction of I is generated by h elements, where h = ht(I ).

Example 2.38. Every m-primary ideal in a local ring is equimultiple.
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By the following theorem, we are able to compute the core of ideals for equimul-
tiple ideals in Cohen–Macaulay local rings whose residue fields have characteris-
tic 0.

Theorem 2.39 ([12, Thm. 3.7]). Let A be a Cohen–Macaulay local ring. Let I

be an equimultiple ideal of A with h = ht(I ) ≥ 1, let J be a minimal reduction of
I , and let r be a positive number such that JI r = I r+1. Then

core(I ) = J r+1 : I r .

Lemma 2.40 ([13, Lemma 3.1.5]). Let (A,m) be a local ring, and let I be
a proper ideal of A of height greater than one. Let Y = ProjA[I ]. Then
H 0(Y, In+pωY ) :ωA

Ip = H 0(Y, InωY ) for all n ≥ 0 and all p ≥ 1.

Lemma 2.41 ([13, Lemma 5.1.6]). Let (A,m) be a Cohen–Macaulay local ring,
and I be an equimultiple ideal of height h. Then

H 0(Y, IhωY ) :A ωA = J r+1 :A I r ,

where Y = ProjA[I ], H 0(Y, IhωY ) is considered as a submodule of ωA via the
trace map, and J is any minimal reduction of I with JI r = I r+1.

Theorem 2.42 ([13, Cor. 5.3.1]). Let (A,m) be a Gorenstein local ring with
rational singularities, and I be an equimultiple ideal of height h such that the
Rees ring A[I t] is normal and Cohen–Macaulay. Let Y = ProjA[I t]. Then the
following conditions are equivalent:

(1) A[I t] has rational singularities;
(2) H 0(Y, InωY ) = J (In) for all n ≥ 0;
(3) core(I ) = J (Ih).

If this is the case, then

core(I ) = IJ (Ih−1),

J (Ih−1) = core(I ) : I.

3. ω-Multiplier Ideals and Cores of Ideals

3.1. ω-Multiplier Ideals

In this section, we define ω-multiplier ideals and prove some properties of ω-
multiplier ideals.

Definition 3.1. Let X be a normal variety, a be a nonzero ideal of OX , c ∈
Q>0, and let f : Y → X be a log resolution of a with aOY = OY (−F). The ω-
multiplier ideal of a pair (X,ac) is defined to be f∗ωY (−[cF ]) : ωX . We denote
it by J ω(X,ac).

Definition 3.2. Let X be a variety with rational singularities, and a � OX be
a nonzero ideal of OX . The rational threshold of a pair (X,a) is defined to be
sup{c > 0|J ω(X,ac) = OX}. We denote it by rt(X,a).
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Theorem 3.3 ([2, Thm. 6.15]). Let X be a normal variety, a be a nonzero ideal,
and c ∈Q>0. Then we have

J ω(X,ac) = JMJ(X,acd
−1
X ).

De Fernex and Docampo [2] proved the following:

Theorem 3.4 (See the proof of Theorem 6.15 in [2]). Let X be a normal vari-
ety, and a be a nonzero ideal sheaf of OX . Let V be a reduced locally complete
intersection scheme containing X of the same dimension. Let dV,X be the ideal
determined by the image of ωX → ωV |X . Let f : Y → X be a log resolution of
jV |X · dV,X · a such that jV |X · OY = OY (−JV ), dX,V · OY = OY (−DV ), and
a ·OY = OY (−F) for some effective divisors JV , DV , and F on Y . Then

J ω(X,ac) = f∗OY (K̂Y/X − JV + DV − [cF ]).
Corollary 3.5. Let X be a normal variety, a be a nonzero ideal, and c ∈ Q>0.
Then we have

J ω(X,ac) ⊃ JMJ(X,ac).

In particular, if X is locally a complete intersection, then

J ω(X,ac) = JMJ(X,ac).

Theorem 3.6 ([2, Thm. 7.1]). Let X be a normal variety, and let dX ⊂ OX be the
lci-defect ideal of X. Let f : Y → X be a log resolution of dX and denote by E

the reduced exceptional divisor. Then the following properties hold:

(i) The pair (X,d−1
X ) is MJ-canonical if and only if J ω(X,OX) = OX .

(ii) The pair (X,d−1
X ) is MJ-log canonical if and only if f∗ωY (E) = ωX .

Corollary 3.7 ([2, Cor. 7.2]). Let X be a normal variety, and let dX ⊂ OX be
the lci-defect ideal of X. Then the following properties hold:

(i) If X has rational singularities, then (X,d−1
X ) is MJ-canonical.

(ii) If X has Du Bois singularities, then (X,d−1
X ) is MJ-log canonical.

Moreover, the converse holds in both cases whenever X is Cohen–Macaulay.

Kempf’s criterion for rational singularities implies the following proposition.

Proposition 3.8. Let X be a Cohen–Macaulay normal variety. Then X has ra-
tional singularities if and only if J ω(X,OX) = OX .

The following proposition gives the relation of Mather Jacobian discrepancies and
usual multiplier discrepancies.

Proposition 3.9 ([2, Prop. 3.4]). Let X be a Q-Gorenstein normal variety. Let r

be a positive integer such that rKX is Cartier. Let f : Y → X be a log resolution
of jX · dX · dr,X such that jX · OY = OY (−JY/X), dX · OY = OY (−DY/X), and
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dr,X · OY = OY (−Dr,Y/X) for some effective divisors JY/X , DY/X , and Dr,Y/X

on Y . Then

K̂Y/X − JY/X + DY/X ≥ K̂Y/X − JY/X + Dr,Y/X = KY/X.

In particular, if X is Gorenstein, then

K̂Y/X − JY/X + DY/X = KY/X.

The following proposition is an immediate consequence of the previous proposi-
tion and gives a relation between ω-multiplier ideals and usual multiplier ideals.

Proposition 3.10. Let X be a Q-Gorenstein normal variety, a be a nonzero ideal
of OX , and c ∈ Q>0. Then J ω(X,ac) ⊃ J (X,ac). In particular, if X is Goren-
stein, then J ω(X,ac) = J (X,ac).

The next proposition is an immediate consequence of the definition.

Proposition 3.11. Let a and b be nonzero ideals on a normal variety X, and
c > 0.

(1) If a ⊂ b, then J ω(X,ac) ⊂ J ω(X,bc).
(2) If c ≥ d are in Q>0, then J ω(X,ac) ⊂ J ω(X,ad).
(3) J ω(X,ac) = J ω(X,ac), where a is the integral closure of a.

Proposition 3.12. Let a be a nonzero ideal on a normal variety X, and c > 0.

(1) The ω-multiplier ideal J ω(X,ac) is an integrally closed ideal of OX .
(2) Suppose that X has rational singularities. Then a ⊂ J ω(X,a).
(3) J ω(X,ac) = J ω(X,ac+ε) for 0 < ε � 1.

Proof. Let jX be the Jacobian ideal of X, and dX be the lci-defect ideal of X.
Let f : Y → X be a log resolution of jX · dX such that jX · OY = OY (−JY/X),
dX ·OY = OY (−DY/X), and a ·OY = OY (−F) for some effective divisors JY/X ,
DY/X , and F on Y . Then we have J ω(X,ac) = f∗OY (K̂Y/X − JY/X + DY/X −
[cF ]) by Theorem 3.3. Therefore J ω(X,ac) is an integrally closed ideal of OX .

If X has rational singularities, then J ω(X,OX) = OX by Proposition 3.8.
Therefore K̂Y/X − JY/X + DY/X is effective. Thus J ω(X,a) ⊃ f∗OY (−F) =
a ⊃ a.

Since [cF ] = [(c + ε)F ] for 0 < ε � 1, we have J ω(X,ac) = J ω(X,

ac+ε). �

Blickle [1] defined the multiplier module.

Definition 3.13. Let X be a normal variety, and let a be a nonzero ideal on
X. Let f : Y → X be a log resolution of a such that aOY = OY (−F). Then the
multiplier module is defined as

Jω(ac) = f∗OY (KY − [cF ]) ⊂ ωX

for c > 0.
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Proposition 3.14. Let X be a normal variety, and let a be a nonzero ideal on X.
Then J ω(ac) = Jω(ac) : ωX for all c > 0.

Proof. This follows immediately from the definition of ω-multiplier ideals. �

Blickle [1] gave a formula computing the multiplier module of a monomial ideal
on an arbitrary affine toric variety.

Theorem 3.15 ([1, Thm. 1]). Let Xσ be an affine toric variety, and a a monomial
ideal. Then

Jω(Xσ ,ac) = 〈xm|m ∈ interior of c Newt(a)〉 ⊂ ωXσ .

Proposition 3.16. Let Xσ be an n-dimensional affine toric variety, and m be the
maximal ideal. Then rt(m) ≥ 1.

Proof. Note that ωXσ = 〈xm|m ∈ int(σ )∩Zn〉 ⊂ OXσ . By Theorem 3.15, we have

Jω(Xσ ,mc) = 〈xm|m ∈ interior of c Newt(m)〉 ⊂ ωXσ .

Therefore, if c < 1, then we have xm ∈ Jω(Xσ ,mc) for any xm ∈ ωXσ . This im-
plies that rt(m) ≥ 1. �

In general, rt(m) is not necessarily greater than or equal to 1.

Example 3.17. Let A = (C[x, y, z]/(x2 +y2z+z3))(x,y,z), m = (x, y, z). Then A

is a Du Val singularity of type D4. Let Y be the minimal resolution of X = SpecA.
The dual graph of the exceptional divisors on the minimal resolution of A is as
follows;

E1

©
E2

©
E3

©©

E4

©

©

Therefore the fundamental cycle of the minimal resolution of SpecA is Z =
E1 + 2E2 + E3 + E4, where E1, . . . ,E4 are exceptional divisors on the mini-
mal resolution of SpecA. Since A is a Gorenstein rational singularity, we have
KY/X = 0, mOY = OY (−Z). This implies that lct(m) = 1

2 . Since A is Goren-
stein, rt(m) is equal to lct(m). Thus we have rt(m) = 1

2 .

Lemma 3.18. Let (A,m) be an n-dimensional Cohen–Macaulay normal local
ring, and a be an m-primary ideal of A. Then J ω(A,an) ⊂ core(a). In particular,
if ProjA[a] has rational singularities, then J ω(A,an) = core(a).
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Proof. Let f : Y → X be the blowing-up along a, and g : Z → X be a log reso-
lution of a. By Theorem 2.39 and Lemma 2.41, we have

core(a) = H 0(Y,anωY ) :A ωA.

Let h : Z → Y be a morphism with g = f ◦ h. Then h∗(anωZ) ⊂ anωY . Hence
we have H 0(Z,anωZ) ⊂ H 0(Y,anωY ). Therefore we have

J ω(A,an) = H 0(Z,anωZ) :A ωA ⊂ H 0(Y,anωY ) :A ωA = core(a).

We assume that Y = ProjA[a] has rational singularities. Then h∗(anωZ) =
anωY by the projection formula. Therefore we have J ω(A,an) = core(a). �

Lemma 3.19. Let (A,m) be an n-dimensional local ring with rational singulari-
ties, and I be a minimal reduction of m. Then mn+1−�rt(m)� ⊂ I .

Proof. Let X = SpecA. Let jX be the Jacobian ideal of X, and dX be the lci-
defect ideal of X. Let f : Y → X be a log resolution of jX · dX · m such that
jX ·OY = OY (−JY/X), dX ·OY = OY (−DY/X), and m ·OY = OY (−F) for some
effective divisors JY/X , DY/X , and F on Y . Since �rt(m)� − 1 < rt(m), we have
K̂Y/X − JY/X + DY/X − (�rt(m)� − 1)F ≥ 0. Therefore

I ⊃ core(m) ⊃ J ω(A,mn) = f∗OY (K̂Y/X − JY/X + DY/X − nF)

⊃ f∗OY (K̂Y/X − JY/X + DY/X − (�rt(m)� − 1)F − (n + 1 − �rt(m)�)F )

⊃ f∗OY (−(n + 1 − �rt(m)�)F ) ⊃ mn+1−�rt(m)�. �

Proposition 3.20. Let X be an n-dimensional variety with rational singularities.
For a closed point x ∈ X,

(1) rt(mx) ≤ n,
(2) rt(mx) = n if and only if x is a nonsingular point,
(3) If rt(mx) > n − 1, then x is a nonsingular point.

Proof. For part (1), let m be the maximal ideal of OX,x . Let I be a minimal
reduction of m, then I ⊃ mn+1−�rt(mx)� by Lemma 3.19. Here, if rt(mx) > n, then
we obtain I ⊃ OX,x , a contradiction.

For part (2), suppose x is a nonsingular point. Replacing X by a small neigh-
borhood of x, we may assume that X is nonsingular. Let f : Y → X be the blow-
up of mx , and E the exceptional divisor. Then f is a log resolution of mx , and the
equalities KY − f ∗KX = (n − 1)E and valE(mx) = 1 hold. Hence rt(mx) = n.
Conversely, suppose rt(mx) = n. Then, by Lemma 3.19, we have m = I . There-
fore m is generated by n elements. This implies that x is a nonsingular point.

For part (3), suppose rt(mx) > n − 1. By the same way as before, x is a non-
singular point. �

Proposition 3.21. Let X be a variety with rational singularities, and a a nonzero
ideal of OX . Then rt(a) > 1 if and only if for every nonzero ideal b⊂ OX , we have
J ω(X,b) ⊃ b : a.
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Proof. First, suppose that J ω(X,b) ⊃ (b : a) for every ideal b ⊂ OX . Con-
sidering the case where a = b, we have J ω(X,a) = OX . Since J ω(X,a) =
J ω(X,a1+ε) = OX for 0 < ε � 1 by Proposition 3.12, we have rt(a) ≥ 1+ε > 1.

Conversely, assume that rt(a) > 1. Let f : Y → X be a log resolution of jX ·
dX · a · b such that jX · OY = OY (−JY/X), dX · OY = OY (−DY/X), a · OY =
OY (−Fa), and b · OY = OY (−Fb) for some effective divisors JY/X , DY/X , Fa,
and Fb on Y . Since rt(a) > 1, we have J ω(X,a) = OX . This implies that

K̂Y/X − JY/X + DY/X − Fa ≥ 0.

We may assume that b is an integrally closed ideal, that is, b = f∗OY (−Fb).
Then x ∈ b : a ⇔ xa ⊂ b ⇔ f ∗x · OY (−Fa) ⊂ OY (−Fb) ⇔ f ∗x ∈ OY (Fa −
Fb). Therefore we have divf ∗x + Fa − Fb ≥ 0. Hence we have

divf ∗x + K̂Y/X − JY/X + DY/X − Fb ≥ K̂Y/X − JY/X + DY/X − Fa ≥ 0.

Thus x ∈ J ω(X,b). �

Corollary 3.22. Let X be a variety with rational singularities. Then rt(mx) > 1
for a closed point x ∈ X if and only if for every mx -primary ideal a ⊂ OX , we
have a strict containment J ω(X,a) � a.

Proof. First, suppose J ω(X,a) � a for every mx -primary ideal a ⊂ OX . Consid-
ering the case where a = mx , we have J ω(X,mx) = OX . Since J ω(X,mx) =
J ω(X,mx

1+ε) = OX for 0 < ε � 1 by Proposition 3.12, we have rt(mx) ≥
1 + ε > 1.

Conversely, assume that rt(mx) > 1. By Proposition 3.21, we have J ω(X,a) ⊃
(a : mx) for every mx -primary ideal a ⊂ OX . If ml

x ⊂ a, then ml−1
x ⊂ (a : mx).

Therefore we have (a :mx) � a. This implies that J ω(X,a) � a. �
De Fernex and Hacon [3] defined the log canonical, log terminal singularities on
an arbitrary normal variety. These singularities are generalizations of log canon-
ical, log terminal singularities for a Q-Gorenstein variety. Moreover, in [3], they
defined the �-pull back of an arbitrary divisor on a normal variety. In a local situa-
tion, as we can take an effective divisor −KX , let f : Y → X be a log resolution of
OX(KX). Define the divisor f �(−KX) on Y by OX(KX)OY = OY (−f �(−KX)).

We assume that mKX is effective. Let f : Y → X be a log resolution of
OX(−mKX). Define the divisor Dm on Y by OX(−mKX)OY = OY (−Dm). Un-
der this notation, we define the divisor

Km,Y/X = KY − 1

m
Dm

with the support on the exceptional divisor. De Fernex and Hacon [3] showed that
for m,q ≥ 1,

Km,Y/X ≤ Kqm,Y/X ≤ KY + f �(−KX).

Proposition 3.23. Let X ⊂ AN be an n-dimensional affine normal variety. Then
there is a log resolution f : Y → X of jXdXOX(KX) such that

K̂Y/X − JY/X + DY/X = KY + f �(−KX).
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Proof. Let f : Y → X be a log resolution of jXdXOX(KX) such that jX · OY =
OY (−JY/X) and dX · OY = OY (−DY/X). Take a reduced complete intersection
scheme M ⊂ AN of codimension c = N − n such that M contains X as an irre-
ducible component. Then we have the sequence

n∧
�X

η−→ ωX
u−→ ωM |X.

By Proposition 9.1 of [7], Im(u ◦ η) = jM |XωM |X . Note that OX(KX)OY =
OY (−f �(−KX)). We have the sequence

f ∗
( n∧

�X

)
η′
−→ OY (−f �(−KX))

u′−→ f ∗(ωM |X).

Since OY (−f �(−KX)) and f ∗(ωM |X) are invertible, we can write

Imη′ = IOY (−f �(−KX)),

Imu′ = JMf ∗(ωM |X),

with the ideal I, JM ⊂ OY . Then we obtain IJM = jM |XOY . Consider all M and
define J = ∑

M JM ; then we have IJ = jXOY . Let g : Z → Y be a log resolution
of IJ such that IOZ = OZ(−B), and h : Z → X be the composition of f and g.
Then B + DZ/X = JZ/X since dXOY = J .

Since h factors through the Nash blow-up, the torsion-free sheaf
h∗(

∧n
�X)/Tor is invertible, it is written as OZ(C) by a divisor C on Z. Then,

by the definition of K̂Z/X , we have K̂Z/X = KZ −C. On the other hand, we have
C = g∗(−f �(−KX)) − B = −h�(−KX) − B by Lemma 2.7 in [3]. Therefore we
have

K̂Z/X − JZ/X + DZ/X = KZ − C − B = KZ + h�(−KX),

which completes the proof of the lemma. �

De Fernex and Hacon [3] introduced a multiplier ideal for a pair (X,at ) with
normal variety X and an ideal a on X. For m ∈ N, they defined mth multiplier
ideal as follows:

Jm(X,at ) = f∗OY (�Km,Y/X − tZ�),
where f : Y → X is log resolution of aOX(−KX) and aOY = OY (−Z). They
proved that the family of ideals {Jm(X,at )}m has the unique maximal element
and call it the multiplier ideal of (X,at ) and denote it by J (X,at ).

Corollary 3.24. Let X be a normal variety, and a be a nonzero ideal of OX .
Then, for c ∈ Q>0,

Jm(X,ac) ⊂ J ω(X,ac).

Proof. Since Km,Y/X ≤ KY + f �(−KX), we have Jm(X,ac) ⊂ J ω(X,ac). �

Corollary 3.25. Let X be a normal variety, and a be a nonzero ideal of OX .
Then for c ∈Q>0,

J (X,ac) ⊂ J ω(X,ac).



324 Kohsuke Shibata

Proof. Since Jm(X,ac) ⊂ J ω(X,ac) for any m, we have J (X,ac) ⊂ J ω(X,ac).
�

3.2. Characterization Rational Singularities via Cores of Ideals

In this section, we characterize rational singularities via cores of ideals.

Theorem 3.26 ([23, Thm. 2.1], Briançon–Skoda theorem). Let (A,m) be an n-
dimensional local ring with rational singularities, and I be an ideal of A. Then
we have

In ⊂ I

where ¯̄ denotes integral closure.

Corollary 3.27. Let (A,m) be an n-dimensional local ring with rational sin-
gularities, I be an ideal of A, and J be a reduction of I . Then we have

In ⊂ J.

Proof. By the Briançon–Skoda theorem, we have Jn ⊂ J . Since J is a reduction
of I , we have In = Jn. Therefore we have In ⊂ J . �

Lemma 3.28. Let (A,m) be an n-dimensional Cohen–Macaulay isolated singu-
larity local ring. Suppose that A is not a rational singularity. Then there exists an
m-primary ideal I of A such that In �⊂ core(I ).

Proof. Let I be an m-primary ideal such that f : Y = ProjA[I ] → SpecA is a
desingularization. Since A is not a rational singularity, we have H 0(Y,ωY ) �⊃ ωA.
By Theorem 2.39 and Lemma 2.41, we have

core(I ) = H 0(Y, InωY ) :A ωA.

By Lemma 2.40, we have H 0(Y, InωY ) :ωA
In = H 0(Y,ωY ). This implies

that InωA � H 0(Y, InωY ) since H 0(Y,ωY ) �⊃ ωA. Therefore we have In �⊂
H 0(Y, InωY ) :A ωA = core(I ). �

Theorem 3.29. Let (A,m) be an n-dimensional Cohen–Macaulay isolated sin-
gularity local ring. Then A is a rational singularity if and only if In ⊂ core(I ) for
any m-primary ideal I .

Proof. If A is a rational singularity, then In ⊂ core(I ) for any m-primary ideal
I by Corollary 3.27. For the converse proof, we assume that A is not a rational
singularity. By Lemma 3.28, there is an m-primary ideal I of A such that In �⊂
core(I ). Thus we have In �⊂ core(I ). �
The following corollary implies that a Cohen–Macaulay isolated singularity local
ring is a rational singularity if the Briançon–Skoda theorem holds for the ring.

Corollary 3.30. Let (A,m) be an n-dimensional Cohen–Macaulay isolated
singularity local ring. A is a rational singularity if and only if In ⊂ I for any
m-primary ideal I .
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Proof. If A is a rational singularity, then In ⊂ I for any m-primary ideal I by
the Briançon–Skoda theorem. Hence we will show the converse implication. We
assume that A is not a rational singularity. By Theorem 3.29, there are an m-
primary ideal I and a reduction J of I such that In �⊂ J . Therefore we have
Jn �⊂ J since In = Jn. �

Corollary 3.31. Let (A,m) be an n-dimensional Cohen–Macaulay isolated sin-
gularity local ring. Then A is a rational singularity if and only if I ⊂ J ω(I ) for
any m-primary ideal I .

Proof. We assume that A is a rational singularity. Let f : Y → X = SpecA be
a log resolution of jXdXI such that jXOY = OY (−J ), dXOY = OY (−D), and
IOY = OY (−F). Then, by Theorem 3.3 and Proposition 3.8,

K̂Y/X − J + D ≥ 0, J ω(X, I) = f∗OY (K̂Y/X − J + D − F).

Therefore we have

J ω(I ) = f∗OY (K̂Y/X − J + D − F) ⊃ f∗OY (−F) = I .

We assume that A is not a rational singularity. Then, by Theorem 3.29, there
exists an m-primary I such that In �⊂ core(I ). Since by Lemma 3.18,

J ω(In) ⊂ core(I ),

we have
In �⊂ J ω(In). �

Definition 3.32. Let (A,m) be a local domain that is a homomorphic image of
a Gorenstein local ring. Suppose that SpecA \ m has rational singularities and
that there exists a proper birational morphism f : Y → SpecA such that Y has
rational singularities. We define the number r(A) as the smallest integer r such
that mrωA ⊂ 
(Y,ωY ).

Hyry and Villamayor [14] gave an extension of the Briançon–Skoda theorem to
normal Cohen–Macaulay local rings that have rational singularities in the punc-
tured spectrum.

Theorem 3.33 ([14, Thm. 2.6]). Let (A,m) be an n-dimensional normal Cohen–
Macaulay local domain which is a homomorphic image of a Gorenstein local ring.
Suppose that SpecA \m has rational singularities and that there exists a proper
birational morphism f : Y → SpecA such that Y has rational singularities. Set
r = r(A). Then In+r ⊂ I for all ideals I ⊂ A.

Proposition 3.34. Let (A,m) be an n-dimensional Cohen–Macaulay isolated
singularity local ring. If A is a Du Bois singularity, then In+1 ⊂ core(I ) for all
ideals I ⊂ A.

Proof. Let f : Y → SpecA be a resolution of SpecA such that f is an iso-
morphism over SpecA \ m, f −1(m) is a simple normal crossing divisor, and



326 Kohsuke Shibata

mOY = OY (−F) for a divisor F on Y . Let G be the reduced exceptional di-
visor of f . Since A is a Du Bois singularity, we have 
(Y,ωY (G)) = ωA by
Theorem 2.4. Therefore mωA = m
(Y,ωY (G)) ⊂ 
(Y,ωY (G−F)) ⊂ 
(Y,ωY ).
Thus r(A) = 1. By Theorem 3.33, we have In+1 ⊂ core(I ). �
This proposition does not give a characterization of a Cohen–Macaulay Du Bois
singularity. We have an example of an n-dimensional Cohen–Macaulay local ring
A with a non-Du Bois isolated singularity such that In+1 ⊂ core(I ) for all ideals
I ⊂ A.

Example 3.35. Let A = (C[x, y, z]/(x3 + y3 + z4))(x,y,z). Note that Gorenstein
Du Bois singularities are log canonical singularities. Then SpecA is Gorenstein
but not log canonical. Therefore A is not a Du Bois singularity. Let f : Y →
SpecA be the blow-up at m. Then f is a resolution of SpecA. Therefore we have
r(A) = 1. By Theorem 3.33, I 3 ⊂ core(I ) for any ideal I .

4. Cores of Ideals and ω-Multiplier Ideals of Two-Dimensional Local
Rings with a Rational Singularity

4.1. The Arithmetic of Cores of Ideals and ω-Multiplier Ideals

In this section, we discuss various relationships between the core of an ideal and
the ω-multiplier ideal of a two-dimensional local ring with a rational singularity.

Definition 4.1. Let (A,m) be a two-dimensional rational singularity and fix a
resolution of singularities f : Y → SpecA. For any integral divisor D on Y , the
f -anti-nef closure of D is defined to be the unique smallest integral f -anti-nef
divisor that is bigger than or equal to D. We will denote it by anf (D).

The followings are quite useful.

Theorem 4.2 ([9, Prop. 1.10], [22]). Let (A,m) be a two-dimensional local
ring with a rational singularity and fix a resolution of singularities f : X →
SpecA. Then there is a one-to-one correspondence between the set of integrally
closed ideals I in A such that IOX is invertible and the set of effective f -
anti-nef cycles Z on X. The correspondence is given by IOX = OX(−Z) and
I = H 0(X,OX(−Z)).

Lemma 4.3 ([24, Lemma 1.2], [31, Lemma 2.1]). Let (A,m) be a two-
dimensional local ring with a rational singularity and fix a resolution of sin-
gularities f : Y → SpecA. For any divisor D on Y , we have f∗OY (−D) =
f∗OY (− anf (D)).

Proposition 4.4 ([23, Cor. 5.4]). Let (A,m) be a two-dimensional local ring with
a rational singularity, a be an integrally closed ideal of A, and I be a reduction
of a. Then Ia = a2.

The following is a generalization of Lemma 5.6 in [25].
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Lemma 4.5. Let (A,m) be a two-dimensional normal local ring, I be an m-
primary ideal, and J be a minimal reduction of I with JI = I 2. Then, for
n ∈ Z≥0,

Jn+1 : I = Jn(J : I ) = In(J : I ).

Proof. We will show that Jn+1 : I = Jn(J : I ) = In(J : I ) by induction
on n. When n = 0, the assertion is trivial. If n = 1, then the equalities hold
by Lemma 5.6 in [25]. Thus we may assume that n ≥ 2. It is clear that
Jn(J : I ) ⊂ In(J : I ). Let x ∈ In and y ∈ (J : I ). Then xyI ⊂ yIn+1 = yIJ n ⊂
Jn+1. Therefore we have In(J : I ) ⊂ Jn+1 : I . Hence we will show the inclusion
Jn+1 : I ⊂ Jn(J : I ). Let J = (x1, x2). Assume that x ∈ Jn+1 : I . Since Jn+1 :
I ⊂ Jn+1 : J ⊂ Jn, there exist ai1,i2 ∈ A such that x = ∑

i1+i2=n ai1,i2x
i1
1 x

i2
2 .

Since x ∈ Jn+1 : I , for any f ∈ I , there exist bi1,i2 ∈ A such that xf =∑
j1+j2=n+1 bj1,j2x

j1
1 x

j2
2 . Then we have an,0x

n
1 f −bn+1,0x

n+1
1 ∈ (x2), a0,nx

n
2 f −

b0,n+1x
n+1
2 ∈ (x1). Since x1, x2 is a regular sequence, we have an,0f −bn+1,0x1 ∈

(x2) and a0,nf − b0,n+1x2 ∈ (x1). Thus an,0f,a0,nf ∈ J . This shows that
an,0, a0,n ∈ J : I . We can write

x − an,0x
n
1 − a0,nx

n
2 = x1x2

∑
i1+i2=n,i1,i2 �=0,n

ai1,i2x
i1−1
1 x

i2−1
2 .

Let y = ∑
i1+i2=n,i1,i2 �=0,n ai1,i2x

i1−1
1 x

i2−1
2 . Since x ∈ Jn+1 : I and an,0x

n
1 ,

a0,nx
n
2 ∈ Jn(J : I ) ⊂ Jn+1 : I , we have x1x2y ∈ Jn+1 : I . For any f ∈ I , we

have
x1x2yf ∈ Jn+1.

Hence we have
yf ∈ Jn−1.

Therefore we have
y ∈ Jn−1 : I.

By induction hypothesis, we have y ∈ Jn−2(J : I ). Thus we have x = an,0x
n
1 +

a0,nx
n
2 + x1x2y ∈ Jn(J : I ). �

Proposition 4.6. Let (A,m) be a two-dimensional normal local ring, I be an
m-primary ideal, and J be a minimal reduction of I with JI = I 2. Then, for
n ∈ Z≥1,

Jn−1 core(I ) = In−1 core(I ) = Jn+1 : I = Jn(J : I ) = In(J : I ).

Proof. By Theorem 2.39 and Lemma 4.5, we have

core(I ) = J 2 : I = J (J : I ) = I (J : I ).

Thus, by Lemma 4.5, we have

Jn−1 core(I ) = In−1 core(I ) = Jn+1 : I = Jn(J : I ) = In(J : I ). �

We need the following theorem to prove the properties of ω-multiplier ideals of a
two-dimensional local ring with a rational singularity.
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Theorem 4.7 ([26, Thms. 4.4 and 4.6]). Let (A,m) be a two-dimensional local
ring with a rational singularity, a be an integrally closed m-primary ideal, and
I be a minimal reduction of a. Let f : Y → X = SpecA be a log resolution of
a such that a · OY = OY (−F), and f : Y0 → X be the minimal resolution of
singularities. Then

I : a = H 0(Y,OY (KY/Y0 − F)),

core(a) = aH 0(Y,OY (KY/Y0 − F))

= IH 0(Y,OY (KY/Y0 − F)) = H 0(Y,OY (KY/Y0 − 2F)).

Hyry and Smith proved the following in the proof of Lemma 5.1.6 in [13]. We
need the following lemma to prove Proposition 4.9.

Lemma 4.8 (See the proof of Lemma 5.1.6 in [13]). Let (A,m) be an n-
dimensional Cohen–Macaulay local ring, a be an m-primary ideal, and J be
a minimal reduction of a with Jar = ar+1. Let Y be the blow-up of a. Then, for
m ∈ Z≥1,

H 0(Y,amωY ) = Jm+r+1−nωA :ωA
ar

and

JmωA : ωA = Jm.

Proposition 4.9. Let (A,m) be a two-dimensional local ring with a rational sin-
gularity, a be an m-primary integrally closed ideal, and J be a minimal reduction
of a. Then, for n ∈N,

J ω(A,an) = Jn : a = Jn−1(J : a) = an−1(J : a).
Proof. Let f : Y → X be the blow-up along a, and g : Z → X be a log resolution
of a. Then Y is normal because am is an integrally closed ideal for any m ∈ N
(see Theorem 7.1 in [22]). By Proposition 1.2 in [22], Y has a rational singularity.
Therefore, by the projection formula, we have

H 0(Z,anωZ) = H 0(Y,anωY ).

Thus, by Proposition 4.4 and Lemma 4.8, we have

J ω(A,an) = H 0(Y,anωY ) : ωA

= (J nωA :ωA
a) : ωA

= (J nωA : ωA) : a = Jn : a.
Thus, by Lemma 4.5, we have

J ω(A,an) = Jn : a = Jn−1(J : a) = an−1(J : a). �

The following proposition implies that the Skoda theorem of ω-multiplier ideals
holds for a two-dimensional local ring with a rational singularity.
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Proposition 4.10. Let (A,m) be a two-dimensional local ring with a rational
singularity, a be an m-primary ideal, and J be a reduction of a. Then, for n ∈ Z≥2,

J ω(A,an) = aJ ω(A,an−1) = JJ ω(A,an−1).

Proof. We may assume that a is an integrally closed ideal and J is a minimal
reduction of a. By Proposition 4.9, we have

J ω(A,an) = Jn−1(J : a) = an−1(J : a),
J ω(A,an−1) = Jn−2(J : a) = an−2(J : a).

Therefore we have

J ω(A,an) = aJ ω(A,an−1) = JJ ω(A,an−1). �

Theorem 4.11. Let (A,m) be a two-dimensional local ring with a rational singu-
larity, a be an m-primary ideal. Let f : Y → X be a log resolution of singularities
of a such that a · OY = OY (−F), and f0 : Y0 → X be the minimal resolution of
singularities. Then, for n ∈N,

J ω(A,an) = H 0(Y,OY (KY/Y0 − nF)).

Proof. We may assume that a is an integrally closed ideal. Let I be a mini-
mal reduction of an. By Theorem 4.7, we have I : an = H 0(Y,OY (KY/Y0 −
nF)). By Proposition 4.9, we have I : an = J ω(A,an). Therefore J ω(A,an) =
H 0(Y,OY (KY/Y0 − nF)). �

Corollary 4.12. Let (A,m) be a two-dimensional local ring with a rational sin-
gularity, a be an m-primary integrally closed ideal, and J be a minimal reduction
of a. Then

core(a) = J ω(A,a2) = aJ ω(A,a) = JJ ω(A,a).

Proof. By Theorem 4.7, Proposition 4.10, and Theorem 4.11, we have

core(a) = J ω(A,a2) = aJ ω(A,a) = JJ ω(A,a). �

Proposition 4.13. Let (A,m) be a two-dimensional local ring with a rational
singularity, and a be an integrally closed m-primary ideal. Then

e(a) = �(A/ core(a)) − 2�(A/J ω(A,a)).

Proof. Let I = (x1, x2) be a minimal reduction of a. We have

e(a) = �(A/I) = �(A/IJ ω(A,a)) − �(I/IJ ω(A,a)).

By Corollary 4.12, �(A/IJ ω(A,a)) = �(A/ core(a)).
We will show that I/IJ ω(A,a) is isomorphic to A/J ω(A,a)⊕A/J ω(A,a).

Let φ : A/J ω(A,a) ⊕ A/J ω(A,a) → I/IJ ω(A,a) be a map defined by φ(a +
J ω(A,a), b+J ω(A,a)) = x1a+x2b+IJ ω(A,a). It is clear that φ is surjective.
Let (a +J ω(A,a), b +J ω(A,a)) ∈ kerφ. Then, by Proposition 4.9,

x1a + x2b ∈ IJ ω(A,a) = I (I : a) = I 2 : a.
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Then for any element h ∈ a, (x1a + x2b)h ∈ I 2. Therefore there are c1, c2, c3 ∈ A

such that (x1a+x2b)h = c1x
2
1 +c2x1x2 +c3x

2
2 . Since x1ah−c1x

2
1 ∈ (x2), x2bh−

c3x
2
2 ∈ (x1) and x1, x2 is a regular sequence, we have ah − c1x1 ∈ (x2), bh −

c3x2 ∈ (x1). Therefore we have ah,bh ∈ (x1, x2). Thus we have a, b ∈ I : a. Since
J ω(A,a) = I : a, φ is injective. Hence φ is an isomorphism. This implies that
�(I/IJ ω(A,a)) = 2�(A/J ω(A,a)). Thus we have

e(a) = �(A/ core(a)) − 2�(A/J ω(A,a)). �

Lemma 4.14. Let (A,m) be a two-dimensional local ring with a rational singu-
larity. Let f : Y → X = SpecA be a resolution of singularities of SpecA. We
assume that the morphism f is factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every i =
1, . . . , n, and f0 : Y0 → X is the minimal resolution of X. We denote by πi : Y →
Yi the composition of fi+1, . . . , fn for i = 0,1, . . . , n − 1 and by πn : Y → Y the
identity morphism on Y . Let Z be an f -anti-nef cycle on Y , and K = KY/Y0 =∑n

i=1 π∗
i Ei . Let

C = {j ∈ N|1 ≤ j ≤ n,Z · π∗
j Ej < 0}.

Then

anf (Z − K) = Z −
∑
i∈C

π∗
i Ei .

Proof. First, we will show that Z − ∑
i∈C π∗

i Ei is f -anti-nef. For each f0-
exceptional curve F , we have(

Z −
∑
i∈C

π∗
i Ei

)
· π−1

0∗ F ≤ Z · π−1
0∗ F ≤ 0.

We assume that for i ∈ C and j /∈ C, π∗
i Ei · π−1

j ∗ Ej = 1. Then fi : Yi → Yi−1 is
the blow-up at a closed point of the strict transform of Ej on Yi−1. This implies
that π∗

i Ei ≤ π∗
j Ej . Therefore Z ·π∗

j Ej ≤ Z ·π∗
i Ei < 0 since Z is f -anti-nef. This

implies that j ∈ C, which is a contradiction. Hence we have π∗
i Ei · π−1

j ∗ Ej = 0
for i ∈ C and j /∈ C. Thus, for j /∈ C, we have(

Z −
∑
i∈C

π∗
i Ei

)
· π−1

j ∗ Ej = Z · π−1
j ∗ Ej = 0.

We assume that Z · π−1
j ∗ Ej < 0 for j ∈ C. Then we have(

Z −
∑
i∈C

π∗
i Ei

)
· π−1

j ∗ Ej ≤ Z · π−1
j ∗ Ej − π∗

j Ej · π−1
j ∗ Ej = Z · π−1

j ∗ Ej + 1 ≤ 0.
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We assume that Z · π−1
j ∗ Ej = 0 for j ∈ C. Then there exists k ∈ C such that

Z · π∗
k Ek < 0, π∗

k Ek ≤ π∗
j Ej , and π∗

k Ek · π−1
j ∗ Ej = 1. Therefore(

Z −
∑
i∈C

π∗
i Ei

)
· π−1

j ∗ Ej = −
∑
i∈C

π∗
i Ei · π−1

j ∗ Ej

≤ −π∗
j Ej · π−1

j ∗ Ej − π∗
k Ek · π−1

j ∗ Ej = 0.

By the above discussion, Z − ∑
i∈C π∗

i Ei is f -anti-nef. This implies that

anf (Z − K) ≤ Z −
∑
i∈C

π∗
i Ei .

Let Z′ be a cycle such that Z − K ≤ Z′ < Z − ∑
i∈C π∗

i Ei . Next, we will
show that Z′ is not f -anti-nef. Let F = Z − ∑

i∈C π∗
i Ei − Z′ and π−1

j ∗ Ej ≤ F .

Then there exists k /∈ C such that π−1
j ∗ Ej ≤ π∗

k Ek . Thus we have j /∈ C. Since

Z · π−1
j ∗ Ej = 0 and π∗

i Ei · π−1
j ∗ Ej = 0 for i ∈ C and j /∈ C,

Z′ · F =
(

Z −
∑
i∈C

π∗
i Ei − F

)
· F = −F · F > 0.

Thus Z′ is not f -anti-nef. Therefore the minimal f -anti-nef cycle that is bigger
than or equal to Z − K is Z − ∑

i∈C π∗
i Ei . �

Lemma 4.15. Let (A,m) be a two-dimensional local ring with a rational sin-
gularity. Let f : Y → X = SpecA be a log resolution of jXdX such that jXOY =
OY (−J ) and dXOY = OY (−D). Let Z be an exceptional f -anti-nef divisor on Y .
Let Kω = K̂Y/X − J + D and K = KY/Y0 , where Y0 is the minimal resolution
of X. Then

ordF Kω = ordF K

for any exceptional prime divisor F with Z · F < 0.

Proof. The morphism f can be factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every i =
1, . . . , n, and f0 : Y0 → X is the minimal resolution of X. We denote by πi : Y →
Yi the composition of fi+1, . . . , fn for i = 0,1, . . . , n − 1 and by πn : Y → Y the
identity morphism on Y . Let

C = {j ∈ N|1 ≤ j ≤ n,Z · π∗
j Ej < 0}.

Then
anf (nZ − K) = nZ −

∑
i∈C

π∗
i Ei

for any positive integer n by Lemma 4.14. Let a = f∗OY (−Z). Then a is
an m-primary ideal, and we have aOY = OY (−Z) by Theorem 4.2. There-
fore J ω(X,an) = f∗OY (Kω − nZ) by Theorem 3.3. By Theorem 4.11 and
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Lemma 4.14, we have

nZ − Kω ≤ anf (nZ − Kω) = anf (nZ − K) = nZ −
∑
i∈C

π∗
i Ei .

This implies that
∑

i∈C π∗
i Ei ≤ Kω . Since ordF π∗

j Ej = 0 for j /∈ C, we have

ordF K = ordF

n∑
i=1

π∗
i Ei = ordF

∑
i∈C

π∗
i Ei.

Therefore we have ordF Kω ≥ ordF K .
We assume that ordF Kω > ordF K . Then we have

Kω ≥
∑
i∈C

π∗
i Ei + F.

Since Z ·F < 0, there exists n ∈N such that nZ −∑
i∈C π∗

i Ei −F is f -anti-nef.
Then

anf (nZ − Kω) ≤ anf

(
nZ −

(∑
i∈C

π∗
i Ei + F

))
≤ nZ −

∑
i∈C

π∗
i Ei − F < nZ −

∑
i∈C

π∗
i Ei

= anf (nZ − Kω),

which is a contradiction. Therefore we have ordF Kω = ordF K . �

Lemma 4.16. Let (A,m) be a two-dimensional local ring with a rational sin-
gularity. Let f : Y → X = SpecA be a resolution of singularities of X, and F

be a prime exceptional divisor on Y . Then there exists an exceptional f -anti-nef
divisor Z on Y with Z · F < 0.

Proof. Let Zf be the fundamental cycle of f . Then there exists a prime excep-
tional divisor F1 with Z · F1 < 0. Since f −1(m) is connected, there exists a se-
quence {F1, . . . ,Fn} such that Fi is an exceptional prime divisor, Fi · Fi+1 = 1
for 1 ≤ i ≤ n − 1, and Fn = F .

We will make an exceptional f -anti-nef divisor Zi such that Zi · Fi < 0 for i

by induction on i. When i = 1, we can take Zf as Z1. By the induction hypoth-
esis, there exists an exceptional f -anti-nef divisor Zi such that Zi · Fi < 0. Since
Zi · Fi < 0, there exists a positive integer n such that nZi − Fi is an f -anti-nef
divisor. Then (nZi −Fi) ·Fi+1 ≤ −Fi ·Fi+1 < 0. Therefore we can take nZi −Fi

as Zi+1.
Thus there exists an exceptional f -anti-nef divisor Z on Y with Z · F < 0.

�

Proposition 4.17. Let (A,m) be a two-dimensional local ring with a ratio-
nal singularity. Let f : Y → X = SpecA be a log resolution of jXdX such
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that jXOY = OY (−J ) and dXOY = OY (−D). Let Kω = K̂Y/X − J + D and
K = KY/Y0 , where Y0 is the minimal resolution of X. Then

Kω = K.

Proof. By Lemma 4.16, for any prime exceptional divisor F on Y , there exists an
exceptional f -anti-nef divisor Z on Y with Z · F < 0. By Lemma 4.15, we have
ordF Kω = ordF K . Therefore we have Kω = K . �

We need the following lemma to prove Lemma 4.19.

Lemma 4.18 ([19, Lemma 9.2.19]). Let X be a smooth variety of dimension n,
and D any Q-divisor on X with simple normal crossing support. Suppose that
f : Y → X is a log resolution of D. Then

f∗OY (KY/X − [f ∗D]) = OX(−[D]).
Lemma 4.19. Let (A,m) be a two-dimensional normal local ring, and a be a
nonzero ideal of A. Let f : Y → X = SpecA be a log resolution of a such that
a · OY = OY (−F), and f0 : Y0 → X be the minimal resolution of singularities.
Then, for c > 0, f∗OY (KY/Y0 − [cF ]) is independent of the choice of log resolu-
tions.

Proof. Since any two log resolutions can be dominated by a third, we consider
the case of two log resolutions of a, f1 : Y1 → X and f2 : Y2 → X, with a map
between them:

Y2

f2

g
Y1

f1

X

Let aOY1 = OY1(−F1), aOY2 = OY2(−F2), and g : Y2 → Y1 be the morphism
with f2 = f1 ◦g. Then we have KY2/Y0 = KY2/Y1 +g∗(KY1/Y0) and F2 = g∗(F1).
By the projection formula and Lemma 4.18,

f2∗OY2(KY2/Y0 − [cF2]) = f1∗g∗OY2(KY2/Y1 + g∗KY1/Y0 − [cg∗F1])
= f1∗(g∗OY2(KY2/Y1 − [cg∗F1]) ⊗OY1(KY1/Y0))

= f1∗OY1(KY1/Y0 − [cF1]).
Therefore f∗OY (KY/Y0 − [cF ]) is independent of the choice of log resolu-
tions. �

Theorem 4.20. Let (A,m) be a two-dimensional local ring with a rational singu-
larity, and a be a nonzero ideal of A. Let f : Y → X = SpecA be a log resolution
of a such that a · OY = OY (−Z), and f0 : Y0 → X be the minimal resolution of
singularities. Then, for c > 0,

J ω(A,ac) = H 0(Y,OY (KY/Y0 − [cZ])).
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Proof. By Lemma 4.19, we may assume that f is a log resolution of jXdXa. Let
J and D be divisors on Y such that jXOY = OY (−J ) and dXOY = OY (−D). Let
Kω = K̂Y/X − J + D and K = KY/Y0 . By Proposition 4.17, we have Kω = K .
Hence we have

J ω(A,ac) = H 0(Y,OY (KY/Y0 − [cZ]))
by Theorem 3.3. �

Proposition 4.21. Let (A,m) be a two-dimensional local ring with a rational
singularity, and a be an integrally closed m-primary ideal. Then

J ω(A, core(a)) = (J ω(A,a))2.

Proof. Let f : Y → X be a log resolution of a such that a · OY = OY (−Z) for
some effective divisor Z on Y . The morphism f can be factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every i =
1, . . . , n, and f0 : Y0 → X is the minimal resolution of X. We denote by πi : Y →
Yi the composition of fi+1, . . . , fn for i = 0,1, . . . , n − 1 and by πn : Y → Y the
identity morphism on Y . Let K = KY/Y0 and

C = {j ∈ N|1 ≤ j ≤ n,Z · π∗
j Ej < 0}.

By Lemma 4.14, we have

anf (Z − K) = Z −
∑
i∈C

π∗
i Ei .

By Theorem 4.7, we have

core(a) = f∗OY

(∑
i∈C

π∗
i Ei − 2Z

)
.

Let

C′ =
{
j ∈N|1 ≤ j ≤ n,

(
2Z −

∑
i∈C

π∗
i Ei

)
· π∗

j Ej < 0

}
.

Then, by Lemma 4.14, we have

anf

(
2Z −

∑
i∈C

π∗
i Ei − K

)
= 2Z −

∑
i∈C

π∗
i Ei −

∑
i∈C′

π∗
i Ei .

We will show that C = C′. Let j ∈ C. Since Z · π∗
j Ej < 0 and

∑
i∈C π∗

i Ei ·
π∗

j Ej = −1, we have (2Z − ∑
i∈C π∗

i Ei) · π∗
j Ej < 0. Therefore C ⊂ C′.

Hence we will show the opposite inclusion. We assume that we can take
j ∈ C′ \ C. Then Z · π∗

j Ej = 0 and
∑

i∈C π∗
i Ei · π∗

j Ej > 0 since (2Z −∑
i∈C π∗

i Ei) · π∗
j Ej < 0. On the other hand, since π∗

i Ei · π∗
j Ej = 0 for i �= j ,
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we have
∑

i∈C π∗
i Ei · π∗

j Ej is 0, which is a contradiction. Thus we have C = C′.
This implies that

anf

(
2Z −

∑
i∈C

π∗
i Ei − K

)
= 2

(
Z −

∑
i∈C

π∗
i Ei

)
.

Thus we have

J ω(A, core(a)) = f∗OY

(
K −

(
2Z −

∑
i∈C

π∗
i Ei

))
= f∗OY

(
−2

(
Z −

∑
i∈C

π∗
i Ei

))
= (J ω(A,a))2. �

Proposition 4.22. Let (A,m) be a two-dimensional local ring with a rational
singularity, and a be an integrally closed m-primary ideal. Then, for n ∈N,

core(an) = a2n−1J ω(A,a).

Proof. We have core(an) = anJ ω(A,an) = a2n−1J ω(A,a) by Proposition 4.10
and Corollary 4.12. �

Now we introduce some notation: core1(a) = core(a) and, for n > 1, coren(a) =
coren−1(core(a)).

Proposition 4.23. Let (A,m) be a two-dimensional local ring with a rational
singularity, and a be an integrally closed m-primary ideal. Then, for n ∈N,

coren(a) = a(J ω(A,a))2n−1.

In particular, core(core(a)) = a(J ω(A,a))3.

Proof. We have core(a) = a(J ω(A,a)) by Corollary 4.12. Now let n > 1 and
assume that the proposition holds for n − 1. Then, by Proposition 4.21,

coren(a) = coren−1(core(a))

= core(a)(J ω(A, core(a)))2n−1−1

= aJ ω(A,a)((J ω(A,a))2)2n−1−1

= a(J ω(A,a))2n−1. �

4.2. Subadditivity Theorem for ω-Multiplier Ideals of a Two-Dimensional
Singularity

In this section, we investigate when the subadditivity theorem of ω-multiplier
ideals holds in the two-dimensional case.

Demailly, Ein, and Lazarsfeld proved the following theorem, which is called
the subadditivity theorem.
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Theorem 4.24 ([4]). Let (A,m) be a regular local ring. Then, for any two
nonzero ideals a, b ⊂ OX and any rational numbers c, d > 0,

J (X,acbd) ⊂ J (X,ac)J (X,bd).

In this paper, we say that the subadditivity theorem holds if J ω(X,ab) ⊂
J ω(X,a)J ω(X,b) for any two nonzero ideals a, b ⊂ OX and that the strong
subadditivity theorem holds if J ω(X,acbd) ⊂ J ω(X,ac)J ω(X,bd) for any two
nonzero ideals a, b⊂ OX and any rational numbers c, d > 0.

The following lemma seems to be well known to the specialists, but because
of lack of an explicit reference, we give its proof.

Lemma 4.25. Let (A,m) be a two-dimensional rational singularity and fix a res-
olution of singularities f : Y → SpecA. Let Z1, Z2 be two effective f -anti-nef
divisors on Y . Then f∗OY (−Z1) ⊂ f∗OY (−Z2) if and only if Z1 ≥ Z2.

Proof. If Z1 ≥ Z2, then f∗OY (−Z1) ⊂ f∗OY (−Z2). Hence we will show
the converse implication. Suppose, by way of contradiction, f∗OY (−Z1) ⊂
f∗OY (−Z2) and Z1 �≥ Z2. Note that f∗OY (−Z1) · OY = OY (−Z1) by Theo-
rem 4.2. Then

x ∈ f∗OY (−Z2) : f∗OY (−Z1) ⇔ xf∗OY (−Z1) ⊂ f∗OY (−Z2)

⇔ f ∗x ·OY (−Z1) ⊂ OY (−Z2)

⇔ f ∗x ∈ OY (Z1 − Z2)

⇔ x ∈ f∗OY (Z1 − Z2).

Therefore we have f∗OY (−Z2) : f∗OY (−Z1) = f∗OY (Z1 − Z2). Since

f∗OY (−Z1) ⊂ f∗OY (−Z2),

we have f∗OY (−Z2) : f∗OY (−Z1) = A. On the other hand, we have f∗OY (Z1 −
Z2) �= A since Z1 �≥ Z2. Indeed, there exists a prime divisor E on Y such that
ordE Z1 < ordE Z2. Therefore we have f∗OY (Z1 −Z2) ⊂ f∗OY (−E) �= A. Thus
if f∗OY (−Z1) ⊂ f∗OY (−Z2), then Z1 ≥ Z2. �

Theorem 4.26. Let (A,m) be a two-dimensional normal local ring. Then X =
SpecA has a rational singularity if and only if the subadditivity theorem of ω-
multiplier ideals holds, that is, for any two nonzero ideals a, b⊂ OX ,

J ω(X,ab) ⊂ J ω(X,a)J ω(X,b).

Proof. If the subadditivity theorem holds, then J ω(X,OX) ⊂ J ω(X,OX)2. Thus
J ω(X,OX) = OX , namely, X has a rational singularity. Hence we will show
the converse implication, that is, we will prove that for any two ideals a, b ⊂
OX , J ω(X,ab) ⊂ J ω(X,a)J ω(X,b) when X has a rational singularity. Let f :
Y → X be a resolution of singularities such that aOY = OY (−Fa) and bOY =
OY (−Fb) are invertible and Exc(f ) ∪ SuppFa ∪ SuppFb is a simple normal
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crossing divisor. Denote by K the relative canonical divisor KY/Y0 , where Y0 is
the minimal resolution of X. By Theorem 4.20, we have

J ω(X,a)J ω(X,b) = H 0(Y,OY (K − Fa))H
0(Y,OY (K − Fb)),

J ω(X,ab) = H 0(Y,OY (K − Fa − Fb)).

Since X has a rational singularity, the product of integrally closed ideals of X is
also integrally closed (see [22]). Hence J ω(X,a)J ω(X,b) and J ω(X,ab) are in-
tegrally closed, and J ω(X,a)J ω(X,b) and J ω(X,ab) correspond to the cycles
anf (Fa − K) + anf (Fb − K) and anf (Fa + Fb − K), respectively. Therefore, it
suffices to show that

anf (Fa − K) + anf (Fb − K) ≤ anf (Fa + Fb − K).

In order to prove this, we prepare some notation. The morphism f can be factor-
ized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every i =
1, . . . , n, and f0 : Y0 → X is the minimal resolution of X. We denote by πi : Y →
Yi the composition of fi+1, . . . , fn for i = 0,1, . . . , n − 1 and by πn : Y → Y the
identity morphism on Y . Using Lemma 4.14, we will prove that

anf (Fa − K) + anf (Fb − K) ≤ anf (Fa + Fb − K).

Let

Ca = {j ∈ N|1 ≤ j ≤ n,Fa · π∗
j Ej < 0},

Cb = {j ∈ N|1 ≤ j ≤ n,Fb · π∗
j Ej < 0},

and
Cab = {j ∈ N|1 ≤ j ≤ n, (Fa + Fb) · π∗

j Ej < 0}.
Then we have Cab ⊂ Ca ∪ Cb. Therefore, by Lemma 4.14,

anf (Fa − K) + anf (Fb − K) = Fa −
∑
i∈Ca

π∗
i Ei + Fb −

∑
i∈Cb

π∗
i Ei

≤ Fa + Fb −
∑

i∈Cab

π∗
i Ei

= anf (Fa + Fb − K). �

Lemma 4.27. Let (A,m) be an n-dimensional local ring, and I be a nonzero ideal
of A. Let f : Y → X = SpecA be a log resolution of I such that IOY = OY (−F).
Then, for any divisor K on Y ,

f∗OY (K) : I = f∗OY (K + F).

Proof. We have

x ∈ f∗OY (K) : I ⇔ xI ⊂ f∗OY (K)

⇔ f ∗x ·OY (−F) ⊂ OY (K)
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⇔ f ∗x ∈OY (K + F)

⇔ x ∈ f∗OY (K + F).

Therefore we have f∗OY (K) : I = f∗OY (K + F). �

Corollary 4.28. Let (A,m) be a two-dimensional normal local ring. Then X =
SpecA has a rational singularity if and only if the subadditivity theorem of cores
of ideals holds, that is, for any two m-primary integral closed ideals a, b⊂ OX ,

core(ab) ⊂ core(a) core(b).

Proof. If A has a rational singularity, then

core(ab) = J ω(X,a2b2) ⊂ J ω(X,a2)J ω(X,b2) = core(a) core(b)

by Corollary 4.12 and Theorem 4.26. Hence we will show the converse implica-
tion. Let I be an m-primary integral closed ideal such that g : Z = ProjA[I ] →
X = SpecA is a resolution of singularities. Let F ′ be an effective divisor on Z

such that IOZ = OZ(−F ′). Let f : Y → X be a log resolution of jX · dX · I such
that jX ·OY = OY (−JY/X), dX ·OY = OY (−DY/X), and I ·OY = OY (−F) for
some effective divisors JY/X , DY/X , and F on Y . Let K = K̂Y/X −JY/X +DY/X .
Then

core(I ) = g∗OZ(KZ − 2F ′) : ωX

= f∗OY (KY − 2F) : ωX

= J ω(X, I 2) = f∗OY (K − 2F)

by Lemma 2.39, Lemma 2.41, and Theorem 3.3. In the same manner, we have

core(I 2) = f∗OY (K − 4F).

Next we will show that

f∗OY (K − 2F) ⊂ f∗OY (2n−1K − 2F)

for any n ∈ N by induction on n. When n = 1, the assertion is trivial. By the
induction hypothesis and subadditivity of cores of ideals, we have

f∗OY (K − 4F) = core(I 2) ⊂ (core(I ))2 = (f∗OY (K − 2F))2

⊂ (f∗OY (2n−1K − 2F))2 ⊂ f∗OY (2nK − 4F).

Therefore we have

f∗OY (K − 2F) = f∗OY (K − 4F) : I 2

⊂ f∗OY (2nK − 4F) : I 2 = f∗OY (2nK − 2F)

by Lemma 4.27. By the previous discussion, we have

f∗OY (K − 2F) ⊂ f∗OY (2n−1K − 2F)

for any n ∈ N. By Lemma 4.27, we have that for any n ∈ N,

f∗OY (K) = f∗OY (K − 2F) : I 2 ⊂ f∗OY (2n−1K − 2F) : I 2 = f∗OY (2n−1K).
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This implies that K is effective. Since J ω(A) = f∗OY (K) = A, A has a rational
singularity. �

In order that the strong subadditivity theorem of ω-multiplier ideal holds, nonsin-
gularness is necessary.

Proposition 4.29. Let (A,m) be a two-dimensional normal local ring. Then
X = SpecA is regular if and only if the strong subadditivity theorem of ω-
multiplier ideals holds, that is, for any two nonzero ideals a, b ⊂ OX and any
rational numbers c, d > 0,

J ω(X,acbd) ⊂ J ω(X,ac)J ω(X,bd).

Proof. If A is regular, then the strong subadditivity theorem holds (see [4]). Hence
we will show the converse implication. In order for the strong subadditivity the-
orem to hold, by Theorem 4.26, it is necessary that A is a rational singularity.
Assume that A is not regular. Let f : Y → X be the minimal resolution, and F be
the fundamental cycle of f .

We assume that the exceptional locus of f is irreducible. Then F is the f -
exceptional prime divisor. Let g : Z → Y be the blow-up at a closed point of F ,
and h : Z → X be the composite morphism of f and g. We denote by E1 the strict
transform of F , and by E2 the exceptional divisor of g. Let n = −E1 · E1, C =
(n−1)E1 +2nE2, and K = KZ/Y = E2. Then C and (n−1)E1 + (2n−1)E2 are
h-anti-nef since n = −E1 ·E1 = −F ·F +1 ≥ 3. Since E1 +E2 is the fundamental
cycle of h, we have

anh

(⌊
1

n
C − K

⌋)
= E1 + E2,

anh(C − K) = (n − 1)E1 + (2n − 1)E2.

These imply that

h∗OZ(− anh(C − K)) �⊂
(

h∗OZ

(
− anh

(⌊
1

n
C − K

⌋)))n

by Lemma 4.25. Therefore, denoting the ideal I = h∗OZ(−C), we have
J ω(X, I) �⊂ J ω(X, I 1/n)n by Theorem 4.20. Thus the strong subadditivity theo-
rem does not hold on A.

We assume that the exceptional locus of f is reducible. Let E be an f -
exceptional prime divisor such that F · E < 0. Then there exists n ∈ N such that
nF − E is f -anti-nef. Since F is the fundamental cycle of f , we have

anf

(⌊
1

n
(nF − E)

⌋)
= F,

anf (nF − E) = nF − E.

These imply that

f∗OY (− anf (nF − E)) �⊂
(

f∗OY

(
− anf

(⌊
1

n
(nF − E)

⌋)))n
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by Lemma 4.25. Therefore, denoting the ideal I = f∗OY (−nF + E), we have
J ω(X, I) �⊂ J ω(X, I 1/n)n by Theorem 4.20. Thus the strong subadditivity theo-
rem does not hold on A.

According to the previous discussion, if A is not regular, then the strong sub-
additivity theorem does not hold on A. �

Remark 4.30. In the higher-dimensional case, we have a counterexample to The-
orem 4.26.

Takagi and Watanabe [30] gave the following counterexample to the subadditivity
of multiplier ideals in a three-dimensional hypersurface local ring. Since the ring
is Gorenstein, the multiplier ideals are ω-multiplier ideals by Proposition 3.10.

Example 4.31. Let A = (C[X,Y,Z,W ]/(X2 + Y 4 + Z4 + W 5))(X,Y,Z,W) and
m = (x, y, z,w), where x, y, z, w are the images of X, Y , Z, W in A. Then
A is a Gorenstein canonical singularity but not a terminal singularity. There-
fore A is a rational singularity, J ω(m) = m, and m2 ⊂ J ω(m2). Since x2 ∈ m4,
we have x ∈m2. Hence x ∈ J ω(m2) and x /∈ J ω(m)J ω(m). Thus J ω(m2) �⊂
J ω(m)J ω(m).

4.3. Integrally Closed Ideals on Surface with a Rational Singularity

In this section, we show that all integrally closed ideals on surface with a rational
singularity are ω-multiplier ideals.

Theorem 4.32. Let (A,m) be a two-dimensional normal local ring. Suppose
X = SpecA has a rational singularity. Then every integrally closed ideal is an
ω-multiplier ideal.

Favre, Jonsson, Lipman, and Watanabe showed that all integrally closed ideals on
regular surfaces are multiplier ideals (see [8] and [24]). Our result is a general-
ization of this theorem since ω-multiplier ideals of regular schemes are multiplier
ideals.

Definition 4.33. Let (A,m) be a two-dimensional normal local ring. Let f :
Y → X = SpecA be a resolution of singularities such that f −1(m) is a sim-
ple normal crossing divisor. Let E1, . . . ,Eu be the irreducible components of
f −1(m). Ěi is defined to be an effective exceptional Q-divisor such that

Ěi · Ej =
{

−1 (i = j),

0 (i �= j).

Definition 4.34. Let Y be a two-dimensional regular scheme, and x(i) be a
closed point of Y . A generic sequence of n-blow-ups over x(i) is

Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0 = Y,
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where f1 is the blow-up of Y0 = Y at x1 := x(i), and fk : Yk → Yk−1 is the blow-
up of Yk−1 at a general closed point xk of (fk−1)

−1(xk−1) for k = 2, . . . , n. Let
f : Yn → Y be the composition f1 ◦ · · · ◦ fn. Let E(x(i), k), k = 1, . . . , n, be
the strict transforms of the n new f -exceptional divisors created by blowing-ups
f1, . . . , fn, respectively.

Lipman and Watanabe [24] stated the following:

Remark 4.35. f −1(x(i)) is a chain of n integral curves E(x(i),1), . . . ,E(x(i), n)

such that for 0 < k < n,

E(x(i), k) · E(x(i), k + 1) = 1,

E(x(i), k) · E(x(i), k) = −2,

whereas

E(x(i), n) · E(x(i), n) = −1;
and if |k′ − k| > 1, then

E(x(i), k′) · E(x(i), k) = 0.

Lemma 4.36. Let Y be a two-dimensional regular scheme, and x(i) be a closed
point of Y . Let f : Yn → Y be a generic sequence of n-blow-ups over x(i). As in
Definition 4.34, denote by E(x(i),1), . . . ,E(x(i), n) the strict transforms of the n

exceptional divisors over x(i). Then

Kf := KYn − f ∗(KY ) =
n∑

k=1

kE(x(i), k).

Proof. We will show the lemma by induction of n. When n = 1, we have
Kf := KY1 − f ∗(KY ) = E(x(i),1). By the induction hypothesis, KYn−1/KY

=∑n−1
k=1 kE(x(i), k). Therefore

KYn − f ∗(KY ) = KYn/Yn−1 + f ∗
n KYn−1/KY

= nE(x(i), n) +
n−1∑
k=1

kE(x(i), k)

=
n∑

k=1

kE(x(i), k).
�

Lemma 4.37. Let Y be a two-dimensional regular scheme, and x(i) be a closed
point of Y . Let f : Yn → Y be a generic sequence of n-blow-ups over x(i). As in
Definition 4.34, denote by E(x(i),1), . . . ,E(x(i), n) the strict transforms of the n

exceptional divisors over x(i). Let Kf = KYn − f ∗(KY ). Then

Kf · E(x(i), k) =
{

−1 (k = n),

0 (k �= n).
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Proof. By Lemma 4.36, Kf := KYn − f ∗(KY ) = ∑n
k=1 kE(x(i), k). For k �= n,

by Remark 4.35,

Kf · E(x(i), k)

= ((k − 1)E(x(i), k − 1) + kE(x(i), k) + (k + 1)E(x(i), k + 1)) · E(x(i), k)

= (k − 1) − 2k + (k + 1) = 0.

By Remark 4.35,

Kf · E(x(i), n) = ((n − 1)E(x(i), n − 1) + nE(x(i), n)) · E(x(i), n)

= (n − 1) − n = −1. �

Tucker [31] showed the following:

Lemma 4.38 ([31, Lemma 2.2]). Let (A,m) be a two-dimensional normal local
ring. Let f : Y → X = SpecA be a resolution of singularities such that f −1(m) is
a simple normal crossing divisor. Let E1, . . . ,Eu be the irreducible components
of f −1(m). Suppose x(i) is a closed point of Ei with x(i) /∈ Ej for j �= i. Let
g : Yn → Y be a generic sequence of n-blow-ups over x(i). As in Definition 4.34,
denote by E(x(i),1), . . . ,E(x(i), n) the strict transforms of the n exceptional di-
visors over x(i) and by E(i) the strict transforms of E1, . . . ,Eu on Yn. Then

(1) Ě(i) ≤ Ě(x(i),1) ≤ · · · ≤ Ě(x(i), n).
(2) Suppose D is an integral f ◦ g-anti-nef divisor on Yn such that Ei is the

unique component of g∗D containing x(i). Then

ordE(i) D ≤ ordE(x(i),1) D ≤ · · · ≤ ordE(x(i),n) D.

Further, ordE(i) D < ordE(x(i),n) D if and only if

n∑
k=1

(−D · E(x(i), k))Ě(x(i), k) ≥ Ě(i).

Tuker [31] showed that all integrally closed ideals on log terminal surfaces are
multiplier ideals. Our proof is just an imitation of the proof of the Theorem 1.1 of
[31].

We begin the proof of Theorem 4.32.

Proof. Let I ⊂ OX be an integrally closed ideal. We will construct an ideal a
and c ∈ Q>0 such that I = J ω(X,ac). Let f : Y → X be a log resolution of
jX · dX · I with exceptional divisors E1, . . . ,Eu such that jX ·OY = OY (−JY/X),
dX ·OY = OY (−DY/X) and I ·OY = OY (−F0). Let K = K̂Y/X −JY/X +DY/X .
Write

K =
u∑

i=1

biEi,

F0 = (f −1)∗f∗(F0) +
u∑

i=1

aiEi.
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Note that bi ≥ 0 since X has a rational singularity. Let 0 < ε < 1/2 such
that �ε(f −1)∗f∗(F0)� = 0 and ε(ai + 1) < 1 + bi for i = 1, . . . , u. Let ni :=
�(1 +bi)/ε − (ai + 1)� > 0 and ei := (−F0 ·Ei). Choose ei distinct closed points
x

(i)
1 , . . . , x

(i)
ei

on Ei such that x
(i)
j /∈ Supp((f −1)∗f∗(F0)) and x

(i)
j /∈ El for l �= i.

Denote by g : Z → Y the composition of a generic sequence of ni -blow-ups over
each of the points x

(i)
j for j = 1, . . . , ei and i = 1, . . . , u. As in Definition 4.34,

denote by E(x
(i)
j ,1), . . . ,E(x

(i)
j , ni) the strict transforms of the ni exceptional

divisors over x
(i)
j and by E(1), . . . ,E(u) the strict transforms of E1, . . . ,Eu.

Let h := f ◦ g and F = g∗(F0). By Lemma 4.36 and Lemma 4.37,

Kg := KZ − g∗(KY ) =
u∑

i=1

ei∑
j=1

ni∑
k=1

kE(x
(i)
j , k)

and

Kg · E(i) = ei,

Kg · E(x
(i)
j , k) =

{
−1 (k = ni),

0 (k �= ni).

Then F + Kg is h-anti-nef since

F · E(i) = F0 · Ei = −ei, F · E(x
(i)
j , k) = 0.

Let K ′ = Kg + g∗(K), a = h∗OZ(−(F + Kg)), and c = 1 + ε. Then, by Theo-
rem 4.2, we have aOZ = OZ(−(F + Kg)).

We will show that I = J ω(X,ac) = h∗OZ(−F). By Theorem 3.3,

J ω(X,ac) = h∗OZ(−�c(F + Kg) − K ′�).
Therefore it suffices to show that

F ′ := anh(�c(F + Kg) − K ′�) = F

by Lemma 4.3.

Claim 1. We have F ′ ≤ F and h∗F ′ = h∗F . In addition, for i = 1, . . . , u and
j = 1, . . . , ei ,

ord
E(x

(i)
j ,ni )

(F ′) = ord
E(x

(i)
j ,ni )

(F ) = ordE(i)(F ).

Proof. By the definition of a generic sequence of blow-up, we have

ord
E(x

(i)
j ,ni )

(F ) = ordE(i)(F ).

Since F ′ = anh(�c(F + Kg) − K ′�) and F are h-anti-nef, it suffices to show
that

�c(F + Kg) − K ′� ≤ F,

h∗�c(F + Kg) − K ′� = h∗F,

ord
E(x

(i)
j ,ni )

(�c(F + Kg) − K ′�) = ord
E(x

(i)
j ,ni )

(F ).
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We have
�c(F + Kg) − K ′� = F + �ε(F + Kg) − g∗K�.

Since �ε(f −1)∗f∗(F0)� = 0, it follows that h∗�c(F + Kg) − K ′� = h∗F . Con-
sider the coefficients of ε(F + Kg) − g∗K . We have

ordE(i)(ε(F + Kg) − g∗K) = εai − bi < 1,

ord
E(x

(i)
j ,k)

(ε(F + Kg) − g∗K) = ε(ai + k) − bi.

Since 0 < ε < 1/2 and (1 + bi)/ε − (ai + 1) − 1 < ni ≤ (1 + bi)/ε − (ai + 1),
we have

0 < 1 − 2ε < ε(ai + ni) − bi ≤ 1 − ε < 1.

Therefore we have

ord
E(x

(i)
j ,k)

�ε(F + Kg) − g∗K� ≤ 0,

ord
E(x

(i)
j ,ni )

�ε(F + Kg) − g∗K� = 0.

Thus we have F ′ ≤ F and

ord
E(x

(i)
j ,ni )

(F ′) = ord
E(x

(i)
j ,ni )

(F ). �

Claim 2. For each i = 1, . . . , u,

(−F ′ · E(i))Ě(i) +
ei∑

j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ (−F · E(i))Ě(i).

Proof. (1) We assume that ordE(i) F
′ = ordE(i) F .

We have F ′ · E(i) ≤ F · E(i) since F ′ ≤ F by Claim 1. Since Ě(i) and
Ě(x

(i)
j , k) are effective and F ′ is h-anti-nef, we have

(−F ′ · E(i))Ě(i) +
ei∑

j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ (−F · E(i))Ě(i).

(2) We assume that ordE(i) F
′ < ordE(i) F = ord

E(x
(i)
j ,ni )

F ′.
Then, for each j = 1, . . . , ei , we have

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ Ě(i)

by Lemma 4.38. Therefore we have

(−F ′ · E(i))Ě(i) +
ei∑

j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

≥
ei∑

j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

≥ eiĚ(i) = (−F · E(i))Ě(i). �



Rational Singularities, ω-Multiplier Ideals and Cores of Ideals 345

Next, we will prove that F ′ ≥ F . By the two claims, we have

F ′ = h∗h∗F ′ +
u∑

i=1

(
(−F ′ · E(i))Ě(i) +

ei∑
j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

)

≥ h∗h∗F +
u∑

i=1

(−F · E(i))Ě(i) = F.

Therefore we have F = F ′ by Claim 1. Thus I = J ω(X,ac). �

Remark 4.39. In higher-dimensional case, we have counterexamples to Theo-
rem 4.32 (see [20] and [21]).
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