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Spectral Triples from Stationary Bratteli Diagrams

J . Kellendonk & J . Savinien

Abstract. We define spectral triples for stationary Bratteli diagrams
and study associated zeta functions, traces of heat kernels, and their
spectral states. We observe that the zeta functions are periodic with
purely imaginary periods and that the Seeley coefficients are log(t)

periodic. We interpret these as a sign of self-similarity. We describe
several examples and emphasize the case of substitution tiling spaces.
For such tilings, the spectral measure turns out to be the unique mea-
sure that is ergodic under the translation action.

1. Introduction

Even though noncommutative geometry [4] was invented to describe (virtual)
noncommutative spaces, it turned out also to provide new perspectives on (clas-
sical) commutative spaces. In particular, Connes’ idea of spectral triples aiming
at a spectral description of geometry has generated new concepts, or shed new
light on existing ones, for topological spaces: dimension spectrum, Seeley type
coefficients, spectral state are notions derived from the spectral triple, and we will
talk about them here. Indeed, we study in this paper certain spectral triples for
commutative algebras that are associated with stationary Bratteli diagrams, that
is, with the space of infinite paths on a finite oriented graph. Such Bratteli dia-
grams occur in systems with self-similarity such as the tiling systems defined by
substitutions.

Our construction follows from earlier ones for metric spaces, which go under
the name “direct sum of point pairs” [3] or “approximating graph” [15], suitably
adapted to incorporate the self-similar symmetry. The construction is therefore
more rigid. The so-called Dirac operator D of the spectral triple will depend on
a parameter ρ, which is related to the self-similar scaling. We observe a new fea-
ture that, we believe, ought to be interpreted as a sign of self-similarity: The zeta
function is periodic with purely imaginary period 2πi

logρ
. Correspondingly, what

corresponds to the Seeley coefficients (in the case of manifolds) in the expansion
of the trace of the heat-kernel e−tD2

is here given by functions of log t that are
2π

logρ
-periodic. This has consequences for the usual formulae for tensor products

of spectral triples. If we take the tensor product of two such triples and compare
the spectral states T1,2 for the individual factors with the spectral state T of the
tensor product, then a formula like T (A1 ⊗ A2) = T1(A1)T2(A2) will not always
hold due to resonance phenomena of the involved periodicities.
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Our main application will be to the tiling space of a substitution tiling. In this
case, the finite oriented graph defining the spectral triple is the substitution graph.
Moreover, the spectral triple is essentially described by the tensor product of two
spectral triples of the type mentioned, one for the transversal and one for the
longitudinal direction.

Summary of Results

After a quick introduction to spectral triples, we are first concerned with the prop-
erties of their zeta functions in the case that the expansion of the trace of the heat
kernel e−tD2

is not simply an expansion into powers of t but of the type

Tr(e−tD2
)

t→0∼ f (− log t)tα (1)

with �(α) < 0, where f : R+ → R a bounded locally integrable function such
that lims→0+ sL[f ](s) exists and is nonzero, where L is the Laplace transform.
A nonconstant f in that expansion has consequences that we did not first ex-
pect. We are led in Section 2.2 to study classes of operators on B(H) that have
a compatible behavior. An operator A ∈ B(H) is weakly regular if there exists a
bounded locally integrable function fA : R+ → R for which lims→0+ sL[fA](s)
exists and is nonzero, such that

Tr(e−tD2
A)

t→0∼ fA(− log t)tα, (2)

where α is the same as in equation (1). For such operators, the spectral state does
not depend on a choice of a Dixmier trace and is given by

T (A) = lim
s→0+

L[fA](s)
L[f ](s) ,

where f is the same as in equation (1); see Lemma 2.3. We also define strongly
regular operators, for which we have in particular fA = T (A)f in equation (2)
(see Lemma 2.4). Regular operators have an interesting behavior under tensor
product, which we will use in the applications to tilings. If the spectral triple is
a tensor product, that is, (A,H,D) = (A1 ⊗ A2,H1 ⊗ H2,D1 ⊗ 1 + χ ⊗ D2),
where χ is a grading on (A1,H1,D1), then we have:

T (A1 ⊗ A2) = lim
s→0+

L[fA1fA2](s)
L[f1f2](s) ,

where fi is as in (1) for Di , and fAi
as in (2) for Ai , for each factor i = 1,2 of the

tensor product; see Lemma 2.7. In general, only if both A1 and A2 are strongly
regular for the individual spectral triples, the state will factorize as T (A1 ⊗A2) =
T1(A1)T2(A2). Here Ti denotes the spectral state of (Ai ,Hi ,Di), i = 1,2 (see
Corollary 2.8). It is easy to build examples for which this equality fails for more
general operators: for instance, we could have T1(A1) = 0 and T (A1 ⊗ A2) �= 0;
see the end of Section 3.3 for such a counterexample.

In Section 3, we study spectral triples associated with a stationary Bratteli
diagram, that is, for the C∗-algebra of continuous functions on the Cantor set
of (half-)infinite paths on a finite oriented graph. These depend on the matrix



Spectral Triples from Stationary Bratteli Diagrams 717

A encoding the edges between two levels in the diagram (called here a graph
matrix and assumed to be primitive), a parameter ρ ∈ (0,1) to account for self-
similar scaling and a horizontal structure Ĥ (a set of edges linking the edges of the
Bratteli diagram). We determine the spectral information of such spectral triples.
In Theorem 3.3, we derive the Connes distance and show under which conditions
it yields the Cantor topology on the path space. We compute the zeta function
ζ(z) = Tr(|D|−z) and the expansion of the heat kernel.

Theorem (Theorems 3.4 and 3.6 and Remark 3.7 in the main text). Consider a
spectral triple associated with a stationary Bratteli diagram with graph matrix
A and parameter 0 < ρ < 1. Assume that A is diagonalizable with eigenvalues
λ1, . . . , λp .

• The zeta function ζ extends to a meromorphic function on C that is invari-
ant under translation z 	→ z + 2πı

logρ
. It has only simple poles, and these are

at (logλj + 2πık)/(− logρ), k ∈ Z, j = 1, . . . , p. In particular, the spec-
tral dimension (abscissa of convergence of ζ ) is equal to s0 = logλPF/ logρ,
where λPF is the Perron–Frobenius eigenvalue of A. The residue at the pole
(logλj + 2πık)/(− logρ) is given by C

j

Ĥλj/(− logρ).
• The Seeley expansion of the heat-kernel is given by

Tr(e−tD2
) =

∑
j :|λj |>1

C
j

Ĥp−2 logρ,logλj
(− log t)t logλj /(2 logρ)

+ C
j0

Ĥ
− log t

−2 logρ
+ h(t),

where h is entire, pr,a is an r-periodic smooth function, and j0 is such that
λj0 = 1.

The constants C
j

Ĥ are given in (9); they depend on the choice of horizontal edges

Ĥ. The function pr,a is explicitly given in equations (15) and (16), and its aver-
age over a period is p̄r,a = 1

r
�(a

r
). If A is not diagonalizable, then ζ has poles

of higher order and the heat-kernel expansion is more involved (with powers of
log(t) depending on the order of the poles); see Remark 3.5 and Theorem 3.6.

In Section 4, we apply our findings to substitution tiling spaces 	
. We con-
sider geometric substitutions of the simplest form, as in [9], which are defined
by a decomposition rule followed by a rescaling, that is, each prototile is decom-
posed into smaller tiles, which, when stretched by a common factor θ > 1 (the
dilation factor), are congruent to some original tile. The result of the substitution
on a tile is called a supertile (and by iteration then an nth-order supertile). If we
apply only the decomposition rule, then we obtain smaller tiles, which we call
microtiles.

The approximating graph for 	
 is constructed with the help of doubly infi-
nite paths over the substitution graph. Half -infinite paths describe its canonical
transversal. We use this structure to construct a spectral triple for C(	
) essen-
tially as a tensor product of two spectral triples, one obtained from the substitution
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graph and the other from the reversed substitution graph. Indeed, the first of the
two spectral triples describes the transversal, and the second the longitudinal part
of 	
. Since the graph matrix of the reversed graph is the transpose of the original
graph matrix, we will have to deal with only one set of eigenvalues λ1, . . . , λp . It
turns out wise, however, to keep two dilation parameters ρtr and ρlg as indepen-
dent parameters, although they will later be related to the dilation factor θ of the
substitution. We obtain the following:

Theorem (Theorem 4.7 in the main text). The spectral triple for C(	
) is finitely
summable with spectral dimension

s0 = d log θ

− logρtr
+ d log θ

− logρlg
,

which is the sum of the spectral dimensions of the triples associated with the
transversal and with the longitudinal part.

The zeta function ζ(z) has a simple pole at s0 with positive residue.
The spectral measure is equal to the unique translation-invariant ergodic prob-

ability measure on 	
.

In an older version of this work [14], we investigated the problem of extension
of the quadratic form Q(f,g) = T ([D,f ]∗[D,g]) (defined on a properly chosen
domain) to a Dirichlet form on the tiling space of a Pisot substitution tiling. These
tilings share further properties that allow for the calculation of the Dirichlet form.
It turns out that the corresponding Laplace operator is given by a standard elliptic
second-order differential operator on the maximal equicontinuous factor (a torus
or an inverse limit of tori). The somewhat technical details can be found in [14].

2. Preliminaries for Spectral Triples

A spectral triple (A,H,D) for a unital C∗-algebra A is given by a Hilbert space H
carrying a faithful representation π of A by bounded operators and an unbounded
self-adjoint operator D on H with compact resolvent such that the set of a ∈ A
for which the commutator [D,π(a)] extends to a bounded operator on H forms a
dense subalgebra A0 ⊂ A. The operator D is referred to as the Dirac operator. In
all examples here, we will assume it to be invertible, with compact inverse. The
spectral triple (A,H,D) is termed even if there exists a Z/2-grading operator χ

on H that commutes with π(a), a ∈ A, and anticommutes with D.
We consider the case of commutative C∗-algebras A = (C(X),‖ · ‖∞) of con-

tinuous functions over a compact Hausdorff space X with the sup-norm, so we
may speak about a spectral triple for the space X. The spaces we consider are
far from being manifolds. Spectral triples for such spaces have been considered
earlier for fractals in [7; 8; 16] and for ultrametric Cantor sets and tiling spaces in
[17; 12; 15].
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2.1. Zeta Function and Heat Kernel

Since the resolvent of D is supposed to be compact, Tr(|D|−s) can be expressed
as a Dirichlet series in terms of the eigenvalues of |D|.1 The spectral triple is
called finitely summable if the Dirichlet series is summable for some s ∈ R and
hence defines a function

ζ(z) = Tr(|D|−z)

on some half-plane {z ∈ C : �(z) > s0}, which is called the zeta function of the
spectral triple. The smallest possible value for s0 (the abscissa of convergence of
the Dirichlet series) is called the metric dimension of the spectral triple. We call
ζ simple if lims→s+

0
(s − s0)ζ(s) exists. This is, for instance, the case if ζ can be

meromorphically extended and then has a simple pole at s0. We will then also
refer to the meromorphic extension simply as the zeta function of the triple.

Another quantity to look at is the heat kernel e−tD2
of the square of the Dirac

operator. Thanks to the Mellin transform

�(s)μ−2s =
∫ ∞

0
e−tμ2

t s−1 dt,

where μ > 0, and �(s) = ∫ +∞
0 e−t t s−1 dt is the gamma function, we can relate

the zeta function to the heat kernel as follows:

�(s)ζ(2s) =
∫ ∞

0
Tr(e−tD2

)ts−1 dt.

This of course makes sense only if e−tD2
is trace class for all t > 0, which is

anyway a necessary condition for finite summability. Notice that the trace class
condition implies also that s 	→ ∫ ∞

δ
Tr(e−tD2

)ts−1 dt is holomorphic for all δ > 0.
The last formula is particularly useful if we know the asymptotic expansion of

Tr(e−tD2
) at t → 0 or only its leading term.2 It is well known that the form of

the asymptotic expansion is related to the singularites of the zeta-function [5; 11].
For instance, an expansion of the form

Tr(e−tD2
) =

∑
α

cαtα + h(t)

with �(α) < 0, cα ∈ C, and a function h bounded at 0 (in particular, without log-
arithmic terms like log t) implies that the zeta function has a simple pole at −2α

with residue equal to 2cα/�(−α) and is regular at 0 [5]. We will see, however,
that the situation is quite different in our case, where we have to replace cα by

1For simplicity, we suppose (as will be the case in our applications) that ker(D) is trivial; otherwise,
we would have to work with Trker(D)⊥ (|D|−s ) or remove the kernel of D by adding a finite-rank

perturbation.
2A function f : R>0 → C is asymptotically equivalent to g : R>0 → R as t → 0, written f

t→0∼ g,
if |f − g| = o(|g|). The notation f = O(g) means that ∃M > 0, ∃δ > 0, ∀0 < t < δ: |f (t)| ≤
M|g(t)|, and f = o(g) means that ∀ε > 0, ∃δ > 0, ∀0 < t < δ: |f (t)| ≤ ε|g(t)|.
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functions that are periodic in log t . Recall the Laplace transform of a function f

at s:

L[f ](s) :=
∫ ∞

0
f (x)e−sx dx. (3)

We assume therefore in the sequel that the asymptotic behavior of the trace of the
heat kernel is given by

Tr(e−tD2
)

t→0∼ f (− log t)tα, (4)

where α < 0, and f : R≥0 → R is a bounded, locally integrable function for which
lims→0 sL[f ](s) exists and is different from 0. This is the weakest assumption
needed for ζ to be simple and have nonnegative abscissa of convergence, and to
be able to compute its residues explicitly, as the following lemma shows (see also
Remark 2.2 for a regular example of such f ).

Lemma 2.1. If the trace of the heat kernel satisfies (4), then ζ is simple, has
abscissa of convergence f

s0 = −2α, and
1

2
�

(
s0

2

)
lim

s→s+
0

(s − s0)ζ(s) = lim
s→0

sL[f ](s).

If, moreover, L[f ](s) admits a meromorphic extension with simple pole at 0 and
Tr(e−tD2

) − f (− log t)tα = O(tβ) (with β > α), then ζ(s) has a simple pole at
s0 = −2α, and hence 1

2�(
s0
2 )Res(ζ, s0) = Res(L[f ],0) = lims→0 sL[f ](s).

Proof. We adapt the arguments of [11]. Let h(t) = Tr(e−tD2
) − f (− log t)tα and

M = supx |f (x)|. Then, for all ε > 0, there exists δ ≤ 1 such that |h(t)| ≤ εMtα if
t < δ. In particular, Hδ(s) := ∫ δ

0 h(t)ts−1 dt satisfies |Hδ(s)| ≤ εMδα+s/(α + s),
provided that α + s > 0. Now, again for α + s > 0,

�(s)ζ(2s) =
∫ ∞

0
Tr(e−tD2

)ts−1 dt =
∫ δ

0
f (− log t)tα+s−1 dt + Hδ(s) + gε(s),

where gε(s) = ∫ ∞
δ

Tr(e−tD2
)ts−1 dt is holomorphic in s. This shows that ζ(2s)

is finite for s > −α. Furthermore,

lim
s→−α+(α + s)

∫ δ

0
f (− log t)tα+s−1 dt = lim

s→0+ s

∫ log δ

−∞
f (−τ)eτs dτ

= lim
s→0+ sL[f ](s),

where we have used in the last equation that lims→0+ s
∫ 0

log δ
f (−τ)eτs dτ = 0.

Since ε > 0 is arbitrary, we conclude that

lim
s→−α+(α + s)�(s)ζ(2s) = lim

s→0+ sL[f ](s).
Hence, s0 = −2α is the abscissa of convergence.

Now if h(t) is of order tβ , then we can find M > 0 and δ > 0 such that
|h(t)t−β | ≤ M if 0 < t < δ. If β > α, then the function t 	→ t s+β−1 is integrable
on (0, δ) as long as s lies in a sufficiently small neighborhood of −α. Since s 	→
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t s+β−1 is holomorphic for all t > 0, we find that Hδ(s) = ∫ δ

0 (h(t)t−β)ts+β−1 dt is
holomorphic near s = −α, which shows that (α + s)ζ(2s) is holomorphic there,
too. Thus, ζ has a simple pole at −2α, and we have the stated formula for its
residue. �

Remark 2.2. If f (τ) = eiaτ , then L[f ](s) = 1
s−ia

. Thus, if f is the restriction

of a periodic function of class C1, then upon using its representation as a Fourier
series, we see that sL[f ](s) extends to an analytic function around 0, and

lim
s→0

sL[f ](s) = f̄ ,

the mean of f .

2.2. Spectral State

Given a bounded operator A on H such that |D|−s0A is in the Dixmier ideal, we
consider the expression

T (A) = Trω(|D|−s0A)/Trω(|D|−s0),

which depends a priori on the choice of Dixmier trace Trω. With a little luck,
however, lims→s+

0

1
ζ(s)

Tr(|D|−sA) exists, and then [4]

T (A) = lim
s→s+

0

1

ζ(s)
Tr(|D|−sA).

We provide here a criterion for that. Note that the Mellin transform allows us to
write

Tr(|D|−sA) = 1

�(s/2)

∫ ∞

0
Tr(e−tD2

A)ts/2−1 dt.

We call A ∈ B(H) strongly regular if there exists a number cA such that

Tr(e−tD2
A) − cA Tr(e−tD2

) = o(Tr(e−tD2
)).

If cA �= 0, then we can thus say that Tr(e−tD2
A)

t→0∼ cA Tr(e−tD2
). In the context

in which the heat kernel satisfies (4), it is useful to consider the notion of weakly
regular operators A ∈ B(H). These are operators that satisfy

Tr(e−tD2
A)

t→0∼ fA(− log t)tα, (5)

where α is the same as in (4), and fA : R≥0 → C is a bounded, nonzero, locally
integrable function for which lims→0 sL[fA](s) exists. Clearly, strongly regular
operators are weakly regular, and fA = cAf in this case, where f is given in
equation (4) (we actually have cA = T (A); see Corollary 2.4).

Lemma 2.3. Assume that the trace of the heat kernel satisfies (4) and that A ∈
B(H) is weakly regular, that is, satisfies (5). Then lims→s+

0

1
ζ(s)

Tr(|D|−sA) exists
and is equal to

T (A) = lim
s→0

L[fA](s)
L[f ](s) .
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Proof. Under the hypothesis, for all ε > 0, we can find δ > 0 such that if s > s0,
then∣∣∣∣

∫ δ

0
(Tr(e−tD2

A) − fA(− log t)tα)ts/2−1 dt

∣∣∣∣ ≤ ε

∫ δ

0
|fA(− log t)|tα+s/2−1 dt

≤ εMA

δα+s/2

α + s/2
,

where MA is an upper bound for |fA(− log t)|. Since
∫ ∞
δ

Tr(e−tD2
)ts/2−1 dt and

hence also
∫ ∞
δ

Tr(e−tD2
A)ts/2−1 dt are finite for all δ > 0, we get (α = −s0/2)

lim
s→s+

0

1

�(s/2)ζ(s)

∣∣∣∣
∫ ∞

0
Tr(e−tD2

A)ts/2−1 dt −
∫ 1

0
fA(− log t)t (s−s0)/2−1 dt

∣∣∣∣
≤ εM̃A.

Notice that
∫ 1

0 fA(− log t)t s−1 dt = L[fA](s). Since ε was arbitrary, we conclude
that

lim
s→s+

0

1

ζ(s)
Tr(|D|−sA) = lim

s→s+
0

L[fA]((s − s0)/2)

�(s/2)ζ(s)
= lim

s→0

L[fA](s)
L[f ](s) .

�

Corollary 2.4. If A ∈ B(H) is strongly regular, then Tr(e−tD2
A)

t→0∼
T (A)Tr(e−tD2

A). In other words, the functions in equations (4) and (5) satisfy
fA = T (A)f .

Proof. If A is strongly regular, then it is also weakly regular with fA = cAf .
The Laplace transform is linear, so L[fA](s) = cAL[f ](s), and Lemma 2.3 then
implies cA = T (A). �

Order the eigenvalues of |D| increasingly (without counting multiplicity) and let
Fn be the nth eigenspace of |D|.
Corollary 2.5. Let A ∈ B(H) and Ān = TrFn(A|Fn)/dimFn. If the limit

Ā = lim
n→∞ Ān

exists, then A is strongly regular, and T (A) = Ā.

Proof. Write cn = e−tμ2
n dimFn, where μn is the nth eigenvalue of |D|. We have

Tr(e−tD2
A) − ĀTr(e−tD2

) =
∑
n≥1

(Ān − Ā)cn.

Now fix ε > 0 and choose an integer Nε such that |Ān − Ā| ≤ ε for all n ≥
Nε . Then the series of the r.h.s. can be bound by (supn |Ān − Ā|)∑

n<Nε
cn +

ε
∑

n≥Nε
cn. Using

∑
n≥Nε

cn ≤ Tr(e−tD2
), we find that, for all ε > 0, there exists

Cε such that

|Tr(e−tD2
A) − ĀTr(e−tD2

)| ≤ Cε + ε Tr(e−tD2
).
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Since Tr(e−tD2
) tends to +∞ as t tends to 0, this shows that Tr(e−tD2

A)
t→0∼

fA(− log t)tα with fA = Āf . Applying Lemma 2.3, we see that T (A) = Ā. �

In the commutative case where A = C(X) for a compact Hausdorff space X, we
are particularly concerned with operators of the form A = π(f ) for f ∈ C(X) or
for any Borel-measurable function f on X. By the Riesz representation theorem
the functional f 	→ T (π(f )) gives a measure on X, which we call the spectral
measure.

2.3. Direct Sums

The direct sum of two spectral triples (A1,H1,D1) and (A2,H2,D2) is the spec-
tral triple (A,H,D) given by

A = A1 ⊕A2, H = H1 ⊕H2, D = D1 ⊕ D2,

with direct sum representation. The zeta function ζ of the direct sum is clearly the
sum of the zeta functions ζi of the summands, and thus its abscissa of convergence
s0 is equal to the largest abscissa of the two zeta functions ζi . Let T denote the
spectral state of the direct sum triple, and Ti those of the summands, and assume
that all zeta functions are simple. Then, for regular operators A1 and A2, we have

T (A) = 1

c1 + c2
(c1T (A1) + c2T (A2)), (6)

where ci = lims→s+
0
(s − s0)ζi(s). Notice that c1 = 0 if the abscissa of con-

vergence of ζ1 is smaller than that of ζ2, in which case T (A) = T (A2) (and
similarly with 1 and 2 exchanged: T (A) = T (A1)). Notice also that c1 + c2 =
lims→s+

0
(s − s0)ζ(s).

2.4. Tensor Products

The tensor product of an even spectral triple (A1,H1,D1) with grading operator
χ and another spectral triple (A2,H2,D2) is the spectral triple (A,H,D) given
by

A = A1 ⊗A2, H = H1 ⊗H2, D = D1 ⊗ 1 + χ ⊗ D2.

Notice that D2 = D2
1 ⊗ 1 + 1 ⊗ D2

2 . It follows that the trace of the heat kernel

is multiplicative: Tr(e−tD2
) = TrH1(e

−tD2
1 )TrH2(e

−tD2
2 ). This allows us to obtain

information on the spectral state of the zeta function.

Lemma 2.6. Suppose that TrH1(e
−tD2

1 ) and TrH2(e
−tD2

2 ) satisfy (4) with f = f1
and f = f2, respectively. Suppose that lims→0 sL[f1f2](s) exists and is nonzero.
Then the metric dimension s0 of the tensor product spectral triple is the sum of
the metric dimensions of the factors, and the zeta function ζ of the tensor product
is simple with

1

2
�

(
s0

2

)
lim

s→s+
0

(s − s0)ζ(s) = lim
s→0

sL[f1f2](s).
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Proof. Due to the multiplicativity of the trace of the heat kernel, we have

Tr(e−tD2
)

t→0∼ f1(− log t)f2(− log t)tα1+α2,

and hence the result follows from Lemma 2.1. �

Lemma 2.7. Assume the conditions of Lemma 2.6. Let A1 ∈ B(H1) and A2 ∈
B(H2) be weakly regular with functions fA1 and fA2 . Then

T (A1 ⊗ A2) = lim
s→0+

L[fA1fA2](s)
L[f1f2](s) .

Proof. Let ε > 0 and choose δ > 0 such that |TrHi
(e−tD2

i Ai)−fAi
(− log t)tαi | ≤

εtαi for 0 < t < δ. Then∫ δ

0
TrH(e−tD2

A1 ⊗ A2)t
s−1 dt

=
∫ δ

0
TrH1(e

−tD2
1 A1)TrH2(e

−tD2
2 A2)t

s−1 dt

=
∫ δ

0
(fA1(− log t)fA2(− log t) + O(ε))tα1+α2+s−1 dt

= L[fA1fA2](α1 + α2 + s) + O(ε)
δα1+α2+s

α1 + α2 + s
,

from which the result follows by similar arguments as before. �

Corollary 2.8. Let A1 and A2 be weakly regular operators.

(i) If A1 is strongly regular, then T (A1 ⊗ A2) = T1(A1)T (1 ⊗ A2).
(ii) If both A1 and A2 are strongly regular, then T (A1 ⊗ A2) = T1(A1)T2(A2).

Remark 2.9. The result of the corollary says that the spectral state factorizes
for tensor products of strongly regular operators. This corresponds to the formula
on page 563 in [4]. It should be noticed, however, that this factorization is in
general not valid for tensor products of weakly regular operators since the Laplace
transform of a product is not the product of the Laplace transforms. We consider
examples of this type at the end of Section 3.3.

3. The Spectral Triple Associated with a Stationary Bratteli Diagram

An oriented graph G = (V,E) is the data of a set of vertices V and a set of edges E
with two maps E r

s
V , one assigning to an edge ε its source vertex s(ε) and

the second assigning its range r(ε). The graph matrix of G is the matrix A with
coefficients Avw equal to the numbers of edges that have source v and range w.

We construct a spectral triple from the following data (see Figure 1 for an
illustration of the construction):

1. A finite oriented graph G = (V,E) with a distinguished one-edge-loop l∗. We
suppose that the graph is strongly connected: for any two vertices v1, v2, there
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Figure 1 The graph G associated with the Fibonacci matrix and hor-
izontal edges Ĥ = {h,hop}

exists an oriented path from v1 to v2 and an oriented path from v2 to v1. This
is equivalent to saying that the graph matrix A is irreducible. We will further
assume that A is primitive (i.e., ∃N ∈ N, ∀v,w, AN

vw > 0).
Alternatively, we can pick a distinguished loop made of p > 1 edges and

resume the case described before by replacing the matrix A by Ap and consid-
ering its associated graph Gp instead of G.

2. A function τ̂ : E → E satisfying for all ε ∈ E :
(a) if r(ε) is the vertex of l∗, then τ̂ (ε) = l∗,
(b) if r(ε) is not the vertex of l∗, then τ̂ (ε) is an edge starting at r(ε) and such

that r(τ̂ (ε)) is closer3 to the vertex of l∗ in G.
3. A symmetric subset Ĥ = H(G) of E × E :

Ĥ ⊆ {(ε, ε′) ∈ E × E : ε �= ε′, s(ε) = s(ε′)}.
This can be understood as a graph with vertices E and edges Ĥ that has no
loops. We fix an orientation of the edges in Ĥ and write Ĥ = Ĥ+ ∪ Ĥ− for the
decomposition into positively and negatively oriented edges.

4. A real number ρ ∈ (0,1).

Notation. We still denote the range and source maps by r , s on Ĥ: Ĥ r

s
E .

We allow compositions with the source and range maps from E to V , which we

denote by s2, r2, sr , rs: Ĥ
r2,s2

rs,sr
V . See Figure 1 for an illustration with the

Fibonacci matrix A = ( 1
1

1
0

)
.

We denote by �n(G), or simply by �n if the graph is understood, the set of paths
of length n over G, that is, sequences of n edges ε1 · · · εn such that r(εi) = s(εi+1).
We also set �0(G) = V . We extend the range and source maps to paths: if γ =
3For the combinatorial graph metric where nonloop edges have length 1 and loop edges have length 0.
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ε1 · · · εn, then r(γ ) := r(εn), s(γ ) := s(ε1). Also, given γ = ε1 · · · εi · · · εn, we
denote by γi = εi the ith edge along the path.

The number of paths of length n starting from v and ending in w then is An
vw .

Recall that we require that A is primitive: ∃N ∈N, ∀v,w, AN
vw > 0. (For the graph

G, this means that for any two vertices v, w, there is at least one oriented path of
length N from v to w; for the graph GN , this means that for any two vertices v,w,
there is at least one oriented edge from v to w.) Under this assumption, A has a
nondegenerate positive eigenvalue λPF that is strictly larger than the modulus of
any other eigenvalue. This is the Perron–Frobenius eigenvalue of A. Let us denote
by L and R the left and right Perron–Frobenius eigenvectors of A (i.e., associated
with λPF) normalized so that∑

j

Rj = 1,
∑
j

RjLj = 1. (7)

Let us also write the minimal polynomial of A as μA(λ) = ∏p

k=1(λ − λk)
mk with

λ1 = λPF and m1 = 1. Then from the Jordan decomposition of A we can compute
the asymptotics of the powers of A as follows [10]:

An
ij = RiLjλ

n
PF +

p∑
k=2

P
(ij)
k (n)λn

k , (8)

where P
(ij)
k is a polynomial of degree mk if n ≥ mk and of degree less than mk if

n < mk .
Let Mj be the algebraic multiplicity of the j th eigenvalue of A (hence,

M1 = 1). Let Rj,l for 1 ≤ j ≤ p and 1 ≤ l ≤ Mj be a basis of (right) eigen-
vectors of A: ARj,l = λjR

j,l . Let also Lj,l be a basis of left eigenvectors of A

normalized so that Rj,l · Lj ′,l′ = δjj ′δll′ . So R1,1 = R and L1,1 = L as defined in
equation (8). For 1 ≤ j ≤ p, let us define

C
j

Ĥ = 1

λj

Mj∑
l=1

∑
v∈V
h∈Ĥ

Rj,l
v L

j,l

s2(h)
. (9)

Given G, we consider the topological space �∞ of all (one-sided) infinite paths
over G with the standard topology. It is compact and metrizable. The set �∞∗ of
infinite paths that eventually become l∗ forms a dense set.

Remark 3.1. This construction is equivalent to that of a stationary Bratteli dia-
gram [2]: this is an infinite directed graph with a copy of the vertices V at each
level n ≥ 0 and a copy of the edges E linking the vertices at level n to those at
level n+ 1 for all n (there are also a root and edges linking it down to the vertices
at level 0). So, for instance, the set �n of paths of length n is viewed here as
the set of paths from level 0 down to level n in the diagram. See Figure 2 for an
illustration (the root is represented by the hollow circle to the left).
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• • •

◦

• • •

Figure 2 The stationary Bratteli diagram associated with the Fi-
bonacci matrix

Given τ̂ , we obtain an embedding of �n into �n+1 by ε1 · · · εn 	→ ε1 · · · εnτ̂ (εn)

and hence, by iteration, into �∞∗ ⊂ �∞. We denote the corresponding inclusion
�n ↪→ �∞ by τ .

Given Ĥ, we define horizontal edges Hn between paths of �n, namely
(γ, γ ′) ∈ Hn if γ and γ ′ differ only on their last edges ε and ε′, and with
(ε, ε′) ∈ Ĥ. For all n, we carry the orientation of Ĥ over to Hn.

The approximation graph Gτ = (V ,E) is given by:

V =
⋃
n≥0

Vn, Vn = τ(�n) ⊂ �∞∗,

E =
⋃
n≥1

En, En = τ × τ(Hn),

together with the orientation inherited from Hn: so we write En = E+
n ∪ E−

n for
all n and E = E+ ∪E−. Given h ∈ Ĥ, we denote by Hn(h), En(h), and E(h) the
corresponding sets of edges of type h.

We can think of an element in Hn as a pair of paths of length n that agree on
their first n − 1 edges and disagree on their nth edges and of an element in En as
a pair of infinite paths that agree on their first n − 1 edges, disagree on their nth
edges, and merge further down (according to the definition of τ̂ ) to the tail made
of the infinite repetition of l∗. With this in mind, it is clear that En ∩ Em = ∅ if
n �= m.

Lemma 3.2. The approximation graph Gτ = (V ,E) is connected if and only if,
for all ε, ε′ ∈ E with s(ε) = s(ε′), there is a path in Ĥ linking ε to ε′. Its set of
vertices V is dense in �∞.

Proof. Let x, y ∈ V , x �= y, and let n be the largest integer such that xi = yi ,
i = 1, . . . , n − 1, and xn �= yn (so s(xn) = s(yn)). Any path in Gτ linking x to
y must contain a subpath linking xn to yn. Hence, Gτ is connected iff the given
condition on Ĥ is satisfied.

The density of V is clear since any base clopen set for the topology of �∞:
[γ ] = {x ∈ �∞ : xi = ηi, i ≤ n}, γ ∈ �n, n ∈ N, contains a point of V , namely
τ(γ ). �
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Given an edge e ∈ E, we write eop for the edge with the opposite orientation:
s(eop) = r(e), r(eop) = s(e). Now our earlier construction [15] yields a spectral
triple from the data of the approximation graph Gτ . The C∗-algebra is C(�∞),
and it is represented on the Hilbert space �2(E) by

π(f )ψ(e) = f (s(e))ψ(e). (10)

The Dirac operator is given by

Dϕ(e) = ρ−nϕ(eop), e ∈ En. (11)

The orientation yields a decomposition of �2(E) into �2(E+) ⊕ �2(E−).

Theorem 3.3. The triple (C(�∞(G)), �2(E),D) is an even spectral triple with
Z/2-grading χ that flips the orientation. Its representation is faithful. If Ĥ is suffi-
ciently large (i.e., satisfies the condition in Lemma 3.2), then its spectral distance
ds is compatible with the topology on �∞(G), and we have

ds(x, y) = cxyρ
nxy +

∑
n>nxy

(bn(x) + bn(y))ρn for x �= y, (12)

where nxy is the largest integer such that xi = yi for i < nxy , and bn(z) = 1 if
τ̂ (zn) �= zn+1 and bn(z) = 0 otherwise for any z ∈ �∞. The coefficient cxy is the
number of edges in a shortest path in Ĥ linking xnxy to ynxy . If Ĥ is maximal, that

is, Ĥ = {(ε, ε′) ∈ E × E : ε �= ε′, s(ε) = s(ε′)}, then cxy = 1 for all x, y ∈ �∞.

Proof. The first statements are clear. In particular, the commutator [D,π(f )] is
bounded if f is a locally constant function. The representation is faithful by the
denseness of V in �∞.

If Ĥ satisfies the condition in Lemma 3.2, then the graph Gτ is connected. It is
also a metric graph with lengths given by ρn for all edges e ∈ En. By a previous
result (Lemma 2.5 in [15]) ds is an extension to �∞ of this graph metric, and since∑

ρn < +∞, it is continuous and given by equation (12) (by straightforward
generalizations of Lemma 4.1 and Corollary 4.2 in [15]). �

3.1. Zeta Function

We determine the zeta function for the triple (C(�∞(G)), �2(E),D) associated
with the above data.

Theorem 3.4. Suppose that the graph matrix is diagonalizable with eigenvalues
λj , j = 1, . . . , p. The zeta function ζ extends to a meromorphic function on C

that is invariant under the translation z 	→ z + 2πı
logρ

. It is given by

ζ(z) =
p∑

j=1

C
j

Ĥ
1 − λjρz

+ h(z),

where h is an entire function, and C
j

Ĥ is given in equation (9). In particular, ζ has
only simple poles, which are located at {(logλj + 2πık)/(− logρ) : k ∈ Z, j =
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1, . . . , p} with residues given by

Res

(
ζ,

logλj + 2πık

− logρ

)
=

C
j

Ĥλj

− logρ
. (13)

In particular, the metric dimension is equal to s0 = logλPF/(− logρ).

Proof. Clearly,

ζ(z) =
∑
n≥1

ρnz#En.

The cardinality #En of En can be computed by summing, over all vertices v ∈ V
and all edges h ∈ Ĥ with s2(h) = v, the number of paths of length n − 1:

#En =
∑
v∈V

∑
h∈Ĥ

An−1
vs2(h)

. (14)

Now since A is diagonalizable, the polynomials P
ij
k in equation (8) are all con-

stant and can be expressed in terms of its (right and left) eigenvectors Rk,l , Lk,l ,
1 ≤ l ≤ Mk . (These vectors were normalized so that Rk,l are the columns of the
matrix of change of basis that diagonalizes A and the vectors Lk,l are the rows of
its inverse.) So from equation (8) we get #En = ∑p

k=1 Ck

Ĥ
λn

k for all n, and hence

ζ(z) =
p∑

k=1

Ck

Ĥ

∑
n≥1

λn
kρ

nz =
p∑

k=1

Ck

Ĥ
λkρ

z

1 − λkρz
.

Hence, ζ has a simple pole at values z for which ρzλk = 1, k = 1, . . . , p. The
calculation of the residues is direct. �

The periodicity of the zeta function with purely imaginary period whose length
is only determined by the factor ρ is a feature that distinguishes our self-similar
spectral triples from the known triples for manifolds. Note also that ζ may have a
(simple) pole at 0, namely if 1 is an eigenvalue of the graph matrix A.

Remark 3.5. In the general case, when A is not diagonalizable, it is no longer
true that the zeta function has only simple poles. Here the polynomials P

ij
k (n) in

equation (8) are nonconstant (of degree mk − 1 > 0 for k = 2, . . . , p) and give
power terms in the sum for ζ(z) written in the proof of Theorem 3.4 (we get sums
of the form

∑
n≥1 naλn

kρ
nz for integers a ≤ mk − 1). In this case, ζ(z) has poles

of order mj at z = (logλj + 2πık)/(− logρ).

3.2. Heat Kernel

We derive here the asymptotic behavior of the trace of the heat kernel Tr(e−tD2
)

around t = 0.
For r > 0, �(α) > 0, and s ∈R, we define

p̃(r,α, s) =
∞∑

k=−∞
�

(
α + 2πık

r

)
e2πıks . (15)
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In particular,

pr,a(σ ) := 1

r
p̃

(
r,

a

r
,
σ

r

)
(16)

is a periodic function of period r with average p̄r,a = 1
r
�(a

r
) over a period.

Theorem 3.6. Consider the above spectral triple (C(�∞(G)), �2(E),D) with
graph matrix A and parameter ρ ∈ (0,1). We assume that A has no eigenvalue
of modulus one. Write its eigenvalues λj , j = 1, . . . , p. Let mj be the size of the
largest Jordan block of A to eigenvalue λj , and Pj the polynomial of degree mj

as in equation (8). Then the trace of the heat kernel has the following expansion
as t → 0+:

Tr(e−tD2
) =

∑
j :|λj |>1

Pj

(
1

− logρ

d

dsj

)
p−2 logρ,−sj logρ(− log t)t−sj /2

+ h(t), (17)

where sj = logλj/(− logρ), and h is a smooth function around 0. The leading
term of the expansion comes from the Perron–Frobenius eigenvalue, and we have
the asymptotic behavior

Tr(e−tD2
)

t→0∼ C1
Ĥp−2 logρ,logλPF(− log t)t−s0/2, (18)

where s0 = logλPF/(− logρ) is the spectral dimension as given in Theorem 3.4,
and C1

Ĥ is given in equation (9).

Proof. From equations (14) and (8) we have #En = ∑p

j=1 Pj (n)λn
j , where Pj is

a polynomial of degree mj , for all n greater than or equal to max{mj : 0 ≤ j ≤ p}
(and if n < max{mj : 0 ≤ j ≤ p}, then Pj has to be replaced by a polynomial of
degree less than or equal to mj , depending on n). Setting v = ρ−2, the trace of
the heat kernel reads

∑
n

#Ene
−tρ−2n =

p∑
j=1

+∞∑
n=0

Pj (n)λn
j exp(−tvn) + g1(t), (19)

where g1(t) is a smooth function around zero (the finite sum over n < max{mk :
0 ≤ k ≤ p} of terms correcting the formula for #En).

First, consider an eigenvalue λj with |λj | < 1. We have

|Pj (n)λn
j e

−tvn | ≤ |Pj (n)λ
n/2
j ||λj |n/2|e−tvn || ≤ cj |λj |n/2,

where cj is a constant. So the corresponding series in equation (19) is absolutely
summable, and therefore eigenvalues of modulus less than 1 do not contribute to
the singular behavior of the trace.
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Hence, the trace of equation (19) can be rewritten as

∑
n

#Ene
−tρ−2n =

∑
j :|λj |>1

+∞∑
n=0

Pj (n)vnsj /2 exp(−tvn) + g2(t)

=
∑

j :|λj |>1

Pj

(
1

− logρ

d

dsj

) +∞∑
n=0

vnsj /2 exp(−tvn) + g2(t),

where g2 is a smooth function around 0.
Consider now an eigenvalue λj with |λj | > 1. We thus have �(sj ) > 0, and

we can write∑
n

vnsj /2e−tρ−2n =
+∞∑

n=−∞
vnsj /2 exp(−tvn) −

+∞∑
n=1

v−nsj /2 exp(−tv−n).

The term
∑+∞

n=1 v−nsj /2 exp(−tv−n) being bounded at 0, we only need to concen-

trate on the first sum. Clearly, t sj /2 ∑+∞
n=−∞ vnsj /2 exp(−tvn) = f (

log t
logv

), where

f (s) =
∞∑

n=−∞
v(n+s)sj /2 exp(−vn+s).

By standard arguments this series is uniformly convergent and defines a smooth
1-periodic function f . It follows that the singular behavior of

∑+∞
n=0 vnsj /2 ×

exp(−tvn) as t → 0+ is given by f (
log t
logv

)t−sj /2. So we get that the trace reads

∑
n

#Ene
−tρ−2n =

∑
j :|λj |>1

Pj

(
1

− logρ

d

dsj

)
f

(
log t

logv

)
t−sj /2 + h(t), (20)

where h is a smooth function around 0. So we are left with identifying the func-
tion f . Its Fourier coefficients are given by

f̂k =
∫ ∞

−∞
elog(v)sj /2x exp(−vx)e2πıkx dx = �(sj /2 + (2πık)/ logv)

logv
,

so we see from equation (15) and (16) that f (s) = 1
−2 logρ

p̃(−2 logρ, sj /2,−s).

Hence, the singular term associated with λj reads f (
log t
logv

)t−sj /2 =
p−2 logρ,−sj logρ(− log t)t−sj /2. We substitute this back into equation (20) to com-
plete the proof of equation (17).

Clearly, s0 = logλPF/(− logρ) has the greatest modulus among all the other
sj . Hence, the leading term in the expansion comes from the Perron–Frobenius
eigenvalue. Since λ1 = λPF is an eigenvalue, P1 = C1

Ĥ
is the constant polynomial

given in equation (9), which proves equation (18). �

We could determine an asymptotic expansion of the trace of the heat kernel using
the inverse Mellin transform of the function ζ(2s)�(s). This is, of course, a lot
more complicated than the direct computations. When using the inverse Mellin
transform of ζ(2s)�(s), we can see that the origin of the periodic function p is
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directly related to the periodicity of the zeta function and that the appearance of
the term log t in the trace of the heat kernel expansion arises from a simple pole
of ζ(s) at s = 0, which amounts to a double pole of ζ(2s)�(s) at s = 0.

Remark 3.7. If A is not diagonalizable, then we do not know how to compute
contributions of eigenvalues of modulus one, so we assumed that A did not have
any in Theorem 3.6. But if A is diagonalizable, contributions of such eigenval-
ues are easily computed. Eigenvalues of modulus one, not equal to one, do not
contribute to the singular behavior of the trace. Only the eigenvalue λj0 = 1, if
present in the spectrum of A, gives an extra term. Eigenvalues of modulus greater
than one contribute as in equation (17), but with Pj = 1 since A is diagonalizable.
The trace of the heat kernel in this case has the following expansion as t → 0+:

Tr(e−tD2
) =

∑
j :|λj |>1

C
j

Ĥ
p−2 logρ,−sj logρ(− log t)t−sj /2

+ C
j0

Ĥ
− log t

−2 logρ
+ h(t), (21)

where sj = λj/(− logρ), C
j

Ĥ is given in equation (9), j0 is the index for the

eigenvalue λj0 = 1 (setting C
j0

Ĥ
= 0 if A has no eigenvalue equal to 1), and h is

a smooth function around 0. The trace of the heat kernel has therefore the same
asymptotic behavior as in equation (18).

3.3. Spectral State

There is a natural Borel probability measure on �∞. Indeed, due to the primitivity
of the graph matrix, there is a unique Borel probability measure that is invariant
under the action of the groupoid given by tail equivalence. We explain that.

If we denote by [γ ] the cylinder set of infinite paths beginning with γ , then
invariance under the above-mentioned groupoid means that μ([γ ]) depends only
on the length |γ | of γ and its range, that is, μ([γ ]) = μ(|γ |, r(γ )). By additivity
we have

μ([γ ]) =
∑

ε:s(ε)=r(γ )

μ([γ ε]),

which translates into

μ(n, v) =
∑
w

Avwμ(n + 1,w).

The unique solution to that equation is

μ(n, v) = λ−n
PF Rv,

where R is the right Perron–Frobenius eigenvector of the adjacency matrix A,
normalized as in equation (7). So if γ ∈ �n is a path of length n, then μ([γ ]) =
λ−n

PF Rr(γ ).
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Theorem 3.8. All operators of the form π(f ), f ∈ C(�∞), are strongly regular.
Moreover, the measure μ defined on f ∈ C(�∞) by

μ(f ) := T (π(f ))

is the unique measure that is invariant under the groupoid of tail equivalence.

Proof. Let f be a measurable function on �∞ and set

μn(f ) = TrEn(π(f )|En)

#En

=
∑

e∈En
f (s(e))

#En

.

To check that the sequence (μn(f ))N converges, it suffices to consider f to be a
characteristic function of a base clopen set for the (Cantor) topology of �∞. Let
γ be a finite path of length |γ | < n and denote by χγ the characteristic function
on [γ ]. Then χγ (s(e)) is nonzero if the path s(e) starts with γ . Given that the
tail of the path s(e) is determined by the choice function τ , the number of e ∈
En for which χγ (s(e)) is nonzero coincides with the number of paths of length
n − |γ | − 1 that start at r(γ ) and end at s(s(e)n−1) = s2(h) for some h ∈ Ĥ.
Hence, ∑

e∈En

χγ (s(e)) =
∑
h∈Ĥ

A
n−|γ |−1
r(γ )s2(h)

.

As noted before in the proof of Theorem 3.4, the cardinality of En is asymptoti-
cally C1

Ĥ
λn

PF, so we have

μn(χγ ) =
∑

e∈En
χγ (s(e))

#En

= λ
−|γ |−1
PF

1

C1
Ĥ

∑
h∈Ĥ

Rr(γ )Ls2(h)(1 + o(1)).

Set Uv = (λ−1
PF /C1

Ĥ)
∑

h∈Ĥ RvLs2(h). We readily check that U is a (right) eigen-

vector of A with eigenvalue λPF, and since its coordinates add up to 1, we have
U = R. So we get

μn(χγ ) = λ
−|γ |
PF Rr(γ )(1 + o(1))

n→+∞−−−−→ λ
−|γ |
PF Rr(γ ) = μ([γ ]).

Now Corollary 2.5 implies that π(f ) is strongly regular and T (π(f )) = μ(f ).
�

We now consider weakly regular operators showing, among other, that they do
not necessarily satisfy the product decomposition of Corollary 2.8.

Definition 3.9. Let ρ,ρ′ ∈ (0,1). We call ϕ ∈ (0,2π) a nonresonant phase for
(ρ,ρ′) if

ϕ + 2πk + 2π
logρ

logρ′ k
′ �= 0, ∀k, k′ ∈ Z. (22)

Consider an operator A ∈ B(H) defined on the Hilbert space of our spectral triple.
Recall the definition of Ān from Corollary 2.5. Given any bounded sequence fn

of complex numbers, there is an operator A ∈ B(H) such that Ān = fn, so we
have just to define A on the subspace Fn to be fn times the identity.
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Lemma 3.10. Consider the above spectral triple (C(�∞(G)), �2(E),D). Let A ∈
B(H) be such that Ān

n→∞∼ eınϕ for some ϕ ∈ (0,2π). Then

Tr(e−tD2
A)

t→0∼ eı(ϕ log t)/(2 logρ)C1
Ĥp−2 logρ,logλPF+ıϕ(− log t)t (logλPF)/(2 logρ).

In particular, A is weakly regular, and T (A) = 0.

Proof. As before we set σ = log t
logv

, v = ρ−2, α = logλPF/(−2 logρ), so that we

have to determine the asymptotic behavior of
∑∞

n=1 eınϕvα(n+σ)e−vn+σ
as σ →

−∞. Since
∑−1

n=−∞ eınϕvα(n+σ)e−vn+σ
is absolutely convergent, the sum over N

has the same asymptotic behavior as the sum over Z. Now we have

∞∑
n=−∞

eınϕvα(n+σ)e−vn+σ = e−ıσϕ

∞∑
n=−∞

v(α+(ıϕ)/ logv)(n+σ)e−vn+σ

= e−ıσϕ 1

logv
p̃

(
logv,

logλPF + ıϕ

logv
,−σ

)
,

from which the first statement follows. Now T (A) = lims→0+(L[fA](s))/
(L[f ](s)) is equal to the mean of the function σ 	→ e−ıσϕ 1

logv
p̃(logv, (logλPF +

ıϕ)/ logv,−σ). Developing this function into a Fourier series (see equation (15)),
we can compute this mean term by term (the gamma function is rapidly decreas-
ing as k tends to infinity). Since for all integer k, ϕ + 2πk �= 0, the mean of each
term vanishes. �

We now consider the tensor product of two spectral triples associated with two
possibly different graphs with Perron–Frobenius eigenvalue λPF and λ′

PF and pa-
rameters ρ < 1 and ρ′ < 1.

Lemma 3.11. Consider two spectral triples of the type discussed before with
Hilbert spaces H1 and H2 and parameters ρ and ρ′. Let T be the tensor product
state of the two spectral states T1 and T2. Let A ∈ B(H1) be as in the last lemma
with nonresonant ϕ. Then T (A ⊗ 1) = 0.

Proof. By Lemma 2.7 we have T (A⊗1) = lims→0+(L[fAf2](s))/(L[f1f2](s)),
and this quantity is equal to the mean of the function s 	→ F(ϕ, s) := eı(sϕ)/ logv ×
p̃(logv, (logλPF + ıϕ)/ logv, (−s)/ logv)̃p(logv′, (logλ′

PF)/ logv′, (−s)/ logv′)
divided by the mean of the function s 	→ F(0, s). Now F(0, s) is a product of
two positive functions, always strictly greater than zero. By developing the two
p̃-functions whose product is F(ϕ, s) into Fourier series we can determine the
mean of F(ϕ, s) as a sum over the means of the functions s 	→ eı(sϕ)/ logv ×
e−ı(2πks)/ logve−ı(2πk′s)/ logv′

(times the corresponding Fourier coefficients). If ϕ

is nonresonant, that is, ϕ + 2πk + 2π(logρ/ logρ′)k′ �= 0 for all integer k, k′,
then the phases above are all nonzero, and hence the means are all equal to 0. �
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This proof yields an easy method to construct weakly regular operators A for
which T (A ⊗ 1) �= T1(A)T2(1). In fact, if logρ/ logρ′ is irrational and, for in-
stance, ϕ = 2π logρ/ logρ′, then the phase in s 	→ eı(sϕ)/ logve−ı(2πks)/ logv ×
e−ı(2πk′s)/ logv′

is 0 precisely for k = 0 and k′ = −1. It follows that the mean of
F(ϕ, s) is �((logλ′

PF −2πı)/ logv′), which does not vanish. Thus, T (A⊗1) �= 0,
whereas, as we saw, T1(A) = 0.

3.4. Telescoping

There is a standard equivalence relation among Bratteli diagrams, which is gen-
erated by isomorphisms and so-called telescoping. Since we are looking at sta-
tionary diagrams, we consider stationary telescopings only. Then the following
operations generate the equivalence relation we consider:

1. Telescoping: Given the above data built from a graph G = (V,E) and a positive
integer p, we consider a new graph Gp := (Vp,Ep) with the same vertices
Vp = V and the paths of length p as edges, Ep = �p(G). The corresponding
parameter is taken to be ρp = ρp .

2. Isomorphism: Given two graphs as before, G = (V,E) and G′ = (V ′,E ′), we
say that the corresponding stationary Bratteli diagrams are isomorphic if there
are two bijections V → V ′ and E → E ′ that intertwine the range and source
maps. We need in this case the associated parameters to be equal and the sets
of horizontal edges to be isomorphic (through a map that intertwines the range
and source maps).

We show now that this equivalence relation leaves the properties of the associated
spectral triple invariant:

(i) The zeta functions are equivalent and thus have the same spectral dimension:
s0 = logλPF/(− logρ);

(ii) The spectral measures are both equal to the invariant probability measure μ

on �∞;
(iii) Both spectral distances generate the topology of �∞ (provided that Ĥ is

large enough as in Lemma 3.2) and are furthermore Lipschitz equivalent.

The invariance under isomorphism is trivial. We explain briefly how things work
under telescoping. The horizontal edges for Gp are given as for G by the corre-
sponding subset

Ĥp ⊆ {(ε, ε′) ∈ Ep × Ep : ε �= ε′, s(ε) = s(ε′)},
and so we have the identifications

Hp
n

∼=
p−1⋃
i=0

Hnp+i , E
p
n

∼=
p−1⋃
i=0

Enp+i ,

which allows us to determine the approximation graph G
p
τ = (V p,Ep) and

yields a unitary equivalence �2(E) ∼= �2(Ep). We identify the two Hilbert spaces
�2(E) ∼= �2(Ep) and the representations π ∼= πp , whereas the Dirac operators
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satisfy

Dp = W †DW with W :
{

�2(E) → �2(Ep),

δe 	→ ρ−k/2δe for e ∈ En with n = k mod p.

From the inequalities 1 ≤ W ≤ ρ−p1 we deduce that the zeta functions are equiv-
alent and that both spectral triples have the same spectral dimension s0 and give
rise to the same spectral measure μ. By Theorem 3.3 both Connes distances gen-
erate the topology of �∞ = �

p∞, provided that Ĥ is large enough. Let us denote
d

p
s the spectral metric associated with Gp , with the corresponding coefficients

n
p
xy , c

p
xy , b

p
n as in equation (12). Writing nxy = pn

p
xy + kxy for some kxy ≤ p − 1,

we have

ds(x, y) = cxyρ
kxy (ρp)n

p
xy +

∑
n>n

p
xy

(ρp)n
p−1∑
k=0

(bnp+k(x) + bnp+k(y))ρk.

Now we see that bnp+k(z) = 1 ⇒ b
p
n (z) = 1, whereas if bnp+k(z) = 0 for all

k = 0, . . . , p − 1, then b
p
n (z) = 0 too, so that we have b

p
n (z) ≤ ∑p−1

k=0 bnp+k(z) ≤
pb

p
n (z). We substitute this back into the previous equation to get the Lipschitz

equivalence:
cpd

p
s (x, y) ≤ ds(x, y) ≤ pρpCpd

p
s (x, y)

with cp , Cp , the respective min and max of cxy/c
p
xy (which only depends on H

and p).

4. Substitution Tiling Spaces

Bratteli diagrams occur naturally in the description of substitution tilings. The
path space of the Bratteli diagram defined by the substitution graph has been
used to describe the transversal of such a tiling [6; 13]. As we will first show,
an extended version can also be used to describe a dense set of the continuous
hull 	
 of the tiling, and therefore we will employ it and the construction of the
previous section to construct a spectral triple for 	
.

4.1. Preliminaries

We recall the basic notions of tiling theory, namely tiles, patches, tilings of the
Euclidean space R

d , and substitutions. For a more detailed presentation in partic-
ular of substitution tilings, we refer the reader to [9]. A tile is a compact subset of
R

d that is homeomorphic to a ball. It possibly carries a decoration (for instance,
its collar). A tiling of Rd is a countable set of tiles (ti)i∈I whose union covers Rd

and with pairwise disjoint interiors. Given a tiling T , we call a patch of T any set
of tiles in T that covers a bounded and simply connected set. A prototile (resp.
protopatch) is an equivalence class of tiles (resp. patches) modulo translations.
We will only consider tilings with finitely many prototiles and for which there are
only finitely many protopatches containing two tiles (such tilings have finite local
complexity, FLC).
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Figure 3 A process of inflation and substitution (chair tiling).
A whole tiling of R2 can be obtained as a fixed point of this map

The tilings we are interested in are constructed from a (finite) prototile set A
and a substitution rule on the prototiles. A substitution rule is a decomposition
rule followed by a rescaling, that is, each prototile is decomposed into smaller
tiles, which, when stretched by a common factor θ > 1, are congruent to some
prototiles. We call θ the dilation factor of the substitution. The decomposition rule
can be applied to patches and whole tilings by simply decomposing each tile and
so can be the substitution rule when the result of the decomposition is stretched
by a factor of θ . We denote the decomposition rule by δ and the substitution rule
by 
. In particular, we have, for a tile t , δ(t + a) = δ(t) + a and 
(t + a) =

(t) + θa for all a ∈R

d . See Figure 3 for an example in R
2.

A patch of the form 
n(t) for some tile t is called an n-supertile, or nth-order
supertile. A rescaled tile θnt will be called a level n tile, but also, if n = −m < 0,
an m-microtile, or an mth-order microtile.

A substitution defines a tiling space 	
, the set of all tilings T with the prop-
erty that any patch of T occurs in a supertile of sufficiently high order.

We will assume that the substitution is primitive and aperiodic: there exists
an integer n such that any n-supertile contains tiles of each type and all tilings
of 	
 are aperiodic. This implies that by inspection of a large enough but finite
patch around them the tiles of 	
 can be grouped into supertiles (
 is said to be
recognizable) so that δ and 
 are invertible. In particular, 
 is a homeomorphism
of 	
 if the latter is equipped with the standard tiling metric [1].

We may suppose that the substitution forces the border [13]. The condition
says that given any tile t , its nth substitute does not only determine the n-supertile

n(t), but also all tiles that can be adjacent to it. This condition can be realized,
for instance, by considering decorations of each types of tiles and replacing A by
the larger set of collared prototiles.

There is a canonical action of Rd on the tiling space 	
 by translation that
makes it a topological dynamical system. Under the above assumptions, the dy-
namical system (	
,Rd) is minimal and uniquely ergodic. The unique invariant
and ergodic probability measure on 	
 will be denoted μ.
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A particularity of tiling dynamical system is that they admit particular transver-
sals to the R

d -action. To define such a transversal �, we associate with each pro-
totile a particular point, called its puncture. Each level n tile being similar to a
unique prototile, we may then associate with the level n tile the puncture that is
the image of the puncture of the prototile under the similarity. The transversal4 �

is the subset of tilings T ∈ 	 that has the puncture of one of its tiles at the origin
of Rd . The measure μ induces an invariant probability measure on �, which gives
the frequencies of the tiles and patches.

4.2. Substitution Graph and the Robinson Map

The substitution matrix of the substitution 
 is the matrix with coefficients Aij

equal to the number of tiles of type ti in 
(tj ). The graph G of Section 3 un-
derlying our constructions will be here the substitution graph: the graph whose
graph matrix is the substitution matrix. More precisely, its vertices v ∈ V are in
one-to-one correspondence with the prototiles, and we denote by tv the prototile
corresponding to v ∈ V , that is, the prototile set reads A = {tv : v ∈ V}. Between
the vertices u and v, there are Auv edges corresponding to the Auv different oc-
currences of tiles of type tu in 
(tv). Here we call u (or tu) the source and v (or tv)
the range of these edges. Notice that the Perron–Frobenius eigenvalue of A is the
d th-power of the dilation factor θ : λPF = θd . The asymptotics of the powers of A

are given by equation (8) as before. The coordinates of the left and right Perron–
Frobenius eigenvectors L, R are now related to the volumes and the frequencies
of the prototiles as follows: for all v ∈ V , we have

freq(tv) = Rv, vol(tv) = Lv, (23)

where freq(tv) is the frequency, and vol(tv) is the volume of tv , the volume being
normalized as in equation (7) so that the average volume of a tile is 1.

Given a choice of punctures to define the transversal � of 	
, there is a map

R : � → �∞(G)

onto the set of half-infinite paths in G. Indeed, given a tiling T ∈ � (so with a
puncture at the origin) and an integer n ∈ N, we define:

• vn(T ) ∈ V to be the vertex corresponding to the prototile type of the tile in

−n(T ) that contains the origin;

• εn(T ) ∈ E to be the edge corresponding to the occurrence of vn−1(T ) in

(vn(T )).

Then R(T ) is the sequence (εn(T ))n≥1. We call R the Robinson map as it was
first defined for the Penrose tilings by Robinson; see [9].

Theorem 4.1 ([13]). R is a homeomorphism.

We extend the map R to the continuous hull 	
. The idea is simple: the defini-
tion of R makes sense, provided that the origin lies in a single tile but becomes

4Sometimes, � is referred to as the canonical transversal or the discrete hull.



Spectral Triples from Stationary Bratteli Diagrams 739

ambiguous as soon as it lies in the common boundary of several tiles. We will
therefore always assign that boundary to a unique tile in the following way.

We suppose that the boundaries of the tiles are sufficiently regular so that there
exists a vector �v ∈ R

d such that, for all points x of a tile t , either ∃η > 0, ∀ε ∈
(0, η): x + ε�v ∈ t or ∃η > 0, ∀ε ∈ (0, η): x + ε�v /∈ t . This is clearly the case for
polyhedral tilings. We fix such a vector v. Given a prototile t (a closed set), we
define the half-open prototile [t) as follows:

[t) := {x ∈ t : ∃η > 0 ∀ε ∈ [0, η) : x + ε�v ∈ t}.
It follows that any tiling T gives rise to a partition of Rd by half-open tiles. We
extend the Robinson map to

R : 	
 → �−∞,+∞,

where �−∞,+∞ is the space of bi-infinite sequences over G using half-open pro-
totiles as follows. For n ∈ Z, we define:

• vn(T ) ∈ V to be the vertex corresponding to the prototile type of the half-open
tiles in 
−n(T ) that contains the origin. So vn(T ) corresponds to
– the nth-order (half-open) supertile in T containing the origin for n > 0,
– nth-order (half-open) microtile in δ−n(T ) containing the origin for n ≤ 0;

• εn(T ) ∈ E to be the edge corresponding to the occurrence of vn−1(T ) in

(vn(T )).

Also, we set R(T ) to be the bi-infinite sequence R(T ) = (εn(T ))n∈Z.

Remark 4.2. As in Remark 3.1, we can see this construction as a Bratteli diagram,
but the diagram is bi-infinite this time. There is a copy of V at each level n ∈ Z and
edges of E between levels n and n+1. Level 0 corresponds to prototiles, level 1 to
supertiles, and level n > 1 to nth-order supertiles, whereas level −1 corresponds
to microtiles and level n < −1 to nth-order microtiles. For the “negative” part of
the diagram, we can alternatively consider the reversed substitution graph G̃ =
(V, Ẽ) that is G with all orientations of the edges reversed. The graph matrix of G̃
is then the transpose of the substitution matrix: Ã = AT . So for n ≤ 0, there are
edges of Ẽ between levels n and n − 1: there are Ãuv = Avu such edges linking u

to v.

As for Theorem 4.1, we prove, using the border forcing condition, that R is in-
jective.

Given a path ξ ∈ �−∞,+∞ and m < n ∈ Z∪{±∞}, we denote by ξ[m,n], ξ(m,n],
ξ[m,n) and ξ(m,n) its restrictions from level m to n (with end points included or
not). Also, ξn will denote its nth edge from level n to level n + 1 for n ∈ Z. We
similarly define �m,n (with end points included). For instance, �0,+∞ is simply
�∞ = �∞(G).

We say that an edge e ∈ E is inner if it encodes the position of a tile t in the
supertile p such that ∃η > 0, ∀ε ∈ [0, η): t +ε�v ∈ p. This says that the occurrence
of t in p does not intersect the open part of the border of p.

It is not true that R is bijective, but we have the following.
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Lemma 4.3. X := imR contains the set of paths ξ ∈ �−∞,+∞ such that ξ(−∞,0]
has infinitely many inner edges.

Proof. Recall the following: If (An)n is a sequence of subsets of R
d such that

An+1 ⊂ An and diam(An) → 0, then there exists a unique point x ∈ R
d such that

x ∈ ⋂
n An.

By construction, for any tiling T , we have 0 ∈ ⋂
n≤0[vn(T )). Hence, ξ = R(T )

whenever
⋂

n≤0[s(ξn)) �= ∅, where [s(ξ0)) is the standard representative for the
half-open prototile of type s(ξ0), and [s(ξn)) is the half-open nth-order microtile
of type s(ξn) in [s(ξ0)) that is encoded by the path ξ[n,0].

Suppose that ξn is inner. Then [s(ξn)) does not lie at the open border of
[r(ξn) = s(ξn+1)). Hence, [s(ξn))∩[s(ξn+1)) = [s(ξn)]∩[s(ξn+1)), where [s(ξn)]
is the closure of [s(ξn)). Suppose that infinitely many edges of ξ(−∞,0] are inner.
Then ⋂

n<0:ξn inner

[s(ξn)] ⊂
⋂
n<0

[s(ξn+1)),

showing that the r.h.s. contains an element, and hence ξ ∈ imR. �

Corollary 4.4. The set X is a dense and shift-invariant subset of �−∞,+∞.

Proof. The shift invariance is clear. The denseness follows immediately from
Lemma 4.3. �

In particular, for n ∈ N, each element of �−n,n can be the middle part of a
sequence in R(	
), that is, for all γ ∈ �−n,n, there exists T ∈ 	
 such that
R(T )[−n,n] = γ .

Remark 4.5. For v ∈ V , let �v−∞,∞ be the set of bi-infinite paths that pass
through v at level 0, and set Xv = X ∩ �v−∞,∞. Then R yields a bijection be-
tween �tv × [tv) and Xv , where tv is the prototile corresponding to v, and �tv its
acceptance domain (the set of all tilings in � that have tv at the origin).

Notice that �−∞,0 can be identified with �∞(G̃), where G̃ is the graph ob-
tained from G by reversing the orientation of its edges: we simply read paths
backward and so follow the edges along their opposite orientations. We then see
that the Robinson map yields a homeomorphism between �tv and �v

0,+∞ = �v∞
and a map with dense image from [tv) into �v−∞,0 = �v∞(G̃).

4.3. The Transversal Triple for a Substitution Tiling

Our aim here is to construct a spectral triple for the transversal �. We apply the
general construction of Section 3 to the substitution graph G = (V,E). We may
suppose5 that the substitution has a fixed point T ∗ such that Rd is covered by the
union over n of the nth-order supertiles of T ∗ containing the origin. It follows that
R(T ∗) is a constant path in �−∞,+∞(G), that is, the infinite repetition of a loop

5This can always be achieved by going over to a power of the substitution.
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edge of G, which we choose to be ε∗. We then fix τ , take ρ = ρtr as a parameter,
and choose a subset

Ĥtr ⊂ H(G) = {(ε, ε′) ∈ E × E : ε �= ε′, s(ε) = s(ε′)},
which we suppose to satisfy the conditions of Lemma 3.2: if s(ε) = s(ε′), then
there is a path of edges in Ĥtr linking ε′ with ε′. The horizontal edges of level
n ∈N are then given by

Htr,n = {(ηε, ηε′) : η ∈ �n−1(G), (ε, ε′) ∈ Ĥtr} ⊂ �n(G) × �n(G).

They define the transverse approximation graph Gtr,τ = (Vtr,Etr) as in Section 3:

Vtr =
⋃
n

Vtr,n, Vtr,n = τ(�n(G)) ⊂ �∗∞(G),

Etr =
⋃
n

Etr,n, Etr,n = τ × τ(Htr,n),

together with the orientation inherited from Ĥtr, so that Etr,n = E+
tr,n ∪ E−

tr,n for
all n ∈ N, and Etr = E+

tr ∪ E−
tr . We also write En(h) = τ × τ(Htr,n(h)), where if

h = (ε, ε′), then Htr,n(h) = {(ηε, ηε′) : η ∈ �n−1(G)}. By our assumption on Ĥ
the approximation graph Gtr,τ is connected, and its vertices are dense in �∞(G).

An edge h ∈ Ĥtr has the following interpretation: The two paths τ(s(h)) and
τ(r(h)) have the same source vertex, say v0, they differ on their first edge, and
then, at some minimal nh > 0, they come back together coinciding for all further
edges. This is a consequence of the property of τ . Let us denote the vertex at
which the two edges come back together with vh. Neglecting the part after that
vertex, we obtain a pair (γ, γ ′) of paths of length nh that both start at v0 and end
at vh. Reading the definition of the Robinson map R backward, we see that the
pair (γ, γ ′) describes a pair of tiles (t, t ′) of type v0 in an nhth-order supertile of
type vh. Of importance further will be the vector rh ∈ R

d of translation from t

to t ′.
The interpretation of an edge e ∈ Etr,n(h) (so an edge of type h) is similar,

except that the paths τ(s(e)) and τ(r(e)) coincide up to level n and meet again
at level n + nh. In particular, e describes a pair of nth-order supertiles (t, t ′) of
type v0 in an (n + nh)th-order supertile of type vh. If we denote by re ∈ R

d the
translation vector between t and t ′, then, due to the selfsimilarity, we have

re = θnrh. (24)

See Figure 4 for an illustration.
Theorem 3.3 provides us with a spectral triple for the algebra C(�∞(G)). We

adapt this slightly to get a spectral triple for C(�). Since the nth-order supertiles
of T ∗ on 0 eventually cover Rd , R identifies �∗∞(G) with the translates of T ∗ that
belong to �. We may thus consider the spectral triple (C(�),Htr,Dtr) (which
depends on ρtr and on the choices for τ and H) with representation and Dirac
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Figure 4 A doubly pointed pattern associated with a horizontal arrow
e ∈ Etr,3(h). The arrow represents the vector re . Here n = 2 (the paths
have lengths 2), and nh = 1 (the paths join further down at level n +
nh = 3)

operator defined as in equations (10) and (11) by

Htr = �2(Etr), πtr(f )ϕ(e) = f (R−1(s(e)))ϕ(e),

Dtrϕ(e) = ρ−n
tr ϕ(eop), e ∈ Etr,n.

We call it the transverse spectral triple of the substitution tiling. By Theorem 3.3
it is an even spectral triple with grading χ (which flips the orientation). Also, since
Htr satisfies the hypothesis of Lemma 3.2 as noted before, the Connes distance
induces the topology of �. By Theorems 3.4 and 3.8 the transversal spectral triple
has metric dimension str = (d log(θ))/(− log(ρtr)), and its spectral measure is the
unique ergodic measure on �, which is invariant under the tiling groupoid action.

For v ∈ V , we will also consider the spectral triple (C(�tv ),H
v
tr,Dtr) for

�tv = R−1(�v∞(G)): the acceptance domain of tv (see Remark 4.5). We call it
the transverse spectral triple for the prototile tv . It is obtained from the transverse
spectral triple by restriction to the Hilbert space Hv

tr = �2(Ev
tr), where Ev

tr are the
horizontal edges between paths that start on v. This restriction has the effect that

ζv = Rvζ + reg.,

that is, up to a perturbation that is regular at str, the new zeta function is Rv =
freq(tv) times the old one. It hence has the same abscissa of convergence, sv

tr = str,
but its residue at str is freq(tv) times the old one.

Like for �, the Connes distance induces the topology of �tv . Finally, the spec-
tral measure μv

tr is the restriction to �tv of the invariant measure on �, normalized
so that the total measure of �tv is 1. The spectral triple for � is in fact the direct
sum over v ∈ V of the spectral triples for �tv .
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4.4. The Longitudinal Triple for a Substitution Tiling

We now aim at constructing what we call the longitudinal spectral triple for the
substitution tiling, which is based on the reversed substitution graph G̃ = (V, Ẽ)

(G with all orientations of the edges reversed, so with adjacency matrix Ã = AT ).
Set ε̃∗ = ε∗ and choose τ̃ . We take ρ = ρlg as a parameter and choose a subset

Ĥlg ⊂ H(G̃) = {(̃ε, ε̃′) ∈ Ẽ × Ẽ : ε̃ �= ε̃′, s(̃ε) = s(̃ε′)}
= {(ε, ε′) ∈ E × E : ε �= ε′, r(ε′) = r(ε′)}

again satisfying the condition of Lemma 3.2. We denote the horizontal edges of
level n ∈ N by

Hlg,n = {(η̃ε, η̃ε′) : η ∈ �n−1(G̃), (̃ε, ε̃′) ∈ Ĥlg} ⊂ �n(G̃) × �n(G̃)

and define the longitudinal approximation graph Glg,τ = (Vlg,Elg) as in Section 3
by

Vlg =
⋃
n

Vlg,n, Vlg,n = τ(�n(G̃)) ⊂ �∗∞(G̃),

Elg =
⋃
n

Elg,n, Elg,n = τ × τ(Hlg,n),

together with the orientation inherited from Ĥlg: so Elg,n = E+
lg,n ∪ E−

lg,n for all

n ∈N, and Elg = E+
lg ∪ E−

lg .
With these choices made, Theorem 3.3 provides us with a spectral triple for

the algebra C(�∞(G̃)).
A longitudinal horizontal edge h ∈ Ĥlg has the following interpretation: As for

the transversal horizontal edges, τ(s(h)) and τ(r(h)) start on a common vertex
v0, differ on their first edge, and then come back to finish equally. To obtain their
interpretation, it is more useful, however, to reverse their orientation since this
is the way the Robinson map R was defined. Then h = (̃ε, ε̃′) with r(̃ε) = r(̃ε′)
determines a pair of microtiles (t, t ′) of type s(̃ε) and s(̃ε′), respectively, in a tile
of type r(ε). The remaining part of the double path (τ (̃ε), τ (̃ε′)) serves to fix
a point in the two microtiles. Of importance is now the vector of translation ah

between the two points of the microtiles.
Similarly, an edge in Elg,n will describe a pair of (n + 1)th-order microtiles

in an nth-order microtile. By self-similarity again, the corresponding translation
vector ae ∈ R

d between the two (n + 1)th-order microtiles will satisfy

ae = θ−nah (25)

if e ∈ Elg,n(h). See Figure 5 for an illustration.
Recall from Remark 4.5 that we can identify �∞(G̃) = �−∞,0(G). The inverse

of the Robinson map R also induces a dense map �v−∞,0 → tv that is one-to-

one on the preimage of �∗−∞,0(G); we still denote this map by R−1. Hence, the
approximation graph for �v−∞,0 is also an approximation graph for tv . Let Ev

lg
denote the set of edges whose corresponding paths pass through v at level 0. We
may thus adapt the above spectral triple to get the spectral triple (C(tv),H

v
lg,Dlg)
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Figure 5 A microtile pattern associated with a horizontal arrow e ∈
Elg,2(h) (the pattern shown has the size of a single tile). The arrow
represents the vector re

(which depends on ρlg) with representation and Dirac defined as in equations (10)
and (11) by

Hv
lg = �2(Ev

lg), πlg(f )ϕ(e) = f (R−1(s(e)))ϕ(e),

Dlgϕ(e) = ρ−n
lg ϕ(eop), e ∈ Ev

lg,n.

The bounded commutator axiom is satisfied by the following lemma and the fact
that the Hölder-continuous functions are dense in C(tv).

Lemma 4.6. If f ∈ C(tv) is Hölder continuous (w.r.t. the Euclidean metric d) with
exponent α = − log(ρlg)/ log(θ), then [Dlg,πlg(f )] is bounded.

Proof. Suppose that f ∈ C(tv) is Hölder continuous with exponent α =
− log(ρlg)/ log(θ), that is, |(f (x) − f (y))/d(x, y)| ≤ C for some C > 0 and
all x, y ∈ tv . Then

‖[D,π(f )]‖ = sup
n

sup
e∈Elg,n

∣∣∣∣f (R−1(r(e))) − f (R−1(s(e)))

d(R−1(r(e)),R−1(s(e)))α

∣∣∣∣
× d(R−1(r(e)),R−1(s(e)))α

ρn
lg

.

This expression is finite since the first factor is bounded by C. By self-similarity
there exists C′ > 0 such that d(R−1(r(e)),R−1(s(e))) ≤ C′θ−n. Also, α has
been chosen so that θ−nαρ−n

lg = 1. �

We refer to this spectral triple (C(tv),H
v
lg,Dlg) as the longitudinal spectral triple

for the prototile tv . It should be noted that although the map R−1 is continuous,
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the topologies of tv and �v−∞,0 are quite different, and so the Connes distance of
this spectral triple does not induce the topology of tv . By Theorems 3.4 and 3.8
the longitudinal spectral triple has metric dimension slg = (d log(θ))/(− log(ρlg))

for all v, but what depends on v is the residue of the zeta function. In fact,
as compared to the zeta function of the full triple, it has to be rescaled: ζ v

tr =
(Lv/

∑
u Lu)ζtr.

The spectral measure μv
lg is easily seen to be the normalized Lebesgue measure

on tv since the groupoid of tail equivalence acts by partial translations.

4.5. The Spectral Triple for 	


We now combine the above triples to get a spectral triple (C(	
),H,D) for the
whole tiling space 	
. The graphs G and G̃ have the same set of vertices V , so
we notice from Remark 4.5 that the identification

�−∞,+∞(G) =
⋃
v∈V

�v−∞,0(G) × �v
0,+∞(G) =

⋃
v∈V

�v∞(G̃) × �v∞(G)

suggests to construct the triple for 	
 as a direct sum of tensor product
spectral triples related to the transversal and the longitudinal parts. In fact,
�v−∞,0(G) × �v

0,+∞(G) is dense in tv × �tv (see Remark 4.5), and so we can
use the tensor product construction for spectral triples to obtain a spectral triple
for C(tv ×�tv )

∼= C(tv)⊗C(�tv ) from the two spectral triples considered before.
Furthermore, the C∗-algebra C(	
) is a subalgebra of

⊕
v∈V C(tv × �tv ), and

so the direct sum of the tensor product spectral triples for the different tiles tv
provides us with a spectral triple for C(	):

H =
⊕
v∈V

Hv
tr ⊗Hv

lg, π =
⊕
v∈V

πv
tr ⊗ πv

lg,

D =
⊕
v∈V

(Dv
tr ⊗ 1 + χ ⊗ Dv

lg),
(26)

where χ is the grading of the transversal triple (which flips the orientations in
Etr). The representation of a function f ∈ C(	) then reads

π(f ) =
∑
v∈V

f v
tr ⊗ f v

lg, with f v
tr = πv

tr(f ) ∈ C(�tv ), f
v
lg = πv

lg(f ) ∈ C(tv). (27)

From the results in Section 2.4 we now get all the spectral information of
(C(	
),H,D). To formulate our results more concisely, let us call A ∈ B(H)

nonresonant if Ān
n→∞∼ cAeınϕ for some cA > 0 (see Corollary 2.5 for the defini-

tion of Ān), and ϕ ∈ (0,2π) is nonresonant (Definition 3.9).

Theorem 4.7. The above is a spectral triple for C(	
). Its spectral dimension is

s0 = str + slg = d log θ

− logρtr
+ d log θ

− logρlg
,

and its zeta function ζ(z) has a simple pole at s0 with strictly positive residue.
Moreover, suppose that A = ⊕

v Av
tr ⊗ Av

lg with either both Av
tr and Av

lg strongly



746 J . Kellendonk & J. Savinien

regular or that one is strongly regular and the other is the sum of a strongly
regular and a nonresonant part. Then we have

T (A) =
∑
v∈V

freq(tv)vol(tv)T v
tr (Av

tr)T v
lg (Av

lg). (28)

In particular, the spectral measure is the unique invariant ergodic probability
measure μ on 	
.

Proof. Consider first the triple for the matchbox tv × �tv , that is, the tensor prod-
uct spectral triple for C(tv) ⊗ C(�tv ). Applying Lemma 2.6, we obtain the value
sv

0 = (d log θ)/(− logρtr) + (d log θ)/(− logρlg) for the abscissa of convergence
of its zeta function ζ v . In particular, this value does not depend on v. Furthermore,

lim
s→s+

0

(s − s0)ζ
v(s) = freq(tv)vol(tv)∑

u vol(tu)

×
( ∞∑

k=−∞
�

(
d log θ + 2πik

−2 log(ρtr)

)
�

(
d log θ − 2πik

−2 log(ρlg)

))
/(

2�

(
s0

2

)
log(ρtr) log(ρlg)

)
.

This number is in fact a strictly positive real number since it is up to a positive
factor the mean of two strictly positive periodic functions. It follows that the ab-
scissa of convergence for the zeta function of the direct sum of the above triples
ζ is equal to the common value s0 = sv

0 . From this, with the help of Lemma 2.7
and (6), we can now determine the spectral state.

If Av
tr and Av

lg are both strongly regular, then, by Corollary 2.8, T (Av
tr ⊗Av

lg) =
nvT v

tr (Av
tr)T v

lg (Av
lg) with the factor nv = freq(tv)vol(tv) because the states are nor-

malized. If, say, Av
tr is regular and Av

lg = Av
lg,reg + Av

lg,nres is the sum of a strongly
regular and a nonresonant part, then

T (Av
tr ⊗ Av

lg) = T (Av
tr ⊗ Av

lg,sreg) + T (Av
tr ⊗ Av

lg,nres)

= nvT v
tr (Av

tr)T v
lg (Av

lg,sreg) + freq(tv)T v
tr (Av

tr)T (1 ⊗ Av
lg,nres)

= nvT v
tr (Av

tr)T2(A
v
lg,sreg) + 0

= nvT v
tr (Av

tr)T v
lg (Av

lg,sreg) + nvT v
tr (Av

tr)T v
lg (Av

lg,nres)

= nvT v
tr (Av

tr)T v
lg (Av

lg),

where the second line follows by Corollary 2.8, the third by Lemma 3.11,
and the fourth by Lemma 3.10 (the state of a nonresonant operator vanishes:
T v

lg (Alg,nres) = 0). The argument is the same if Av
lg is strongly regular and Av

tr
is the sum of a strongly regular and a nonresonant part. Hence, in both cases, we
get

T (A) = T
(∑

v

Av
tr ⊗ Av

lg

)
=

∑
v

nvT v
tr (Av

tr)T v
lg (Av

lg).

Since nv = freq(tv)vol(tv) is the μ-measure of the matchbox tv ×�tv , we see that
the spectral measure coincides with μ. �
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