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A Construction of Slice Knots via Annulus Twists

Tetsuya Abe & Motoo Tange

Abstract. We give a new construction of slice knots via annulus
twists. The simplest slice knots obtained by our method are those con-
structed by Omae. In this paper, we introduce a sufficient condition
for given slice knots to be ribbon and prove that all Omae’s knots are
ribbon.

1. Introduction

The annulus twist is a certain operation on knots along an annulus embedded in
the 3-sphere S3. Osoinach [Os] found that this operation is useful in the study
of 3-manifolds. Using annulus twists, he gave the first example of a 3-manifold
admitting infinitely many presentations by 0-framed knots. For more studies, see
[AJOT; AJLO; BGL; K; Tak; Te; Om].

Recently, the first author, Jong, Omae, and Takeuchi [AJOT] constructed
knots related to the slice-ribbon conjecture: Let K ⊂ S3 be a slice knot admit-
ting an annulus presentation (for the definition, see Section 2), and Kn (n ∈ Z)
the knot obtained from K by the n-fold annulus twist. They proved that Kn

bounds a smoothly embedded disk in a certain homotopy 4-ball W(Kn) with
∂W(Kn) ≈ S3. A natural question is the following:

Question. Is W(Kn) diffeomorphic to the standard 4-ball B4?

If W(Kn) is not diffeomorphic to B4, then the homotopy 4-sphere obtained by
capping it off is a counterexample of the smooth four-dimensional Poincaré con-
jecture. For related studies, see [A1; A2; FGMW; G1; G2; N; NS; Tan]. Our first
result is the following.

Theorem 3.1. Let K be a slice knot admitting an annulus presentation, and Kn

(n ∈ Z) the knot obtained from K by the n-fold annulus twist. Then the homotopy
4-ball W(Kn) associated to Kn is diffeomorphic to B4, that is,

W(Kn) ≈ B4.

In particular, Kn is a slice knot.

The slice knots constructed in Theorem 3.1 are relevant to the slice-ribbon conjec-
ture. Recall that a knot K in S3 = ∂B4 is called slice if it bounds a smoothly em-
bedded disk D ⊂ B4, and the embedded disk D ⊂ B4 is called a slice disk for K .
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A knot in S3 is called ribbon if it bounds a smoothly immersed disk � ⊂ S3 with
only ribbon singularities. It is well known that a ribbon knot bounds a special type
of slice disk in B4, called a ribbon disk, which is obtained from the immersed disk
� ⊂ S3. In particular, any ribbon knot is a slice knot. The slice-ribbon conjecture
states the converse, that is, any slice knot is a ribbon knot. There are some affir-
mative results on the slice-ribbon conjecture; see [CD; GJ; Le; Li]. On the other
hand, Gompf, Scharlemann, and Thompson [GST] demonstrated slice knots that
might not be ribbon. Similarly, there is no apparent reason for the slice knots Kn

in Theorem 3.1 to be ribbon. For more recent works, see [CP; LM; P].
Let Kn (n ≥ 0) be the knot obtained from 820 (with an appropriate annulus pre-

sentation) by the n-fold annulus twist. These are the simplest slice knots obtained
by our method and were studied by Omae [Om] in a different viewpoint. We will
prove that these slice knots are ribbon. To prove this, we introduce a sufficient
condition for given slice knots to be ribbon.

Lemma 5.1. Let HD be a handle diagram of B4 without 3-handles. Suppose that
the handle diagram HD is changed into the empty handle diagram of B4 by the
following handle moves:

(1) 2-handle slides over 1-handles or 2-handles, and
(2) 1-handle slides over 1-handles, and
(3) adding or canceling 1/2-handle pairs, and
(4) isotopies.

Then the belt sphere of any 2-handle of HD is a ribbon knot.

Our second result is the following.

Theorem 5.4. The slice knot Kn (n ≥ 0) is ribbon.

We outline the proof as follows. By the construction, Kn (n ≥ 0) is isotopic to the
belt-sphere of a 2-handle of a certain handle diagram HD of B4 without 3-handles;
see the proof of Lemma 2.7. By (rather long) handle calculus we prove that HD
is changed into the empty handle diagram of B4 by handle slides, canceling 1/2-
handle pairs, and isotopies. By Lemma 5.1, Kn is ribbon.

In Section 6, we consider two conjectures. The first one is the following.

Conjecture 6.1. Let HD be a handle diagram of B4 without 3-handles. Then
the belt-sphere of any 2-handle of HD is a ribbon knot.

Note that if Conjecture 6.1 is true, then slice knots in Theorem 3.1 and Gompf,
Scharlemann, and Thompson’s slice knots in [GST] are ribbon. In this sense, to
solve Conjecture 6.1 is the first step toward an affirmative answer to the slice-
ribbon conjecture. For the details, see Section 6.

This paper is organized as follows. In Section 2, we recall some basic defi-
nitions and introduce some terminology. In Section 3, we prove the main result
(Theorem 3.1). First, we give a picture of W(Kn). After adding a canceling 2/3-
handle pair to W(Kn) suitably, we prove that W(Kn) ≈ B4. In Section 4, we
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Figure 1 The definitions of V , V ′, and A, c1, c2

give an alternative proof of Theorem 3.1 in a special case by a log transforma-
tion. In Section 5, we give a sufficient condition for given slice knots to be ribbon
(Lemma 5.1). As an application, we prove Theorem 5.4. In Section 6, we give two
conjectures.

Notations. We denote by MK(n) the 3-manifold obtained from S3 by n-surgery
on a knot K in S3 and by XK(n) the smooth 4-manifold obtained from B4 by at-
taching a 2-handle along K with framing n. For a given 4-manifold X, we denote
the boundary of X by ∂X.

The symbol ≈ stands for a diffeomorphism. In figures, we denote by ∼ an
isotopy and by → a handle slide, a handle canceling, or a blow-up.

2. Preliminaries

In this section, we first define an annulus twist and an annulus presentation and
introduce the dotted circle notation for the exteriors of slice disks. After that, we
recall the knots constructed by Omae and describe the corresponding homotopy
4-balls. Finally, we give a remark on canceling pairs.

Annulus twist. Let V be the solid torus standardly embedded in S3, and V ′ the
3-manifold as in Figure 1. Then the following is known.

Lemma 2.1 (cf. Theorem 2.1 in [Os]). There exists a (natural) diffeomorphism

φn : V ′ −→ V

such that φn|∂V ′ = id.

Remark 2.2. Osoinach [Os] considered the diffeomorphism φ−1
n .

Let A ⊂ R
2 ∪ {∞} ⊂ S3 be an embedded annulus and set ∂A = c1 ∪ c2 as in

Figure 1. An n-fold annulus twist along A is the following operation:

(1) Regard c1 as a 1
n

-framed knot and c2 as a − 1
n

-framed knot for n ∈ Z, and
(2) take a solid torus V ′ which is a neighborhood of A, and
(3) apply the diffeomorphism φn in Lemma 2.1.

A 1-fold annulus twist along A is called an annulus twist along A.
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Figure 2 The knot 820 depicted in the center admits an annulus pre-
sentation on the right

Figure 3 The associated annulus A′ (left), an annulus twist along A′,
and the resulting knot (right)

Annulus presentation. The first author, Jong, Omae, and Takeuchi [AJOT]
introduced the notion of an annulus presentation1 of a knot for which we can
associate an annulus.

We recall the definitions of an annulus presentation of a knot as follows. Let
A ⊂ R

2 ∪ {∞} ⊂ S3 be a trivially embedded annulus with an ε-framed unknot c

in S3 as shown on the left of Figure 2, where ε = ±1. Take an embedding of a
band b: I × I → S3 such that

• b(I × I ) ∩ ∂A = b(∂I × I ),
• b(I × I ) ∩ intA consists of ribbon singularities, and
• b(I × I ) ∩ c = ∅,

where I = [0,1]. Throughout this paper, we assume that A ∪ b(I × I ) is ori-
entable. This means that we deal with only 0-framed knots; see [AJOT]. For sim-
plicity, we also assume that ε = −1. If a knot K ⊂ S3 is isotopic to the knot
(∂A \ b(∂I × I )) ∪ b(I × ∂I) in Mc(−1) ≈ S3, then we say that K admits an
annulus presentation (A,b, c). A typical example of an annulus presentation of a
knot is given in Figure 2.

Let K be a knot admitting an annulus presentation (A,b, c). Shrinking the
annulus A slightly, we obtain an annulus A′ ⊂ A as shown in Figure 3. We apply
the n-fold (n ∈ Z) annulus twist along A′ and blow down the −1-framed unknot c.
Figure 3 illustrates the case n = 1. We call the resulting knot the knot obtained

1In [AJOT], it was called a band presentation.
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Figure 4 The knot 820, and B4 \ N(D), and ∂(B4 \ N(D))

from K by the n-fold annulus twist without mentioning A′. The first author, Jong,
Omae, and Takeuchi proved the following.

Lemma 2.3 ([AJOT]). Let K be a knot admitting an annulus presentation, and
Kn (n ∈ Z) the knot obtained from K by the n-fold annulus twist. Then

MK(0) ≈ MKn(0).

If K is a slice knot, then Kn bounds a smoothly embedded disk in a homotopy
4-ball W(Kn) such that ∂W(Kn) ≈ S3.

Remark 2.4. Under the assumption of Lemma 2.3, we can also prove that
XK(0) ≈ XKn(0); see [AJOT].

Carving a slice disk. It is known that the dotted circle notation for the exteriors
of unknotted disks (1-handles) can be generalized to the exteriors of ribbon disks
(see [A, Subs. 1.4] or [GS, Subs. 6.2]). Now we further generalize the dotted circle
notation for the exteriors of slice disks.

Let K ⊂ S3 be a slice knot, and D ⊂ B4 a slice disk for K . The exterior of D

in B4 is defined to be B4 \ N(D),2 where N(D) is an open tubular neighborhood
of D. We describe B4 \ N(D) by K with a dot on K . The important thing is that
we do not consider handle decompositions for B4 \ N(D). The advantage of this
new notation is that the boundary of B4 \ N(D), which is diffeomorphic to the
0-surgery of K , is obtained by changing the dot to 0.

Example 2.5. Let K be the knot 820. Then K is a ribbon knot since if we add
a band along the dashed arc on the left of Figure 4, then we obtain the two-
component unlink. In particular, K is a slice knot. Let D be an arbitrary slice disk
for K (which is not necessarily a ribbon disk). Then B4 \N(D) and ∂(B4 \N(D))

are represented by the pictures in Figure 4, respectively.

Remark 2.6. The new notation for the exteriors of slice disks does not determine
the 4-manifold uniquely since this notation does not indicate the choice of a slice
disk.

2In four-dimensional topology, it is usually called the complement of D. On the other hand, in knot

theory, the complement of D implies B4 \ D.
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Figure 5 Homotopy 4-balls Wn for the case n ≥ 0 (left) and for the
case n < 0 (right)

Figure 6 Schematic pictures

Omae’s knots and homotopy 4-balls. Let D be a slice disk in B4. In this
paper, we consider homotopy 4-balls W such that ∂W ≈ S3 obtained from the
exterior of D by attaching handles along the boundary of the exterior of D. Here
we deal with the following particular case.

Recall that the knot 820 admits an annulus presentation; see Figure 2. Let Kn be
the knot obtained from 820 by the n-fold annulus twist. In her master thesis [Om],
Omae studies these knots Kn for n ≥ 0. We can prove the following lemma.

Lemma 2.7. The knot Kn bounds a smoothly embedded disk in a homotopy 4-ball
Wn such that ∂Wn ≈ S3, which is represented by the picture in Figure 5.

Here we outline the proof of Lemma 2.7. For the details, see [AJOT, Lemma 2.3].

Outline of the proof. First, we consider the case n ≥ 0. Recall that K0 = 820 is a
slice knot; see Example 2.5. Let D ⊂ B4 be an arbitrary slice disk for K0, and
X the exterior of D. The homotopy 4-ball Wn is obtained from X by attaching
a 2-handle h2

n along the meridian μn of Kn in MKn
(0) ≈ ∂X with framing 0.

Schematic pictures are given in Figure 6. It is not difficult to see that the knot Kn

is isotopic to the belt-sphere of the 2-handle h2
n. Thus, Kn bounds the cocore disk

of h2
n, which is a smoothly embedded disk in Wn.
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Figure 7 A diffeomorphism from MK0
(0) to MKn

(0). MK0
(0) is

represented by the first picture. The second picture is obtained by a
blow up. The third picture is obtained by applying φ−1

n in Lemma 2.1.
The last picture is obtained by a handle slide. Then we obtain MKn

(0)

from the last picture by applying φn in Lemma 2.1 and a blow down

Finally, we draw a picture of the homotopy 4-ball Wn = X ∪ h2
n. To describe

the attaching circle and its framing of the 2-handle h2
n precisely, we recall two dif-

feomorphisms. One of them is fn : MK0(0) → MKn
(0), which is given in Figure 7

(for a while, we ignore the framed knots colored red). The other is the diffeomor-
phism from ∂X to MK0(0), denoted by g, which is given by changing the dot
to 0. By the definition of Wn, it is obtained from X by attaching a 2-handle along
(fn ◦ g)−1(μn) in ∂X with a suitable framing, which is 0-framing in MKn

(0). By
Figure 7 we can check that the framing is n2 −n. Therefore, Wn is represented by
the picture on the left of Figure 5.

Next, we consider the case n < 0. Set n = −m for some positive integer m. Let
D ⊂ B4 be an arbitrary slice disk for K0 = 820, and X the exterior of D in B4.
The homotopy 4-ball W−m is obtained from X by attaching a 2-handle along the
meridian μ−m of K−m in MK−m

(0) ≈ ∂X with framing 0. Then the knot K−m

bounds a smoothly embedded disk in W−m by the same argument.
Similarly, we draw a picture of the homotopy 4-ball W−m = X ∪ h2−m. To

describe the attaching circle and its framing of the 2-handle h2−m precisely, we
recall two diffeomorphisms. One of them is f−m : MK0(0) → MK−m

(0), which
is given in Figure 8 (for a while, we ignore the framed knots colored red). The



580 Tetsuya Abe & Motoo Tange

Figure 8 A diffeomorphism from MK0
(0) to MK−m

(0). MK0
(0)

is represented by the first picture. The second picture is obtained
by a blow up. The third picture is obtained by applying φ−1−m in
Lemma 2.1. The last picture is obtained by a handle slide. Then we
obtain MK−m

(0) from the last picture by applying φ−m in Lemma 2.1
and a blow down

other is the diffeomorphism from ∂X to MK0(0), denoted by g, which is given by
changing the dot to 0. By the definition of W−m, it is obtained from X by attaching
a 2-handle along (f−m ◦ g)−1(μ−m) in ∂X with a suitable framing, which is 0-
framing in MK−m

(0). By Figure 8 the framing is m2 + m(= n2 − n). Therefore,
W−m = Wn is represented by the picture on the right of Figure 5. �

Canceling pairs. Recall that, under the dotted circle notation for the exteriors
of unknotted disks (1-handles), a 1/2-handle pair cancels if the attaching circle of
the 2-handle intersects the spanning disk of the dotted circle in a single point. In
this case, the 2-handle with any framing is allowed.

Under the dotted circle notation for the exteriors of slice disks, there exist an-
other type of canceling pairs. A pair of a dotted slice knot (“1-handle”) and a
2-handle cancels if the attaching circle of the 2-handle is the unknot in S3 and its
framing is zero, and the dotted slice knot intersects the spanning disk of the attach-
ing circle of the 2-handle in a single point. For example, the picture in Figure 9
represents B4. This canceling phenomena is justified by the following lemma.
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Figure 9 Another type of canceling pair

Lemma 2.8. Let K be a slice knot, and D a slice disk for K . Then B4 is obtained
from the exterior of D by attaching a 2-handle along the meridian of K with
framing 0.

Proof. Let N(D) be an open tubular neighborhood of D, N(D) the closure of
N(D), and f : N(D) → D2 × D2 a diffeomorphism such that f −1(D2 × {0})
is D. It is easy to see that

(B4 − N(D)) ∩ N(D) = f −1(D2 × ∂D2).

Therefore, we can regard N(D) as a 2-handle h2. Then its attaching region is
f −1(D2 × ∂D2). By the definition, the attaching circle of the 2-handle is isotopic
to the meridian of K , and the framing is 0. �

3. A Construction of Slice Knots via Annulus Twists

In this section, we prove the following theorem by introducing a canceling 2/3-
handle pair.

Theorem 3.1. Let K be a slice knot admitting an annulus presentation, and Kn

(n ∈ Z) the knot obtained from K by the n-fold annulus twist. Then the homotopy
4-ball W(Kn) associated to Kn is diffeomorphic to B4, that is,

W(Kn) ≈ B4.

In particular, Kn is a slice knot.

Proof. First we consider the case K = 820 with the annulus presentation as on
the right of Figure 2 and n ≥ 0. By Lemma 2.7, Kn = Kn bounds a smoothly
embedded disk in the homotopy 4-ball Wn given by the picture on the left of
Figure 5. We prove the following Claims 1 and 2.

Claim 1. Wn (n ≥ 0) is also represented by the picture in Figure 10.
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Figure 10 The homotopy 4-ball Wn

Figure 11 Pictures of the homotopy 4-balls Wn (n ≥ 0)

Proof. Inserting a canceling 1/2-handle pair to Wn, we obtain the first picture in
Figure 11. By handle slides we obtain the second picture. By inserting a cancel-
ing 1/2-handle pair to Wn and handle slides we obtain the third picture. After a
1-handle slide (and a 2-handle slide, annihilating a canceling 1/2-handle pair and
isotopy), we obtain the last picture. Therefore, Wn is represented by the picture in
Figure 10. �

Claim 2. Wn ≈ Wn−1.
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Figure 12 A specific diffeomorphism identifying ∂Wn with S3,
which tells us that two curves γ,λ ⊂ ∂Wn are isotopic

Proof. We show that two curves γ,λ ⊂ ∂Wn described in Figure 12 are isotopic
and each curve is the unknot in ∂Wn = S3. By Claim 1, Wn is represented by
the first picture in Figure 12. We replace the two dotted circles with the zero-
framed circles. Then we obtain the second picture in Figure 12. Handle calculus
in Figure 12 illustrates the diffeomorphism from ∂Wn to S3.

Furthermore, if we regard γ (or λ) as a −1-framed knot, then it is isotopic
to the 0-framed unknot in S3. Now we insert a canceling 2/3-handle pair to Wn.
Then Wn is diffeomorphic to the first picture in Figure 13. By a handle slide we
obtain the second picture, which is diffeomorphic to Wn−1. �

By Claim 2, Wn ≈ Wn−1 ≈ · · · ≈ W1 ≈ W0. After canceling 1/2-handle pair, the
picture of W0 is that in Figure 9, which represents B4. Therefore, Wn ≈ B4, and
Kn = Kn is a slice knot.
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Figure 13 A handle slide

Figure 14 Pictures of the homotopy 4-balls Wn (n < 0)

Next we consider the case K = 820 with the annulus presentation and n < 0.
Again by Lemma 2.7, Kn = Kn bounds a smoothly embedded disk in the ho-
motopy 4-ball Wn given by the picture on the right of Figure 5. We prove the
following claim.

Claim 3. Wn (n < 0) is also represented by the picture in Figure 10.

Proof. Inserting a canceling 1/2-handle pair to Wn, we obtain the first picture
in Figure 14. By a similar handle calculus to that in Figure 11 we obtain the
second picture. Therefore, Wn (n < 0) is represented by the picture in Figure 10
again. �

By the same argument as that in Claim 2 we can prove that Wn ≈ B4 and Kn = Kn

(n < 0) is a slice knot.
Now we consider the general case. First, suppose that n ≥ 0. In this case, we

can also associate a diffeomorphism fn : MK(0) → MKn(0) as described in Fig-
ure 7. Let μn be the meridian of Kn in MKn(0). Then f −1

n (μn) is as in the first pic-
ture in Figure 15 (after ignoring the framing). Then, as in the proof of Lemma 2.7,
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Figure 15 Pictures of the homotopy 4-ball W(Kn).

we see that Kn bounds a smoothly embedded disk in a homotopy 4-ball W(Kn),
which is represented by the second picture in Figure 15. By the same manner it is
proved that W(Kn) is also represented by the third picture in Figure 15. Then we
can prove that W(Kn) ≈ B4 by the same argument. Therefore, Kn is a slice knot.

For the case n < 0, by a similar argument to that in Claim 3, Kn bounds a
smoothly embedded disk in a homotopy 4-ball W(Kn), which is represented by
the third picture in Figure 15 again. Then we can prove that W(Kn) ≈ B4 by the
same argument. Therefore, Kn is a slice knot. �

4. Log Transformation and Fishtail Neighborhood

In this section, we give an alternative proof of Theorem 3.1 in the case K = 820
with the ribbon disk described in Example 2.5. More precisely, we prove that Wn

and W0 are related by a log transformation along a certain torus in Wn, where Wn

is the homotopy 4-ball given by the picture in Figure 10. Lemma 4.1 in Gompf
[G2] ensures that Wn and W0 are diffeomorphic, which implies that Wn ≈ B4.

Log transformation. Let X be an oriented 4-manifold, T an embedded torus
with T · T = 0, and φ : T 2 × ∂D2 → ∂ν(T ) a diffeomorphism, where ν(T )(≈
T 2 × D2) is a closed neighborhood of T in X. Removing int ν(T ) from X and
attaching T 2 × D2 by φ, we obtain

(X − intν(T )) ∪φ T 2 × D2.

Suppose that

φ∗([{pt.} × ∂D2]) = p[{pt.} × ∂D2] + q[γ × {pt.}]
for some essential simple closed curve γ in T . Then we call this surgery a log-
arithmic transformation with multiplicity p, direction γ , and auxiliary multiplic-
ity q . If p = 1, then we call this logarithmic transformation a q-fold Dehn twist
along T parallel to γ .

Fishtail neighborhood. The fishtail neighborhood F is an elliptic fibration
over D2 with one fishtail singular fiber, which has the handle decomposition in
Figure 16. It is well known that the −1-framed meridian in Figure 16 is isotopic
to the vanishing cycle of F . Gompf [G2] proved the following assertion.
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Figure 16 A handle decomposition of F

Figure 17 A handle decomposition of Wn and the handlebody pic-
ture of Wn + γ −1

Lemma 4.1 ([G2]). Let X be a 4-manifold, and T be a regular fiber of a fishtail
neighborhood F embedded in X. Then the q-fold Dehn twist along T parallel to
the vanishing cycle of F does not change the diffeomorphism type of X.

We prove the following.

Lemma 4.2. The homotopy 4-ball Wn also has the handle decomposition given
by the first picture in Figure 17.

Proof. We fix a diffeomorphism identifying ∂Wn with S3. We use the diffeomor-
phism described in Figure 12 again. Recall that this diffeomorphism tells us that
the −1-framed γ is isotopic to the 0-framed unknot in S3 (for the details, see the
proof of Theorem 3.1). Therefore, by inserting a canceling 2/3-handle pair to Wn

we obtain
Wn ≈ Wn + γ −1 ∪ (3-handle),

where Wn + γ −1 is the handlebody given by the second picture in Figure 17.



A Construction of Slice Knots via Annulus Twists 587

Figure 18 A diffeomorphism identifying ∂(Wn + γ −1) with
S1 × S2, which tells us that the curve μ is the unknot in S1 × S2

Next, we fix a diffeomorphism identifying ∂(Wn + γ −1) with S1 × S2 de-
scribed in Figure 18 (for a while, we ignore the curve μ). This diffeomorphism
tells us that μ ⊂ ∂(Wn +γ −1) is the unknot in S1 ×S2. Furthermore, if we regard
μ as a 0-framed knot, then it is isotopic to the 0-framed unknot in S1 ×S2. There-
fore, by inserting a canceling 2/3-handle pair to Wn we obtain the first picture in
Figure 17. �

Now we prove the main result in this section.

Proof of Theorem 3.1 in the case K = 820. The second picture of Figure 19 is
a subhandlebody of Wn. By isotopy we see that it is diffeomorphic to F ∪
(1-handle), where F is the fishtail neighborhood. Therefore, by removing the 1-
handle we can find F as a submanifold of Wn.

Let T be a regular fiber of F embedded in Wn. The 1-fold Dehn twist along T

parallel to γ is 1-untwisting along γ . For the details, see [AY] or [GS]. Thus, the
local deformation is as in Figure 20.
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Figure 19 An embedding of the fishtail neighborhood F

Figure 20 The 1-fold Dehn twist along T parallel to γ

As a result, performing the n-fold Dehn twist along T parallel to γ and re-
moving the canceling 2/3-handle pairs, we obtain W0 that is diffeomorphic to B4.
By Lemma 4.1, Wn ≈ W0. Therefore, Kn = Kn (obtained from 820) is a slice
knot. �

5. A Sufficient Condition to be Ribbon

In this section, we give a sufficient condition for a slice knot to be ribbon
(Lemma 5.1) and prove that all the knots obtained from 820 by annulus twists
are ribbon (Theorem 5.4).
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Figure 21 Band surgeries along mutually disjoint bands (m = 4)

Lemma 5.1. Let HD be a handle diagram of B4 without 3-handles. Suppose that
the handle diagram HD is changed into the empty handle diagram of B4 by the
following handle moves:

(1) 2-handle slides over 1-handles or 2-handles, and
(2) 1-handle slides over 1-handles, and
(3) adding or canceling 1/2-handle pairs, and
(4) isotopies.

Then the belt sphere of any 2-handle of HD is a ribbon knot.

Proof. Let

HD = HD0 → HD1 → ·· · → HDn = (empty handle diagram)

be a sequence of handle diagrams satisfying the condition of Lemma 5.1. By
rearranging the sequence we can assume the following:

HD0 → HD1 → ·· · → HDk (adding canceling 1/2-handle pairs),

HDk → HDk+1 → ·· · → HDl (1- and 2-handle slides and isotopies),

HDl → HDl+1 → ·· · → HDn (annihilating canceling 1/2-handle pairs).

Let β be the belt sphere of a 2-handle of HD, and βi (i = 1,2, . . . , l) the cor-
responding knot in HDi . Then β is the unknot in HD, and we see that βl is also
the unknot in HDl . Furthermore, we can find a smoothly embedded disk D in
HDl such that ∂D = βl , the disk D does not intersect any dotted 1-handles,3

and D intersects transversely with some attaching spheres of 2-handles as the
left in Figure 21. Let m be the number of intersections between D and the at-
taching spheres of 2-handles of HDl . By band surgeries along mutually disjoint
bands B1,B2, . . . ,Bm−1 as in the middle picture in Figure 21, we obtain an m-
component link L such that each component is the meridian of the attaching
sphere of a 2-handle of HDl .

Finally, we consider the sequence HDl → ·· · → HDn. Let L′ be the link in
HDn corresponding to L. Then it is the m-component unlink in S3. In other words,
the knot β is deformed into the m-component unlink by band surgeries along
m − 1 bands. This means that β is a ribbon knot. �

3We can choose D in this way since the link consisting of dotted circles (representing 1-handles) and
βl is the unlink.
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Figure 22 The slice knot Kn in ∂Wn

Let 820 be the knot with the annulus presentation on the right of Figure 2, and Kn

(n ≥ 0) the knot obtained from 820 by the n-fold annulus twist. By Theorem 3.1,
Kn is a slice knot. There is no apparent reason for Kn to be ribbon. Our result is
that, indeed, Kn is a ribbon knot. To prove this, we first observe the following.

Lemma 5.2. The slice knot Kn is located as in Figure 22.

Proof. By the proofs of Lemma 2.7 and Theorem 3.1 we obtain this lemma im-
mediately. �

Remark 5.3. Let K be any ribbon knot in ∂B4. Then it is not difficult to see that
B4 admits a handle decomposition

h0 ∪ h1
1 ∪ · · · ∪ h1

n ∪ h2
1 ∪ · · · ∪ h2

n

such that the belt sphere of some 2-handle is isotopic to K , where h0 is a 0-
handle, h1

i (i = 1, . . . , n) is a 1-handle, and h2
j (j = 1, . . . , n) is a 2-handle. For

the converse, see Conjecture 6.1.

Now we prove the following.

Theorem 5.4. The slice knot Kn (n ≥ 0) is ribbon.

Proof. Let HD be the handle diagram given by the picture in Figure 22. By
Lemma 5.2, Kn is isotopic to the belt sphere of a 2-handle of HD. By Lemma 5.1,
if HD is changed into the empty handle diagram by handle slides, adding or can-
celing 1/2-handle pairs, and isotopies, then Kn is a ribbon knot. Such operations
are realized in Figures 23, 24, 25, and 26. As a result, Kn is a ribbon knot. �
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Figure 23 Handle calculus without adding canceling 2/3-handle pairs

Now we draw a ribbon presentation of Kn. Keeping track of Kn through the han-
dle calculus, though it is rather troublesome, we can obtain a ribbon presentation
of Kn as in Figure 27.
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Figure 24 Handle calculus without adding canceling 2/3-handle pairs

6. Two Conjectures

In this section, we consider two conjectures.

Conjecture 6.1. Let HD be a handle diagram of B4 without 3-handles. Then
the belt-sphere of any 2-handle of HD is a ribbon knot.
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Figure 25 Handle calculus without adding canceling 2/3-handle pairs

Recall that each slice knot in Theorem 3.1 is isotopic to the belt-sphere of a
2-handle of a certain handle diagram of B4 without 3-handles; see the proofs
of Lemma 2.7 and Theorem 3.1. Therefore, if Conjecture 6.1 is true, then all slice
knots in Theorem 3.1 are ribbon.

A partial answer to Conjecture 6.1 is Lemma 5.1. However, it is conjectured
that some handle diagrams of B4 without 3-handles do not satisfy the assumption
of Lemma 5.1 as follows.
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Figure 26 Handle calculus without adding canceling 2/3-handle pairs

Conjecture 6.2 ([G1, Conjecture B]). For n ≥ 3 and k �= 0, the handle diagrams
Hn,k in Figure 28 cannot be deformed into the empty handle diagram without
introducing a 3-handle.

Let Ln,k be the two-component link in S3 that consists of the two belt-spheres of
the two 2-handles of Hn,k ; see the right half of Figure 28. By the definition, Ln,k is
a slice link, that is, it bounds two smoothly embedded disjoint disks in B4. Gompf,
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Figure 27 A ribbon presentation of Kn (n ≥ 1)

Figure 28 The handle diagram Hn,k of B4 (left) and the 2-compo-
nent link Ln,k in S3 = ∂B4 (right)

Scharlemann, and Thompson [GST] considered a slice knot obtained from Ln,k

by attaching a certain band. After a single 2-handle slide (along the band), it turns
out that the slice knot is isotopic to the belt-sphere of a 2-handle of a certain
handle diagram of B4 without 3-handles. Therefore, if Conjecture 6.1 is true,
Gompf, Scharlemann, and Thompson’s slice knots are also ribbon. In this sense,
solving Conjecture 6.1 is the first step toward an affirmative answer to the slice-
ribbon conjecture.
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