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The Parabolic Infinite-Laplace Equation in Carnot Groups

Thomas Bieske & Erin Martin

Abstract. By employing a Carnot parabolic maximum principle we
show the existence and uniqueness of viscosity solutions to a class
of equations modeled on the parabolic infinite Laplace equation in
Carnot groups. We show the stability of solutions within the class and
examine the limit as t goes to infinity.

1. Motivation

In Carnot groups, the following theorem has been established.

Theorem 1.1 [3; 14; 5]. Let � be a bounded domain in a Carnot group, and let
v : ∂� →R be a continuous function. Then the Dirichlet problem{

�∞u = 0 in �,

u = v on ∂�

has a unique viscosity solution u∞.

Our goal is to prove a parabolic version of Theorem 1.1 for a class of equations
(defined in the next section), namely:

Conjecture 1.2. Let � be a bounded domain in a Carnot group, and let T > 0.
Let ψ ∈ C(�) and g ∈ C(� × [0, T )) Then the Cauchy–Dirichlet problem⎧⎪⎨

⎪⎩
ut − �h∞u = 0 in � × (0, T ),

u(x,0) = ψ(x) on �,

u(x, t) = g(x, t) on ∂� × (0, T )

(1.1)

has a unique viscosity solution u.

In Sections 2 and 3, we review key properties of Carnot groups and parabolic
viscosity solutions. In Section 4, we prove the uniqueness, and Section 5 covers
the existence.

2. Calculus on Carnot Groups

We begin by denoting an arbitrary Carnot group in RN by G and its correspond-
ing Lie algebra by g. Recall that g is nilpotent and stratified, resulting in the
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decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vl

for appropriate vector spaces that satisfy the Lie bracket relation [V1,Vj ] = V1+j .
The Lie algebra g is associated with the group G via the exponential map exp :
g → G. Since this map is a diffeomorphism, we can choose a basis for g so that
it is the identity map. Denote this basis by

X1,X2, . . . ,Xn1 , Y1, Y2, . . . , Yn2 ,Z1,Z2, . . . ,Zn3 ,

so that

V1 = span{X1,X2, . . . ,Xn1},
V2 = span{Y1, Y2, . . . , Yn2},

V3 ⊕ V4 ⊕ · · · ⊕ Vl = span{Z1,Z2, . . . ,Zn3}.
We endow g with an inner product 〈·, ·〉 and related norm ‖ · ‖ so that this basis is
orthonormal. Clearly, the Riemannian dimension of g (and so G) is N = n1 +n2 +
n3. However, we will also consider the homogeneous dimension of G, denoted Q,
which is given by

Q =
l∑

i=1

i · dimVi.

Before proceeding with the calculus, we recall the group and metric space
properties. Since the exponential map is the identity, the group law is the
Campbell–Hausdorff formula (see, e.g., [7]). For our purposes, this formula is
given by

p · q = p + q + 1

2
[p,q] + R(p,q), (2.1)

where R(p,q) are terms of order 3 or higher. The identity element of G will be
denoted by 0 and called the origin. There is also a natural metric on G, which is
the Carnot–Carathéodory distance, defined for the points p and q as follows:

dC(p,q) = inf
�

∫ 1

0
‖γ ′(t)‖dt,

where � is the set of all curves γ such that γ (0) = p, γ (1) = q , and γ ′(t) ∈ V1.
By Chow’s theorem (see, e.g., [2]) any two points can be connected by such
a curve, which means that dC(p,q) is an honest metric. Define the Carnot–
Carathéodory ball of radius r centered at a point p0 by

B(p0, r) = {p ∈ G : dC(p,p0) < r}.
In addition to the Carnot–Carathéodory metric, there is a smooth (off the ori-

gin) gauge. This gauge is defined for a point p = (ζ1, ζ2, . . . , ζl) with ζi ∈ Vi by

N (p) =
( l∑

i=1

‖ζi‖2l!/i

)1/(2l!)
(2.2)
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and induces the metric dN that is bi-Lipschitz equivalent to the Carnot–
Carathéodory metric and is given by

dN (p, q) = N (p−1 · q).

We define the gauge ball of radius r centered at a point p0 by

BN (p0, r) = {p ∈ G : dN (p,p0) < r}.
In this environment, a smooth function u : G →R has the horizontal derivative

given by
∇0u = (X1u,X2u, . . . ,Xn1u)

and the symmetrized horizontal second derivative matrix, denoted by (D2u)	,
with entries

((D2u)	)ij = 1

2
(XiXju + XjXiu)

for i, j = 1,2, . . . , n1. We also consider the semihorizontal derivative given by

∇1u = (X1u,X2u, . . . ,Xn1u,Y1u,Y2u, . . . , Yn2u).

Using these derivatives, we define the h-homogeneous infinite Laplace opera-
tor for h ≥ 1 by

�h∞f = ‖∇0f ‖h−3
n1∑

i,j=1

Xif Xjf XiXjf = ‖∇0f ‖h−3〈(D2f )	∇0f,∇0f 〉.

Given T > 0 and a function u : G × [0, T ] → R, we may define the analogous
subparabolic infinite Laplace operator by

ut − �h∞u,

and we consider the corresponding equation

ut − �h∞u = 0. (2.3)

We note that when h ≥ 3, this operator is continuous. When h = 3, we have the
subparabolic infinite Laplace equation analogous to the infinite Laplace opera-
tor in [5]. The Euclidean analog for h = 1 has been explored in [12], and the
Euclidean analog for 1 < h < 3 in [13].

We recall that for any open set O ⊂ G, the function f is in the horizontal
Sobolev space W 1,p(O) if f and Xif are in Lp(O) for i = 1,2, . . . , n1. Re-
placing Lp(O) by L

p
loc(O), the space W

1,p
loc (O) is defined similarly. The space

W
1,p
0 (O) is the closure in W 1,p(O) of smooth functions with compact support. In

addition, we recall that a function u : G → R is C2
sub if ∇1u and XiXju are con-

tinuous for all i, j = 1,2, . . . n1. Note that C2
sub is not equivalent to (Euclidean)

C2. For spaces involving time, the space C(t1, t2;X) consists of all continuous
functions u : [t1, t2] → X with maxt1≤t≤t2 ‖u(·, t)‖X < ∞. A similar definition
holds for Lp(t1, t2;X).

Given an open box O = (a1, b1) × (a2, b2) × · · · × (aN , bN), we define the
parabolic space Ot1,t2 to be O × [t1, t2]. Its parabolic boundary is given by
∂parOt1,t2 = (O × {t1}) ∪ (∂O × (t1, t2]).
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Finally, recall that if G is a Carnot group with homogeneous dimension Q,
then G ×R is again a Carnot group of homogeneous dimension Q+ 1, where we
have added an extra vector field ∂

∂t
to the first layer of the grading. This allows

us to give meaning to notations such as W 1,2(Ot1,t2) and C2
sub(Ot1,t2), where we

consider ∇0u to be (X1u,X2u, . . . ,Xn1u, ∂u
∂t

).

3. Parabolic Jets and Viscosity Solutions

3.1. Parabolic Jets

In this subsection, we recall the definitions of the parabolic jets, as given in [6],
but included here for completeness. We define the parabolic superjet of u(p, t)

at the point (p0, t0) ∈ Ot1,t2 , denoted P 2,+u(p0, t0), by using triples (a, η,X) ∈
R× V1 ⊕ V2 × Sn1 so that (a, η,X) ∈ P 2,+u(p0, t0) if

u(p, t) ≤ u(p0, t0) + a(t − t0) + 〈η,
̂
p−1

0 · p〉 + 1

2
〈Xp−1

0 · p,p−1
0 · p〉

+ o(|t − t0| + |p−1
0 · p|2) as (p, t) → (p0, t0).

We recall that Sk is the set of k × k symmetric matrices and ni = dimVi . We

define p−1
0 · p as the first n1 coordinates of p−1

0 · p and ̂
p−1

0 · p as the first
n1 + n2 coordinates of p−1

0 · p. This definition is an extension of the superjet
definition for subparabolic equations in the Heisenberg group [4]. We define the
subjet P 2,−u(p0, t0) by

P 2,−u(p0, t0) = −P 2,+(−u)(p0, t0).

We define the set-theoretic closure of the superjet, denoted P
2,+

u(p0, t0), by re-
quiring (a, η,X) ∈ P

2,+
u(p0, t0) exactly when there is a sequence (an,pn, tn,

u(pn, tn), ηn,Xn) → (a,p0, t0, u(p0, t0), η,X) with the triple (an, ηn,Xn) ∈
P 2,+u(pn, tn). A similar definition holds for the closure of the subjet.

We may also define jets using appropriate test functions. Given a function u :
Ot1,t2 →R, we consider the set Au(p0, t0) given by

Au(p0, t0) = {φ ∈ C2
sub(Ot1,t2) : u(p, t) − φ(p, t) ≤ u(p0, t0) − φ(p0, t0) = 0

∀(p, t) ∈Ot1,t2},
consisting of all test functions that touch u from above at (p0, t0). We define the
set of all test functions that touch from below, denoted Bu(p0, t0), similarly.

The following lemma relates the test functions to jets. The proof is identical to
that of Lemma 3.1 in [4] but uses the (smooth) gauge N (p) instead of Euclidean
distance.

Lemma 3.1.

P 2,+u(p0, t0) = {(φt (p0, t0),∇φ(p0, t0), (D
2φ(p0, t0))

	) : φ ∈ Au(p0, t0)}.
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3.2. Jet Twisting

We recall that the set V1 = span{X1,X2, . . . ,Xn1}, and notationally, we will al-
ways denote n1 by n. The vectors Xi at the point p ∈ G can be written as

Xi(p) =
N∑

j=1

aij (p)
∂

∂xj

,

forming the n × N matrix A with smooth entries Aij = aij (p). By linear inde-
pendence of the Xi , A has rank n. Similarly,

Yi(p) =
N∑

j=1

bij (p)
∂

∂xj

,

forming the n2 × N matrix B with smooth entries Bij = bij . The matrix B has
rank n2. The following lemma differs from [5, Cor. 3.2] only in that there is now
a parabolic term. This term, however, does not need to be twisted. The proof is
then identical since only the space terms need twisting.

Lemma 3.2. Let (a, η,X) ∈ P
2,+
euclu(p, t). (Recall that (η,X) ∈ RN × SN .) Then

(a,A · η ⊕B · η,AXAT +M) ∈ P
2,+

u(p, t).

Here the entries of the (symmetric) matrix M are given by

Mij =
{∑N

k=1
∑N

l=1(ail(p) ∂
∂xl

ajk(p) + ajl(p)
∂aik

∂xl
(p))ηk, i �= j,∑N

k=1
∑N

l=1 ail(p)
∂aik

∂xl
(p)ηk, i = j.

3.3. Viscosity Solutions

We consider parabolic equations of the form

ut + F(t,p,u,∇1u, (D2u)	) = 0 (3.1)

for continuous and proper F : [0, T ] × G × R × g × Sn → R [8]. We recall that
Sn is the set of n × n symmetric matrices (where dimV1 = n) and the derivatives
∇1u and (D2u)	 are taken in the space variable p. We then use the jets to define
subsolutions and supersolutions to Equation (3.1) in the usual way.

Definition 1. Let (p0, t0) ∈ Ot1,t2 be as before. The upper semicontinuous func-
tion u is a parabolic viscosity subsolution in Ot1,t2 if for all (p0, t0) ∈ Ot1,t2 , we

have that (a, η,X) ∈ P
2,+

u(p0, t0) produces

a + F(t0,p0, u(p0, t0), η,X) ≤ 0.

A lower semicontinuous function u is a parabolic viscosity supersolution in Ot1,t2

if for all (p0, t0) ∈ Ot1,t2 , we have that (b, ν,Y ) ∈ P
2,−

u(p0, t0) produces

b + F(t0,p0, u(p0, t0), ν,Y ) ≥ 0.

A continuous function u is a parabolic viscosity solution in Ot1,t2 if it is both a
parabolic viscosity subsolution and parabolic viscosity supersolution.
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Remark 3.3. In the special case where F(t,p,u,∇1u, (D2u)	) = Fh∞(∇0u,

(D2u)	) = −�h∞u for h ≥ 3, we use the terms “parabolic viscosity h-infinite
supersolution”, and so on.

In the case where 1 ≤ h < 3, the definition above is insufficient due to the sin-
gularity occurring when the horizontal gradient vanishes. Therefore, following
[12] and [13], we define viscosity solutions to Equation (2.3) when 1 ≤ h < 3 as
follows.

Definition 2. Let Ot1,t2 be as before. A lower semicontinuous function v :
Ot1,t2 → R is a parabolic viscosity h-infinite supersolution of ut − �h∞u = 0
if whenever (p0, t0) ∈ Ot1,t2 and φ ∈ Bu(p0, t0), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φt (p0, t0) − �h∞φ(p0, t0) ≥ 0 when ∇0φ(p0, t0) �= 0,

φt (p0, t0) − min‖η‖=1 〈(D2φ)	(p0, t0)η, η〉 ≥ 0 when ∇0φ(p0, t0) = 0 and

h = 1,

φt (p0, t0) ≥ 0 when ∇0φ(p0, t0) = 0 and

1 < h < 3.

An upper semicontinuous function u : Ot1,t2 → R is a parabolic viscosity h-
infinite subsolution of ut − �h∞u = 0 if whenever (p0, t0) ∈ Ot1,t2 and φ ∈
Au(p0, t0), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φt (p0, t0) − �h∞φ(p0, t0) ≤ 0 when ∇0φ(p0, t0) �= 0,

φt (p0, t0) − max‖η‖=1 〈(D2φ)	(p0, t0)η, η〉 ≤ 0 when ∇0φ(p0, t0) = 0 and

h = 1,

φt (p0, t0) ≤ 0 when ∇0φ(p0, t0) = 0 and

1 < h < 3.

A continuous function is a parabolic viscosity h-infinite solution if it is both a
parabolic viscosity h-infinite subsolution and parabolic viscosity h-infinite sub-
solution.

Remark 3.4. When 1 < h < 3, we can actually consider the continuous operator

Fh∞(∇0u, (D2u)	)

=
{

−‖∇0u‖h−3〈(D2u)	∇0u,∇0u〉 = −�h∞u, ∇0u �= 0,

0, ∇0u = 0.
(3.2)

Definitions 1 and 2 would then agree (cf. [13]).

We also wish to define what [11] refers to as parabolic viscosity solutions. We
first need to consider the set

A−u(p0, t0) = {φ ∈ C2(Ot1,t2) : u(p, t) − φ(p, t) ≤ u(p0, t0) − φ(p0, t0) = 0

for p �= p0, t < t0},
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consisting of all functions that touch from above only when t < t0. Note that this
set is larger than Au and corresponds physically to the past alone playing a role
in determining the present. We define B−u(p0, t0) similarly. We then have the
following definition.

Definition 3. An upper semicontinuous function u on Ot1,t2 is a past parabolic
viscosity subsolution in Ot1,t2 if φ ∈A−u(p0, t0) produces

φt (p0, t0) + F(t0,p0, u(p0, t0),∇1φ(p0, t0), (D
2φ(p0, t0))

	) ≤ 0.

An lower semicontinuous function u on Ot1,t2 is a past parabolic viscosity super-
solution in Ot1,t2 if φ ∈ B−u(p0, t0) produces

φt (p0, t0) + F(t0,p0, u(p0, t0),∇1φ(p0, t0), (D
2φ(p0, t0))

	) ≥ 0.

A continuous function is a past parabolic viscosity solution if it is both a past
parabolic viscosity supersolution and subsolution.

We have the following proposition whose proof is obvious. The analogous theo-
rem and its converse for the Euclidean case can be found in [11]. We will address
the converse in the Carnot group case in the next section.

Proposition 3.5. Past parabolic viscosity sub(super)solutions are parabolic
viscosity sub(super)solutions. In particular, past parabolic viscosity h-infinite
sub(super)solutions are parabolic viscosity h-infinite sub(super)solutions for
h ≥ 1.

3.4. The Carnot Parabolic Maximum Principle

In this subsection, we recall the Carnot parabolic maximum principle and key
corollaries, as proved in [6].

Lemma 3.6 (Carnot parabolic maximum principle). Let u be a viscosity subsolu-
tion to Equation (3.1), and v be a viscosity supersolution to Equation (3.1) in the
bounded parabolic set � × (0, T ) where � is a (bounded) domain, and let τ be
a positive real parameter. Let φ(p,q, t) = ϕ(p · q−1, t) be a C2 function in the
space variables p and q , and a C1 function in t . Suppose that the local maximum

Mτ ≡ max
�×�×[0,T ]

{u(p, t) − v(q, t) − τφ(p,q, t)} (3.3)

occurs at the interior point (pτ , qτ , tτ ) of the parabolic set �×�×(0, T ). Define
the n × n matrix W by

Wij = Xi(p)Xj (q)φ(pτ , qτ , tτ ).

Let the 2n × 2n matrix W be given by

W=
(

0 1
2 (W − WT )

1
2 (WT − W) 0

)
, (3.4)
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and let the matrix W ∈ S2N be given by

W =
⎛
⎝D2

ppφ(pτ , qτ , tτ ) D2
pqφ(pτ , qτ , tτ )

D2
qpφ(pτ , qτ , tτ ) D2

qqφ(pτ , qτ , tτ )

⎞
⎠ . (3.5)

Suppose that

lim
τ→∞ τφ(pτ , qτ , tτ ) = 0.

Then for each τ > 0, there exists real numbers a1 and a2, symmetric matrices Xτ

and Yτ , and a vector ϒτ ∈ V1 ⊕ V2, namely ϒτ = ∇1(p)φ(pτ , qτ , tτ ), such that
the following hold:

A) (a1, τϒτ ,Xτ ) ∈ P
2,+

u(pτ , tτ ) and (a2, τϒτ ,Yτ ) ∈ P
2,−

v(qτ , tτ ).
B) a1 − a2 = φt (pτ , qτ , tτ ).
C) For any vectors ξ, ε ∈ V1, we have

〈Xτ ξ, ξ 〉 − 〈Yτ ε, ε〉 ≤ τ 〈(D2
pφ)	(pτ , qτ , tτ )(ξ − ε), (ξ − ε)〉

+ τ 〈W(ξ ⊕ ε), (ξ ⊕ ε)〉
+ τ‖W‖2‖A(p̂)T ξ ⊕A(q̂)T ε‖2. (3.6)

In particular,

〈Xτ ξ, ξ 〉 − 〈Yτ ξ, ξ 〉� τ‖W‖2‖ξ‖2. (3.7)

Corollary 3.7. Let φ(p,q, t) = φ(p,q) = ϕ(p ·q−1) be a nonnegative function
independent of t . Suppose that φ(p,q) = 0 exactly when p = q . Then

lim
τ→∞ τφ(pτ , qτ ) = 0.

In particular, if

φ(p,q, t) = 1

m

N∑
i=1

((p · q−1)i)
m (3.8)

for some even integer m ≥ 4 where (p · q−1)i is the ith component of the Carnot
group multiplication group law, then for the vector ϒτ and matrices Xτ , Yτ from
the lemma, we have:

A) (a1, τϒτ ,Xτ ) ∈ P
2,+

u(pτ , tτ ) and (a1, τϒτ ,Yτ ) ∈ P
2,−

v(qτ , tτ ).
B) The vector ϒτ satisfies

‖ϒτ‖ ∼ φ(pτ , qτ )
(m−1)/m.

C) For any fixed vector ξ ∈ V1, we have

〈Xτ ξ, ξ 〉 − 〈Yτ ξ, ξ 〉� τ‖W‖2‖ξ‖2 � τ(φ(pτ , qτ ))
(2m−4)/m‖ξ‖2. (3.9)
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4. Uniqueness of Viscosity Solutions

We wish to formulate a comparison principle for the following problem.

Problem 4.1. Let h ≥ 1. Let � be a bounded domain, and let �T = � × [0, T ).
Let ψ ∈ C(�) and g ∈ C(�T ). We consider the following boundary and initial
value problem:⎧⎪⎨

⎪⎩
ut + Fh∞(∇0u, (D2u)	) = 0 in � × (0, T ), (E)

u(p, t) = g(p, t), p ∈ ∂�, t ∈ [0, T ), (BC)

u(p,0) = ψ(p), p ∈ �. (IC)

(4.1)

We also adopt the definition that a subsolution u(p, t) to Problem 4.1 is a viscosity
subsolution to (E), u(p, t) ≤ g(p, t) on ∂� with 0 ≤ t < T , and u(p,0) ≤ ψ(p)

on �. Supersolutions and solutions are defined in an analogous matter.

Because our solution u will be continuous, we offer the following remark.

Remark 4.2. The functions ψ and g may be replaced by one function g ∈ C(�T ).
This combines conditions (E) and (BC) into one condition

u(p, t) = g(p, t), (p, t) ∈ ∂par�T . (IBC) (4.2)

Theorem 4.3. Let � be a bounded domain in G, and let h ≥ 1. If u is a parabolic
viscosity subsolution and v a parabolic viscosity supersolution to Problem 4.1,
then u ≤ v on �T ≡ � × [0, T ).

Proof. Our proof follows that of [8, Thm. 8.2], and so we discuss only the main
parts.

For ε > 0, we substitute ũ = u − ε
T −t

for u and prove the theorem for

ut + Fh∞(∇0u, (D2u)	) ≤ − ε

T 2
< 0, (4.3)

lim
t↑T

u(p, t) = −∞ uniformly on �, (4.4)

and take limits to obtain the desired result. Assume that the maximum occurs at
(p0, t0) ∈ � × (0, T ) with

u(p0, t0) − v(p0, t0) = δ > 0.

Case 1: h > 1.
Let H ≥ h + 3 be an even number. As in Equation (3.8), we let

φ(p,q) = 1

H

N∑
i=1

((p · q−1)i)
H

where (p · q−1)i is the ith component of the Carnot group multiplication group
law. Let

Mτ = u(pτ , tτ ) − v(qτ , tτ ) − τφ(pτ , qτ )



498 Thomas Bieske & Erin Martin

with (pτ , qτ , tτ ) the maximum point in � × � × [0, T ) of u(p, t) − v(q, t) −
τφ(p,q).

If tτ = 0, then we have

0 < δ ≤ Mτ ≤ sup
�×�

(ψ(p) − ψ(q) − τφ(p,q)),

leading to a contradiction for large τ . We therefore conclude that tτ > 0 for
large τ . Since u ≤ v on ∂� × [0, T ) by Equation (BC) of Problem 4.1, we
conclude that for large τ , we have that (pτ , qτ , tτ ) is an interior point, that is,
(pτ , qτ , tτ ) ∈ � × � × (0, T ). Using Corollary 3.7, Property A, we obtain

(a, τϒ(pτ , qτ ),Xτ ) ∈ P
2,+

u(pτ , tτ )

and (a, τϒ(pτ , qτ ),Yτ ) ∈ P
2,−

v(qτ , tτ ),

satisfying the equations

a + Fh∞(τϒ(pτ , qτ ),Xτ ) ≤ − ε

T 2

and a + Fh∞(τϒ(pτ , qτ ),Yτ ) ≥ 0.

If there is a subsequence {pτ , qτ }τ>0 such that pτ �= qτ , we subtract, and using
Corollary 3.7, we have

0 <
ε

T 2

≤ (τϒ(pτ , qτ ))
h−3τ 2(〈Xτϒ(pτ , qτ ),ϒ(pτ , qτ )〉

− 〈Yτϒ(pτ , qτ ),ϒ(pτ , qτ )〉)
� τh(ϕ(pτ , qτ )

(H−1)/H )h−3(ϕ(pτ , qτ ))
(2H−4)/H (ϕ(pτ , qτ ))

(2H−2)/H (4.5)

= τh(ϕ(pτ , qτ ))
(Hh+H−h−3)/H = (τϕ(pτ , qτ ))

hϕ(pτ , qτ )
(H−h−3)/H . (4.6)

Because H > h + 3, we arrive at a contradiction as τ → ∞.
If we have pτ = qτ , then we arrive at a contradiction since

Fh∞(τϒ(pτ , qτ ),Xτ ) = Fh∞(τϒ(pτ , qτ ),Yτ ) = 0.

Case 2: h = 1.
We follow the proof of Theorem 3.1 in [12]. Let

ϕ(p,q, t, s) = 1

4

N∑
i=1

((p · q−1)i)
4 + 1

2
(t − s)2,

and let (pτ , qτ , tτ , sτ ) be the maximum of

u(p, t) − v(q, s) − τφ(p,q, t, s).

Again, for large τ , this point is an interior point. If we have a sequence where
pτ �= qτ , then Lemma 3.2 yields

(τ (tτ − sτ ), τϒ(pτ , qτ ),Xτ ) ∈ P
2,+

u(pτ , tτ )

and (τ (tτ − sτ ), τϒ(pτ , qτ ),Yτ ) ∈ P
2,−

v(qτ , sτ ),
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satisfying the equations

τ(tτ − sτ ) + Fh∞(τϒ(pτ , qτ ),Xτ ) ≤ − ε

T 2

and τ(tτ − sτ ) + Fh∞(τϒ(pτ , qτ ),Yτ ) ≥ 0.

As in the first case, we subtract to obtain

0 <
ε

T 2

≤ (τϒ(pτ , qτ ))
−2τ 2(〈Xτϒ(pτ , qτ ),ϒ(pτ , qτ )〉 − 〈Yτϒ(pτ , qτ ),ϒ(pτ , qτ )〉)

� ϕ(pτ , qτ )
−3/2(τϕ(pτ , qτ )ϕ(pτ , qτ )

3/2) = τϕ(pτ , qτ ).

We arrive at a contradiction as τ → ∞.
If pτ = qτ , then v(q, s) − βv(q, s) has a local minimum at (qτ , sτ ) where

βv(q, s) = −τ

4

N∑
i=1

((pτ · q−1)i)
4 − τ

2
(tτ − s)2.

We then have

0 < ε(T − sτ )
−2 ≤ βv

s (qτ , sτ ) − min‖η‖=1
〈(D2βv)	(qτ , sτ )η, η〉.

Similarly, u(p, t) − βu(p, t) has a local maximum at (pτ , tτ ) where

βu(p, t) = τ

4

N∑
i=1

((p · q−1
τ )i)

4 + τ

2
(t − sτ )

2.

We then have

0 ≥ βu
t (pτ , tτ ) − max

‖η‖=1
〈(D2βu)	(pτ , tτ )η, η〉,

and subtraction gives us

0 < ε(T − sτ )
−2

≤ max
‖η‖=1

〈(D2βu)	(pτ , tτ )η, η〉 − min‖η‖=1
〈(D2βv)	(qτ , sτ )η, η〉

+ βv
s (qτ , sτ ) − βu

t (pτ , tτ )

= τ max
‖η‖=1

〈(D2
ppϕ(p · q−1

τ ))	(pτ , tτ )η, η〉
− τ min‖η‖=1

〈(D2
qqϕ(pτ · q−1))	(qτ , sτ )η, η〉

+ τ(tτ − sτ ) − τ(tτ − sτ )

= 0.

Here, the last equality comes from the fact that pτ = qτ and from the definition
of ϕ(p · q−1). �

The comparison principle has the following consequences concerning properties
of solutions.
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Corollary 4.4. Let h ≥ 1. The past parabolic viscosity h-infinite solutions are
exactly the parabolic viscosity h-infinite solutions.

Proof. By Proposition 3.5 past parabolic viscosity h-infinite sub(super)solutions
are parabolic viscosity h-infinite sub(super)solutions. To prove the converse, we
will follow the proof of the subsolution case found in [11], highlighting the main
details. Assume that u is not a past parabolic viscosity h-infinite subsolution. Let
φ ∈A−u(p0, t0) have the property that

φt (p0, t0) − �h∞φ(p0, t0) ≥ ε > 0

for a small parameter ε. We may assume that p0 is the origin. Let r > 0 and define
Sr = BN (r)× (t0 − r, t0), and let ∂Sr be its parabolic boundary. Then the function

φ̃r (p, t) = φ(p, t) + (t0 − t)8l! − r8l! + (N (p))8l!

is a classical supersolution for sufficiently small r . We then observe that u ≤ φ̃r on
∂Sr but u(0, t0) > φ̃(0, t0). Thus, the comparison principle, Theorem 4.3, does not
hold. Thus, u is not a parabolic viscosity h-infinite subsolution. The supersolution
case is identical and omitted. �

The following corollary has a proof similar to that of [12, Lemma 3.2].

Corollary 4.5. Let u : �T → R be upper semicontinuous. Let φ ∈ Au(p0, t0).
If ⎧⎪⎨

⎪⎩
φt (p0, t0) − �1∞φ(p0, t0) ≤ 0 when ∇0φ(p0, t0) �= 0,

φt (p0, t0) ≤ 0 when ∇0φ(p0, t0) = 0,

(D2φ)	(p0, t0) = 0,

(4.7)

then u is a viscosity subsolution to (E) of Problem 4.1.

We also have the following function estimates with respect to boundary data.

Corollary 4.6. Let h ≥ 1. Let g1, g2 ∈ C(�T ) and u1, u2 be parabolic viscosity
solutions to Equation (4.1) with boundary data g1 and g2, respectively. Then

sup
(p,t)∈�T

|u1(p, t) − u2(p, t)| ≤ sup
(p,t)∈∂par�T

|g1(p, t) − g2(p, t)|.

Proof. The function u+(p, t) = u2(p, t) + sup(p,t)∈∂par�T
|g1(p, t) − g2(p, t)|

is a parabolic viscosity supersolution with boundary data g1, and the function
u−(p, t) = u2(p, t) − sup(p,t)∈∂par�T

|g1(p, t) − g2(p, t)| is a parabolic viscosity

subsolution with boundary data g1. Moreover, u− ≤ u1 ≤ u+ on ∂par�T , and by
Theorem 4.3 u− ≤ u1 ≤ u+ in �T . �

Corollary 4.7. Let h ≥ 1. Let g ∈ C(�T ). Then every parabolic viscosity solu-
tion to Problem 4.1 satisfies

sup
(p,t)∈�T

|u(p, t)| ≤ sup
(p,t)∈∂par�T

|g(p, t)|.
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Proof. The proof is similar to the previous corollary but using the functions
u±(p, t) = ± sup(p,t)∈∂par�T

|g(p, t)| instead. �

5. Existence of Viscosity Solutions

5.1. Parabolic Viscosity Infinite Solutions: The Continuity Case

As before, we will focus on the equations of the form (3.1) for continuous and
proper F : [0, T ] × G × R × g × Sn1 → R that possess a comparison principle
such as Theorem 4.3 or [6, Thm. 3.6]. We will use Perron’s method combined with
the Carnot parabolic maximum principle to yield the desired existence theorem. In
particular, the following proofs are similar to those found in [10, Chap. 2] except
that the Euclidean derivatives have been replaced with horizontal derivatives and
the Euclidean norms have been replaced with the gauge norm.

Lemma 5.1. Let L be a collection of parabolic viscosity supersolutions to (3.1),
and let u(p, t) = inf{v(p, t) : v ∈ L}. If u is finite in a dense subset of �T =
� × [0, T ), then u is a parabolic viscosity supersolution to (3.1).

Proof. First, note that u is lower semicontinuous since every v ∈ L is. Let
(p0, t0) ∈ �T and φ ∈Au(p0, t0). Now let

ψ(p, t) = φ(p, t) − (dN (p0,p))2l! − |t − t0|2
and notice that ψ ∈ Au(p0, t0). Then

(u − ψ)(p, t) − (dN (p0,p))2l! − |t − t0|2 = (u − φ)(p, t)

≥ (u − φ)(p0, t0)

= (u − ψ)(p0, t0)

= 0

yields
(u − ψ)(p, t) ≥ (dN (p0,p))2l! + |t − t0|2. (5.1)

Since u is lower semicontinuous, there exists a sequence {(pk, tk)} with tk < t0
converging to (p0, t0) as k → ∞ such that

(u − ψ)(pk, tk) → (u − ψ)(p0, t0) = 0.

Since u(p, t) = inf{v(p, t) : v ∈ L}, there exists a sequence {vk} ⊂ L such that
vk(pk, tk) < u(pk, tk) + 1/k for k = 1,2, . . . . Since vk ≥ u, Equation (5.1) gives
us

(vk − ψ)(p, t) ≥ (u − ψ)(p, t) ≥ (dN (p0,p))2l! + |t − t0|2. (5.2)

Let B ⊂ � denote a compact neighborhood of (p0, t0). Since vk − ψ is lower
semicontinuous, it attains a minimum in B at a point (qk, sk) ∈ B . Then by (5.1)
and (5.2) we have

(u − ψ)(pk, tk) + 1/k > (vk − ψ)(pk, tk) ≥ (vk − ψ)(qk, sk)

≥ (dN (p0, qk))
2l! + |sk − t0|2 ≥ 0
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for sufficiently large k such that (pk, tk) ∈ B . By the squeeze theorem, (qk, sk) →
(p0, t0) as k → ∞. Let η = ψ − (dN (qk,p))2l! − |sk − t |2. Then η ∈ Avk(qk, sk),
and we have that

ηt (qk, sk) + F(sk, qk, vk(qk, sk),∇1η(qk, sk), (D
2η(qk, sk))

	) ≥ 0.

This implies

ψt(qk, sk) + F(sk, qk, vk(qk, sk),∇1ψ(qk, sk), (D
2ψ(sk, sk))

	) ≥ 0.

Letting k → ∞ yields

φt (p0, t0) + F(t0,p0, u(p0, t0)∇1φ(p0, t0), (D
2φ(p0, t0))

	) ≥ 0

and that u is a parabolic viscosity supersolution, as desired. �

A similar argument yields the following:

Lemma 5.2. Let L be a collection of parabolic viscosity subsolutions to (3.1), and
let u(p, t) = sup{v(p, t) : v ∈ L}. If u is finite in a dense subset of �T , then u is
a parabolic viscosity subsolution to (3.1).

For the following lemmas, we need to recall the following definition.

Definition 4. The upper and lower semicontinuous envelopes of a function u

are given by

u∗(p, t) := lim
r↓0

sup{u(q, s) : |q−1p|g + |s − t | ≤ r}
and

u∗(p, t) := lim
r↓0

inf{u(q, s) : |q−1p|g + |s − t | ≤ r},
respectively.

Lemma 5.3. Let h be a parabolic viscosity supersolution to (3.1) in �T . Let S be
the collection of all parabolic viscosity subsolutions v of (3.1) satisfying v ≤ h.
If for v̂ ∈ S , v̂∗ is not a parabolic viscosity supersolution of (3.1), then there are
a function w ∈ S and a point (p0, t0) such that v̂(p0, t0) < w(p0, t0).

Proof. Let v̂ ∈ S such that v̂∗ is not a parabolic viscosity supersolution of (3.1).
Then there exist (p̂, t̂) ∈ �T and φ ∈Av̂∗(p̂, t̂) such that

φt (p, t) + F(t,p, v̂∗(p, t),∇1φ(p, t), (D2φ(p, t))	) > 0. (5.3)

Let
ψ(p, t) = φ(p, t) − (dN (p̂,p))2l! − |t − t̂ |2

and notice that ψ ∈ Av̂∗(p̂, t̂). As in Lemma 5.1,

(v̂∗ − ψ)(p, t) ≥ (dN (p̂,p))2l! + |t − t̂ |2. (5.4)

Let B denote a compact neighborhood of (p̂, t̂), and let

Bkε = B ∩ {(p, t) : (dN (p̂,p))2l! ≤ kε and |t − t̂ |2 ≤ kε}.
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Since v̂ ∈ S , we have that v̂ ≤ h, and thus ψ(p̂, t̂) = v̂∗(p̂, t̂) ≤ v̂(p̂, t̂ ) ≤ h(p̂, t̂).
However, if ψ(p̂, t̂) = h(p̂, t̂), then ψ ∈ Ah(p̂, t̂), and inequality (5.3) would be
contradictory. Thus,

ψ(p̂, t̂) < h(p̂, t̂).

Since ψ is continuous and h is lower semicontinuous, there exists ε > 0 such that

ψ(p, t) + 4ε ≤ h(p, t)

for (p, t) ∈ B2ε . Notice that ψ + 4ε is a subsolution of (3.1) on the interior of
B2ε . Further, by (5.4)

v̂(p, t) ≥ v̂∗(p, t) ≥ ψ(p, t) + 4ε for (p, t) ∈ B2ε\Bε. (5.5)

We now define ω by

ω =
{

max{ψ(p, t) + 4ε, v̂(p, t)}, (p, t) ∈ Bε,

v̂(p, t), (p, t) ∈ �T \Bε.

But by (5.5)

ω(p, t) = max{ψ(p, t) + 4ε, v̂(p, t)} for (p, t) ∈ B2ε,

not just for (p, t) ∈ Bε . Then by Lemma 5.2, ω is a subsolution in the interior of
B2ε and thus a subsolution in �T . Therefore, ω ∈ S . Since

0 = (v̂∗ − ψ)(p̂, t̂) = lim
r↓0

inf{(v̂ − ψ)(p, t) : (p, t) ∈ Br},
there is a point (p0, t0) ∈ Bε that satisfies

v̂(p0, t0) − ψ(p0, t0) < 4ε,

which yields
v̂(p0, t0) < ψ(p0, t0) + 4ε = ω(p0, t0).

Thus, we have constructed ω ∈ S that satisfies v̂(p0, t0) < ω(p0, t0). �

We then have the following existence theorem concerning parabolic viscosity so-
lutions.

Theorem 5.4. Let f be a parabolic viscosity subsolution to (3.1), and g be a
parabolic viscosity supersolution to (3.1) satisfying f ≤ g on �T and f∗ = g∗
on ∂parO0,T . Then there is a parabolic viscosity solution u to (3.1) satisfying
u ∈ C(OT ). Explicitly, there exists a unique parabolic viscosity infinite solution
to Problem 4.1 when h > 1.

Proof. Let

S = {ν : ν is a parabolic viscosity subsolution to (3.1) in �T with ν ≤ g in �T }
and

u(p, t) = sup{ν(p, t) : ν ∈ S}.
Since f ≤ g, the set S is nonempty. Notice that f ≤ u ≤ g by construction. By
Lemma 5.2, u is a parabolic viscosity subsolution. Suppose u∗ is not a parabolic
viscosity supersolution. Then by Lemma 5.3 there exist a function w ∈ S and
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a point (p0, t0) ∈ �T such that u(p0, t0) < w(p0, t0). But this contradicts the
definition of u at (p0, t0). Thus, u∗ is a parabolic viscosity supersolution. By our
assumptions on f and g on ∂parO0,T ,

u = u∗ ≤ g∗ = f∗ ≤ u∗
on ∂parO0,T . Then by the (assumed) comparison principle, u ≤ u∗ on �T . Thus,
we have that u is a parabolic viscosity solution such that u ∈ C(OT ). �

5.2. The h = 1 Case

We begin by recalling the definition of upper and lower relaxed limits of a function
[8; 10].

Definition 5. For ε > 0, consider the function hε : OT ⊂ G → R. The upper
relaxed limit h(p, t) and the lower relaxed limit h(p, t) are given by

h(p, t) = lim sup
p̂→p,t̂→t,ε→0

hε(p̂, t̂)

= lim
ε→0

sup
0<δ<ε

{hδ(p̂, t̂) : OT ∩ Bε(p̂, t̂)}
and h(p, t) = lim inf

p̂→p,t̂→t,ε→0
hε(p̂, t̂)

= lim
ε→0

inf
0<δ<ε

{hδ(p̂, t̂) : OT ∩ Bε(p̂, t̂)}.

Taking the relaxed limits as h → 1+ of the operator Fh∞(∇0u, (D2u)	) in Equa-
tion (3.2), we have via the continuity of the operator

F
1
∞(∇0u, (D2u)	) = F 1∞(∇0u, (D2u)	)

=
{

−‖∇0u‖−2〈(D2u)	∇0u,∇0u〉, ∇0u �= 0,

0, ∇0u = 0.

We give this operator the label F(∇0u, (D2u)	). Consider the relaxed limits
u(p, t) and u(p, t) of the sequence of unique (continuous) viscosity solutions
to Problem 4.1 {uh(p, t)} as h → 1+. By [10, Thm. 2.2.1] we have that u(p, t) is
a viscosity subsolution and u(p, t) is a viscosity supersolution to

ut +F(∇0u, (D2u)	) = 0.

We have the following comparison principle, whose proof is similar to that of
Theorem 4.3 in the case h = 1 and is omitted.

Lemma 5.5. Let � be a bounded domain in G. If u is a parabolic viscosity sub-
solution and v a parabolic viscosity supersolution to

ut +F(∇0u, (D2u)	) = 0,

then u≤ v on �T ≡ � × [0, T ).

Corollary 5.6. u(p, t) = u(p, t).
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Proof. By construction, u(p, t) ≤ u(p, t). By the lemma, u(p, t) ≥ u(p, t). �

Remark 5.7. Using the corollary, we will call this common relaxed limit u1(p, t).
By [10, Chap. 2] and [8, Sect. 6], it is continuous, and the sequence {uh(p, t)}
converges locally uniformly to u1(p, t) as h → 1+.

We then have the following theorem.

Theorem 5.8. There exists a unique parabolic viscosity infinite solution to Prob-
lem 4.1 when h = 1.

Proof. Let {uh(p, t)} and u1(p, t) be as before. Let {hj } be a subsequence with
hj → 1+ where uh(p, t) → u1(p, t) uniformly. We may assume that hj < 3.

Let φ ∈ Au1(p0, t0). Using the uniform convergence, there is a sequence
{pj , tj } → (p0, t0) such that φ ∈ Auhj

(pj , tj ). If ∇0φ(p0, t0) �= 0, then we have
∇0φ(pj , tj ) �= 0 for sufficiently large j . We then have

φt (pj , tj ) − �
hj∞φ(pj , tj ) ≤ 0,

and letting j → ∞ yields

φt (p0, t0) − �1∞φ(p0, t0) ≤ 0.

Suppose ∇0φ(p0, t0) = 0. By Corollary 4.5 we may assume that (D2φ)	(p0,

t0) = 0. Passing to a subsequence if needed, we have ∇0φ(pj , tj ) �= 0. Then

φt (pj , tj ) − max
‖η‖=1

〈(D2φ)	(pj , tj )η, η〉 ≤ φt (pj , tj ) − �
hj∞φ(pj , tj ) ≤ 0.

Letting j → ∞ yields

φt (p0, t0) = φt (pj , tj ) − max
‖η‖=1

〈(D2φ)	(p0, t0)η, η〉 ≤ 0.

In the case ∇0φ(pj , tj ) = 0, since hj < 3, we have φt (pj , tj ) ≤ 0, and letting
j → ∞ yields φt (p0, t0) ≤ 0. We conclude that u1 is a parabolic viscosity h-
infinite subsolution. Similarly, u1 is a parabolic viscosity h-infinite supersolution.

�

6. The Limit as t → ∞
We now focus our attention on the asymptotic limits of the parabolic viscosity
h-infinite solutions. We wish to show that for 1 ≤ h, we have that the (unique)
viscosity solution to ut −�h∞u = 0 approaches the viscosity solution of −�h∞u =
0 as t → ∞. Our goal is the following theorem.

Theorem 6.1. Let h > 1, and let u ∈ C(� × [0,∞)) be a viscosity solution of{
ut − �h∞u = 0 in � × (0,∞),

u(p, t) = g(p) on ∂par(� × (0,∞))
(6.1)

with g : � → R continuous and assuming that ∂� satisfies the property of posi-
tive geometric density (see [11, p. 2,909]). Then u(p, t) → U(p) uniformly in �
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as t → ∞ where U(p) is the unique viscosity solution of −�h∞U = 0 with the
Dirichlet boundary condition limq→p U(q) = g(p) for all p ∈ ∂�.

We first must establish the uniqueness of viscosity solutions to the limit equation.
Note that for future reference, we include the case h = 1.

Theorem 6.2. Let 1 ≤ h < ∞, and let � be a bounded domain. Let u be a viscos-
ity subsolution to �h∞u = 0, and let v be a viscosity supersolution to −�h∞u = 0.
Then,

sup
p∈�

(u(p) − v(p)) = sup
p∈∂�

(u(p) − v(p)).

Proof. Let u be a viscosity subsolution to −�h∞u = 0. Then choose φ ∈ C2
sub(�)

such that 0 = φ(p0) − u(p0) < φ(p) − u(p) for p ∈ �, p �= p0. If ‖∇0φ(p0)‖ =
0, then −〈(D2φ)	(p0)∇0φ(p0),∇0φ(p0)〉 = 0 ≤ 0. If ‖∇0φ(p0)‖ �= 0, we then
have

−�h∞φ(p0) = −‖∇0φ(p0)‖h−3〈(D2φ)	(p0)∇0φ(p0),∇0φ(p0)〉 ≤ 0.

Dividing, we have −〈(D2φ)	(p0)∇0φ(p0),∇0φ(p0)〉 ≤ 0. In either case, u is a
viscosity subsolution to −�3∞u = 0. Similarly, v is a viscosity supersolution to
−�3∞u = 0. The theorem follows from the corresponding result for −�3∞u = 0
in [5; 3; 14]. �

We state some obvious corollaries.

Corollary 6.3. Let 1 ≤ h < ∞, and let g : ∂� → R be continuous. Then there
is exactly one solution to {

−�h∞u = 0 in �,

u = g on ∂�.

Corollary 6.4. Let 1 ≤ h < ∞, and let g : ∂� → R be continuous. The unique
viscosity solution to {

−�h∞u = 0 in �,

u = g on ∂�

is the unique viscosity solution to{
−�3∞u = 0 in �,

u = g on ∂�.

Our method of proof for Theorem 6.1 follows that of [11, Thm. 2], the core of
which hinges on the construction of a parabolic test function from an elliptic
one. In order to construct such a parabolic test function, we need to examine the
homogeneity of Equation (6.1). A quick calculation shows that for a fixed h > 1,
k1/(h−1)u(x, kt) is a C2

sub solution to Equation (6.1) if u(x, t) is a C2
sub solution.

A routine calculation then shows that parabolic viscosity h-infinite solutions share
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this homogeneity. We use this property in the following lemma, the proof of which
can be found in [9, p. 170]. (Also, cf. [6, Lemma 6.2] and [11].)

Lemma 6.5. Let u be as in Theorem 6.1, and h > 1. Then for every (x, t) ∈ � ×
(0,∞) and for 0 < T < t , we have

|u(x, t − T ) − u(x, t)| ≤ 2‖g‖∞,�

h − 1

(
1 − T

t

)h/(1−h) T
t

.

Proof of Theorem 6.1. Fix h > 1. Let u be a viscosity solution of (6.1). The re-
sults of [9, Chap. III] imply that the family {u(·, t) : t ∈ (0,∞)} is equicon-
tinuous. Since it is uniformly bounded due to the boundedness of g, Arzelà–
Ascoli’s theorem yields that there exists a sequence tj → ∞ such that u(·, tj )
converge uniformly in � to a function U ∈ C(�) for which U(p) = g(p) for all
p ∈ ∂�. By Corollary 6.3 it suffices to show that U is a viscosity subsolution to
−�h∞U = 0 on �. With that in mind, let p0 ∈ � and choose φ ∈ C2

sub(�) such
that 0 = φ(p0) − U(p0) < φ(p) − U(p) for p ∈ �, p �= p0. Using the uniform
convergence, we can find a sequence pj → p0 such that u(·, tj ) − φ has a local
maximum at pj . Now define

φj (p, t) = φ(p) + C

(
t

tj

)h/(1−h) tj − t

tj
,

where C = 2‖g‖∞,�/(h− 1). Note that φj (p, t) ∈ C2
sub(�× (0,∞)). Then using

Lemma 6.5, we have

u(pj , tj ) − φj (pj , tj ) = u(pj , tj ) − φ(pj ) ≥ u(p, tj ) − φ(p)

≥ u(p, t) − φ(p) − C

(
t

tj

)h/(1−h) tj − t

tj

= u(p, t) − φj (p, t)

for any p ∈ � and 0 < t < tj . Thus, we have that φj is an admissible test function
at (pj , tj ) on � × [0, T ]. Therefore,

(φj )t (pj , tj ) − �h∞φj (pj , tj ) ≤ 0.

This yields

−�h∞φ(pj ) ≤ C

tj
.

The theorem follows by letting j → ∞. �

Combining the results of the previous sections, we have the following theorem.

Theorem 6.6. Let � be a bounded domain where ∂� satisfies the property of
positive geometric density. Let h ≥ 1, and let g : � → R be continuous. Let uh,t

be the unique viscosity solution to{
u

h,t
t − �h∞uh,t = 0 in � × (0,∞),

uh,t (p, t) = g(p) on ∂par(� × (0,∞)),
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and let uh,∞ be the unique viscosity solution to{
−�h∞uh,∞ = 0 in �,

uh,∞ = g on ∂�

with the Dirichlet boundary condition limq→p uh,∞(q) = g(p) for all p ∈ ∂�.
Then

lim
h→1+
t→∞

uh,t = lim
h→1+ lim

t→∞uh,t = lim
t→∞ lim

h→1+ uh,t = u1,∞.

That is, the following diagram commutes:

u
h,t
t − �h∞uh,t = 0 −−−−→

h→1+ u
1,t
t − �1∞u1,t = 0⏐⏐�t→∞

⏐⏐�t→∞

−�h∞uh,∞ = 0 −−−−→
h→1+ −�1∞u1,∞ = 0

Proof. By Theorem 6.1,

lim
t→∞uh,t = uh,∞, (6.2)

and the convergence is uniform. By Corollary 6.4,

lim
h→1+ uh,∞ = u1,∞,

and this convergence is clearly uniform. We thus have the iterated limit

lim
h→1+ lim

t→∞uh,t = u1,∞

with both limits converging uniformly. By Remark 5.7 we have

lim
h→1+ uh,t = u1,t ,

and this convergence is locally uniform. By the proof of Theorem 6.1 we have

lim
t→∞u1,t = f (6.3)

for some function f , and the convergence is uniform. We then have

lim
t→∞ lim

h→1+ uh,t = f

with the inner limit locally uniform and the outer limit uniform. By the results of
iterated limits in [1, Sect. 19] we then have that the full (double) limit exists. In
addition, the full limit and both iterated limits equal. That is, f = u1,∞ and

lim
h→1+
t→∞

uh,t = lim
h→1+ lim

t→∞uh,t = lim
t→∞ lim

h→1+ uh,t = u1,∞.
�
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