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Newton–Okounkov Bodies of Bott–Samelson Varieties
and Grossberg–Karshon Twisted Cubes

Megumi Harada & J ihyeon Jessie Yang

Abstract. We describe, under certain conditions, the Newton–
Okounkov body of a Bott–Samelson variety as a lattice polytope de-
fined by an explicit list of inequalities. The valuation that we use to
define the Newton–Okounkov body is different from that used previ-
ously in the literature. The polytope that arises is a special case of the
Grossberg–Karshon twisted cubes studied by Grossberg and Karshon
in connection to character formulae for irreducible G-representations
and also studied previously by the authors in relation to certain toric
varieties associated to Bott–Samelson varieties. In particular, the
Grossberg–Karshon twisted cubes that appear in the present manu-
script are in fact untwisted (though possibly degenerate).

Introduction

The main result of this paper is an explicit computation of a Newton–Okounkov
body associated to a Bott–Samelson variety under certain hypotheses. To place
our result in context, recall that the recent theory of Newton–Okounkov bodies,
introduced independently by Kaveh and Khovanskii [10] and Lazarsfeld and Mus-
tata [15], associates to a complex algebraic variety X (equipped with some aux-
iliary data) a convex body of dimension n = dimC(X). In some cases, this con-
vex body (the Newton–Okounkov body, also called Okounkov body) is a rational
polytope; indeed, if X is a projective toric variety, then we can recover the usual
moment polytope of X as a Newton–Okounkov body. These Newton–Okounkov
bodies have been shown to be related to many other research areas, including
(but certainly not limited to) toric degenerations [1], representation theory [8],
symplectic geometry [6], and Schubert calculus [11; 12]. However, relatively few
explicit examples of Newton–Okounkov bodies have been computed so far, and
thus it is an interesting problem to give new and concrete examples.

Motivated by all this, in this paper we study the Newton–Okounkov bodies of
Bott–Samelson varieties; these varieties are well known and studied in represen-
tation theory due to their relation to Schubert varieties and flag varieties (see e.g.
[3]) and have been studied in the context of Newton–Okounkov bodies. For in-
stance, Anderson computed a Newton–Okounkov body for an SL(3,C) example
in [1], they appear in the proof of Kaveh’s identification of Newton–Okounkov
bodies as string polytopes in [8], and Kiritchenko conjectures a description of
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some Newton–Okounkov bodies of Bott–Samelson varieties using her divided-
difference operators in [11]. Moreover, the global Newton–Okounkov body of
Bott–Samelson varieties is studied by Schmitz and Seppänen [20], who show that
it is rational polyhedral and also give an inductive description of it. Additionally,
during the preparation of this manuscript, we learned that Fujita has also (indepen-
dently) computed the Newton–Okounkov bodies of Bott–Samelson varieties [4].
However, the valuation we use in this paper (part of the auxiliary data necessary
for the definition of a Newton–Okounkov body) is different from that associated
to the “vertical flag” considered by Schmitz and Seppänen [20], the highest-term
valuation used by Fujita and Kaveh [4; 8] and the geometric valuation used by
Anderson and Kiritchenko in [1; 11] (cf. also Remark 3.3).

We now briefly recall the geometric objects of interest; for details, see Sec-
tion 1. Let G be a complex semisimple connected and simply connected linear
algebraic group, and let {α1, . . . , αr} denote the set of simple roots of G. Let
i = (i1, . . . , in) ∈ {1,2, . . . , r}n be a word that specifies a sequence of simple roots
{αi1, . . . , αin}. We say that a word is reduced if the corresponding sequence of
simple roots gives a reduced word decomposition sαi1

sαi2
· · · sαin

of an element
in the Weyl group. Also let m = (m1, . . . ,mn) ∈ Z

n
≥0 be a multiplicity list; this

specifies a sequence of weights {λ1 := m1�αi1
, . . . , λn := mn�αin

} in the weight
lattice of G. Associated to i and m, we can define a Bott–Samelson variety Zi (cf.
Definition 1.1) and a line bundle Li,m over it (cf. Definition 1.2). The spaces of
global sections H 0(Zi,Li,m) appear in representation theory as so-called gener-
alized Demazure modules. We also consider a certain natural flag of subvarieties
Y• : Zi = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {pt} in Zi and consider a valuation νY• on
the spaces of sections H 0(Zi,L

⊗k
i,m) associated to Y• (for details, see Section 3).

Our main result is the following; a more precise statement is given in Theorem 3.4.
The polytope P(i,m) and the “condition (P)” mentioned in the statement of the
theorem are discussed further.

Theorem. Let i = (i1, . . . , in) ∈ {1,2, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. Let Zi and Li,m be the associated Bott–Samelson

variety and line bundle. Suppose that i is reduced and the pair (i,m) satisfies con-
dition (P). Then the Newton–Okounkov body �(Zi,Li,m, νY•) of Zi, with respect
to the line bundle Li,m and the geometric valuation νY• , is equal to P(i,m) (up
to a reordering of coordinates).

Both the polytope P(i,m) and the “condition (P)” (defined precisely in Sec-
tion 2) mentioned in the theorem have appeared previously in the literature. In-
deed, the polytope P(i,m) is a special case of the Grossberg–Karshon twisted
cubes, which yield character formulae (possibly with sign) for irreducible G-
representations [5]. Specifically, we showed in [7, Prop. 2.1] that if the pair (i,m)

satisfies condition (P), then the Grossberg–Karshon twisted cube is equal to the
polytope P(i,m) and that the Grossberg–Karshon character formula from [5] cor-
responding to i and m is a positive formula (that is, with no negative signs). Con-
dition (P) can also be stated geometrically. Namely, we showed in [7] that (i,m)
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satisfies condition (P) if and only if a certain torus-invariant divisor D(c, �) in a
toric variety X(c) is basepoint-free, where we follow the notation of [7]. Here,
X(c) and D(c, �) are obtained as the special fiber and accompanying line bundle
of a toric degeneration of Zi constructed from the data of the pair (i,m). For the
purposes of the present manuscript, it is also significant that the polytope P(i,m)

is a lattice polytope (not just a rational polytope) whose vertices can be easily
described as the Cartier data of the torus-invariant divisor D mentioned before [7,
Thm. 2.4]. Thus, our theorem gives a computationally efficient description of the
Newton–Okounkov body �(Zi,Li,m, νY•).

We note that condition (P) is rather restrictive. For instance, suppose Li,m is
the pullback of a line bundle Lλ over G/B via the usual morphism Zi → G/B ,
where λ = λ1�1 +· · ·+λr�r is a dominant weight (here {�j } are the fundamen-
tal weights corresponding to the simple roots {αj }, so λj ≥ 0 for all j ). In this sit-
uation we show in [7, Thm. 4.2] that if (i,m) satisfies condition (P), then for any
simple root αj that appears more than once in the word i, we must have λj = 0.
On the other hand, for a given word i, it is not difficult to explicitly construct (ei-
ther directly from the definition or by using the other equivalent characterizations
of condition (P) in [7, Prop. 2.1]) infinitely many choices of m such that (i,m)

satisfies condition (P).
We now sketch the main ideas in the proof of our main result (Theorem 3.4).

To place the discussion in context, it may be useful to recall that an essential
step in the computation of a Newton–Okounkov body of a variety X is to com-
pute a certain semigroup S = S(R,ν) associated to the (graded) ring of sections
R = ⊕

k H 0(X,L⊗k) for L a line bundle over X and a choice of valuation ν. In
general, this computation can be quite subtle; one of the main difficulties is that
the semigroup may not even be finitely generated. (The issue of finite generation,
in the context of Newton–Okounkov bodies, is studied in [1].) Even when S is
finitely generated, finding explicit generators is related to the problem of finding
a “SAGBI basis” for R with respect to the valuation,1 which appears to be non-
trivial in practice. In this manuscript, we are able to sidestep this subtle issue and
compute S directly by a simple observation, which we now explain. It is a general
fact that the valuations arising from flags of subvarieties Y• such as those before
have one-dimensional leaves (cf. Definition 3.1). It is also an elementary fact that
a valuation ν with one-dimensional leaves, defined on a finite-dimensional vec-
tor space V , satisfies |ν(V \ {0})| = dimC(V ) [10, Prop. 2.6]. As it happens, in
our setting the vector spaces in question are precisely the generalized Demazure
modules H 0(Zi,Li,m) mentioned before, and Lakshmibai, Littelmann, and Mag-
yar [13] prove that dimC(H 0(Zi,Li,m)) = |T (i,m)| where T (i,m) is the set of
standard tableaux associated with i and m. Armed with this key theorem of Lak-
shmibai, Littelmann, and Magyar, we are able to compute our semigroup S and
hence the Newton–Okounkov body explicitly in two steps. On the one hand, we
show in Proposition 3.7 that, assuming that i is reduced, our geometric valua-
tion νY• defined on H 0(Zi,Li,m) \ {0} takes values in the polytope P(i,m) (up

1Such a basis is also called a Khovanskii basis in [6, Section 8], cf. also [9, Section 5.6].



416 Megumi Harada & Jihyeon Jessie Yang

to reordering coordinates). On the other hand, we show in Proposition 2.4 that,
assuming that (i,m) satisfies condition (P), there is a bijection between the lat-
tice points in P(i,m) and the set of standard tableaux T (i,m), so in particular
|P(i,m) ∩ Zn| = |T (i,m)|. Now a simple counting argument and the fact that
P(i,m) is a lattice polytope finishes the proof of the main theorem.

We now outline the contents of the manuscript. In Section 1 we establish the
basic terminology and notation and also state the key result of Lakshmibai, Lit-
telmann, and Magyar (Theorem 1.8). The statement and proof of the bijection
between T (i,m) and the lattice points in P(i,m) occupies Section 2. In the pro-
cess we introduce a separate “condition (P′)”, stated directly in the language of
paths and root operators as in [16; 17; 13], and prove in Proposition 2.10 that our
polytope-theoretic condition (P) implies condition (P′). It is then straightforward
to see that condition (P′) implies that |P(i,m) ∩ Zn| = |T (i,m)|. In Section 3
we briefly recall the definition of a Newton–Okounkov body and define our geo-
metric valuation νY• with respect to a certain flag of subvarieties. We then prove
in Proposition 3.7 that νY• takes values in our polytope; as already explained, by
using the bijection from Section 2 our main theorem then readily follows. Con-
crete examples and pictures for G = SL(3,C) and G = Sp(4,C) are contained in
Section 4.

We take a moment to comment on the combinatorics in Section 2. It may be
that our polytope P(i,m), our conditions (P) and (P′), and our Proposition 2.4
are well known or are minor variations on standard arguments in combinatorial
representation theory. We welcome comments from the experts. At any rate, as
the previous discussion indicates, Proposition 2.4 is only a stepping stone to our
main result (Theorem 3.4). One final comment: in Section 2, we chose to explain
conditions (P) and (P′) separately and to explicitly state and prove the relation
between them in Proposition 2.10 because we suspect that condition (P′) may be
more familiar to experts in representation theory, whereas our condition (P) arises
from the toric-geometric considerations in [7]. Put another way, our condition (P)
is a geometrically motivated condition on i and m, which suffices to guarantee
condition (P′).

Finally, we mention some directions for future work. Firstly, we hope to bet-
ter understand the relation between our computations and those in [4]. Secondly,
our condition (P) on the pairs (i,m) is rather restrictive, and the corresponding
Newton–Okounkov bodies are combinatorially extremely simple (they are essen-
tially cubes, though they can sometimes degenerate). Hence, it is a natural prob-
lem to ask for the relation, if any, between the Newton–Okounkov bodies com-
puted in this paper and those for the line bundles that do not satisfy condition (P).
It may be possible to analyze such a relationship using some results of Ander-
son [1], and we hope to take this up in a future paper. Thirdly, it would be of
interest to examine the relation between our polytopes P(i,m) and the polytopes
arising from Kiritchenko’s divided-difference operators, particularly in relation to
her “degeneration of string spaces” in [11, Sect. 4].
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1. Preliminaries

In this section we record the basic notation in Section 1.1, recall the definitions of
the central geometric objects in Section 1.2, and state a key result (Theorem 1.8)
of Lakshmibai, Littelmann, and Magyar in Section 1.3.

1.1. Notation

We list here some notation and conventions to be used in the manuscript.

• We let G denote a complex semisimple connected and simply connected alge-
braic group over C, and g denotes its Lie algebra.

• We let H denote a Cartan subgroup of G.
• We let B denote a Borel subgroup of G with H ⊂ B ⊂ G.
• We let r denote the rank of G.
• We let X denote the weight lattice of G, and XR = X ⊗ZR is its real form. The

Killing form2 on XR is denoted by 〈α,β〉.
• For a weight α ∈ X, we let eα denote the corresponding multiplicative character

eα : H →C
∗.

• We let {α1, . . . , αr} denote the set of positive simple roots (with an ordering)
with respect to the choices H ⊂ B ⊂ G, and {α∨

1 , . . . , α∨
r } are the correspond-

ing coroots. Recall that the coroots satisfy

α∨ := 2α

〈α,α〉 .

In particular, 〈α,α∨〉 = 2 for any simple root α.
• For a simple root α, let sα : X → X, λ �→ λ − 〈λ,α∨〉α, be the associated

simple reflection; these generate the Weyl group W .
• We let {�1, . . . ,�r} denote the set of fundamental weights satisfying

〈�i,α
∨
j 〉 = δi,j .

• For a simple root α, Pα := B ∪ BsαB is the minimal parabolic subgroup con-
taining B associated to α.

1.2. Bott–Samelson Varieties

In this section, we briefly recall the definition of Bott–Samelson varieties and
some facts about line bundles on Bott–Samelson varieties. Further details may be
found, for instance, in [5]. Note that the literature uses many different notational
conventions.

With the notation in Section 1.1 in place, suppose given an arbitrary word in
{1,2, . . . , r}, that is, a sequence i = (i1, . . . , in) with 1 ≤ ij ≤ r . This specifies
an associated sequence of simple roots {αi1, αi2, . . . , αin}. To simplify notation,
we define βj := αij , so the sequence can be denoted {β1, . . . , βn}. Note that we
do not assume here that the corresponding expression sβ1sβ2 · · · sβn is reduced; in

2The Killing form is naturally defined on the Lie algebra of G, but its restriction to the Lie algebra h

of H is positive-definite, so we may identify h∼= h∗.
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particular, there may be repetitions. (However, we will add the reducedness as a
hypothesis in Section 3.)

Definition 1.1. The Bott–Samelson variety corresponding to a word i = (i1, . . . ,

in) ∈ {1,2, . . . , r}n is the quotient

Zi := (Pβ1 × · · · × Pβn)/B
n,

where βj = αij , and Bn acts on the right on Pβ1 × · · · × Pβn by

(p1, . . . , pn) · (b1, . . . , bn) := (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).

It is known that Zi is a smooth projective algebraic variety of dimension n. By
convention, if n = 0 and i is the empty word, we set Zi equal to a point.

We next describe certain line bundles over a Bott–Samelson variety. Suppose
given a sequence {λ1, . . . , λn} of weights λj ∈ X. We let C(−λ1,...,−λn) denote the
one-dimensional representation of Bn defined by

(b1, . . . , bn) · k := e−λ1(b1) · · · e−λn(bn)k. (1.1)

Definition 1.2. Let λ1, . . . , λn be a sequence of weights. We define the line bundle
Li(λ1, . . . , λn) over Zi to be

Li(λ1, . . . , λn) := (Pβ1 × · · · × Pβn) ×Bn C(−λ1,...,−λn), (1.2)

where the equivalence relation is given by

((p1, . . . , pn) · (b1, . . . , bn), k) ∼ ((p1, . . . , pn), (b1, . . . , bn) · k)

for (p1, . . . , pn) ∈ Pβ1 × · · · × Pβn , (b1, . . . , bn) ∈ Bn, and k ∈ C. The projec-
tion Li(λ1, . . . , λn) → Zi to the base space is given by taking the first factor
[(p1, . . . , pn, k)] �→ [(p1, . . . , pn)] ∈ Zi.

In what follows, we will frequently choose the weights λj to be of a special form.
Specifically, suppose given a multiplicity list m = (m1, . . . ,mn) ∈ Z

n
≥0. Then we

may define a sequence of weights {λ1, . . . , λn} associated to the word i and the
multiplicity list m by setting

λ1 := m1�i1, . . . , λn = mn�in. (1.3)

For such λi , we will use the notation

Li,m := Li(m1�βi1
, . . . ,mn�βin

). (1.4)

In this manuscript we will study the space of global sections of these line
bundles. Note that the Borel subgroup acts on both Zi and Li,m by left multi-
plication on the first coordinate: indeed, for b ∈ B , the equation b · [(p1, . . . ,

pn)] := [(bp1,p2, . . . , pn)] defines the action on Zi, and b · [(p1, . . . , pn, k)] :=
[(bp1,p2, . . . , pn, k)] defines the action on Li,m. It is straightforward to check that
both are well defined. The space of global sections H 0(Zi,Li,m) is then naturally
a B-module; these are called generalized Demazure modules (cf., for instance,
[13]).
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1.3. Paths and Root Operators

We use the machinery of paths and root operators as in [13] (cf. also [16; 17]), so
in this section we briefly recall some necessary definitions and basic properties.

Let XR := X ⊗Z R denote the real form of the weight lattice. By a path we
will mean a piecewise-linear map π : [0,1] → XR (up to reparameterization) with
π(0) = 0. We consider the set � ∪ {O} where � denotes the set of all paths and
O is a formal symbol. For a weight λ ∈ X, we let πλ denote the straight-line path:
πλ(t) := tλ. By the symbol π1 �π2 we mean the concatenation of two paths; more
precisely, π(t) = (π1 � π2)(t) is defined by

π(t) :=
{

π1(2t) if 0 ≤ t ≤ 1/2,

π1(1) + π2(2t − 1) if 1/2 ≤ t ≤ 1.
(1.5)

By convention we take π � O := π for any element π ∈ � ∪ {O}. For a simple
root α and a path π , we define sα(π) to be the path given by sα(π)(t) := sα(π(t)),
that is, the path π is reflected by sα . We pay particular attention to endpoints, so
we give it a name: given π , we say the weight of π is its endpoint, wt(π) := π(1)

(also denoted v(π) in the literature; see [16]). The following is immediate from
the definitions.

Lemma 1.3. Let π,π1,π2 be paths in �, and α a simple root. Then wt(π1 �π2) =
wt(π1) + wt(π2) and wt(sα(π)) = sα(wt(π)).

Fix a simple root α. We now briefly recall the definitions of the raising operator eα

and lowering operator fα on the set �∪{O}, for which we need some preparation
of notation. Fix a path π ∈ �. We cut π into three pieces according to the behavior
of the path π under the projection with respect to α. More precisely, define the
function

hα : [0,1] → R, t �→ 〈π(t), α∨〉
and let Q denote the smallest integer attained by hα , that is,

Q := min{image(hα) ∩Z}.
Note that since π(0) = 0 by definition, we always have Q ≤ 0. Now let q :=
min{t ∈ [0,1] : hα(t) = 〈π(t), α∨〉 = Q} be the “first” time t at which the mini-
mum integer value of hα is attained. Next, in the case that Q ≤ −1 (note that if
Q = 0, then, since π(0) = 0, the value q must be 0, and the following discussion
is not applicable), we define y to be the “last time before q” when the value Q+1
is attained. More precisely, y is defined by the conditions

hα(y) = Q + 1 and Q < hα(t) < Q + 1 for y < t < q.

We now define three paths π1,π2,π3 in such a way that π is by definition the
concatenation π = π1 � π2 � π3, where π1 is the path π “up to time y”, π2 is the
path π “between y and q”, and π3 is the path π “after time q”. More precisely,
we define

π1(t) := π(ty), π2(t) := π(y + t (q − y)) − π(y), and

π3(t) := π(q + t (1 − q)) − π(q).
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See [16, Sect. 1.2, Example] for a figure illustrating an example in rank 2. Given
this decomposition of π into “pieces”, we may now define the raising (root) op-
erator eα as follows.

Definition 1.4. Fix a path π . If Q = 0, that is, if the path π lies entirely in the
closed half-space defined by {hα > −1}, then eα(π) = O, where O is the formal
symbol in � ∪ {O}. If Q < 0, then we define eα(π) := π1 � sα(π2) � π3, that is,
we “reflect across α” the portion of the path π between time y and time q . We
also define eα(O) = O.

The lowering (root) operator fα may be defined similarly. This time, let p denote
the maximal real number in [0,1] such that hα(p) = Q, that is, it is the “last” time
t at which the minimal value Q is attained. Then let P denote the integral part of
hα(1) − Q. If P ≥ 1, then let x denote the first time after p that hα achieves the
value Q + 1; more precisely, let x be the unique element in (p,1] satisfying

hα(x) = Q + 1 and Q < hα(t) < Q + 1 for p < t < x.

Once again, we may decompose the path π into three components, π = π1 � π2 �

π3 by the equations

π1(t) := π(tp), π2(t) := π(p + t (x − p)) − π(p), and
(1.6)

π3(t) := π(x + t (1 − x)) − π(x).

Given this decomposition, we define the lowering (root) operator fα as follows.

Definition 1.5. Fix a path π as before. If P ≥ 1, then we define fα(π) := π1 �

sα(π2) � π3, so we “reflect across α” the portion of the path π between time p

and x. If P = 0, then fα(π) = O. Finally, we define fα(O) = O.

The following basic properties of the root operators are recorded in [16, Sect. 1.4].

Lemma 1.6. Let π ∈ � be a path.

(1) If eα(π) �= O, then wt(eα(π)) = wt(π) + α, and if fα(π) �= O, then
wt(fα(π)) = wt(π) − α.

(2) If eα(π) �= O, then fα(eα(π)) = π . If fα(π) �= O, then eα(fα(π)) = π .
(3) We have en

α(π) = O if and only if n > −Q, and f n
α π = O if and only if n > P .

We now recall a result (Theorem 1.8) of Lakshmibai, Littelmann, and Magyar
[13], which is crucial to our arguments in the remainder of this paper. Specifi-
cally, Theorem 1.8 gives a bijective correspondence between a certain set T (i,m)

of standard tableaux, defined further using paths and the root operators, and a
basis of the vector space H 0(Zi,Li,m) of global sections of Li,m over Zi. Our
main result in Section 2 is that—under certain conditions on the word i and the
multiplicity list m—there exists, in turn, a bijection between T (i,m) and the set
of integer lattice points in a certain polytope. This then allows us to compute
Newton–Okounkov bodies associated to Zi and Li,m in Section 3.

We now recall the definition of standard tableaux. Suppose given a word i and
multiplicity list m as before. Let {β1 = αi1, . . . , βn = αin} be the sequence of
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simple roots associated to i and set λj := mjβj for 1 ≤ j ≤ n. The following is
from [13, Sect. 1.2].

Definition 1.7. A path π ∈ � is called a (constructable) standard tableau of
shape λ = (λ1, . . . , λn) if there exist integers �1, . . . , �n ∈ Z≥0 such that

π = f
�1
β1

(πλ1 � f
�2
β2

(πλ2 � · · · � f
�n

βn
(πλn) · · · )),

where the fβj
are the lowering operators defined previously. Given a word i =

(i1, . . . , in) and multiplicity list m = (m1, . . . ,mn), we denote by T (i,m) the set
of standard tableaux of shape (λ1 = m1�β1 , . . . , λn = mn�βn).

It turns out that there are only finitely many standard tableaux of a given shape
associated to a given pair (i,m). In fact, Lakshmibai, Littelmann, and Magyar
prove [13, Thms. 4 and 6] the following.

Theorem 1.8. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. Let {β1 = αi1, . . . , βn = αin} be the sequence of

simple roots associated to i and set λj := mjβj for 1 ≤ j ≤ n. Then

|T (i,m)| = dimC H 0(Zi,Li,m).

2. A Bijection between Standard Tableaux and Lattice Points
in a Polytope

The main result of this section (Proposition 2.4) is that, under a certain assump-
tion on the word i and the multiplicity list m, there is a bijection between the set
of integer lattice points within a certain lattice polytope P(i,m) and the set of
standard tableaux T (i,m). Together with Theorem 1.8, this then implies that the
cardinality of P(i,m) ∩ Z

n is equal to the dimension of the space H 0(Zi,Li,m)

of sections of the line bundle Li,m over the Bott–Samelson variety Zi. This then
allows us to compute Newton–Okounkov bodies in the next section. The neces-
sary hypothesis on i and m, which we call “condition (P)”, also appeared in our
previous work [7] connecting the polytopes P(i,m) with representation theory
and toric geometry (cf. Remark 2.2).

We begin with the definition of the polytope P(i,m) by an explicit set of in-
equalities.

Definition 2.1. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. Then the polytope P(i,m) is defined to be the

set of all real points (x1, . . . , xn) ∈ R
n satisfying the following inequalities:

0 ≤ xn ≤ An := mn,

0 ≤ xn−1 ≤ An−1(xn) := 〈mn−1�βn−1 + mn�βn − xnβn,β
∨
n−1〉,

0 ≤ xn−2 ≤ An−2(xn−1, xn)

:= 〈mn−2�βn−2 + mn−1�βn−1 + mn�βn − xn−1βn−1 − xnβn,β
∨
n−2〉,

...
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0 ≤ x1 ≤ A1(x2, . . . , xn)

:= 〈m1�β1 + m2�β2 + · · · + mn�βn − x2β2 − · · · − xnβn,β
∨
1 〉.

Remark 2.2. • The polytopes P(i,m) have appeared previously in the litera-
ture and have connections to toric geometry and representation theory. Specif-
ically, under a hypothesis on i and m, which we call “condition (P)” (see
Definition 2.3), we show in [7] that P(i,m) is exactly a so-called Grossberg–
Karshon twisted cube. These twisted cubes were introduced in [5] in connection
with Bott towers and character formulae for irreducible G-representations. Our
proof of this fact in [7] used a certain torus-invariant divisor in a toric variety
associated to Bott–Samelson varieties studied by Pasquier [18].

• The functions Ak(xk+1, . . . , xn) appearing in Definition 2.1 also have a natural
interpretation in terms of paths, as we shall see in Lemma 2.7; this is useful in
our proof of Proposition 2.4.

In the statement of our main proposition of this section, we need the following
technical hypothesis on the word and the multiplicity list. As already noted, the
same condition appeared in our previous work [7], which related the polytope
P(i,m) to toric geometry and representation theory.

Definition 2.3. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. We say that the pair (i,m) satisfies condition (P)

if for every integer k with 1 ≤ k ≤ n − 1, the following statement, which we refer
to as condition (P-k), holds:

(P-k) if (xk+1, . . . , xn) satisfies

0 ≤ xn ≤ An,

0 ≤ xn−1 ≤ An−1(xn),

...

0 ≤ xk+1 ≤ Ak+1(xk+2, . . . , xn),

then
Ak(xk+1, . . . , xn) ≥ 0.

We may now state the main result of this section.

Proposition 2.4. If (i,m) satisfies condition (P), then there exists a bijection
between the set of integer lattice points in the polytope P(i,m) and the set of
standard tableaux T (i,m). Therefore,

|P(i,m) ∩Z
n| = |T (i,m)|.

To prove Proposition 2.4, we need some preliminaries. Let i,m be as before. For
any k with 1 ≤ k ≤ n, we define the notation

i[k] := (ik, ik+1, . . . , in), m[k] := (mk,mk+1, . . . ,mn),

so i[k] and m[k] are obtained from i and m by deleting the left-most k − 1 co-
ordinates. The following lemma is immediate from the inductive nature of the
definitions of the polytopes P(i,m) and of condition (P).
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Lemma 2.5. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,mn) ∈
Z

n
≥0 be a multiplicity list.

(1) Suppose (x1, . . . , xn) ∈ P(i,m). For any k with 1 ≤ k ≤ n − 1, we have

(xk+1, . . . , xn) ∈ P(i[k + 1],m[k + 1]).
(2) The pair (i,m) satisfies condition (P) if and only if for any k with 1 ≤

k ≤ n − 1 and any (xk+1, . . . , xn) ∈ P(i[k + 1],m[k + 1]), the vector
(0, . . . ,0, xk+1, . . . , xn) lies in P(i,m), where (0, . . . ,0, xk+1, . . . , xn) is the
vector obtained by adding k zeroes to the left.

(3) If (i,m) satisfies condition (P), then for any k with 1 ≤ k ≤ n, the pair
(i[k],m[k]) also satisfies condition (P).

To prove Proposition 2.4, the plan is to first explicitly construct a map from
P(i,m)∩Z

n to T (i,m) and then prove that it is a bijection. In fact, it will be con-
venient to define a sequence of maps ϕk : Zn−k+1

≥0 → � ∩ {O}; the map ϕ := ϕ1

will be the desired bijection between P(i,m) ∩Zn and T (i,m).

Definition 2.6. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. Let k be an integer with 1 ≤ k ≤ n. We define a

map ϕk : Zn−k+1
≥0 → � ∪ {O} associated with i and m by

ϕk(xk, . . . , xn) := f
xk

βk
(πλk � f

xk+1
βk+1

(πλk+1 � · · · � f
xn

βn
(πλn) · · · )), (2.1)

where λk := mk�βk
for 1 ≤ k ≤ n. (Although the map ϕk depends on i and m, for

simplicity, we omit it from the notation.)

From the definition it is immediate that the ϕk are related to one another by the
equation

ϕk(xk, . . . , xn) = f
xk

βk
(πλk � ϕk+1(xk+1, . . . , xn))

for 1 ≤ k < n. It will be also useful to introduce the notation

τk(xk+1, . . . , xn) := πλk � ϕk+1(xk+1, . . . , xn) (2.2)

for 1 ≤ k < n, and we set τn := πλn , from which it immediately follows that

ϕk(xk, . . . , xn) = f
xk

βk
(τk(xk+1, . . . , xn)). (2.3)

With this notation in place, we can interpret the functions Ak appearing in the
definition of P(i,m) naturally in terms of paths. Recall that the endpoint π(1) of
a path π ∈ � is called its weight, and we denote it by wt(π) := π(1).

Lemma 2.7. Let (x1, . . . , xn) ∈ Z
n
≥0, and let k be an integer, 0 ≤ k ≤ n − 1. If

ϕk+1(xk+1, . . . , xn) �= O, then

wt(ϕk+1(xk+1, . . . , xn)) = mk+1�βk+1 + · · · + mn�βn − xk+1βk+1 − · · · − xnβn.

Moreover, if in addition k ≥ 1, then τk(xk+1, . . . , xn) �= O and

wt(τk(xk+1, . . . , xn))

= mk�βk
+ mk+1�βk+1 + · · · + mn�βn − xk+1βk+1 − · · · − xnβn,



424 Megumi Harada & Jihyeon Jessie Yang

so, in particular,

Ak(xk+1, . . . , xn) = 〈wt(τk(xk+1, . . . , xn)), β
∨
k 〉. (2.4)

Proof. Under the hypothesis that ϕk+1(xk+1, . . . , xn) is an honest path (that is,
it is not O), the first statement of the lemma is immediate from the definition of
ϕk , Lemma 1.3, and Lemma 1.6(1). The other statements of the lemma are then
straightforward from the definitions. �

In words, equation (2.4) says that the functions Ak measure the pairing of the end-
point of τk(xk+1, . . . , xn) against the coroot β∨

k (assuming that τk(xk+1, . . . , xn)

is an honest path).
Now we show that when ϕk is restricted to the subset P(i[k],m[k]) ∩Z

n−k+1,
the output is an honest path in � (that is, it is not the formal symbol O). From
the definition of standard tableaux it immediately follows that the output is also
in fact an element in T (i[k],m[k]).
Lemma 2.8. Let k be an integer with 1 ≤ k ≤ n. The map ϕk restricts to a map

ϕk : P(i[k],m[k]) ∩Z
n−k+1 → T (i,m).

Proof. We first show that the outputs of the maps ϕk are honest paths (that is,
�= O). We argue by induction, and since the definition of the ϕk is a composition
of operators starting with fβn (not fβ1 ), the base case is k = n. From the defini-
tion of P(i,m) we know that xn ≤ mn = 〈πλn(1), β∨

n 〉, so it suffices to prove
that, for such xn, we have f

xn

βn
(πλn = πmn�βn ) �= O. Since πλn is a straight-

line path from 0 to λn = mn�βn , the constants Q and P in the definition of
fβn (applied to πλn ) are 0 and hβn(1) − Q = 〈mn�βn,β

∨
n 〉 = mn, respectively.

Thus, by Lemma 1.6(3) we may conclude ϕn(xn) := f
xn

βn
(πλn) �= O, which com-

pletes the base case. Now suppose that 1 ≤ k < n and ϕk+1(xk+1, . . . , xn) �= O,
which in turn implies τk(xk+1, . . . , xn) �= O since concatenation of paths al-
ways results in a path. We must show that ϕk(xk, . . . , xn) = f

xk

βk
(τk) �= O. Since

τk is a path starting at the origin 0, the constants Q and P in the definition
of fβ1 (applied to τk(xk+1, . . . , xn)) are ≤0 and ≥〈wt(τk(xk+1, . . . , xn)), β

∨
k 〉,

respectively. In particular, again by Lemma 1.6(3) it suffices to show that
xk ≤ 〈wt(τk(xk+1, . . . , xn)), β

∨
k 〉. Since τk(xk+1, . . . , xn) �= O and (xk, . . . , xn) ∈

P(i[k],m[k]), the result then holds by definition of P(i[k],m[k]) and the in-
terpretation of the Ak given in Lemma 2.7. It remains to check that the paths
ϕk(xk+1, . . . , xn) ∈ � are standard tableaux, but this follows directly from Defi-
nition 1.7. �

From the preceding discussion we have a well-defined map

ϕ := ϕ1 : P(i,m) ∩Z
n → T (i,m). (2.5)

We need to prove that ϕ is a bijection. For this, it is useful to introduce another
condition on (i,m), which we call condition (P′); it is formulated in terms of the
paths τk and the raising operators eβk

.
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Definition 2.9. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. We say that the pair (i,m) satisfies condition

(P′) if for all (x1, . . . , xn) ∈ P(i,m) ∩ Z
n
≥0 and all k with 1 ≤ k ≤ n, we have

eβk
(τk(xk+1, . . . , xn)) = O.

It may be conceptually helpful to note that, from our interpretation of the func-
tions Ak in Lemma 2.7 and the definitions of P(i,m) and τk , we may think of
condition (P) as saying that the endpoints of certain paths τk are always contained
in the affine half-space defined by {〈·, βk〉 ≥ 0} (that is, the half-space pairing
nonnegatively against the coroot β∨

k ). Moreover, from Lemma 1.6(3) we see that
in order to show eβk

(τk) = O for a given path τk , it suffices to show that the entire
path τk lies in the same affine half-space. Thus, roughly speaking, condition (P)
is about endpoints, whereas condition (P′) is about the entire path.

Proposition 2.10. Let i = (i1, . . . , in) ∈ {1, . . . , r}n be a word, and m = (m1,

. . . ,mn) ∈ Z
n
≥0 be a multiplicity list. If the pair (i,m) satisfies condition (P), then

(i,m) satisfies condition (P′).

Since condition (P′) is phrased in terms of the eβk
and because the raising and

lowering operators act as inverses (provided that the composition makes sense) as
in Lemma 1.6(2), once we know Proposition 2.10, it is straightforward to show
that ϕ is a bijection. Indeed, we suspect that the argument given further is standard
for the experts, but we include it for completeness.

Proof of Proposition 2.4 (assuming Proposition 2.10). By Proposition 2.10 we
may assume that condition (P′) holds. First, we prove by induction that ϕk is
injective for each k, starting with the base case k = n. Suppose that

ϕn(xn) = f
xn

βn
(πλn) = f

yn

βn
(πλn) = ϕn(yn) (2.6)

and also suppose for a contradiction that xn < yn. Applying e
xn+1
βn

to the LHS

of (2.6) yields eβn(π
λn) since by Lemma 1.6(2) we know that eβn is inverse to fβn

whenever the image of fβn is �= O. By condition (P′), eβn(π
λn) = eβn(τn) = O.

On the other hand, applying e
xn+1
βn

to the RHS of (2.6) yields f
yn−xn−1
βn

(πλn),
which is �=O since yn − xn − 1 ≥ 0 by assumption. This contradicts (2.6), and so
xn = yn, and we conclude that ϕn is injective. This completes the base case. Now
suppose by induction that ϕk+1 is injective; we need to show that ϕk is injective.
Assume that

ϕk(xk, . . . , xn) = f
xk

βk
(τk(xk+1, . . . , xn)) = f

yk

βk
(τk(yk+1, . . . , yn))

= ϕk(yk, . . . , yn)

and suppose also that xk < yk . The same argument as before, namely apply-
ing e

xk+1
βk

to both sides, yields a contradiction due to condition (P′). Thus,

xk = yk . Applying e
xk

βk
to both sides of the equation, we obtain τk(xk+1, . . . , xn) =

τk(yk+1, . . . , yn). Concatenation by πλk is evidently injective, so ϕk+1(xk+1,

. . . , xn) = ϕk+1(yk+1, . . . , yn), but then by the inductive assumption we have
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(xk+1, . . . , xn) = (yk+1, . . . , yn). This proves (xk, . . . , xn) = (yk, . . . , yn) and
hence that ϕk is injective, as desired.

Now we claim that ϕk is surjective for each k. We argue by induction on the
size of n. First, consider the base case n = 1, so w = (β1 = β), m = (m1 = m),
and P(w,m) = [0,m]. By definition a standard tableau of shape λ = m�β is
of the form f x

β (πλ) for some x ∈ Z≥0. Since πλ is a straight-line path from 0

to mβ , the constants Q and P in the definition of fβ applied to πλ are 0 and
m, respectively. Then for x a nonnegative integer, we know by Lemma 1.6(3)
that f x

β (πλ) �= O if and only if x ≤ m. Since P(i,m) = [0,m] in this case, we
conclude that ϕ1 is surjective if n = 1, as desired.

Now assume by induction that each ϕk is surjective (hence bijective) for words
of length < n. From Lemma 2.5(3) we know that (i[k],m[k]) satisfies condi-
tion (P) (and hence condition (P′)). By the inductive assumption we may there-
fore assume that ϕk : P(i[k],m[k]) ∩ Z

n−k+1 → T (i[k],m[k]) is a bijection for
k > 1, and we wish to show that ϕ = ϕ1 is surjective. By the definition of the
standard tableaux any element in T (i,m) is of the form f

�1
β1

(πλ1 � τ ′) for some
τ ′ ∈ T (w[2],m[2]) and some �1 ∈ Z≥0. By the inductive assumption we know
that there exists some (x2, . . . , xn) ∈ P(i[2],m[2]) such that τ ′ = ϕ2(x2, . . . , xn).
From the definition of P(i,m), in order to prove the surjectivity, it would suffice
to show that

f
�1
β1

(πm1�β1 � ϕ2(x2, . . . , xn)) = fβ1(τ1(x2, . . . , xn)) �= O

⇒ �1 ≤ A1(x2, . . . , xn).

From Lemma 1.6(3) we know f
�1
β1

(τ1) �= O ⇔ �1 ≤ P , where P is defined to be
the integral part of 〈wt(τ1(x2, . . . , xn)), β

∨
1 〉 − Q, and Q = mint∈[0,1]〈τ1(x2, . . . ,

xn)(t), β
∨
1 〉. Since τ1(x2, . . . , xn) �= O by assumption, we know from (2.4) that

A1(x2, . . . , xn) = 〈wt(τ1(x2, . . . , xn)), β
∨
1 〉, and it is evident from the definition

of A1 that for (x2, . . . , xn) ∈ Z
n−1, the value A1(x2, . . . , xn) is integral. Hence,

it suffices to show that Q = 0, and again by Lemma 1.6(3) this is equivalent to
showing that eβ1(τk(x2, . . . , xn)) = O. Note that the vector (0, x2, . . . , xn) lies
in P(i,m) by Lemma 2.5(2). By applying the statement of condition (P′) to
(0, x2, . . . , xn) and k = 1 we obtain that eβ1(τk(x2, . . . , xn)) = O, as desired. This
completes the proof. �

It remains to justify Proposition 2.10. The following simple lemma will be helpful.

Lemma 2.11. Let π ∈ � be a piecewise linear path in XR.

(1) Let πλ be a linear path for some λ ∈ XR. Then for any t ∈ [0,1], there exist
nonnegative real constants a, c ≥ 0 and s ∈ [0,1] such that (πλ � π)(t) =
aλ + cπ(s).

(2) Let β be a simple root. Let x be a positive integer and assume that
f x

β (π) �= O. Then for any t ∈ [0,1], there exists b ∈ R with 0 ≤ b ≤ x such
that f x

β (π)(t) = π(t) + b(−β).
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(3) Let π ∈ � be a path in XR. Let {β1, . . . , βj } be any sequence of simple roots,
and n1, . . . , nj ∈ Z≥0 any sequence of nonnegative integers. Then any point
along the path f

n1
β1

(πn1�β1 � f
n2
β2

(πn2�β2 � · · · � f
nj

βj
(π

nj �βj � π) · · · )) can be
expressed as a linear combination

j∑
�=1

a�n��α�
+

j∑
�=1

b�(−β�) + cπ(s)

for some constants a�, b�, c ≥ 0 and some s ∈ [0,1].
(4) Let i = (i1, . . . , in) ∈ {1,2, . . . , r}n and m = (m1, . . . ,mn) ∈ Z

n
≥0 be a word

and multiplicity list, and let k be an integer with 1 ≤ k ≤ n. Let ϕk denote the
map associated with i,m as in Definition 2.6. Then any point along the path
ϕk(xk, . . . , xn) can be expressed as a linear combination

n∑
�=k

a�m��β�
+

n∑
�=k

b�(−β�), (2.7)

where a�, b� ≥ 0.

Proof. First, we prove (1). From definition (1.5) of paths and the definition of a
straight-line path πλ it follows that for t ∈ [0, 1

2 ], we may take a = 2t and c = 0
since (πλ �π)(t) = πλ(2t) = 2tλ in this case. On the other hand, if t ∈ [ 1

2 ,1], then
we may take a = 1, c = 1 and s = 2t − 1 since by (1.5) we have (πλ � π)(t) :=
πλ(1) + π(2t − 1) = λ + π(2t − 1). This proves the claim.

Next, we prove (2). Recall that the reflection operator sβ acts by sβ(α) := α −
〈α,β∨〉β , so for any path π and for any time t , we have sβ(π)(t) := sβ(π(t)) =
π(t) − 〈π(t), β∨〉β = π(t) + 〈π(t), β∨〉(−β), and, in particular, sβ(π)(t) is a
linear combination of π(t) and −β . Additionally, from Definition 1.5 we know
that fβ(π) := π1 � sβ(π2) � π3 where π1, π2, and π3 are defined in (1.6), and
from the discussion preceding Definition 1.5 that defines p and x it follows
that 〈π2(t), β

∨〉 ∈ [0,1] for all t . To prove the claim, we begin with the base
case x = 1. Consider each of the three components of fβ(π) in turn. For the
first portion of the path (corresponding to π1), the operator fβ does not al-
ter the path at all, so for such t , we have fβ(π)(t) = π(t), and the claim of
the lemma holds with b = 0. For t in the second portion of the path, we have
π(t) = π1(p) + π2(t

′) (here t ′ is determined by t by some reparameterization
coming from the concatenation operation) and fβ(π)(t) = π1(p) + sβ(π2(t

′)) =
π1(p) + π2(t

′) + 〈π2(t
′), β∨〉(−β) = π(t) + 〈π2(t

′), β∨〉(−β). As we have al-
ready seen, 〈π2(t

′), β∨〉 ∈ [0,1], so choosing b = 〈π2(t
′), β∨〉 does the job. Fi-

nally, again from the discussion preceding the definitions of π1, π2, and π3 it
follows that 〈π2(1), β∨〉 = 1, so for the last (third) portion of the path, we have
that fβ(π)(t) = (π(x) − β) + π3(t

′′) = π(x) + π3(t
′′) − β = π(t) − β , where

again t ′′ is determined by t by a reparameterization. By choosing b = 1 we see
that the claim holds in this case also. Applying the same argument x times yields
the result.
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Statements (3) and (4) follow straightforwardly by applying (1) and (2) repeat-
edly. �

The following elementary observation is also conceptually useful. For two sim-
ple positive roots α,β , we say that α and β are adjacent if they are distinct
and they correspond to two adjacent nodes in the corresponding Dynkin dia-
gram. (From properties of the Cartan matrix, α and β are adjacent precisely when
the value of the pairing 〈α,β∨〉 is strictly negative.) Then it is immediate that
Ak(xk+1, . . . , xn) can be interpreted as

Ak(xk+1, . . . , xn)

= mk +
( ∑

j>k
βj =βk

(mj − 2xj )

)
−

( ∑
j>k

βj adjacent to βk

xj 〈βj ,β
∨
k 〉

)
. (2.8)

Proof of Proposition 2.10. We begin by noting that the path τn is by definition
πλn where λn := mnβn. Thus, Q = 0 in this case, and by Lemma 1.6(3) we con-
clude eβn(τn) = O. So it remains to check the cases k < n. As in the discussion
before, by Lemma 1.6(3) and by the definition of the raising operators, in order to
prove the claim, it suffices to prove that for any (x1, . . . , xn) ∈ P(i,m) and any k

with 1 ≤ k ≤ n − 1, we have

min
t∈[0,1]{〈τk(xk+1, . . . , xn)(t), β

∨
k 〉} ≥ 0, (2.9)

which is equivalent to

min
t∈[0,1]{〈ϕk+1(xk+1, . . . , xn)(t), β

∨
k 〉} ≥ −mk (2.10)

by the definition of the τk and ϕk .
We use induction on the size of n. We already proved the case n = 1, so the

base case is n = 2 and k = 1. Let i = (i1, i2) with associated sequence of simple
roots (β1, β2) and m = (m1,m2). Let (x1, x2) ∈ P(i,m). Then we have 0 ≤ x2 ≤
m2, so an explicit computation shows ϕ2(x2) = f

x2
β2

(πm2�β2 ) = πx2(�β2−β2) �

π(m2−x2)�β2 . Hence, we wish to show that

min
t∈[0,1]{〈ϕ2(x2) = πx2(�β2 −β2) � π(m2−x2)�β2 (t), β∨

1 〉} ≥ −m1.

First, consider the case β1 �= β2. Since 〈�β2 , β
∨
1 〉 = 0 and 〈β2, β

∨
1 〉 ≤ 0 for

any two distinct simple roots, and x2 ≥ 0 by assumption, we can see that
〈πx2(�β2 −β2) �π(m2−x2)�β2 (t), β∨

1 〉 ≥ 0 for all t . In particular, the minimum value
taken over all t is 0, which is greater than or equal to −m1, as desired (since
m1 ≥ 0 by assumption). Next consider the case β1 = β2. In this case, the inequal-
ities defining P(i,m) are

0 ≤ x2 ≤ m2 and 0 ≤ x1 ≤ 〈m1�β1 + m2�β2 − x2β2, β
∨
1 〉 = m1 + m2 − 2x2.

By condition (P), for any choice of x2 with 0 ≤ x2 ≤ m2, we must have A1(x2) =
m1 + m2 − 2x2 ≥ 0. In particular, for x2 = m2, we must have m1 − m2 ≥ 0, from
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which it follows m1 ≥ m2. Next notice that since the vector (m2 − x2)�β2 pairs
nonnegatively with β∨

1 = β∨
2 , the minimum value of the function

t �→ 〈πx2(�β2−β2) � π(m2−x2)�β2 (t), β∨
1 〉

occurs at the endpoint of πx2(�β2−β2), where the value is −x2. From the assump-
tions we know x2 ≤ m2, so −x2 ≥ −m2. Also, we have seen that m1 ≥ m2, so
−m2 ≥ −m1, and finally we obtain −x2 ≥ −m1. This completes the base case.

We now assume by induction that the statement of the proposition holds for
words and multiplicity lists of length ≤ n − 1, and we must prove the statement
for n. As before, we already know that the statement holds for k = n. Next, sup-
pose 1 < k < n. By Lemma 2.5 we know that (i[k],m[k]) satisfies condition (P)
and (xk, . . . , xn) lies in P(i[k],m[k]). Since i[k],m[k] have length strictly less
than n, by the inductive assumption we know that the statement holds for such k.
Thus, it remains to check the case k = 1, that is, that eβ1(τ1(x2, . . . , xn)) = O
for (x1, . . . , xn) ∈ P(i,m). First, consider the case in which the simple root β1

does not appear in the word (β2, . . . , βn). By Lemma 2.11(4) any point along
the path ϕ2(x2, . . . , xn) can be written in the form

∑n
�=2 a��β�

+∑n
�=2 b�(−β�),

where a�, b� ≥ 0 are real constants, and all the simple roots β� are distinct from
β1. Then for any time t , we have 〈ϕ2(x2, . . . , xn)(t), β

∨
1 〉 = 〈∑n

�=2 a��β�
+∑n

�2
b�(−β�),β

∨
1 〉 = 〈−∑n

�=2 b�β�,β
∨
1 〉 = −∑n

�=2 b�〈β�,β
∨
1 〉 ≥ 0, where the

second equality is because 〈�β�
,β∨

1 〉 = 0 for β� �= β1, and the last inequality
is because 〈β�,β

∨
1 〉 ≤ 0 for β� �= β1. Since m1 ≥ 0 by assumption, we conclude

that 〈ϕ(x2, . . . , xn)(t), β
∨
1 〉 ≥ 0 ≥ −m1 for all t , which yields the desired result.

Next we consider the case where β1 occurs in the sequence (β2, . . . , βn). Let s

be the smallest index with s ≥ 2 such that βs = β1, that is, it is the first place
after β1 where the repetition occurs. Since the length of i[s] is n − 1, from
the inductive assumption we know that mint∈[0,1]{〈τs(xs+1, . . . , xn)(t), β

∨
s =

β∨
1 〉} ≥ 0. Note also that the path τs has the property that the minimum value

mint∈[0,1]{〈τs(xs+1, . . . , xn)(t), β
∨
s = β∨

1 〉} and the endpoint pairing 〈wt(τs), β
∨
s 〉

are both integers; this follows from its construction. Also by definition, the opera-
tor fβs preserves these properties; moreover, for such a path τ ′, it follows from the
definition of fβs that mint∈[0,1]{〈fβs (τ

′)(t), β∨
s 〉} = mint∈[0,1]{〈τ ′(t), β∨

s 〉} − 1,
that is, the minimum decreases by precisely 1. From this we conclude that
ϕs(xs, . . . , xn) = f

xs

βs=β1
(τs) satisfies

〈ϕs(xs, . . . , xn)(t), β
∨
1 = β∨

s 〉 ≥ −xs for all t ∈ [0,1]. (2.11)

By definition ϕ2(x2, . . . , xn) is obtained from ϕs(xs, . . . , xn) by

ϕ2(x2, . . . , xn) := f
x2
β2

(πm2�β2 � (· · ·f xs−1
βs−1

(π
ms−1�βs−1 � ϕs(xs, . . . , xn)) · · · )).

By assumption, β1 is distinct from all the roots β� for 2 ≤ � ≤ s − 1. Thus,
〈�β�

,β∨
1 〉 = 0 and 〈−β�,β

∨
1 〉 ≥ 0 for 2 ≤ � ≤ s − 1, and from Lemma 2.11(3)

it follows that

min
t∈[0,1]{〈ϕ2(x2, . . . , xn)(t), β

∨
1 〉} ≥ min

t∈[0,1]{〈ϕs(xs, . . . , xn)(t), β
∨
1 〉}.
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Since we know from (2.11) that the RHS is ≥−xs , it now suffices to prove
that xs ≤ m1. Since (x1, . . . , xn) ∈ P(i,m), we know that (ys, xs+1, . . . , xn) ∈
P(i[s],m[s]) if 0 ≤ ys ≤ As(xs+1, . . . , xn). Also, since (i,m) satisfies condi-
tion (P), from Lemma 2.5(2) we know that (y2, . . . , yn) ∈ P(i[2],m[2]), where
y2 = · · · = ys−1 = 0, ys = As(xs+1, . . . , xn), and yk = xk for k ≥ s + 1. Then
from condition (P) we conclude that

A1(y2, . . . , yn) = m1 + (ms − 2ys) +
( ∑

k>s
βk=β1=βs

(mk − 2xk)

)

−
( ∑

k>s
βk adjacent to β1=βs

xk〈βk,β
∨
1 = β∨

s 〉
)

= m1 + As(xs+1, . . . , xn) − 2ys = m1 − As(xs+1, . . . , xn) ≥ 0

or, in other words, m1 ≥ As(xs+1, . . . , xn). But the original xs was required to
satisfy the inequality xs ≤ A1(xs+1, . . . , xn), from which it follows that xs ≤ m1,
as was to be shown. This completes the inductive argument and hence the proof.

�

3. Newton–Okounkov Bodies of Bott–Samelson Varieties

The main result of this manuscript is Theorem 3.4, which gives an explicit de-
scription of the Newton–Okounkov body of (Zi,Li,m) with respect to a certain
geometric valuation (to be further described in detail), provided that the word i
corresponds to a reduced word decomposition and the pair (i,m) satisfies condi-
tion (P).

We first very briefly recall the ingredients in the definition of a Newton–
Okounkov body. For details, we refer the reader to [10; 15]. We begin with the
definition of a valuation (in our setting). We equip Z

n with the lexicographic or-
der.

Definition 3.1. (1) Let V be a C- vector space. A prevaluation on V is a function

ν : V \ {0} → Z
n

satisfying the following:
(a) ν(cf ) = ν(f ) for all f ∈ V \ {0} and c ∈C \ {0},
(b) ν(f + g) ≥ min{ν(f ), ν(g)} for all f,g ∈ V \ {0} with f + g �= 0.

(2) Let A be a C-algebra. A valuation on A is a prevaluation on A, ν : A \ {0} →
Z

n, which also satisfies the following: ν(fg) = ν(f ) + ν(g) for all f,g ∈
A \ {0}.

(3) The image ν(A \ {0}) ⊂ Z
n of a valuation ν on a C-algebra A is clearly a

semigroup and is called the value semigroup of the pair (A, ν).
(4) Moreover, if in addition the valuation has the property that for any pair f,g ∈

A \ {0} with same value ν(f ) = ν(g), there exists a nonzero constant c �= 0 ∈
C such that either ν(g − cf ) > ν(g) or else g − cf = 0, then we say that the
valuation has one-dimensional leaves.



Newton–Okounkov Bodies and Twisted Cubes 431

In the construction of Newton–Okounkov bodies, we consider valuations on rings
of sections of line bundles. More specifically, let X be a complex-n-dimensional
algebraic variety over C, equipped with a line bundle L = OX(D) for some
(Cartier) divisor D. Consider the corresponding (graded) C-algebra of sections
R = R(L) := ⊕

k≥0 Rk where Rk := H 0(X,L⊗k). We now describe a way to
geometrically construct a special kind of valuation. Suppose given a flag

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {pt}
of irreducible subvarieties of X where codimC(Y�) = � and each Y� is nonsin-
gular at the point Yn = {pt} (� = 0,1, . . . , n). Such a flag defines a valuation
νY• : H 0(X,L) \ {0} → Z

n by an inductive procedure involving restricting sec-
tions to each subvariety and considering its order of vanishing along the next
(smaller) subvariety as follows. We will assume that all Yi are smooth (though
this is not necessary, cf. [15]). Given a nonzero section s ∈ H 0(X,L = OX(D)),
we define

ν1 := ordY1(s),

that is, the order of vanishing of s along Y1. By choosing a local equation
for Y1 in X we can construct a section s̃1 ∈ H 0(X,OX(D − ν1Y1)) that does
not vanish identically on Y1. By restricting we obtain a nonzero section s1 ∈
H 0(Y1,OY1(D − ν1Y1)) and define ν2 := ordY2(s1). We define each νi by pro-
ceeding inductively in the same fashion. It is not difficult to see that νY• thus
defined gives a valuation with one-dimensional leaves on each Rk .

Given such a valuation ν, we may then define

S(R) = S(R,ν) :=
⋃
k>0

{(k, ν(σ )) | σ ∈ Rk \ {0}} ⊂ N×Z
n

(cf. also [15, Def. 1.6], where the notation slightly differs), which can be seen to
be an additive semigroup. Now define C(R) ⊆ R × R

n to be the cone generated
by the semigroup S(R), that is, it is the smallest closed convex cone centered at
the origin containing S(R). We can now define the central object of interest.

Definition 3.2. Let � = �(R) = �(R,ν) be the slice of the cone C(R) at level
1, that is, C(R) ∩ ({1} × R

n), projected to R
n via the projection to the second

factor R×R
n →R

n. We have

� = conv

(⋃
k>0

{
x

k
: (k, x) ∈ S(R)

})
.

The convex body � is called the Newton–Okounkov body of R with respect to the
valuation ν.

In the current manuscript, the geometric objects under study are the Bott–
Samelson variety Zi and the line bundle Li,m over it. Following the notation, we
wish to study the Newton–Okounkov body of R(Li,m) = ⊕

k>0 H 0(Zi,L
⊗k
i,m). We

begin with a description of the flag Y• of subvarieties with respect to which we
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will define a valuation. Given � with 1 ≤ � ≤ n, we define a subvariety Y� of Zi
of codimension � by

Y� := {[(p1, . . . , pn)] :
ps = e for the last � coordinates, that is, for n − � + 1 ≤ s ≤ n}.

The subvariety Y� is smooth since it is evidently isomorphic to the Bott–Samelson
variety Z(i1,...,in−�). In Kaveh’s work on Newton–Okounkov bodies and crystal
bases [8], he introduces a set of coordinates, which he denotes (t1, . . . , tn) near the
point Y0 = {[(e, e, . . . , e)]}. Near Y0, our flag Y• can be described using Kaveh’s
coordinates as

{tn = 0} ⊃ {tn = tn−1 = 0} ⊃ · · · ⊃ {tn = · · · = t2 = 0} ⊃ {(0,0, . . . ,0)}.
Remark 3.3. In particular, with respect to Kaveh’s coordinates, our geometric
valuation νY• is the lowest-term valuation on polynomials in t1, . . . , tn with re-
spect to the lexicographic order with t1 < t2 < · · · < tn. Thus, our valuation is
different from the valuation used by Kaveh [8] and Fujita [4] since they take the
highest-term valuation with respect to the lexicographic order with the variables
in the reverse order, t1 > t2 > · · · > tn. In general, it seems to be a rather sub-
tle problem to understand the dependence of the Newton–Okounkov body on the
choice of valuation; cf., for instance, the discussion in [8, Rem. 2.3].

We now state the main theorem of this section, which is also the main result
of this manuscript. Let P(i,m) denote the polytope of Definition 2.1. In Theo-
rem 3.4, P(i,m)op denotes the points in P(i,m) with coordinates reversed, that is,
P(i,m)op := {(xn, . . . , x1) : (x1, . . . , xn) ∈ P(i,m)}. (The reversal of the ordering
on coordinates arises because, locally near Yn = {[e, e, . . . , e]} and in Kaveh’s co-
ordinates, Yi is given by the equations {tn−i+1 = · · · = tn = 0}, that is, the last
coordinates are 0. So, for example, ν1(s) is the order of vanishing of s along
{tn = 0}, not {t1 = 0}.)
Theorem 3.4. Let i = (i1, . . . , in) ∈ {1,2, . . . , r}n be a word, and m = (m1, . . . ,

mn) ∈ Z
n
≥0 be a multiplicity list. Let Zi and Li,m denote the associated Bott–

Samelson variety and line bundle, respectively. Suppose that i corresponds to a
reduced word decomposition and that (i,m) satisfies condition (P). Consider the
valuation νY• previously defined and let S(R(Li,m)) denote the corresponding
value semigroup. Then

(1) the degree-1 piece S1 := S(R(Li,m)) ∩ {1} × Z
n of S(R(Li,m)) is equal to

P(i,m)op ∩ Z
n (where we identify {1} × Z

n with Z
n by projection to the

second factor),
(2) S(R(Li,m)) is generated by S1, so, in particular, it is finitely generated, and
(3) the Newton–Okounkov body � = �(R(Li,m)) of Zi and Li,m with respect to

νY• is equal to the polytope P(i,m)op.

Before diving into the proof of Theorem 3.4, we explain the basic structure of
our argument. Our first step is Proposition 3.7, where we show that the image
of νY• is always a subset of the polytope P(i,m)op. This is the most important
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step in our argument; here we need that i is reduced. Then, under the additional
assumption that (i,m) satisfies condition (P), the results of Section 2 allow us
to quickly conclude that νY• gives a surjection from S1 to P(i,m)op ∩ Z

n, from
which the theorem follows.

We need some preliminaries. For each j with 1 ≤ j ≤ n, let Cj denote the
curve in Zi given by setting all but the j th coordinate in [(p1, . . . , pn)] ∈ Zi equal
to e. Note that the curves are isomorphic to P

1. The lemma below is from [5,
Sect. 3.7].

Lemma 3.5. Let λ1, . . . , λn be a sequence of weights. The degree of the restriction
of the line bundle Li(λ1, . . . , λn) on Zi to the curve Cn is equal to 〈λn,β

∨
n 〉.

In what follows, we also need the following codimension-1 subvarieties (divisors)
on Zi. For 1 ≤ j ≤ n, let Zi(j) denote the subvariety of Zi obtained by requiring
the j th coordinate of [(p1, . . . , pn)] ∈ Zi to be equal to e. Notice that Zi(n) is
the same as our Y1 before and is also naturally isomorphic to the smaller Bott–
Samelson variety Z(i1,...,in−1) associated with the word obtained by deleting the
last entry in i. Also note that since Zi(n) is an irreducible subvariety of codimen-
sion 1, it determines a line bundle O(Zi(n)). We will need the following lemma,
which computes the restriction of certain line bundles on Zi to Zi(n).

Lemma 3.6. Let λ1, . . . , λn be a sequence of weights. Then the restriction to Zi(n)

of the line bundle Li(λ1, . . . , λn) is isomorphic to Li(n)(λ1, . . . , λn−2, λn−1 + λn)

on Z(i1,...,in−1). Moreover, the restriction of O(Zi(n)) to Zi(n) is isomorphic to
L(i1,...,in−1)(0, . . . ,0, βn) on Z(i1,...,in−1).

Proof. Consider the map ϕ : Li(n)(λ1, . . . , λn−1 + λn) → Li(λ1, . . . , λn)|Zi(n)

given by [(p1, . . . , pn−1, k)] �→ [(p1, . . . , pn−1, e, k)]. Then ϕ gives the required
isomorphism. Indeed, ϕ is well defined as can be seen by the computation

[(p1b1, b
−1
1 p2b2, . . . , b

−1
n−2pn−1bn−1, e = b−1

n−1bn−1), k]
= [(p1,p2, . . . , pn−1, e, e

−λ1(b1) · · · e−λn−1(bn−1)e
−λn(bn−1)k)]

= [(p1,p2, . . . , pn−1, e, e
−λ1(b1) · · · e−(λn−1+λn)(bn−1)k)]

in Li(λ1, . . . , λn). It can be checked similarly that ϕ is injective, and the surjec-
tivity is immediate from its definition.

For the second claim, recall that the restriction O(D)|D is the normal bundle
to D (see e.g. [21, Exer. 21.2H]). Applying this to Zi(n), it suffices to show that
the normal bundle to Zi(n) in Zi is isomorphic to L(i1,...,in−1)(0, . . . ,0, βn). Now
note Zi is a Pβn/B-bundle over Zi(n)

∼= Z(i1,...,in−1), and since Zi(n) is defined
by setting the last coordinate equal to e, the normal bundle in question can be
identified with Z(i1,...,in−1) ×B TeB(Pβn/B). The weight of the action of B on the
tangent space TeB(Pβn/B) at the identity coset eB of Pβn/B is −βn. Thus, the
normal bundle is precisely L(i1,...,in−1)(0, . . . ,0, βn), as desired. �

The important step toward the proof of the main result is the following, which
states that the image of the valuation is contained inside the polytope P(i,m)op.
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Proposition 3.7. Let i = (i1, . . . , in) ∈ {1,2, . . . , r}n be a word, and m =
(m1, . . . ,mn) ∈ Z

n
≥0 a multiplicity list. Let Zi and Li,m be the Bott–Samelson

variety and line bundle specified by i,m, and let νY• denote the geometric valua-
tion specified by the flag Y• given before. Assume that i corresponds to a reduced
word decomposition. Then

νY•(H
0(Zi,Li,m) \ {0}) ⊆ P(i,m)op ∩Z

n.

Proof. Let 0 �= s ∈ H 0(Zi,Li,m) with νY•(s) = (xn, xn−1, . . . , x1). We wish to
show that (x1, . . . , xn) ∈ P(i,m), for which it is enough to show that xn ≤ mn

and xk ≤ Ak(xk+1, . . . , xn) for 1 ≤ k ≤ n − 1.
We first prove that xn ≤ mn. Since mi ≥ 0 for all i, by [14, Cor. 3.3] the bundle

Li,m is globally generated and hence effective. Moreover, i is reduced by assump-
tion, so we can conclude from [14, Prop. 3.5] that

Li,m ∼= O
( n∑

k=1

akZi(k)

)

for some integers ak ≥ 0, 1 ≤ k ≤ n. Also, since xn = ν1(s) = ordZi(n)(s) is the
order of vanishing of s along Y1 = Zi(n), we know that div(s) = xnZi(n) + E for
some effective divisor E. Since div(s) is linearly equivalent to

∑n
k=1 akZi(k), we

may conclude

E ∼ −xnZi(n) +
n∑

k=1

akZi(k), (3.1)

where ∼ denotes linear equivalence. Considering now the corresponding Chow
classes, we may compare the (intersection) product of both sides of (3.1) with
the class [Cn] ∈ A∗(Zi). The Chow ring A∗(Zi) and the classes [Zi(k)] have been
extensively studied, and it is known (cf. [3; 14], see also [19, Prop. 2.11]) that
[Cn] · [Zi(j)] = δjn. Thus, we obtain that the product (RHS of (3.1)) · [Cn] =
−xn +an, whereas the product (LHS of (3.1)) · [Cn] = bn ≥ 0 since E is effective.
Hence, xn ≤ an. Furthermore, from [19, Prop. 2.11] and from basic properties of
intersection products we may also conclude that an is the degree of the restriction
Li,m|Cn of the line bundle Li,m to the curve Cn (which is isomorphic to P

1, so
A0(Cn) ∼= Z). By Lemma 3.5, this degree is precisely equal to 〈mn�n,β

∨
n 〉 = mn.

Thus, xn ≤ mn as was to be shown.
Next, we consider xn−1 = ν2(s) = ordY2(s1), where 0 �= s1 ∈ H 0(Y1 = Zi(n),

Li,m ⊗ O(−xnZi(n))|Y1=Zi(n)
), and s1 is constructed from s in the fashion de-

scribed previously. Note that Zi(n)
∼= Z(i1,...,in−1). Thus, repeating the same ar-

gument as given before, we may deduce that xn−1 is at most the degree of the
restriction of the line bundle Li,m ⊗O(−xnZi(n))|Y1=Zi(n)

to the curve Cn−1.
From Lemma 3.6 we know that the restriction of Li,m to Zi(n)

∼= Z(i1,...,in−1) is
isomorphic to the line bundle L(i1,...,in−1)(m1�β1 , . . . ,mn−2�βn−2,mn−1�βn−1 +
mn�βn) in the notation of (1.2), and also from Lemma 3.6 we know O(Zn)|Zn

∼=
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L(i1,...,in−1)(0, . . . ,0, βn). Thus, we have

Li,m ⊗O(−xnZi(n))|Y1=Zi(n)
∼= L(i1,...,in−1)(m1�1, . . . ,mn−2�βn−2 ,

mn−1�βn−1 + mn�βn − xnβn). (3.2)

Since s1 is a nonzero global section, the line bundle in (3.2) is effective. Thus,
by again applying [14, Prop. 3.5] we can write it as O(

∑
k a′

kZk) where a′
k ≥ 0.

By proceeding with the same argument as before, since the degree of (3.2) along
Cn−1 is precisely

〈mn−1�n−1 + mn�n − xnβn,β
∨
n−1〉 = An−1(xn),

we may conclude that xn−1 ≤ An−1(xn). Continuing similarly, we obtain (x1, . . . ,

xn) ∈ P(i,m), as desired. �

Remark 3.8. Note that since a scalar multiple rm is also a multiplicity list for
any positive integer r , it immediately follows from Proposition 3.7 that

νY•(H
0(Zi,L

⊗r
i,m) \ {0}) ⊆ P(i, rm)op ∩Z

n

for any r ∈ N.

To complete the argument, we need to recall the following fact from [7].

Proposition 3.9. If (i,m) satisfies condition (P), then P(i,m) is a lattice poly-
tope.

We are finally ready to prove the main result.

Proof of Theorem 3.4. We begin with the first claim of the theorem. It is elemen-
tary that if a valuation ν : V \ {0} → Z

n (for V a finite-dimensional complex
vector space) has one-dimensional leaves, then the cardinality |ν(V \ {0})| of
the image of ν is equal to dimC(V ) [10, Prop. 2.6]. Since our valuation νY• has
one-dimensional leaves on R1, we conclude that |νY•(R1 \ {0})| = dimC(R1) =
dimC(H 0(Zi,Li,m)). On the other hand, we know from Proposition 3.7 that
the image of νY• on R1 = H 0(Zi,Li,m) must lie in P(i,m)op ∩ Z

n. Proposi-
tion 2.4 implies |P(i,m)op ∩ Z

n| = |P(i,m) ∩ Z
n| = dimC(H 0(Zi,L(i,m))), so

we conclude that S1 := S(R) ∩ {1} × Z
n (which by definition is the image of

νY• : R1 \ {0} → P(i,m)op ∩ Z
n) is precisely P(i,m)op ∩ Z

n. Here we identify
{1}×Z

n with Z
n by projection to the second factor. This proves the first statement

of the theorem.
By Remark 3.8 we also conclude that Sr is equal to P(i, rm)op ∩ Z

n. From
the definition of the polytopes P(i,m) it follows that P(i, rm) = r ·P(i,m). This
justifies the second statement of the theorem. Finally, the last statement of the
theorem now follows directly from Definition 3.2 and Proposition 3.9. �



436 Megumi Harada & Jihyeon Jessie Yang

4. Examples

In this section, we give several concrete examples in order to illustrate our results.
The first three examples are in Lie type A, and the last is in Lie type C.

First, we let G = SL(3,C) with Borel subgroup B the upper-triangular ma-
trices and T the diagonal subgroup. The rank r is 2 in this case, and we let
{α1, α2} be the usual positive simple roots corresponding to the simple transpo-
sitions s1 = (12) and s2 = (23) in the Weyl group W = S3. For the first three
examples, we consider the Bott–Samelson variety Zi where i = (1,2,1) corre-
sponds to the reduced word decomposition s1s2s1 of the longest element w0 in
W = S3.

In Example 4.1, we give a pair (i,m) for which the corresponding Li,m is a
pullback from F�(C3) ∼= SL(3,C)/B , and (i,m) does not satisfy condition (P).
In Example 4.2, the pair (i,m) is not a pullback from F�(C3) and satisfies con-
dition (P), but the polytope P(i,m) is not simple. In Example 4.3, we give an
infinite family of pairs (i,m) that are not pullbacks from F�(C3), satisfy condi-
tion (P), and the corresponding polytopes are simple and in fact smooth (in the
sense of [2, Def. 2.4.2]).

Example 4.1. Let m = (0,1,1). Then Li,m is in fact the pullback of Lα1+α2 on
F�(C3) ∼= SL(3,C)/B . Then we can check easily that (i,m) does not satisfy con-
dition (P). The polytope P(i,m) is illustrated further. Note that P(i,m) is not a
lattice polytope and its volume is 13

12 . In this case, the expected volume of any
Newton–Okounkov body of Zi associated with this line bundle Li,m is 1, so we
see that P(i,m) cannot be a Newton–Okounkov body. However, the convex hull
of the eight lattice points in P(i,m) has volume 1. Hence, from Proposition 3.7
it follows that the Newton–Okounkov body of Z(1,2,1) for L(1,2,1),(0,1,1) with re-
spect to our valuation νY• from Section 3 is precisely the convex hull of these
eight lattice points.

Example 4.2. Let m = (1,1,1). Then it can be easily checked that (i,m) satis-
fies condition (P). The figure below illustrates the polytope P(i,m) that is (up to a



Newton–Okounkov Bodies and Twisted Cubes 437

reordering of coordinates) the Newton–Okounkov body of Z(1,2,1) with line bun-
dle L(1,2,1),(1,1,1) with respect to our valuation νY• . For visualization purposes,
the vertices of the polytope are indicated by black dots, whereas the other lattice
points are indicated by white dots. The polytope P(i,m) is not simple since there
are four edges emanating from the vertex (0,0,1).
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Example 4.3. Let m = (a,1,1) for any integer a, a ≥ 2. Again, it can be checked
easily that (i,m) for such a choice of m satisfies condition (P). The polytope
P(i,m), that is, the Newton–Okounkov body of Zi and Li,m with respect to νY•
(again up to reordering), is illustrated below for the case a = 2. Now the polytope
P(i,m) is simple and in fact smooth, and it is combinatorially a cube.
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In our last example, we consider the case G = Sp(4,C). Let α1, α2 be the simple
roots, where α1 is the short root, and α2 is the long root.

Example 4.4. We compute the polytopes P(i,m) for two choices of i: namely,
i1 = (1,2,1) (the left figure) and i2 = (2,1,2) (the right figure). For both cases,
we choose m = (2,1,1); it is easily checked that, with these choices, both pairs
(i,m) satisfy condition (P). The corresponding polytopes are illustrated further.
Explicitly (and for comparison with the type A case), the inequalities for P(i1,m)
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are
0 ≤ x3 ≤ 1, 0 ≤ x2 ≤ 1 + x3, 0 ≤ x1 ≤ 3 + 2x2 − 2x3.

The inequalities for P(i2,m) are

0 ≤ x3 ≤ 1, 0 ≤ x2 ≤ 1 + 2x3, 0 ≤ x1 ≤ 3 + x2 − 2x3.
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