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Arc Complexes, Sphere Complexes, and Goeritz Groups

Sangbum Cho, Yuya Koda, & Arim Seo

Abstract. We show that if a Heegaard splitting is obtained by gluing
a splitting of Hempel distance at least 4 and the genus-1 splitting of
S2 ×S1, then the Goeritz group of the splitting is finitely generated. To
show this, we first provide a sufficient condition for a full subcomplex
of the arc complex for a compact orientable surface to be contractible,
which generalizes the result by Hatcher that the arc complexes are
contractible. We then construct infinitely many Heegaard splittings,
including the above-mentioned Heegaard splitting, for which suitably
defined complexes of Haken spheres are contractible.

Introduction

Let �g,n be a compact connected orientable surface of genus g with n holes,
where n ≥ 3 if g = 0 and n ≥ 1 if g ≥ 1. As an analogue of the curve complex, the
arc complex Ag,n of �g,n is defined to be the simplicial complex whose vertices
are isotopy classes of essential arcs in �g,n and whose k-simplices are collections
of k + 1 vertices represented by pairwise disjoint and nonisotopic arcs in �g,n.
Hatcher [13] proved that the complex Ag,n is contractible. See also Cho, McCul-
lough, and Seo [8], Irmak and McCarthy [15] and Korkmaz and Papadopoulos
[18] for related works on arc complexes.

In Section 1, we provide a useful sufficient condition for a full subcomplex
of the arc complex to be contractible (Theorem 1.3). Since the arc complex Ag,n

itself satisfies this condition, it is contractible, which gives an updated proof for
Hatcher’s result. Moreover, we also show that the full subcomplex A∗

g,n of Ag,n,
with n ≥ 2, spanned by vertices of arcs connecting different boundary components
is contractible.

A genus-g Heegaard splitting of a closed orientable 3-manifold M is a de-
composition of the manifold into two handlebodies of the same genus g. That
is, M = V ∪ W and V ∩ W = ∂V = ∂W = �, where V and W are handle-
bodies of genus g, and � is their common boundary surface. We simply de-
note by (V ,W ;�) the splitting and call the surface � the Heegaard surface of
the splitting. It is well known that every closed orientable 3-manifold admits a
genus-g Heegaard splitting for some genus g ≥ 0. Given a genus-g Heegaard
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splitting (V ,W ;�) with g ≥ 2 for M , a separating sphere P embedded in M is
called a Haken sphere if P ∩ � is a single essential simple closed curve in �.
Two Haken spheres P and Q are said to be equivalent if P ∩ � is isotopic to
Q ∩ � in �. When the splitting (V ,W ;�) admits Haken spheres, we denote by
μ = μ(V,W ;�) the minimal cardinality of P ∩Q∩�, where P and Q vary over
all pairwise nonequivalent Haken spheres for the splitting. The sphere complex for
the splitting (V ,W ;�) is then defined to be the simplicial complex whose vertices
are equivalence classes of Haken spheres for the splitting and whose k-simplices
are collections of k + 1 vertices represented by Haken spheres P0,P1, . . . ,Pk ,
respectively, such that the cardinality of Pi ∩ Pj ∩ � is μ for all 0 ≤ i < j ≤ k.

The structures of sphere complexes for genus-2 Heegaard splittings have been
studied by several authors. If a genus-2 Heegaard splitting for a 3-manifold ad-
mits Haken spheres, then the manifold is one of S3, S2 ×S1, lens spaces, and their
connected sums. It is known that the sphere complex for the genus-2 Heegaard
splitting of S3 is connected and even contractible from Scharlemann [24], Akbas
[1], and Cho [3]. Lei [19] and Lei and Zhang [20] proved that the sphere com-
plexes are connected for genus-2 Heegaard splittings of nonprime 3-manifolds,
that is, the connected sum whose summands are lens spaces or S2 × S1, and later,
Cho and Koda [7] showed that they are actually contractible.

In Section 2, we study the Heegaard splitting for a 3-manifold having a sin-
gle S2 × S1 summand in its prime decomposition. We prove that if a genus-g
Heegaard splitting with g ≥ 2 is the splitting obtained by gluing a genus-(g − 1)

Heegaard splitting of Hempel distance at least 2 and the genus-1 Heegaard split-
ting of S2 × S1, then its sphere complex is a contractible, (4g − 5)-dimensional
complex (Corollary 2.7). In fact, we show that the sphere complex is isomorphic
to the full subcomplex A∗

g−1,2 of the arc complex Ag−1,2. As a special case, the

sphere complex for the genus-2 Heegaard splitting of S2 × S1 is a contractible,
three-dimensional complex (Corollary 2.8).

For a Heegaard splitting (V ,W ;�) for a 3-manifold, the Goeritz group is de-
fined to be the group of isotopy classes of the orientation-preserving homeomor-
phisms of the manifold that preserve V and W setwise. We might expect that
the Goeritz group would be simpler once we have more complicated Heegaard
splitting in some sense. One of the important results on Goeritz group in this
view point is that the Goeritz groups of Heegaard splittings of Hempel distance
at least 4 are all finite groups, which is given in Johnson [16]. On the other hand,
it is hard to determine whether the Goeritz group of a given Heegaard splitting of
low Hempel distance is finitely generated or not. Even it remains open whether the
Goeritz group of a Heegaard splitting of genus at least 3 for the 3-sphere is finitely
generated or not. The Goeritz groups of genus-1 Heegaard splittings are easy to
describe, and for genus-2 reducible Heegaard splittings, their Goeritz groups have
been studied in [10; 24; 1; 3; 4; 5; 6; 7].

In the final section, we study the Goeritz groups of the Heegaard splittings
given in Section 2. The main result is that, for a Heegaard splitting obtained by
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Figure 1

gluing a Heegaard splitting of Hempel distance at least 4 and the genus-1 Hee-
gaard splitting of S2 × S1, its Goeritz group is finitely generated (Corollary 3.4).
This can be compared with the result of Johnson [17], who showed that if a Hee-
gaard splitting is obtained by gluing a Heegaard splitting of high Hempel distance
and the genus-1 Heegaard splitting of S3, then its Goeritz group is finitely gener-
ated.

Throughout the paper, we will work in the PL category. By Nbd(X;Y) we
denote a regular neighborhood of a subspace X of a polyhedral space Y .

1. Arc Complexes

We start with recalling a sufficient condition for contractibility of a simplicial
complex, introduced in [3], which is a generalization of the proof of Theorem 5.3
in [21].

Let K be a simplicial complex. We say that a vertex w is adjacent to a vertex v

of K if w equals v or if w is joined to v by an edge of K. We denote by st(v) the
star of a vertex v of K that is the full subcomplex of K spanned by the vertices
adjacent to v. An adjacency pair (X,v) in K is a finite multiset that consists of
vertices of st(v). Here the finite multiset X is a finite set {v1, v2, . . . , vk} allowed
to have vi = vj for some 1 ≤ i < j ≤ k. A remoteness function for a vertex v0

of K is a function r from the set of vertices of K to N ∪ {0} satisfying r−1(0) ⊂
st(v0). A blocking function for a remoteness function r is a function b from the
set of adjacency pairs of K to N∪{0} satisfying the following properties for every
adjacency pair (X,v) with r(v) > 0:

(1) If b(X,v) = 0, then there exists a vertex w of st(v) such that r(w) < r(v) and
(X,w) is also an adjacency pair (see Figure 1(a)).

(2) If b(X,v) > 0, then there exist an element v′ of X and a vertex w′ of st(v′)
such that
(a) r(w′) < r(v′),
(b) if an element x of X is adjacent to v′, then x is also adjacent to w′, and
(c) b(X \ {v′} ∪ {w′}, v) < b(X,v), where X \ {v′} ∪ {w′} is the multiset

obtained by removing one instance of v′ from X and adding one instance
of w′ to X (see Figure 1(b)).
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A simplicial complex K is called a flag complex if any collection of pairwise
distinct k + 1 vertices span a k-simplex whenever any two of them span a 1-
simplex.

Lemma 1.1 ([3], Prop. 3.1). Let K be a flag complex with a base vertex v0. If
there exists a remoteness function r on the set of vertices of K for v0 that admits
a blocking function b, then K is contractible.

The idea of the proof given in [3] is to show that the homotopy groups are all
trivial. That is, given any simplicial map f : Sq → K, q ≥ 0, with respect to a
triangulation � of Sq , we find a simplicial map g : Sq → K with respect to a
triangulation �′ obtained from � by finitely many barycentric subdivisions such
that g is homotopic to f and the image of g is contained in st(v0).

Now we return to the arc complex Ag,n of a compact orientable surface �g,n

of genus g with n holes, where n ≥ 3 if g = 0 and n ≥ 1 if g ≥ 1. It is a standard
fact that any collection of isotopy classes of essential arcs in �g,n can be realized
by a collection of representative arcs having pairwise minimal intersection. In
particular, for a collection {v0, v1, . . . , vk} of vertices of Ag,n, if vi and vj are
joined by an edge for each 0 ≤ i < j ≤ k, then {v0, v1, . . . , vk} spans a k-simplex.
Thus, we have the following:

Lemma 1.2. The arc complex Ag,n is a flag complex, and any full subcomplex of
Ag,n is also a flag complex.

Let α and α0 be essential arcs on the surface �g,n that intersect each other trans-
versely and minimally. A component β of α0 cut off by α ∩ α0 is said to be
outermost if β ∩ α consists of a single point. We note that there exist exactly two
such subarcs of α0. The intersection β ∩ α cuts α into two subarcs β ′ and β ′′. We
call the two new arcs α′ = β ∪ β ′ and α′′ = β ∪ β ′′ the arcs obtained from α by
surgery along β . We observe that by a small isotopy α′ and α′′ are disjoint from
α, and |α0 ∩ α′| < |α0 ∩ α| and |α0 ∩ α′′| < |α0 ∩ α| since the intersection β ∩ α

is no longer counted.

Theorem 1.3. Any full subcomplex A of Ag,n satisfying the following property is
contractible.

Surgery Property: Let α and α0 be representative arcs of vertices of A that in-
tersect each other transversely an minimally. If α ∩α0 
= ∅, then at least one of
the two arcs obtained from α by surgery along an outermost subarc of α0 cut
off by α ∩ α0 represents a vertex of A.

Proof. Fix a base vertex v0 of A. By Lemmas 1.1 and 1.2 it suffices to find a
remoteness function for v0 that admits a blocking function. For each vertex v of
A, define r(v) to be the minimal cardinality of the intersection α ∩ α0, where
α and α0 are representative arcs of v and v0, respectively. By definition, r is a
remoteness function for v0.
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Let (X,v) be an adjacent pair in A, where r(v) > 0 and X = {v1, v2, . . . , vn}.
Choose representative arcs α, α1, α2, . . . , αn, and α0 of v, v1, v2, . . . , vn, and v0,
respectively, so that they have transverse and pairwise minimal intersection, and
every crossing is a double point. Since r(v) > 0, we have α ∩ α0 
= ∅. Among the
two subarcs of α0 cut off by α ∩ α0, choose one, say β , so that the cardinality of
β ∩ (α1 ∪α2 ∪· · ·∪αn) is minimal, and then denote this cardinality by b0 = b0(α,
α1, α2, . . . , αn, α0). We define b(X,v) to be the minimal number of b0 among all
such representative arcs of v, v1, v2, . . . , vn, and v0. In the following, we will
show that b is a blocking function for r .

First, suppose that b(X,v) = 0. Then by an isotopy we may assume that
β ∩ (α1 ∪ α2 ∪ · · · ∪ αn) = ∅. By the surgery property at least one of the two
arcs obtained from α by surgery along β , say α′, represents a vertex w of A.
See Figure 2. By the construction, v is adjacent to w, and (X,w) is an adjacent
pair. Further, we have r(w) ≤ |α0 ∩ α′| < |α0 ∩ α| = r(v). Next, suppose that
b(X,v) > 0. We may assume that β ∩ (α1 ∪ α2 ∪ · · · ∪ αn) = b(X,v) by an iso-
topy. Let γ be the outermost subarc of α0 cut off by α1 ∪ α2 ∪ · · · ∪ αn that is
contained in β . The point (α1 ∪ α2 ∪ · · · ∪ αn) ∩ γ is contained in αk for some
k ∈ {1,2, . . . , n}. Then again by the surgery property at least one of the arcs ob-
tained from αk by surgery along γ represents a vertex, say w′, of A. See Figure 3.
By the construction we have r(w′) < r(vk), b(X \ {vk} ∪ {w′}, v) < b(X,v), and
each element x of X adjacent to vk is also adjacent to w′. This completes the
proof. �

Let n ≥ 2. We denote by A∗
g,n the full subcomplex of Ag,n spanned by the vertices

represented by simple arcs connecting the different components of the boundary
of �g,n. It is easy to verify that the arc complex Ag,n itself and the subcomplex
A∗

g,n satisfy the surgery property. Thus we have the following.

Corollary 1.4. The complexes Ag,n and A∗
g,n are contractible.

We end the section with the following lemma for later use.
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Lemma 1.5. The dimension of the complex A∗
g,2 is 4g − 1.

Proof. Let A = {α1, α2, . . . , αn} be a maximal set of mutually disjoint, mutu-
ally nonisotopic simple arcs connecting the different components of the boundary
of �g,2. By contracting each of these boundary components of �g,2 into a point
we get a closed orientable surface � of genus g with two dots, say v+ and v−. On
this surface, each of the arcs of A connects the two dots. Hence, A decomposes �

into cubes with the vertex sets {v+, v−}. Now, the assertion follows easily from
Euler characteristic considerations. �

2. Sphere Complexes

Let (V ,W ;�) be a Heegaard splitting of genus g ≥ 2 of a closed orientable 3-
manifold M . A separating sphere P embedded in M is called a Haken sphere
for the spitting if it intersects � transversely in a single essential simple closed
curve. Since P is separating in M , the curve P ∩� is separating in �. Two Haken
spheres P and Q are said to be equivalent if P ∩ � and Q ∩ � are isotopic in �.
We denote by μ = μ(V,W ;�) the minimal cardinality of P ∩ Q ∩ �, where
P and Q vary over all pairwise nonequivalent Haken spheres for (V ,W ;�). We
note that μ is a nonnegative even number. It was shown in [23] that μ(V,W ;�) =
4 when the genus of the splitting is 2. When the given splitting (V ,W ;�) admits
Haken spheres, the sphere complex for the splitting is defined as in Introduction,
which we will denote by H = H(V ,W ;�).

Given a closed orientable surface � of genus g ≥ 1, the curve complex Cg is
defined to be the simplicial complex whose vertices are isotopy classes of simple
closed curves in � and whose k-simplices are collections of k + 1 vertices rep-
resented by pairwise disjoint and nonisotopic curves in �. It is known that the
curve complex Cg is connected and (3g − 4)-dimensional. When the surface is
the Heegaard surface of a Heegaard splitting (V ,W ;�) of a 3-manifold, we have
the two full subcomplexes DV and DW of Cg , which are spanned by the vertices
of the simple closed curves bounding disks in V and W , respectively. Then we
define the Hempel distance of the splitting to be the minimal simplicial distance
in Cg between the two subcomplexes DV and DW . That is, the minimal number
of edges among all the paths in Cg from a vertex of DV to a vertex of DW . We
refer the reader to [14] for details on the Hempel distance. In the case of genus-1
Heegaard splitting for a 3-manifold, we have that the Hempel distance is 0 if the
manifold is S2 × S1 and ∞ otherwise.

Let (V ,W ;�) be a Heegaard splitting of a closed orientable 3-manifold M .
A nonseparating disk E0 in V is called a reducing disk if ∂E0 bounds a disk in W .
We note that if there exists a reducing disk in M , then M has an S2 × S1 sum-
mand for its prime decomposition, and vice versa by Waldhausen’s uniqueness of
Heegaard splittings of S2 × S1 [25] and Haken’s lemma [12]. Given any simple
closed curve γ in � intersecting ∂E0 transversely in a single point, the boundary
of Nbd(∂E0 ∪ γ ;�) is a separating simple closed curve in � that bounds a disk
in each of V and W . Thus, if the genus of the splitting is greater than 1, such a
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simple closed curve γ determines a Haken sphere P = P(γ ) for the splitting, the
union of those two disks in V and W .

Lemma 2.1. Let (V ,W ;�) be a genus-g Heegaard splitting of a 3-manifold M ,
where g ≥ 2. Let E0 be a reducing disk in V . Let γ and γ ′ be simple closed curves
each of which intersects ∂E0 transversely in a single point. Let P = P(γ ) and
P ′ = P(γ ′) be Haken spheres determined by the curves γ and γ ′, respectively.
Then there exists an orientation-preserving homeomorphism of the manifold M

onto itself that maps P to P ′ while preserving each of V and W setwise.

Proof. If γ ′ is isotopic to γ up to Dehn twists about ∂E0, then P and P ′ are
equivalent, and thus there is nothing to prove. Otherwise, suppose first that γ ′ is
disjoint from γ up to Dehn twists about ∂E0. We may assume without loss of
generality that γ ′ itself is disjoint from γ because Dehn twists about ∂E0 do not
change the equivalence class of P ′. The boundary of Nbd(∂E0;�) consists of two
simple closed curves δ1 and δ2. For each i ∈ {1,2}, the intersection of δi and γ ∪γ ′
cuts δi into two arcs δi,1 and δi,2. We set αi = ((γ ∪ γ ′) \ Nbd(∂E0;�)) ∪ δ1,1 ∪
δ2,i . See Figure 4. We note that the union α1 ∪ α2 bounds proper annuli A and B

in V and W , respectively. Then a single Dehn twist about the annulus A, which
extends to the Dehn twist about the torus A ∪ B , is the required homeomorphism
of M . Here we remark that this homeomorphism is actually a “sliding” of a foot
of the 1-handle of each of V and W whose belt sphere is ∂E0.

The general case follows from the connectivity of the arc complex as follows.
The simple closed curve ∂E0 cuts � into a genus-(g − 1) surface �g−1,2 with
two holes ∂E+

0 and ∂E−
0 coming from ∂E0. On the surface �g−1,2, γ and γ ′

are simple arcs β and β ′ connecting the two holes. Since the complex A∗
g−1,2

is connected by Corollary 1.4, there exists a sequence β = β1, β2, . . . , βn = β ′
of mutually nonisotopic, essential arcs in �g−1,2 connecting ∂E+

0 and ∂E−
0

such that βi is disjoint from βi+1 for each i ∈ {1,2, . . . , n − 1}. Gluing ∂E+
0

and ∂E−
0 back, this sequence gives rise to a sequence of simple closed curves

γ = γ1, γ2, . . . , γn = γ ′ such that γi+1 is disjoint from γi up to Dehn twists about
∂E0 for each i ∈ {1,2, . . . , n − 1}. Then there exists an orientation-preserving
homeomorphism gi of the manifold M onto itself that maps P(γi) to P(γi+1)
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while preserving each of V and W setwise. Then the composition gn−1gi−2 · · ·g1

is the desired homeomorphism. �

Let (V ,W ;�) be a genus-g Heegaard splitting of a 3-manifold M with g ≥ 2.
Suppose that there exists a reducing disk E0 in V . We denote by HE0 the simpli-
cial complex whose vertices are equivalence classes of Haken spheres P = P(γ )

determined by simple closed curves γ in � intersecting ∂E0 transversely in a
single point and whose k-simplices are collections of k + 1 vertices represented
by pairwise nonequivalent Haken spheres P(γ0),P (γ1), . . . ,P (γk) such that the
minimal cardinality of each P(γi) ∩ P(γj ) ∩ � is 4 for 0 ≤ i < j ≤ k (equiva-
lently the arcs γi and γj are disjoint from each other). We observe that a Haken
sphere P represents a vertex of HE0 if and only if P cuts off from V a solid torus
whose meridian disk is E0. By construction, if μ(V,W ;�) = 4, then the com-
plex HE0 is a full subcomplex of the sphere complex H of the splitting (V ,W ;�).
The following lemma is immediate from the definition of the complex HE0 with
Corollary 1.4 and Lemma 1.5.

Lemma 2.2. Let (V ,W ;�) be a genus-g Heegaard splitting of a closed orientable
3-manifold M with g ≥ 2. Let E0 be a reducing disk in V . Then the complex HE0

is isomorphic to the complex A∗
g−1,2, and hence it is a contractible, (4g − 5)-

dimensional complex.

Proposition 2.3. Let (V ,W ;�) be a genus-g Heegaard splitting of a closed
orientable 3-manifold M with g ≥ 2. Suppose that there exists a unique reducing
disk E0 in V and also that μ(V,W ;�) > 0. Then the sphere complex H for the
splitting (V ,W ;�) coincides with the complex HE0 .

Proof. Let P be a Haken sphere for the splitting (V ,W ;�) intersecting E0 trans-
versely and minimally. Suppose that P ∩ E0 
= ∅. At least one, say M1, of the
closed 3-manifolds M1 and M2 obtained by cutting M along P and then cap-
ping off the resulting boundary spheres by adding 3-balls has an S2 × S1 sum-
mand for its prime decomposition. Then as mentioned in the last paragraph be-
fore Lemma 2.1, the V part of the Heegaard splitting of M1 naturally induced
from (V ,W ;�) contains a reducing disk, which gives rise to a reducing disk of
V that is not isotopic to E0. This contradicts the uniqueness of E0. Therefore, any
Haken sphere is disjoint from the reducing disk E0. It suffices to show that P cuts
off a solid torus from V whose meridian disks is E0. Suppose not, that is, the com-
ponent �′ of � cut off by P ∩ � containing ∂E0 is a compact surface of genus at
least 2. Then we can choose a simple closed curve γ in �′ intersecting ∂E0 trans-
versely in a single point such that the Haken sphere Q = Q(γ ) is disjoint from
and is not equivalent to P . We have then 0 < μ(V,W ;�) ≤ |P ∩ Q ∩ �| = 0, a
contradiction. �

Now we will construct (infinitely many) Heegaard splittings (V ,W ;�) satisfying
the conditions in Proposition 2.3, that is,
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• there exists a unique reducing disk in V ; and
• μ(V,W ;�) > 0.

Let (V1,W1;�1) and (V2,W2;�2) be genus-g1 and genus-g2 Heegaard split-
tings for 3-manifolds M1 and M2, respectively. Let B1 and B2 be 3-balls in M1

and M2 that intersect the Heegaard surfaces �1 and �2 in a single disk, respec-
tively. Removing the interiors of B1 and B2, and identifying ∂B1 and ∂B2, we
can construct a genus-(g1 + g2) Heegaard splitting (V ,W ;�) for the connected
sum M = M1#M2 such that V and W are considered as boundary connected sums
of V1 and V2 and of W1 and W2, respectively. We call the splitting (V ,W ;�) a
Heegaard splitting for M obtained from (V1,W1;�1) and (V2,W2;�2). We note
that the sphere P = ∂B1 = ∂B2 is a Haken sphere for the splitting (V ,W ;�). In
the remaining of the section, we always assume the following:

• (V1,W1;�1) is a genus-(g − 1) Heegaard splitting for a closed orientable 3-
manifold M1 with g ≥ 2, and (V2,W2;�2) is the genus-1 Heegaard splitting
for S2 × S1.

• (V ,W ;�) is a genus-g Heegaard splitting for M = M1#(S2 × S1) obtained
from (V1,W1;�1) and (V2,W2;�2) by the above construction, and P =
∂B1 = ∂B2 is the Haken sphere for the splitting (V ,W ;�).

• E0 and E′
0 with ∂E0 = ∂E′

0 are meridian disks of the solid tori V2 and W2,
respectively, which are reducing disks for the splitting (V ,W ;�).

We start with the following two lemmas.

Lemma 2.4. Let δ be an essential simple closed curve in � that is disjoint from
and not isotopic to ∂E0. Suppose that δ does not cut off from � a torus with
one hole containing ∂E0. If δ bounds disks in V and W simultaneously, then the
Hempel distance of the splitting (V1,W1;�) is 0.

From the lemma it is easy to see that if the Hempel distance of the splitting
(V1,W1;�1) is at least 1 and if E is an essential nonseparating disk in V that
is disjoint from and not isotopic to E0, then E cannot be a reducing disk for the
splitting (V ,W ;�).

Proof of Lemma 2.4. Suppose that δ in � bounds disks both in V and W . We
want to find an essential simple closed curve in �1 that bounds disks both in V1

and W1.
Among the simple closed curves in � that intersect ∂E0 transversely in a single

point, choose one, say γ , so that γ intersects δ minimally. Then either γ is disjoint
from δ or γ intersects δ in a single point. (If δ is nonseparating and δ ∪ ∂E0 is
separating in �, then we have to choose such a curve γ so that γ intersects δ in a
single point. Otherwise, we can choose γ disjoint from δ.) Let P(γ ) be the Haken
sphere determined by γ , that is, P(γ ) ∩ � is the boundary of Nbd(∂E0 ∪ γ ;�).
Applying Lemma 2.1, we may assume that the Haken sphere P(= ∂B1 = ∂B2)

equals P(γ ) and that Nbd(E0 ∪ γ ;V ) and Nbd(E′
0 ∪ γ ;W) are solid tori V2 and

W2, respectively, with the interior of the 3-ball B2 removed.
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Figure 5

If γ is disjoint from δ, then by isotopy we may assume that δ lies in �1 outside
the disk B1 ∩ �1 and that the union of the disk in V and that in W bounded by
δ are disjoint from and not isotopic to P . Apparently, δ remains to be essential
in �1. See Figure 5(i) and (ii). Thus, the Hempel distance of (V1,W1;�1) is 0 in
this case. If γ intersects δ in a single point, then we cannot say that δ lies in �1.
But by isotopy we may assume that the boundary of Nbd(∂E0 ∪ δ ∪ γ ;�), which
consists of two simple closed curves, lies in �1 outside the disk B1 ∩ �1. Any
of the two simple closed curves bound disks in V and W , which can be isotoped
to be disjoint from P . Since δ is not isotopic to ∂E0 in �, each of these simple
closed curves is essential in �1. See Figure 5(iii). Again, the Hempel distance of
(V1,W1;�) is 0. �

Lemma 2.5. Let δ1 and δ2 be disjoint, nonseparating simple closed curves in �

each of which is disjoint from and not isotopic to ∂E0. If δ1 bounds a disk in V

and δ2 bounds a disk in W , then the Hempel distance of the splitting (V1,W1;�)

is at most 1.

Proof. The argument will be very similar to the proof of Lemma 2.4. We note
that δ1 is possibly isotopic to δ2. Suppose that δ1 and δ2 bound disks in V and W ,
respectively. We want to find two disjoint, essential simple closed curves in �1

such that one bounds a disk in V1 and the other in W1. Among the simple closed
curves in � that intersect ∂E0 transversely in a single point, choose one, say γ ,
so that γ intersects δ1 ∪ δ2 minimally. We may assume that the Haken sphere P

equals P(γ ) as in the proof of Lemma 2.4. For each i ∈ {1,2}, δi is disjoint from
γ or intersects γ in a single point, and hence we have four cases.

If each of δ1 and δ2 is disjoint from γ , then by isotopy we may assume that δ1

and δ2 lie inside �1 as disjoint, essential simple closed curves, and these bound
disks inside V1 and W1, respectively. See Figure 6(i).

If one of them, say δ1, intersects γ in a single point and the other one δ2 is
disjoint from γ , then consider the boundary of Nbd(∂E0 ∪ δ1 ∪ γ ;�), which
consists of two simple closed curves. By isotopy we may assume that both of
the two simple closed curves lie inside �1 as essential simple closed curves and
bound disks in V1, whereas δ2 is an essential simple closed curve in �1 disjoint
from these curves and bounding a disk in W1. See Figure 6(ii).
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Figure 6

Finally, if each of δ1 and δ2 intersects γ in a single point, then consider
the boundary of Nbd(∂E0 ∪ δ1 ∪ δ2 ∪ γ ;�), which consists of three sim-
ple closed curves. By isotopy again, we may assume that all the three curves
lie in �1. Among the three curves, one is a component of the boundary of
Nbd(∂E0 ∪δ1 ∪γ ;�), which bounds a disk in V1, and another one is a component
of the boundary of Nbd(∂E0 ∪ δ2 ∪ γ ;�), which bounds a disk in W1. (The third
one may bound a disk neither in V1 nor in W1.) See Figure 6(iii). Again, these
two simple closed curves are essential in �1. Therefore, in any of four cases, the
Hempel distance of the splitting (V1,W1;�) is at most 1. �

Let D and E be essential disks in the handlebody V that intersect each other
transversely and minimally. A subdisk � of D cut off by D ∩ E is said to be
outermost if � ∩ E is a single arc. For an outermost subdisk � of D cut off by
D ∩E, the arc �∩E cuts E into two disks, say E′ and E′′. We call the two disks
E1 = E′ ∪ � and E2 = E′′ ∪ � the disks obtained from E by surgery along �.
Both of E1 and E2 can be isotoped to be disjoint from E. By an elementary
argument of the reduced homology group H2(V , ∂V ;Z) we can check easily that
at least one of E1 and E2 is nonseparating if E is nonseparating.

For any simple closed curves γ and δ in the surface � that intersect each other
transversely and minimally in at least two points, we can define similarly the two
simple closed curves γ1 and γ2 obtained from γ by surgery along an innermost
subarc of δ cut off by γ ∩ δ. Here an innermost subarc, say δ′, is a component of
δ cut off by γ ∩ δ that meets γ only in its endpoints and cuts γ into two arcs, say
γ ′ and γ ′′. Then γ1 = γ ′ ∪ δ′ and γ2 = γ ′′ ∪ δ′. If the subarc δ′ meets γ from the
same side, then both of γ1 and γ2 can be isotoped to be disjoint from γ . We also
see that if γ is nonseparating, then at least one of γ1 and γ2 is nonseparating by
an elementary argument of H2(�;Z).

Proposition 2.6. Suppose that the Hempel distance of the splitting (V1,W1;�)

is at least 2. Then we have the following:

(1) E0 is the unique reducing disk in V , and
(2) μ(V,W ;�) > 0.

Proof. Statement (2) is easy to verify. In fact, if μ(V,W ;�) = 0, then we might
find a Haken sphere for the splitting (V1,W1;�1), and hence the Hempel distance
of (V1,W1;�1) would be 0, a contradiction.
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Figure 7

We prove (1). It is proved in [6] that (1) is true when M1 ∼= S3 and g = 2. In
the following, we will assume that M1 � S3 and g > 2. Let E be an essential non-
separating disk in V that is not isotopic to E0. We may assume that E intersects
E0 transversely and minimally. If E is disjoint from E0, then E is not a reducing
disk by Lemma 2.4. Suppose that E intersects E0. Then ∂E0 cuts ∂E into 2n

(n ≥ 1) simple arcs δ1, δ2, . . . , δ2n. We divide the collection of these arcs into two
subcollections as

{δ1, δ2, . . . , δ2n} = {δ1,1, δ1,2, . . . , δ1,n1} � {δ2,1, δ2,2, . . . , δ2,n2},
where each of the arcs δ1,i meets ∂E0 from the same side, whereas each of δ2,j

does from the opposite sides. We may assume without loss of generality that there
exists an outermost subdisk � of E cut off by E ∩ E0 such that δ1,1 ⊂ ∂�. See
Figure 7.

Let {E′
0,D

′
1,D

′
2, . . . ,D

′
g−1} be a complete system of meridian disks of

W , where ∂E′
0 = ∂E0. Fix orientations of the boundary circles ∂E′

0 and
∂D′

1, ∂D′
2, . . . , ∂D′

g−1 and assign symbols x and y1, y2, . . . , yg−1 on the circles,
respectively. Then any oriented simple closed curve δ in � intersecting the bound-
ary circles transversely determines a word w(δ) on {x, y1, y2, . . . , yg−1} that can
be read off from the intersections of δ with the circles. This word determines an
element of the free group π1(W) = 〈x, y1, y2, . . . , yg−1〉 represented by δ. Let E1
and E2 be the disks obtained from E0 by surgery along �. Since E0 is nonsep-
arating, at least one of the two, say E1, is nonseparating. By a small isotopy we
assume that E1 is disjoint from E0.

Claim 1. The word w(δ1,1) on {y1, y2, . . . , yg−1} read off by the interior of the
arc δ1,1 represents a nontrivial element of π1(W) = 〈x, y1, y2, . . . , yg−1〉.
Proof. The disk E1 is nonseparating, disjoint from E0, and not isotopic to E0,
and hence, by Lemma 2.4, it is not a reducing disk. That is, ∂E1 does not bound a
disk in W . Thus, by the loop theorem w(∂E1) = w(δ1,1) determines a nontrivial
element of π1(W). �

Claim 2. The word w(δ1,i ) on {y1, y2, . . . , yg−1} read off by the interior
of the arc δ1,i (2 ≤ i ≤ n1) represents a nontrivial element of π1(W) =
〈x, y1, y2, . . . , yg−1〉.
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Figure 8

Proof. The arc δ1,i is an innermost subarc of ∂E cut off by ∂E ∩ ∂E0. One of the
two simple closed curves obtained from ∂E0 by surgery along δ1,i is a nonsepa-
rating curve, which we denote by γ0. By a small isotopy we may assume that γ0
is disjoint from ∂E0. Further, it is easy to see that γ0 intersects ∂E1 transversely
at most once. See Figure 8. If γ0 does not bound a disk in W , then by the loop the-
orem the word w(γ0) = w(δ1,i ) determines a nontrivial element of π1(W), so we
are done. Suppose for a contradiction that γ0 bounds a disk in W . If γ0 is disjoint
from ∂E1, then the Hempel distance of the splitting (V1,W1;�) is at most 1 by
Lemma 2.5, which is a contradiction. If γ0 intersects ∂E1 in a single point, then
the boundary δ of Nbd(γ0 ∪ ∂E1;�) is an essential, separating simple closed
curve, which is disjoint from γ0 and bound disks both in V and W . The curve
δ cannot cut off from � a torus with one hole containing ∂E0 since otherwise
M1 ∼= S3 and g = 2, a contradiction. Thus, by Lemma 2.4 the Hempel distance of
the splitting (V1,W1;�) is 0 by Lemma 2.5, which is also a contradiction. �

Now we can write the word w(∂E) on {x, y1, y2, . . . , yg−1} as

xε1w(δ1)x
ε2w(δ2)x

ε3w(δ3) · · ·xε2nw(δ2n),

where εk ∈ {−1,1} for k ∈ {1,2, . . . ,2n}. If δk = δ1,i for some i ∈ {1,2, . . . , n1},
then {εk, εk+1} = {−1,1}, but w(δk) is nontrivial. If δk = δ2,j for some j ∈
{1,2, . . . , n2}, then w(δk) is possibly trivial, but εk = εk+1. (Here ε2n+1 = ε1.)
This implies that w(∂E) determines a nontrivial element of π1(W), and so ∂E

cannot bound a disk in W . Thus, E cannot be a reducing disk. �

By Lemma 2.2, and Propositions 2.3 and 2.6 we have the main result of the sec-
tion.

Corollary 2.7. Let (V1,W1;�1) be a genus-(g − 1) Heegaard splitting of
Hempel distance at least 2 for a closed orientable 3-manifold M1, where g ≥ 2,
and let (V2,W2;�2) be the genus-1 Heegaard splitting for S2 × S1. If (V ,W ;�)

is the splitting for M1#(S2 × S1) obtained from (V1,W1;�1) and (V2,W2;�2),
then the sphere complex H for the splitting (V ,W ;�) is isomorphic to the com-
plex A∗

g−1,2, and hence it is a (4g − 5)-dimensional contractible complex.

Recalling that the Hempel distance of the genus-1 Heegaard splitting of S3 or a
lens space is ∞, we also have the following:
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Corollary 2.8. Let (V ,W ;�) be the genus-2 Heegaard splitting for M1#(S2 ×
S1), where M1 is S3 or a lens space. Then the sphere complex H for the splitting
(V ,W ;�) is a three-dimensional contractible complex.

3. Goeritz Groups

Let M be an orientable manifold. Let X1,X2, . . . ,Xn, and Y be subspaces of M .
We denote by

Homeo+(M,X1,X2, . . . ,Xn relY)

the group of orientation-preserving homeomorphisms of M that preserve each
of the subspaces X1,X2, . . . ,Xn setwise and Y pointwise. We equip this
group with the compact-open topology. Let Homeo0(M,X1,X2, . . . ,Xn relY)

be the connected component of Homeo+(M,X1,X2, . . . ,Xn relY) contain-
ing the identity. This component is a normal subgroup, and we denote by
MCG+(M,X1,X2, . . . ,Xn relY) the quotient group

Homeo+(M,X1,X2, . . . ,Xn relY)/Homeo0(M,X1,X2, . . . ,Xn relY).

Let (V ,W ;�) be a Heegaard splitting of a closed orientable 3-manifold M . We
recall that the Goeritz group of the splitting (V ,W ;�) is the group of isotopy
classes of the orientation-preserving homeomorphisms of M that preserve V and
W setwise. We denote by G(V ,W ;�) the Goeritz group, which is identified with
the quotient group MCG+(M,V ). We note that there are natural injective homo-
morphisms MCG+(V ) → MCG+(�) and MCG+(W) → MCG+(�), which can
be obtained by restricting homeomorphisms of V and W to �, respectively. Once
we regard the groups MCG+(V ) and MCG+(W) as subgroups of MCG+(�) with
respect to the inclusions, G(V ,W ;�) is identified with MCG+(V )∩MCG+(W).
We also note that the group G(V ,W ;�) acts on the sphere complex H of
(V ,W ;�) simplicially if the splitting (V ,W ;�) admits Haken spheres.

Namazi [22] showed that if the Hempel distance of the splitting (V ,W ;�) is
sufficiently high, then G(V ,W ;�) is a finite group. Later, Johnson [16] improved
this result as follows.

Theorem 3.1 (Johnson [16]). If the Hempel distance of the splitting (V ,W ;�)

is at least 4, then the group G(V ,W ;�) is finite.

For Heegaard splittings of low Hempel distance, the situation is much more com-
plicated as mentioned in Introduction.

In this section, we are interested in the Goeritz groups of the Heegaard split-
tings described in Section 2. Let (V ,W ;�) be a genus-g Heegaard splitting of
a closed orientable 3-manifold M , where g ≥ 2. Suppose that μ(V,W ;�) > 0
and there exists a unique reducing disk E0 in V . Fix a Haken sphere P for the
splitting (V ,W ;�) that represents a vertex of the complex HE0 . That is, P is
the Haken sphere determined by a simple closed curve in � intersecting ∂E0 in
a single point as in Section 2. Then the disk P ∩ V cuts off from V a solid torus
whose meridian disk is E0.
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Figure 9

Figure 10

The handlebody V cut off by P ∩ V consists of two handlebodies V ′
1 and V ′

2,
and similarly, W cut off by P ∩ W consists of W ′

1 and W ′
2. Gluing 3-balls B1

and B2 on V ′
1 ∪ W ′

1 and V ′
2 ∪ W ′

2 along P , we obtain two Heegaard splittings
(V1,W1;�1) and (V2,W2;�2), respectively. We may assume that (V2,W2;�2)

is the genus-1 splitting of S2 × S1, whereas (V1,W1;�1) is the genus-(g − 1)

splitting of a 3-manifold having no S2 ×S1 summand in its prime decomposition.
Suppose that the Goeritz group G(V1,W1;�1) is generated by finitely many

elements ω1,ω2, . . . ,ωm. For each i ∈ {1,2, . . . ,m}, the element ωi has a repre-
sentative homeomorphism wi ∈ Homeo+(M1,V1) satisfying wi |Bi

is the identity.
Thus, there exists an element ω̃i of G(V ,W ;�) represented by a homeomorphism
w̃i ∈ Homeo+(M,V ) such that w̃i(P ) = P , w̃i |V ′

1∪W ′
1
= wi |V ′

1∪W ′
1

and w̃i |V ′
2∪W ′

2
is the identity.

We also define the elements λj and μj for each j ∈ {1,2, . . . , g − 1} and
the elements β and ε of G(V ,W ;�) as follows. The elements λj and μj have
representative homeomorphisms lj and mj with lj |V ′

2∪W ′
2
= mj |V ′

2∪W ′
2
= idV ′

2∪W ′
2

obtained by pushing V ′
2 ∪ W ′

2 so that P ∩ V moves along the arcs depicted in
Figure 9, respectively.

The element β is defined by extending a half-Dehn twist about the disk P ∩V ,
and the element ε is defined by extending a Dehn twist about the unique reducing
disk E0 in V . See Figure 10. Note that all of ω̃i , λj , μj , β , and ε preserve the
equivalence class of the Haken sphere P .

Lemma 3.2. Under this setting, the subgroup of G(V ,W ;�) consisting of ele-
ments that preserve the equivalence class of P is generated by ω̃i , λj , μj , β , and
ε, where i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . , g − 1}.
Proof. Let lj , mj , b, and e be representative homeomorphisms of λj , μj , β , and
ε, respectively, preserving P . We may assume that each of mj , lj , and b2 fixes
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V ′
2 ∪ W ′

2. Let ϕ be any element of G(V ,W ;�) that preserves the equivalence
class of P , and let f ∈ Homeo+(M,V ) be one of its representatives satisfying
f (P ) = P . We will show that f is isotopic to a composition of a finite number of
w̃±1

i , lj
±1, mj

±1, b±1, and e±1 up to an isotopy preserving V .
Let E′

0 be an essential disk in W bounded by the unique reducing disk ∂E0

in V . Composing f with a power of b, if necessary, and by an appropriate isotopy
preserving V , we get a map f1 ∈ Homeo+(M,V ) fixing E0 ∪ E′

0 and P . More-
over, by composing f1 with a power of e, if necessary, and by an appropriate
isotopy preserving V , we get a map f2 ∈ Homeo+(M,V ) fixing E0 ∪ E′

0, ∂V ′
2,

and ∂W ′
2. Note that the union of E0 ∪ E′

0 and ∂V ′
2 ∩ ∂W ′

2 cuts V ′
2 ∪ W ′

2 into two
3-balls. Thus, by Alexander’s trick, we may assume that f2 fixes V ′

2 ∪ W ′
2.

Suppose first that g ≥ 3. Let D1 be the disk �1 ∩ B1 and choose a point p1

in the interior of D1. By the Birman exact sequence [2] we have the following
commutative diagrams:

1 π1(�1,p1)

= �

MCG+(M1,V1,p1)

�

MCG+(M1,V1) 1

1 π1(�1,p1)
push

MCG+(�1,p1)
forget

MCG+(�1) 1

and

1 Z

= �

MCG+(M1,V1 relD1)

�

MCG+(M1,V1,p1) 1

1 Z MCG+(�1 relD1) MCG+(�1,p1) 1.

In these diagrams, each vertical arrow is an injective homeomorphism. In the

first diagram, the arrow “
push−−→” implies the pushing map, and “

forget−−−→” im-
plies the forgetful map. The group Z in the second diagram is generated by
the Dehn twist about the disk D1. See, for instance, [9; 11]. By the assump-
tion the group MCG+(M1,V1) = G(V1,W1;�1) is generated by ω1,ω2, . . . ,ωm.
The image of π1(∂V1,p1) in MCG+(M1,V1,p1) is the subgroup generated by
the elements whose representatives correspond to lj |V ′

1∪W ′
1

and mj |V ′
1∪W ′

1
, where

j ∈ {1,2, . . . , g − 1}. Moreover, a generator of Z in the second diagram corre-
sponds to b2|V ′

1∪W ′
1
. Therefore, by the above diagrams and a natural identification

MCG+(M1,V1 relD1) ∼= MCG+(M,V relV ′
2 ∪ W ′

2)

it follows that f2 can be written as a composition of a finite number of w̃i

(i ∈ {1,2, . . . , n}), lj
±1, mj

±1 (j ∈ {1,2, . . . , g − 1}), and b±2 up to isotopy pre-
serving V .
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Figure 11

Suppose that g = 2. Then instead of the first diagram in the previous argument,
we have the following simpler diagram:

1 MCG+(M1,V1,p1)
∼=

�

MCG+(M1,V1) 1

1 MCG+(�1,p1)
∼= MCG+(�1) 1.

Hence, f2 can be written as the composition of a finite number of w̃i (i ∈
{1,2, . . . , n}) and b±2 up to isotopy preserving V . This completes the proof. �

In addition to the elements ω̃i , μj , λj , β , and ε, we define the elements λ∗
j and μ∗

j

of G(V ,W ;�) for each j ∈ {1,2, . . . , g−1} as follows. Let V ∗ be the handlebody
V cut off by the unique reducing disk E0. Let E+

0 and E−
0 be disks in ∂V ∗ coming

from E0. The elements λ∗
j and μ∗

j for each j ∈ {1,2, . . . , g − 1} are defined by

pushing E+
0 along the arcs depicted in Figure 11. Each of these maps is realized

by sliding a foot of the 1-handles Nbd(E0;V ) and Nbd(E′
0;W) of V and W ,

respectively, where E′
0 is a disk in W bounded by ∂E0. We observe that, for any

simple arcs γ and γ ′ on ∂V ∗ connecting ∂E+
0 and ∂E−

0 , there exists an element ϕ

of G(V ,W ;�), which is a finite product of β , λ∗
j and μ∗

j for j ∈ {1,2, . . . , g −1},
such that ϕ has a representative map sending γ ′ to γ .

Now let ψ be any element of G(V ,W ;�). Then ψ([P ]) is also a vertex of the
complex HE0 by Proposition 2.3. If ψ([P ]) = [P ], then ψ is a finite product of
the elements ω̃i , μj , λj , β , and ε by Lemma 3.2. Suppose that ψ([P ]) 
= [P ].
Then by Lemma 2.1 there exists a finite product, say ϕ, of β , λ∗

j , and μ∗
j such that

ϕ(ψ([P ])) = [P ]. Thus, the composition ϕ ◦ ψ preserves the equivalence class
of P , and consequently ψ is a finite product of ω̃i , λj , μj , λ∗

j , μ∗
j , β , and ε. We

summarize this observation as follows.

Theorem 3.3. Let (V ,W ;�) be the Heegaard splitting obtained from a genus-
(g − 1) splitting (V1,W1;�1) for a 3-manifold and the genus-1 splitting
(V2,W2;�2) for S2 × S1, where g ≥ 2. Suppose that there exists a unique re-
ducing disk E0 in V . If the Goeritz group of (V1,W1;�1) is finitely generated,
then the Goeritz group of (V ,W ;�) is also finitely generated. Moreover, under
the given setting, the Goeritz group of (V ,W ;�) is generated by ω̃i , λj , μj , λ∗

j ,
μ∗

j , β , and ε, where i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . , g − 1}.
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By Proposition 2.6 and Theorems 3.1 and 3.3 we have the following:

Corollary 3.4. Let (V1,W1;�1) be a genus-(g − 1) Heegaard splitting of
Hempel distance at least 4 for a closed orientable 3-manifold M1, where g ≥ 2,
and let (V2,W2;�2) be the genus-1 Heegaard splitting for S2 × S1. If (V ,W ;�)

is the splitting for M1#(S2 × S1) obtained from (V1,W1;�1) and (V2,W2;�2),
then the Goeritz group of the splitting (V ,W ;�) is finitely generated.

We note that Corollary 3.4 implies, in particular, that the Goeritz group of the
genus-2 Heegaard splitting for M1#(S2 × S1), where M1 is S3 or a lens space, is
finitely generated, which is shown in [6] and [7].
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