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Equivariant Versal Deformations of Semistable Curves

Jarod Alper & Andrew Kresch

Abstract. We prove that given any n-pointed prestable curve C of
genus g with linearly reductive automorphism group Aut(C), there ex-
ists an Aut(C)-equivariant miniversal deformation of C over an affine
variety W . In other words, we prove that the algebraic stack Mg,n pa-
rameterizing n-pointed prestable curves of genus g has an étale neigh-
borhood of [C] isomorphic to the quotient stack [W/Aut(C)].

1. Introduction

A fundamental question in algebraic geometry is to understand the relationship
between arbitrary algebraic stacks and quotient stacks. While not every algebraic
stack is a quotient stack ([7] and [11]), it is natural to conjecture that every alge-
braic stack is étale locally a quotient stack around a point with linearly reductive
stabilizer. Precisely, we formulate the conjecture as follows.

Conjecture 1.1. Let X be an algebraic stack locally of finite type over an alge-
braically closed field k with separated and quasi-compact diagonal such that X

has affine stabilizer groups at all closed points. Suppose x ∈ X(k) has a linearly
reductive stabilizer group scheme Gx . Then there exists an affine scheme W over
k with an action of Gx , a k-point w ∈ W , and an étale, representable morphism

f : [W/Gx] → X

such that f (w) = x and f induces an isomorphism of stabilizer groups at w.

Conjecture 1.1 after replacing W with an algebraic space is a particular case of
the conjecture stated in [3]. Similar questions were raised in [5, §5] and [16, §2].

This conjecture implies that étale-local properties of general algebraic stacks
(satisfying the hypotheses of Conjecture 1.1) can be inferred from properties of al-
gebraic stacks of the form [Spec(A)/G] with G linearly reductive. Such quotient
stacks are particularly well understood; in particular, many geometric properties
of [Spec(A)/G] can be related to properties of the GIT quotient Spec(AG). Addi-
tionally, as suggested by Rydh, it is possible to attach to an algebraic stack X sat-
isfying Conjecture 1.1 at a point x ∈ X(k) a Henselian localization Oh

X,x that is a

comodule algebra over the Hopf algebra of Gx such that [Spec(Oh
X,x)/Gx] → X

satisfies analogous properties to the usual Henselization Spec(Oh
W,w) → W .
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Conjecture 1.1 is known to have a positive answer if X has quasi-finite diago-
nal (e.g., X is a Deligne–Mumford stack) or if X = [U/G] where U is a normal
scheme and G is a linear algebraic group (see Sections 3.2– 3.3). The purpose of
this article is to verify Conjecture 1.1 in an interesting and natural moduli prob-
lem, which does not fall into one of the cases mentioned. Let Mg,n be the moduli
stack of prestable curves (proper flat families of connected nodal curves) of genus
g with n marked points.

Theorem 1.2. Conjecture 1.1 holds for Mg,n for all g,n ≥ 0.

This theorem implies that given any n-pointed prestable curve C of genus g with
linearly reductive automorphism group Aut(C), there exists an affine variety W

with an action of Aut(C) fixing a point w ∈ W and a miniversal deformation
C → W of C ∼= Cw such that there is an action of Aut(C) on the total family C
compatible with the action on W and restricting to the natural action of Aut(C)

on Cw .
Let Mss

g,n ⊂ Mg,n be the open substack consisting of semistable curves (i.e.,
pointed curves (C, {pi}ni=1) such that ωC(

∑
i pi) has nonnegative degree on ev-

ery component, where ωC is the dualizing sheaf). Since a prestable curve with a
linearly reductive automorphism group, which is not a 0-pointed smooth curve of
genus 0, is semistable, Theorem 1.2 reduces to proving that Mss

g,n satisfies Con-
jecture 1.1.

The algebraic stack Mss
g,n has particularly exotic properties in connection to

Conjecture 1.1. For instance, Mss
g,n has a finite-type open substack that is not a

global quotient stack, does not have quasi-affine diagonal, and does not admit a
good moduli space (see Section 2.2). For these reasons, Mss

g,n serves as a natural
test case for Conjecture 1.1.

Finally, the technique employed to prove Theorem 1.2, based on stacks of log
structures, reveals features of the stack of semistable curves that may be of inde-
pendent interest. For instance, Lemma 4.3 gives a description of the local struc-
ture of the stack of semistable curves near a curve whose stabilization has just one
node, in terms of a particular zero-dimensional smooth algebraic stack, which has
appeared in many settings in algebraic geometry and has been studied in detail
by Abramovich, Cadman, Fantechi, and Wise [1]. In particular, this provides a
concrete description of the fiber of the stabilization morphism over a stable curve
with one node.

The proof of Theorem 1.2 proceeds by a sequence of reductions. In Section 2,
we show that it suffices to prove that Mss

g satisfies Conjecture 1.1 for all g ≥ 0
(Proposition 2.1); in that section, we also exhibit some exotic properties of the
stack Mss

g . In Section 3, we state a result (Proposition 3.10) that reduces Conjec-
ture 1.1 for Mss

g to showing the existence of particular kinds of finite covers of
étale neighborhoods. Just this is enough to verify Conjecture 1.1 in the special
case (Theorem 4.2) of a pair of smooth curves of distinct positive genera joined
by a chain of rational curves (in Section 4). After presenting some stacks gener-
alities in Section 5 and a local construction around a strictly semistable curve in
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Section 6, the next task will be to formulate and prove, in Section 7, a structure
result (Proposition 7.1) for the moduli of semistable curves with stabilization con-
tracting a single chain of rational curves to a node. Finally, Theorem 1.2 is proved
in Section 8.

Conventions

In this paper we work with general algebraic stacks (not required to have separated
or quasi-compact diagonal) as defined in [21]. An algebraic stack possessing an
étale cover by a scheme is called a Deligne–Mumford stack. Sheaves of monoids
arise in the treatment of log structures; all (sheaves of) monoids are commutative.

2. Stable and Semistable Curves

Fix an algebraically closed field k and g ≥ 2. Let Mg,n be the moduli stack of
prestable curves (i.e., nodal, connected, proper curves) of genus g with n marked
points, with stabilization morphism

st : Mg,n → Mg,n,

which is flat, to the stack Mg,n of stable curves of genus g with n marked points.
The algebraic stack Mg,n is quasi-separated and locally of finite type over k. Let
Mss

g ⊂ Mg denote the locus of semistable curves, that is, curves whose dualiz-
ing sheaf has nonnegative multidegree. (A similar definition can also be made
for Mss

g,n ⊂ Mg,n.) We will also consider Mqs
g ⊂ Mss

g , the locus of quasi-stable
curves, that is, semistable curves where the exceptional components (smooth ra-
tional components on which the degree of the dualizing sheaf is zero) are pairwise
disjoint.

We recall, in the context of algebraic stacks of finite presentation over k,
a global quotient stack, or just quotient stack, is a stack quotient [U/G] for the
action of a linear algebraic group G on a finite-type algebraic space U . Choosing
a faithful representation G → GLn, we have

[U/G] ∼= [U ×G GLn /GLn], (2.1)

where U ×G GLn denotes the quotient of U × GLn by G, acting as given on U

and by left translation on GLn, which is an algebraic space. So, the definition
of quotient stack is unchanged if we restrict to GLn-actions. According to [7,
Lemma 2.12], a quotient stack can be characterized by the existence of a vector
bundle with faithful actions of the geometric stabilizer group schemes. Returning
to (2.1), we remark that the projection from U ×G GLn to G \GLn is étale locally
the projection from a product with U . When G is reductive, then, U affine implies
U ×G GLn affine.

2.1. Boundary Components

Let Cg → Mg be the universal family over the moduli stack of Deligne–Mumford
curves of genus g. The algebraic stacks Cg and Mg are smooth over Spec(k). We
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will denote the relative singular locus by

Dg := Csing
g ,

which is defined by the Fitting ideal of the sheaf of relative differentials. The
algebraic stack Dg is smooth of codimension 2 in Cg (cf. [6, §1]) and is the
normalization of the boundary divisor of Mg .

The irreducible components of the boundary divisor of Mg are indexed by un-
ordered pairs of positive integers summing to g and an additional element (labeled
“irr” in [4]).

There is a degree 2 étale cover D̂g → Dg where D̂g parameterizes stable
curves together with a node and a choice of tangent direction to the curve at the
node. We recall from [4, XII.10.11] that

D̂g = Mg−1,2 �(M1,1 ×Mg−1,1)�(M2,1 ×Mg−2,1)�· · ·�(Mg−1,1 ×M1,1),

where the morphism to Dg is given by gluing sections.

2.2. Bad Properties of Mss
g

We start by exhibiting a few exotic properties of Mss
g , which indicate that Mss

g is a
particularly interesting candidate to test the validity of Conjecture 1.1. In fact, we
restrict our attention to the finite-type open substack M

qs
g of quasi-stable curves.

The inclusion i : Mg ↪→ M
qs
g has complement of codimension 2, and it fol-

lows that pullback and pushforward by stabilization st∗ and st∗ give an equiv-
alence of categories of vector bundles. Since every vector bundle on M

qs
g is the

pullback of a vector bundle on Mg , there is no vector bundle on M
qs
g with faithful

action on the fiber by the stabilizer at a strictly semistable curve. So, by the char-
acterization of global quotient stacks in terms of vector bundles recalled before,
M

qs
g is not a global quotient stack. In fact, the argument of [11, Prop. 5.2] may

be adapted to establish the stronger statement that Mqs
g does not have quasi-affine

diagonal.
Now suppose that g ≥ 3 and consider the fiber F of st : Mqs

g → Mg over a
curve C′ with a single node and trivial automorphism group. The fiber F consists
of two curves, C′ and the strictly semistable curve C obtained by inserting a P

1

at the node. Let U be a nodal cubic curve in P
2. We now argue that the fiber

F may be identified with [U/Gm]. Let (C̃′,p1,p2) be the pointed normalization
of C′ and consider the trivial family X = C̃′ × P

1 → P
1 with sections s1, s2

corresponding to p1, p2. Here Gm acts on P
1 (and on X ) in the standard way.

Let X̃ be the equivariant blowup of X at both p1 in the fiber over 0 and p2 in
the fiber over ∞, and let s̃1, s̃2 be the proper transforms of the sections s1, s2.
Now glue the sections s̃1, s̃2 to construct a family C̃ → P

1 such that the fibers
C̃0 and C̃∞ are isomorphic to C but the generic fiber is C′. Finally, since the
fibers C̃0 and C̃∞ are equivariantly isomorphic with respect to opposite actions of
Gm, we may glue these two fibers to construct a Gm-equivariant family of curves
D over the nodal cubic U . We check that the induced map from [D/Gm] to the
fiber F of st : Mqs

g → Mg over C′ is an isomorphism (it is representable, is a
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monomorphism, and satisfies the valuative criterion for properness). It follows
that there is no open substack V of M

qs
g containing [C] and admitting a good

moduli space.

2.3. First Reduction

We show that in order to establish Theorem 1.2, it suffices to show that Mss
g

satisfies Conjecture 1.1.

Proposition 2.1. If Mss
g satisfies Conjecture 1.1 for all g ≥ 0, then Mg,n satisfies

Conjecture 1.1 for all g,n ≥ 0.

Proof. An n-pointed prestable genus g curve (C, {pi}ni=1) with g or n positive
or C singular is semistable (i.e., ωC(

∑
i pi) has nonnegative multidegree) if the

automorphism group Aut(C, {pi}ni=1) is linearly reductive. Therefore, to establish
that Mg,n satisfies Conjecture 1.1, it suffices to show that the moduli stack Mss

g,n

of pointed semistable curves satisfies Conjecture 1.1.
For i = 1, . . . , n, let C1, . . . ,Cn be automorphism-free smooth 1-pointed

curves of distinct genera g1, . . . , gn greater than g. Let g′ = g + g1 + · · · + gn.
The morphism

Mss
g,n →Mss

g′ ,

defined by attaching Ci to the ith marked point, is a closed immersion. If Mss
g′

satisfies Conjecture 1.1, then so does Mss
g,n. �

3. Quotient Structure of Algebraic Stacks

3.1. Stabilizer Preserving Morphisms

A morphism f : X → Y of algebraic stacks is stabilizer preserving at a given
geometric point of X if it induces an isomorphism of stabilizer group schemes at
that geometric point. We say that f : X → Y is pointwise stabilizer preserving if
it is stabilizer preserving at all geometric points.

Lemma 3.1. Let f : X → Y be an étale representable morphism of algebraic
stacks. If the fiber of f over every geometric point consists of a single point, then
f is an isomorphism.

Proof. Since f is étale and surjective, to show that f is an isomorphism, it suf-
fices to show that projection X ×Y X → X is an isomorphism. The relative diag-
onal X → X ×Y X is an isomorphism (as it is a surjective open immersion), and
therefore so is X ×Y X → X since the composition X → X ×Y X → X is the
identity map. �

Lemma 3.2. Let W and X be algebraic stacks with finite stabilizer groups at
geometric points, and let f : W → X be a separated morphism. If X has finite
inertia, then so does W .
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Proof. The inertia IW → W factors through IX ×X W , with morphism IW →
IX ×X W obtained via base change from the relative diagonal of f , hence finite,
and IX ×X W → W finite by the hypothesis on X. �

Lemma 3.3. Let X be a Deligne–Mumford stack with finite inertia, let Y be an
algebraic stack with separated diagonal, and let f : X → Y be a morphism. Then
the largest open substack U of X on which the restriction of f is a representable
morphism enjoys the following characterization: the geometric points of U are
precisely those at which f induces an injective homomorphism of stabilizer group
schemes.

Proof. Let V → Y be a smooth atlas, where V is a separated scheme. The hy-
potheses imply that V → Y is a separated morphism. By Lemma 3.2, X ×Y V

has finite inertia. Similarly, letting S = V ×Y V (so that S is isomorphic to an
algebraic space, with (pr1,pr2) : S ⇒ V a groupoid presentation of Y ), X ×Y S

has finite inertia. For a Deligne–Mumford stack with finite inertia, the largest rep-
resentable open substack is the complement of the image of the complement of
the identity in the inertia stack, and its geometric points are characterized as those
having trivial stabilizer group. The largest representable open substack of X×Y V

has the same preimage by the maps idX × pri : X ×Y S → X ×Y V for i = 1,2,
namely the largest representable open substack of X ×Y S, and hence determines
an open substack U of X. It is easily verified that U is the largest open substack of
X on which the restriction of f is representable and that the geometric points of
U are precisely those at which f induces an injective homomorphism of stabilizer
group schemes. �

3.2. Local Structure of Deligne–Mumford Stacks

The following result shows that Conjecture 1.1 holds for any Deligne–Mumford
stack.

Lemma 3.4. Given a Deligne–Mumford stack X with separated diagonal and a
point x of X having finite stabilizer:

(i) There exist an affine scheme W , finite group G, action of G on W , étale
representable morphism f : [W/G] → X, and point y ∈ [W/G] such that
f (y) = x and f is stabilizer preserving at y.

(ii) The group G in (i) may be taken to be the geometric stabilizer group at x.

Proof. We obtain (i) from [18, Prop. 6.11] and [12, Thm. 6.1]. For (ii), a variation
of the argument of [18, Prop. 6.11] in which Wd (d ∈ N) is replaced by WG (G a
finite group), defined as the stack over X of subschemes of the pullbacks of the
given étale atlas U , equipped with a structure of G-torsor, yields VG → WG with
WG

∼= [VG/G]. �
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Remark 3.5. By [2, Prop. 3.6 and Thm. 2.19], Conjecture 1.1 holds for an alge-
braic stack with finite inertia. By applying [10, §4] we see that Conjecture 1.1 in
fact holds for any algebraic stack with quasi-finite and separated diagonal.

3.3. Local Structure of Quotient Stacks

Let k be an algebraically closed field. Given a quotient stack [U/G], with U affine
of finite type over k and point x ∈ U(k) with linearly reductive stabilizer group
scheme Gx , Luna’s étale slice theorem [13] gives rise (under suitable hypothe-
ses) to an étale morphism [W/Gx] → [U/G], where W is a Gx -invariant locally
closed affine subscheme of U containing x.

Lemma 3.6. Let U be an affine scheme of finite type over an algebraically closed
field k, with action of a smooth linear algebraic group G. Then, for every point
x ∈ U(k) with linearly reductive stabilizer group scheme Gx , there exists a Gx -
invariant locally closed affine subscheme W ⊂ U containing x such that the in-
duced morphism [W/Gx] → [U/G] is étale. In particular, Conjecture 1.1 holds
for [U/G].
Proof. There exists a finite-dimensional linear G-space V with equivariant closed
immersion U ↪→ V ; thus it suffices to consider the case U = V . By [13, Lemma,
p. 96], there exists a Gx -equivariant morphism

g : V → TxV

that is étale at x and satisfies g(x) = 0. We write

TxV = Tx(G · x) ⊕ N

for a Gx -representation N . Then the representable morphism [g−1(N)/Gx] →
[V/G] is étale at x and hence on [W0/Gx] for some Gx -invariant open W0 ⊂
g−1(N) containing x. Now W may be taken to be any Gx -invariant affine neigh-
borhood of x in W0. �

Remark 3.7. The conclusion of Lemma 3.6 is also valid if the hypothesis that U

is affine is replaced by the hypothesis that U is normal. Let x ∈ U(k) have lin-
early reductive stabilizer group scheme Gx . Letting G◦ ⊂ G denote the connected
component of the identity, there exists a separated G◦-invariant open neighbor-
hood of x (e.g., the image under the action of G◦ × U0 where U0 is any affine
open neighborhood of x). By Sumihiro’s theorem [20, Thm. 3.8], there exists a
quasi-projective G◦-invariant neighborhood U ′ of x. Letting H denote the im-
age of Gx in G/G◦ and G′ the preimage of H under G → G/G◦, if we take
h1, . . . , hn ∈ Gx to be elements mapping onto H , then h1U

′ ∩ · · · ∩ hnU
′ is a

G′-invariant quasi-projective neighborhood of x. So we are reduced to the case
that U is normal and quasi-projective. Then there is an equivariant immersion
U ↪→ P(V ) for some finite-dimensional linear G-space V , and as in the proof of
Lemma 3.6, we are further reduced to the case U = P(V ). We conclude by taking
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f to be a Gx -semi-invariant homogeneous polynomial with f (x) �= 0, invoking
[13, Lemma, p. 96] to obtain Gx -equivariant

g : P(V )f → TxP(V ),

étale at x with g(x) = 0, and applying the rest of the proof of Lemma 3.6.

Lemma 3.8. Let Y be an algebraic stack locally of finite type over an algebraically
closed field k. If there is a finite, flat cover f : X = [U/GLn] → Y for some n,
where U is an algebraic space (resp., an affine scheme), then Y ∼= [V/GLn′ ] for
some n′, where V is an algebraic space (resp., an affine scheme).

Proof. If E is a vector bundle on X such that the stabilizer at every geometric
point acts faithfully on the fiber, then f∗E is a vector bundle on Y with the same
property (cf. [7, proof of Lemma 2.13]). If U is affine, the base change X ×Y V is
also an affine scheme—indeed, since U → X is a GLn-bundle and X ×Y V → X

is a GLn′ -bundle, the base change U ×Y V → X ×Y V is a GLn-bundle, and since
U ×Y V is affine, so is X ×Y V . Since X ×Y V → V is finite and surjective, V is
an affine scheme. �

Remark 3.9. In [19, §2], Rydh defines an algebraic stack X of finite presentation
over k to be of global type if every point x ∈ X(k) is in the image of an étale,
representable morphism [W/GLn] → X where W is quasi-affine. Any algebraic
stack satisfying Conjecture 1.1 that is also quasi-compact and has linearly reduc-
tive stabilizers at closed points is therefore of global type.

3.4. Second Reduction

We give a result reducing Conjecture 1.1 for Mss
g to exhibiting certain finite covers

of étale neighborhoods.

Proposition 3.10. Let X be an algebraic stack, locally of finite type over an
algebraically closed field k with separated and quasi-compact diagonal such that
X has affine stabilizer groups at all closed points. Suppose that x ∈ X(k) has
linearly reductive stabilizer group scheme Gx , and there exist morphisms

X′′ → X′ → X

and x′ ∈ X′(k) such that

(i) X′′ ∼= [U/GLn] for some affine scheme U over k with action of GLn for
some n,

(ii) X′′ → X′ is a finite flat cover,
(iii) X′ → X is étale representable,
(iv) X′ → X is stabilizer preserving at x′.
Then Conjecture 1.1 holds for X at the point x.

Proof. By Lemma 3.8 we have X′ ∼= [V/GLn′ ]. We conclude by Lemma 3.6. �
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4. Proof in a Special Case

We apply the previous reduction steps (Propositions 2.1 and 3.10) and a structural
result (Lemma 4.3) to give a proof of Theorem 1.2 in a special case. Namely,
we will prove Theorem 4.2 that asserts that Conjecture 1.1 holds near semistable
curves whose stabilization is the nodal union of two smooth curves of different
genera. We remark that our argument in this section does not apply to semistable
curves whose stabilization has precisely one node but admits an automorphism
that swaps the tangent branches at the node. Therefore, we exclude curves whose
stabilization is an irreducible curve with precisely one node or is the nodal union
of two smooth curves of the same genus.

4.1. Aligned log Structure

We recall the definition of an aligned log structure introduced in [1]. Let X be
a scheme. Given a log structure M → OX we consider the characteristic sheaf
M = M/O∗

X . If M is a locally free log structure, then there is a subsheaf of sets

M
1 ⊂ M whose values on stalks are the sums of subsets of generators of the free

monoids Mx at geometric points x ∈ X. An aligned log structure is a locally

free log structure together with a subsheaf S ⊂ M
1

such that, for every geometric
point x ∈ X, there is a labeling of the generators of Mx as e1, . . . , en such that

Sx = {0, e1, e1 + e2, . . . , e1 + · · · + en}.
Proposition 4.1. Let E be a Deligne–Mumford stack, E → Mg an étale mor-
phism with corresponding family of curves C → E, and D ⊂ Csing an open and
closed subscheme that maps isomorphically to a divisor in E. Define

X := E ×Mg
Mss

g ,

and let C → X denote the associated family of semistable curves, with stabiliza-
tion C → C ×E X.

(i) The stack
D ×Csing C

sing

is, by stabilization, the normalization of D ×E X.
(ii) Suppose that the family of curves D ×E C → D is obtained by gluing some

C0 → D along two sections s1 and s2, as in Section 2.1. Then there is a
unique aligned log structure (M,S) on X whose underlying log structure is
that of the normal crossing divisor D ×E X such that, for every geometric
point x of D ×E X corresponding to a prestable curve whose stabilization
collapses r exceptional components to the corresponding point of D, the ele-
ments of Sx under the isomorphism of (i) are x1 +· · ·+ xj for 0 ≤ j ≤ r + 1,
where x1, . . . , xr+1 are the points of Csing mapping to the point of D, or-
dered so that x1 is the image of s1 under the rational map (C0)x ��� Cx , and
for every i, the points xi and xi+1 lie on one of the exceptional components
collapsing to the point of D corresponding to x.
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Proof. Since D ×Csing Csing is smooth and the morphism to D ×E X is finite and
restricts to an isomorphism over the stable curves in X, assertion (i) is clear.

Assertion (ii) quickly reduces to the following claim. Let R be a Henselian
discrete valuation ring with residue field k, together with C0,R → Spec(R) with
two sections and CR → Spec(R), corresponding to some Spec(R) → D ×E X; in
particular, the stabilization of CR is assumed to be identified with the stable curve
CR obtained by gluing from C0,R → Spec(R) with the two sections. Denoting by
s1,R and s2,R the two sections, the common composite with the gluing is a section

Spec(R) → CR with image contained in C
sing
R . The restriction

h : Spec(R) ×
C

sing
R

C
sing
R → Spec(R)

of the finite unramified morphism of (i) is necessarily the projection of a disjoint
union of some copies of Spec(R) and some (possibly nonreduced) points mapping
to the closed point of Spec(R). Let the fiber over the closed point be x1, . . . , xr+1
as in (ii), and let

i1 < i2 < · · · < iq+1

be the indices of those points over the closed point that are the specializa-
tions of copies of Spec(R). The claim is that at a geometric general point η

of Spec(R), stabilization of Cη collapses a chain of q rational curves to the
node of Cη (the common image of the two sections under gluing), and with the
points η1, . . . , ηq+1 as in (ii), the point ηa maps to the ia-copy of Spec(R) for
a = 1, . . . , q + 1.

There is nothing to prove if q = 0, so we assume that q ≥ 1. There is an it-
erated blow-up τ : Ĉ0,R → C0,R at points over c1 := s1,R(Spec(k)) and c2 :=
s2,R(Spec(k)) such that the composite with gluing and the inverse of stabilization

Ĉ0,R
τ→ C0,R → CR ��� CR

is defined in a neighborhood of τ−1({c1, c2}). (The process of blowing up points
of indeterminacy terminates. A classical result of Northcott asserts that upon
blowing up and replacing an mci

-primary ideal in OC0,R,ci
by its proper transform

the multiplicity decreases; cf. [9].) Now τ−1(c1) is a connected scheme whose
image Z0 ⊂ CR contains x1 and the specialization of η1.

For each 1 ≤ a ≤ q , the generic fiber Cη has a unique exceptional component
Eη,a containing ηa and ηa+1. We let Wa denote the closure of Eη,a in CR . The
special fiber Za of Wa is connected and contains the specializations of ηa and
ηa+1.

Since CR is Cohen–Macaulay with reduced special fiber, the complement of
the closure of Csing

η is normal. In particular, each xi with i /∈ {i1, . . . , iq+1} is a
normal point of CR , as are all smooth points of the special fiber of CR .

With these observations, we may establish the claim by contradiction. Suppose
there is some a, which we take to be minimal, such that ηa specializes to xi

and ηa+1 specializes to xj , with j < i. If a = 1, then since Z0 is connected and
contains x1 and xi , we have xj ∈ Z0 as well, and then since Z1 is connected and
one-dimensional, we would have dim(Z0 ∩ Z1) = 1, which is a contradiction. If
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a > 1, then we may argue similarly, using that Z0 ∪ · · · ∪ Za−1 is connected and
contains x1 and xi and hence must as well contain xj . �

4.2. Separating Nodes with Distinct Genera

From Section 2.1, every partition of g as a sum of two positive integers deter-
mines an irreducible component of the boundary divisor of Mg . Suppose that
g1 + g2 = g with g1 > g2. Then the corresponding boundary component has an
open substack Dg1,g2 parameterizing unions of smooth curves of genera g1 and
g2 at a node. We define

Eg1,g2 := Mg ∪ Dg1,g2 ⊂ Mg,

the open substack consisting of smooth curves of genus g and unions of smooth
curves of genera g1 and g2. Then the inclusion of Eg1,g2 in Mg and Dg1,g2 satisfy
the hypotheses of Proposition 4.1 and hence determine an aligned log structure on

Xg1,g2 := Eg1,g2 ×Mg
Mss

g ,

that is, a morphism

Xg1,g2 → Logal (4.1)

to the stack of aligned log structures; the stack of aligned log structures is de-
scribed in [1].

Theorem 4.2. For positive integers g1, g2, and g with g1 + g2 = g and g1 > g2,
Conjecture 1.1 holds for Xg1,g2 .

The key to the proof is the following observation, which reveals the structure of
the moduli stack of semistable curves of genus g near a curve whose stabilization
is a union of smooth curves of genera g1 and g2. The quotient stack

A1 := [A1/Gm],
where Gm acts in the standard way on A

1, plays an important role. As is recalled
in [1], the stack A1 serves as a universal target for pairs consisting of a smooth
variety or algebraic stack Y with divisor D ⊂ Y . If D is also smooth, then the
corresponding morphism Y → A1 is smooth.

Lemma 4.3. The projection from Xg1,g2 and morphism (4.1) fit into a fiber square

Xg1,g2
��

��

Eg1,g2

��
Logal �� A1

where the morphisms to A1 correspond to the boundary divisor of Logal and the
divisor Dg1,g2 ⊂ Eg1,g2 .
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Proof. The horizontal morphisms restrict to isomorphisms on the complements
of substacks of codimension 2, hence so does the morphism

Xg1,g2 → Logal ×A1 Eg1,g2, (4.2)

which is representable. The fiber product in (4.2) is smooth since the morphism
Eg1,g2 → [A1/Gm] is smooth. So, by Zariski–Nagata purity [8, Thm. X.3.1] the
morphism (4.2) is étale. The morphism (4.2) is bijective on geometric points and
pointwise stabilizer preserving and hence by Lemma 3.1 is an isomorphism. �

For the proof of Theorem 4.2, we use the stacks

An := [An/Gn
m],

also introduced in [1] (quotient stacks for the standard group actions).

Proof of Theorem 4.2. Let x ∈ Xg1,g2(k) correspond to a semistable curve C of
genus g whose stabilization C′ is the union of smooth curves of genera g1 and g2.
We verify Conjecture 1.1 for Xg1,g2 at x. Let H be the automorphism group of
C′. By Lemma 3.4 there exist an affine scheme W with action of H fixing a point
y ∈ W and an étale representable morphism

[W/H ] → Eg1,g2

sending y to the point of Eg1,g2 corresponding to C′.
If C is stable, then we are done, so we assume that some positive number r of

exceptional components are collapsed by stabilization C′ → C. The coordinate
hyperplanes give rise to an aligned log structure on Ar+1, and the corresponding
morphism Ar+1 → Logal is étale representable [1] and stabilizer preserving at
the origin. Consequently, we have a stack

X′ := Ar+1 ×Logal Xg1,g2 ×Eg1,g2
[W/H ],

such that the projection to Xg1,g2 is étale representable, and a point x′ ∈ X′ at
which the projection to Xg1,g2 is stabilizer preserving, sending x′ to x.

We let

X′′ := Ar+1 ×Logal Xg1,g2 ×Eg1,g2
W.

By Lemma 4.3, X′′ ∼= Ar+1 ×A1 W . Since W → A1 is affine, X′′ is of the form
[U/Gr+1

m ] with U affine, and Proposition 3.10 implies Conjecture 1.1 for Xg1,g2

at x. �

5. Stacks Generalities

In this section, we record general facts about algebraic stacks that will be useful
for the proof of Theorem 1.2. The reader may want to skip this section on the first
reading but later return when these results are applied in Sections 6 through 8.
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5.1. Étale Coverings from Unramified Morphisms

Given a representable unramified morphism X → Y of algebraic stacks, Rydh
constructs [17, §3] a stack EX/Y and a factorization X → EX/Y → Y as a closed
immersion followed by an étale representable morphism.1 The complement of X

in EX/Y is isomorphic to Y . The construction, known as the étale envelope, is
functorial: given a scheme T , a morphism T → EX/Y consists of a morphism
T → Y with closed subscheme T ′ ⊂ T and open immersion T ′ → X ×Y T

over T . For example, if X → Y is étale, then (see [17, Exa. 2.1]) EX/Y is the
disjoint union of X and Y . If X is the disjoint union of a pair of distinct lines �1,
�2 in the plane Y = P

2, then (see [17, Exa. 2.2]) EX/Y is the scheme covered by
three copies Y0, Y1, Y2 of Y with Y0 and Yi glued along the complement of �i for
i = 1,2; notice that the fiber of EX/Y → Y over �1 ∩ �2 consists of three points,
all contained in the closure of �1 ∪ �2 ⊂ Y = Y0.

We need, as well, a variant due to Mustaţă and Mustaţă [14, §1.1]. Suppose that
X → Y is a representable unramified morphism of algebraic stacks that is étale
onto its image, a locally closed substack Y1 ⊂ Y . The topological closure Y 1 is
then closed in EX/Y , as we see by combining the isomorphism EXred/Y

∼= EX/Y of
[17, Thm. 1.2(ix)] with the consequence of functoriality that E

Xred/Y red
1

→ EXred/Y

is a closed immersion. Then we define

FX/Y := EX/Y \ Y 1.

From the properties of the étale envelope mentioned before we obtain, for FX/Y ,
a factorization X → FX/Y → Y as a closed immersion followed by an étale rep-
resentable morphism and a functorial description, where for a scheme T , a mor-
phism T → FX/Y is given by a morphism T → Y whose image is disjoint from
Y 1 \ Y1 and an open immersion Y1 ×Y T → X ×Y T over T .

Proposition 5.1. Let f : X → Y be an étale representable morphism of alge-
braic stacks. For a locally closed substack W ⊂ Y with f (X) ∩ W ⊂ W and fiber
diagram

Z ��

��

X

f

��
W �� Y

the induced morphism g : X → FZ/Y is an isomorphism if and only if the restric-
tion of f over Y \ W is an isomorphism.

Proof. The forward implication is clear from the definition of FZ/Y . The reverse
implication follows by applying Lemma 3.1 to g by noting that the geometric
points of both X and FZ/Y lie over Y \ (W \ W) and observing that g restricts to
isomorphisms over W and over Y \ W . �

1Rydh works in greater generality, not requiring X → Y to be representable.
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5.2. Some Stacks with Nonseparated Diagonal

The stack of log structures [15] has quasi-compact but nonseparated diagonal.
Here we describe an algebraic stack

◦
Ar for each r > 0, also with quasi-compact

but nonseparated diagonal.
We recall, from Section 4.2, the stack Ar = [Ar/Gr

m] (quotient stack for
the standard action of G

r
m on A

r ). There are an involution ι : A
r → A

r ,
(x1, . . . , xr ) �→ (xr , . . . , x1) and a similar compatible involution of Gr

m inducing
an involution ι : Ar → Ar .

Let us introduce
◦
Ar by defining Ur to be the nonseparated scheme that is

the union of two copies of Ar × G
r
m along the two copies of (A1 \ {0})r × G

r
m

identified via the involution

(x1, . . . , xr , t1, . . . , tr ) �→
(

x1, . . . , xr , tr
xr

x1
, . . . , t1

x1

xr

)
and setting

◦
Ar = [Ur ⇒A

r ],
the stack associated to the groupoid scheme with projection map and twisted ac-
tion map, which on the first copy of Ar ×G

r
m is the standard diagonal action and

on the second copy is the composition of the involution ι of Ar with the standard
diagonal action.

The stabilizer of
◦
Ar at the origin is the semidirect product Gr

m �Z/2Z where
Z/2Z acts on G

r
m via the involution (t1, . . . , tr ) �→ (tr , . . . , t1) of Gr

m.
Just as the stack A1 has the well-known interpretation of schemes with a line

bundle and a global section, we leave it to the reader to see that
◦
A1 has the inter-

pretation of schemes with a line bundle, a global section, and a degree-two finite
étale cover of the zero-locus of the section. In particular, the fiber of the obvious
morphism

◦
A1 → A1 over BGm = [{0}/Gm] is isomorphic to BGm × BZ/2Z;

Proposition 5.1 yields an isomorphism

F
BGm/

◦
A1

∼= A1. (5.1)

Multiplication of coordinates induces morphisms mul : Ar → A1 and mul :
◦
Ar → ◦

A1. There are étale representable morphisms Ar → ◦
Ar induced on the

level of groupoid schemes from the inclusion of the first copy of Ar ×G
r
m in Ur .

Proposition 5.2. These morphisms fit into a fiber diagram

Ar mul ��

��

A1

��
◦
Ar mul ��

◦
A1

Proof. Each of the morphisms arises from a morphism of groupoid schemes.
Standard manipulations of groupoid schemes establish the proposition. �
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5.3. Semi-aligned log Structures

We return to the setting of Section 4.1. Besides the zero section, there is another

global section s1 of M
1
, given by the sums of generators of the Mx . An involution

j of M
1

is characterized by the property that the composite

M
1 (id,j)−→ M

1 × M
1 ⊂ M × M

+−→ M

is the constant map s1. Given an aligned log structure, application of the involution
j yields a new aligned log structure, the opposite aligned log structure.

A related notion is semi-aligned log structure, exactly as in Section 4.1, but
with

Sx = {0, e1, en, e1 + e2, en−1 + en, . . . , e1 + · · · + en}.
Proposition 5.3. Let π : X → Y be a finite type étale universally closed mor-
phism of algebraic spaces. Then there is a natural transformation

tr : π∗ ◦ π∗ → id

(“trace”) on sheaves of idempotent monoids on Y , which on stalks is given by
summing the values on fibers.

Proof. Given y ∈ Y , there exist an étale neighborhood y′ ∈ Y ′ → Y with y′ �→
y and sections σ1, . . . , σr of π ′ : X′ := X ×Y Y ′ → Y ′ whose images cover
π ′−1(y′). Since π is universally closed, we may replace Y ′ by a suitable open
neighborhood of y′, so that the images of the sections cover X′. We may then
define the trace locally by summing the r sections over Y ′. �

Besides the stack of aligned log structures Logal described in [1], there is a
stack of semi-aligned log structures, which we denote by Log(1/2)al. The as-
signment, to a scheme with an aligned log structure, of the opposite aligned
log structure, yields an involution j of the stack Logal. If X is a scheme and

(M →OX,S ⊂ M
1
) is an aligned log structure on X, then S � j (S) is an aligned

log structure on X � X, and the trace for X � X → X yields tr(S � j (S)), a semi-
aligned log structure on X. This construction gives rise to a morphism of algebraic
stacks

Logal → Log(1/2)al. (5.2)

Proposition 5.4. The morphism (5.2) is representable, étale, of finite type, and
universally closed, and restricts to an isomorphism over the locus of locally free
log structures of rank ≤ 1 and a finite étale morphism of degree 2 over the locus
of rank ≥ 2.

Proof. The morphism (5.2) is clearly representable and locally of finite type, and
it is trivial to verify the criterion in terms of square-zero extensions to be étale. The
sheaf of sections of (5.2) is locally the quotient of a finite constant sheaf; hence,
the morphism (5.2) is universally closed of finite type. The assertion about the
locus of locally free log structures of rank ≤ 1 is a triviality. Since the geometric
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fibers over locally free log structures of rank ≥ 2 all consist of two points, the
properties of the morphism (5.2) imply that it restricts to a finite morphism. �

Given a normal crossings divisor D on a smooth algebraic stack X, we set Xk ⊂ X

to be the locally closed substack consisting of all points lying, smooth locally in
exactly k smooth divisors. For instance, X0 = X \ D, and X1 is the smooth locus
of D. Set X≤k and X≥k to be the locally closed substacks obtained by taking the
unions of the corresponding Xi . We make these definitions more generally for an
algebraic stack with a given locally free log structure.

Considering the fiber square

Logal,≥2 ��

��

Logal

��
Log(1/2)al,≥2 �� Log(1/2)al

(5.3)

Proposition 5.4 tells us that the criterion of Proposition 5.1 is satisfied.

Corollary 5.5. The fiber square (5.3) induces an isomorphism

Logal → FLogal,≥2/Log(1/2)al .

Another consequence of Proposition 5.4 is that we have a morphism

al : Log(1/2)al,≥2 → BZ/2Z

corresponding to the restriction of morphism (5.2) to Log(1/2)al,≥2. Now we con-
sider the composite morphism

Log(1/2)al,≥2 (id,al)−→ Log(1/2)al,≥2 × BZ/2Z ↪→Log(1/2)al ×A1
◦
A1, (5.4)

remembering that the fiber of
◦
A1 over BGm ⊂ A1 is isomorphic to BGm ×

BZ/2Z, so that we obtain a stack

FLog(1/2)al,≥2/Log(1/2)al×A1
◦
A1 . (5.5)

We note that whereas Logal,r consists of a single point with stabilizer Gr
m and

Log(1/2)al,r consists of a single point with stabilizer Gr
m for r ≤ 1 and G

r
m�Z/2Z

for r ≥ 2, the stack (5.5) in codimension r is a point with trivial stabilizer for
r = 0 and stabilizer Gr

m � Z/2Z for r ≥ 1. This feature leads us to introduce a
new notion and compact notation.

By an augmented semi-aligned log structure on a scheme or algebraic stack X

we mean the data of a semi-aligned log structure (M,S), a degree 2 finite étale
cover X̂ → X≥1, and an augmentation isomorphism

X̂≥2 → Logal ×Log(1/2)al X≥2

over X≥2. (The fiber product is of the morphism (5.2) and the restriction of (M,S)

to X≥2.) The stack (5.5) is identified with the stack of augmented semi-aligned
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log structures, which we denote by

Log(1/2+ε)al.

To understand the stack (5.5), following the definition in Section 5.1, it is im-
portant to remember the isomorphism of target objects in the definition of fiber
product of stacks Log(1/2)al,≥2 ×Log(1/2)al×A1

◦
A1 T (target of the open immersion).

As an example, there is a natural semi-aligned log structure on
◦
Ar , by taking

the e1, . . . , en to correspond to the natural coordinates on A
r . The triple consisting

of this semi-aligned log structure, the cover (Ar )≥1 → (
◦
Ar )≥1, and the restric-

tion of the natural aligned log structure of Ar ,is an augmented semi-aligned log
structure. This yields a morphism

◦
Ar → Log(1/2+ε)al. (5.6)

An aligned log structure determines an augmented semi-aligned log structure
(via the trace construction as in (5.2), with trivial cover and isomorphism of trivial
covers as augmentation isomorphism). In other words, we have a morphism from
Logal to Log(1/2+ε)al, and this is étale since the stack (5.5) is étale over Log(1/2)al

and the composite

Logal → Log(1/2+ε)al → Log(1/2)al

is étale. There is also a morphism

Log(1/2+ε)al → ◦
A1, (5.7)

mapping an augmented semi-aligned log structure to its degree 2 cover.

Proposition 5.6. The morphisms (5.6) and (5.7) fit into a fiber diagram

Ar ��

��

Logal ��

��

A1

��◦
Ar �� Log(1/2+ε)al ��

◦
A1

Proof. Since the outer square is a fiber square (Proposition 5.2), it suffices to
verify that the right-hand square is a fiber square. This results by observing that
upon base change by A1 → ◦

A1 the composition (5.4) yields a composition of
morphisms in (5.3) and applying Corollary 5.5. �

Proposition 5.7. Let X be an algebraic stack with locally free log structure
M , and let π : X̂ → X≥1 be a degree 2 finite étale cover with corresponding
étale cover f : FX̂/X → X and involution ι : FX̂/X → FX̂/X . If (f ∗M,S′) is an
aligned structure with ι∗S′ related to S′ by the involution j , then there is a unique
augmented semi-aligned log structure(

(M,S),π, X̂≥2 → Logal ×Log(1/2)al X≥2)
on X such that
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(i) the semi-aligned log structure on FX̂/X obtained by the trace construction
from S′ is equal to f ∗S, and

(ii) the restriction of (f ∗M,S′) to X̂≥2 is the aligned log structure obtained by
projecting from the augmentation isomorphism.

Furthermore, the morphisms corresponding to the log structures fit into a fiber
diagram

FX̂/X
��

��

Logal

��
X �� Log(1/2+ε)al

Proof. Condition (i) determines S uniquely, and (M,S) is a semi-aligned log
structure on X. Restricting S′, we obtain X̂ → Logal, and the further restriction
to X̂≥2 yields the augmentation isomorphism, which is uniquely determined by
(ii).

The diagram is 2-commutative. As in the proof of Proposition 5.6, we may
reduce the proposition, by adjoining the fiber square with A1 → ◦

A1 to the right,
to the assertion that the outer square of the larger diagram is 2-cartesian. Since
the degree 2 cover of the augmented semi-aligned log structure is π , we have the
assertion by the isomorphism (5.1) and the fact that the construction of Section 5.1
respects base change. �

6. A Local Construction Around a Strictly Semistable Curve

In this section, we construct an étale neighborhood [(X×m
g,�)◦/Sr] → Mss

g of any
strictly semistable curve C that is stabilizer preserving at a preimage x′ of C

(Proposition 6.1). In order to apply Proposition 3.10 to Mss
g (in Section 8), we will

need a refinement (Proposition 6.2) that leads to the existence of U → Mss
g , étale

and representable, and stabilizer preserving at a preimage x′′ of C (Corollary 6.3).
The morphism Dg → Mg is representable and unramified, and we may con-

sider the algebraic stack Eg = E
Dg/Mg

(construction of Section 5.1), with étale
representable morphism

Eg →Mg.

The stack Eg may be viewed as the moduli stack of stable curves of genus g

endowed with a choice of at most one node.

6.1. Stabilization

We define Xg to be the algebraic stack parameterizing semistable curves of genus
g with at most one chosen node of the stabilization, that is, the fiber product

Xg = Mss
g ×Mg

Eg.

We will, by abuse of notation, let st denote also the projection Xg → Eg .
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Let Xg,� ⊂ Xg be the open substack parameterizing semistable curves C

whose stabilization C → C′ has at most one positive-dimensional fiber such that
if c′ ∈ C′ has a positive-dimensional fiber, then the node c′ is chosen.

6.2. The Local Construction

Let C be a strictly semistable curve of genus g over an algebraically closed field k,
and C′ its stabilization. We attach the following discrete data to C. We let m be the
number of positive-dimensional fibers of the stabilization C′ → C, n be the max-
imum number of irreducible components of such a fiber, and r = (r1, . . . , rn) be
the sequence of nonnegative integers where ri is the number of such fibers having
precisely i irreducible components. Note that rn > 0 and

∑
i ri = m; moreover,

the number of exceptional components is
∑

i iri .
We define

E×m
g = Eg ×Mg

Eg ×Mg
· · · ×Mg

Eg︸ ︷︷ ︸
m times

.

Similarly, we denote by X×m
g,� the m-fold fiber product of Xg,� over Mg . Define

(E×m
g )◦ ⊂ E×m

g as the open substack parameterizing curves where no pair of
selected nodes is the same, and let (X×m

g,�)◦ be the preimage of (E×m
g )◦.

The product Sr = Sr1 × · · · × Srn of symmetric groups acts naturally on the
m-fold fiber products. Evidently, (E×m

g )◦ and (X×m
g,�)◦ are Sr-invariant. There

is a point x′ ∈ (X×m
g,�)◦ corresponding to the m-tuple of semistable curves

(C1, . . . ,Cm), where Ci is obtained by contracting all exceptional components
that do not lie over the ith marked point of the stabilization.

Proposition 6.1. The morphism (X×m
g,�)◦ → Mss

g , defined by mapping an m-tuple
(B1, . . . ,Bm) of semistable curves with stabilization B ′ to the fiber product

B1 ×B ′ · · · ×B ′ Bm,

is étale, representable, and Sr-equivariant. Moreover, the induced morphism

[(X×m
g,�)◦/Sr] →Mss

g

is stabilizer preserving at x′ and the diagram

[(X×m
g,�)◦/Sr] ��

��

[(E×m
g )◦/Sr]

��
Mss

g
�� Mg

is 2-commutative with étale vertical morphisms and representable induced mor-
phism [(X×m

g,�)◦/Sr] →Mss
g ×Mg

[(E×m
g )◦/Sr].

Proof. Since (E×m
g )◦ ⊂ (X×m

g,�)◦ has complement of codimension 2 and Xg,� →
Mg is Cohen–Macaulay, (X×m

g,�)◦ is normal. Since the morphism (X×m
g,�)◦ → Mss

g
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is étale in codimension 1, we may conclude from Zariski–Nagata purity [8, Thm.
X.3.1] that it is étale. The remaining statements are clear. �

Since the morphism [(X×m
g,�)◦/Sr] → Mss

g is not in general representable (e.g.,
for m > 1, the induced morphism on stabilizers is not injective at an m-tuple
(B, . . . ,B) where B is a smooth curve), some refinement is necessary in order to
reduce the verification of Conjecture 1.1 to a stack related to [(X×m

g,�)◦/Sr]. We
now provide such a refinement.

We recall the degree 2 cover D̂g → Dg from Section 2.1. By (5.1) there is a
fiber diagram

FD̂g/Eg
��

��

A1

��
Eg

��
◦
A1

(6.1)

where the bottom arrow is given by D̂g → Dg . We let F×m

D̂g/Eg
be the m-fold fiber

product over Mg and (F×m

D̂g/Eg
)◦ the preimage of (E×m

g )◦.

Proposition 6.2. There is an étale morphism [Spec(A)/H ] → [(E×m
g )◦/Sr], sta-

bilizer preserving at a point y′′ over the image in [(E×m
g )◦/Sr] of x′ ∈ (X×m

g,�)◦
such that the composition

[Spec(A)/H ] → [(E×m
g )◦/Sr] →Mg

is representable. Moreover, there is a finite étale cover Spec(B) → [Spec(A)/H ]
such that the composition Spec(B) → [Spec(A)/H ] → [(E×m

g )◦/Sr] factors

through (F×m

D̂g/Eg
)◦.

Proof. Let Wr = Wr1 × · · · × Wrn be the product of the hyperoctohedral groups
of signed permutations. There is an action of Wr on (F×m

D̂/Eg
)◦ compatible

with the Sr-action on (E×m
g )◦; this gives an étale morphism [(F×m

D̂/Eg
)◦/Wr] →

[(E×m
g )◦/Sr], which is stabilizer preserving at the unique preimage ỹ in

[(F×m

D̂/Eg
)◦/Wr] of the image of x′ ∈ (X×m

g,�)◦ in [(E×m
g )◦/Sr]. Let H denote

the stabilizer group at ỹ. By Lemma 3.3 and Section 3.2, there exists an affine
scheme Spec(A) with an action of H and an étale morphism [Spec(A)/H ] →
[(F×m

D̂/Eg
)◦/Wr] stabilizer preserving at a point y′′ ∈ [Spec(A)/H ] above ỹ such

that the composite morphism [Spec(A)/H ] → Mg is étale and representable.
The final statements are obtained by taking Spec(B) to be the affine scheme

representing the base change Spec(A) ×[(F×m

D̂/Eg
)◦/Wr] (F×m

D̂/Eg
)◦. �
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Corollary 6.3. With the notation of Proposition 6.2, if we define U as the fiber
product

U ��

��

[Spec(A)/H ]

��
[(X×m

g,�)◦/Sr] �� [(E×m
g )◦/Sr]

then the composition U → [(X×m
g,�)◦/Sr] → Mss

g is étale and representable, and
stabilizer preserving at a preimage x′′ of C.

7. Local Structure of Xg

In the section, we exhibit an augmented semi-aligned log structure on Xg . This
semi-aligned log structure allows us to establish Proposition 7.1, which provides
an explicit description of the fiber of the stabilization morphism over a stable
curve with precisely one node. This proposition will in turn be applied in Section 8
to complete the proof of Theorem 1.2.

7.1. Augmented Semi-aligned log Structure on Xg

Recall that Xg was defined in Section 6.1. We denote by X̂g the fiber product

X̂g
��

��

D̂g

��
Xg

st �� Eg

where the degree 2 étale cover D̂g → Dg ⊂ Eg is as in Section 2.1. By applying
the construction of Section 5.1, diagram (6.1) may be extended to the left with a
fiber square

FX̂g/Xg
��

��

FD̂g/Eg

��
Xg

�� Eg

(7.1)

We observe that FD̂g/Eg
→ Mg and D̂ satisfy the hypotheses of Proposition 4.1

and thus determine an aligned log structure on FX̂g/Xg
. Now Proposition 5.7 may

be applied to yield an augmented semi-aligned log structure

Xg → Log(1/2+ε)al (7.2)
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fitting into a fiber diagram

FX̂g/Xg
��

��

Logal

��
Xg

�� Log(1/2+ε)al

(7.3)

with the morphism corresponding to the aligned log structure on FX̂g/Xg
and ver-

tical étale morphisms.

7.2. Structure of Xg,�
The next result is an analogue of Lemma 4.3 for Xg,�.

Proposition 7.1. There is a fiber diagram

Xg,�
st ��

��

Eg

��
Log(1/2+ε)al ��

◦
A1

(7.4)

where the left vertical arrow is the restriction to Xg,� of the morphism (7.2), and
the right vertical arrow is given by the finite étale cover D̂g → Dg .

Proof. Since the morphisms Xg,� → Eg and Log(1/2+ε)al → ◦
A1 are isomor-

phisms in codimension 1, so is the morphism

� : Xg,� → Log(1/2+ε)al × ◦
A1 Eg. (7.5)

The fiber product in (7.5) is smooth (since the right-hand morphism in (7.4) is
smooth), so it follows from the Zariski–Nagata purity [8, Thm. X.3.1] that � is
étale. Since � is also bijective on geometric points and is pointwise stabilizer
preserving, we conclude from Lemma 3.1 that � is an isomorphism. �

8. Proof of Theorem 1.2

Theorem 8.1. Conjecture 1.1 holds for Mss
g .

Proof. Let C be a strictly semistable curve with stabilization C′. Let m and r =
(r1, . . . , rn) be the combinatorial data assigned to C as introduced in Section 6.2.

We apply Proposition 6.2 and, with the notation from there, define

X′ := [ ◦
A×r/Sr] ×[(Log(1/2+ε)al)×m/Sr] [(X×m

g,�)◦/Sr] ×[(E×m
g )◦/Sr] [Spec(A)/H ],

X′′ := [ ◦
A×r/Sr] ×[(Log(1/2+ε)al)×m/Sr] [(X×m

g,�)◦/Sr] ×[(E×m
g )◦/Sr] Spec(B).

Notice, with the notation of Corollary 6.3, that X′ may be identified with the fiber
product [ ◦

A×r/Sr] ×[(Log(1/2+ε)al)×m/Sr] U , and hence (cf. Proposition 5.6) admits
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a morphism to Mss
g satisfying conditions (iii) and (iv) of Proposition 3.10. The

cover X′′ → X′ satisfies condition (ii). So it remains to verify condition (i).
By Proposition 6.2, X′′ is isomorphic to

◦
A×r ×(Log(1/2+ε)al)×m (F×m

X̂g,�/Xg,�
)◦ ×(F×m

D̂g/Eg
)◦ Spec(B),

where X̂g,� denotes the preimage of Xg,� under X̂g → Xg , and where
(F×m

X̂g,�/Xg,�
)◦ denotes the preimage of (E×m

g )◦ in the m-fold fiber product

F×m

X̂g,�/Xg,�
over Mg . Thanks to (7.3) and Proposition 5.6, X′′ may be identified

with
A×r ×(Logal)×m (F×m

X̂g,�/Xg,�
)◦ ×(F×m

D̂g/Eg
)◦ Spec(B).

The next step is to obtain from diagrams (6.1), (7.1), and (7.3) and from Propo-
sitions 5.6 and 7.1 the fiber diagram

FX̂g,�/Xg,�
��

��

FD̂g/Eg

��
Logal �� A1

This yields further fiber diagrams upon passing to m-fold fiber products (in the
top row, over Mg) and upon restricting to preimages of (E×m

g )◦. Now we have

X′′ ∼= A×r ×(A1)×m Spec(B),

and we conclude, as in the proof of Theorem 4.2, by observing that the morphism
from Spec(B) to (A1)×m is affine. �

Acknowledgments. We are grateful for the valuable suggestions provided by
the referee. We thank Rahul Pandharipande for stimulating discussions that moti-
vated this investigation. We also thank the referee for useful comments and Jack
Hall for providing comments on the first draft.

References

[1] D. Abramovich, C. Cadman, B. Fantechi, and J. Wise, Expanded degenerations and
pairs, Comm. Algebra 41 (2013), no. 6, 2346–2386.

[2] D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive characteristic,
Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.

[3] J. Alper, On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214
(2010), no. 9, 1576–1591.

[4] E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves, Vol. II,
Springer, Heidelberg, 2011.

[5] B. Conrad and A. J. de Jong, Approximation of versal deformations, J. Algebra 255
(2002), no. 2, 489–515.

[6] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus,
Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.

[7] D. Edidin, B. Hassett, A. Kresch, and A. Vistoli, Brauer groups and quotient stacks,
Amer. J. Math. 123 (2001), no. 4, 761–777.



250 Jarod Alper & Andrew Kresch

[8] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Lecture Notes
in Math., 224, Springer-Verlag, Berlin, 1971.

[9] C. Huneke, Complete ideals in two-dimensional regular local rings, Commutative
algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 15, pp. 325–338, Springer,
New York, 1989.

[10] S. Keel and S. Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1,
193–213.

[11] A. Kresch, Flattening stratification and the stack of partial stabilizations of prestable
curves, Bull. Lond. Math. Soc. 45 (2013), no. 1, 93–102.

[12] G. Laumon and L. Moret-Bailly, Champs algébriques, Springer-Verlag, Berlin,
2000.

[13] D. Luna, Slices étales, Bull. Soc. Math. France, Mém., 33, pp. 81–105, Soc. Math.
France, Paris, 1973.
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