
Michigan Math. J. 65 (2016), 3–33

On IHS Fourfolds with b2 = 23

Grzegorz Kapustka

(with an appendix written jointly with Michał Kapustka)

Abstract. The present work is concerned with the study of four-
dimensional irreducible holomorphic symplectic manifolds with sec-
ond Betti number 23. We describe their birational geometry and their
relations to EPW sextics.

1. Introduction

By an irreducible holomorphic symplectic (IHS) fourfold we mean (see [B1]) a
four-dimensional simply connected Kähler manifold with trivial canonical bundle
that admits a unique (up to a constant) closed nondegenerate holomorphic 2-form
and is not a product of two manifolds. These manifolds are among the building
blocks of Kähler fourfolds with trivial first Chern class [B1, Thm. 2]. In the case
of four-dimensional examples their second Betti number b2 is bounded, and 3≤
b2 ≤ 8 or b2 = 23 (see [Gu]). There are however only two known families of IHSs
in this dimension, one with b2 = 7 and the other with b2 = 23 [B1]. The first is
the deformation of the Hilbert scheme of two points on a K3 surface, and the
second is the deformation of the Hilbert scheme of three points that sum to 0 on
an Abelian surface.

In this paper we address the problem of classification of IHS fourfolds X with
b2 = 23. This program was initiated by O’Grady, whose purpose is to prove that
IHS fourfolds that are numerically equivalent to the Hilbert scheme of two points
on a K3 surface are deformation equivalent to this Hilbert scheme (are of Type
K3[2]).

It is known from [V] and [Gu] that for IHS fourfolds with b2 = 23, the cup
product induces an isomorphism

Sym2 H 2(X,Q)�H 4(X,Q) (1.1)
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and that H 3(X,Q)= 0. By [F] the Hodge diamond admits additional symmetries,
and by [S] it has the following shape:

1
0 0

1 21 1
0 0 0 0

1 21 232 21 1
0 0 0 0

1 21 1
1

Recall that for an IHS fourfold X, we can find a (Fujiki) constant c such
that for α ∈ H 2(X,Z), we have cq(α)2 = ∫

α4 where q is a primitive integral
quadric form called the Beauville–Bogomolov form defining a lattice structure
on H 2(X,Z) called the Beauville–Bogomolov (for short, B–B) lattice.

In order to classify IHS fourfolds with b2 = 23, we have to find the possible
lattices and the possible Fujiki invariants for the given lattice. Next, for a fixed
Fujiki invariant and B–B lattice, find all deformation families of IHS manifolds
with the given numerical data. Note that the lattices for the known examples are
even but not unimodular.

The plan of the paper is the following. We show that each ample divisor on
an IHS fourfold X with b2(X)= 23 has self-intersection that is an integer of the
form 12k2 for some k ∈ N. Next, we study the case where X admits a divisor H

with H 4 = 12, that is, the minimal possible self-intersection. The first possibility
to consider is when H defines a birational morphism ϕ|H | : X→ P5 into a hyper-
surface of degree 12. Recall that the ideal of the conductor of ϕ|H | then defines a
scheme structure C on the singular locus of the image ϕ|H |(X)⊂ P5. It is known
that C ⊂ P5 is Cohen–Macaulay of pure dimension 3.

Recall that an EPW sextic SA ⊂ P5 =: P(W) is a special sextic hypersurface
defined as the determinant of the morphism

A⊗OP5 →�2
P5(3)⊂ P(W)×∧3

W (1.2)

corresponding to the choice of a 10-dimensional Lagrangian A⊂∧3
W with re-

spect to the natural symmetric form (as in [EPW, Ex. 9.3]). Furthermore, follow-
ing O’Grady, we denote

�A = {V ∈G(3,W) | V ∈G(3,W)∩ P(A)⊂ P(
∧3

W)}. (1.3)

The set �A is empty for a generic choice of A and generally measures how singu-
lar the EPW sextic is. Recall that EPW sextics were also constructed by O’Grady
[O1] as quotients by an involution of an IHS fourfold deformation equivalent to
Hilb2(S) where S is a K3 surface that admits a polarization of degree 12. Our
main result is the following:
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Theorem 1.1. Suppose that an IHS fourfold X with b2 = 23 admits an ample
divisor with H 4 = 12 such that H defines a birational morphism ϕ|H |. Then there
is a unique sextic containing the singular scheme C ⊂ P5 of ϕ|H |(X)⊂ P5 defined
before. Moreover, this sextic is an EPW sextic that we denote by SA (we call it the
EPW hypersurface adjoint to the image ϕ|H |(X)⊂ P5).

When H is fixed, we denote ϕ := ϕ|H | and X′ = ϕ(X) ⊂ P5. Our approach to
the study of the embedding C ⊂ P5 is to use the methods of homological algebra
described in [EFS; EPW]. In Section 4 we show that the unique adjoint EPW
sextic SA obtained in Theorem 1.1 has to be special.

Proposition 1.2. Suppose that an IHS fourfold X with b2 = 23 admits an ample
divisor with H 4 = 12 such that H defines a birational morphism ϕ|H |. Then the
sextic SA adjoint to the image X′ ⊂ P5 is an EPW sextic that is not generic. More
precisely, if we denote by �A the set defined by (1.3), then �A 
= ∅.

This proposition suggests in fact that the morphism ϕ|H | is never birational. In-
deed, Proposition 1.2 implies that for a fixed sextic SA that is adjoint to the image
of an IHS manifold, there is an at least one-dimensional family of polarized IHS
fourfolds X such that SA is the adjoint hypersurface to ϕ|H |(X)⊂ P5.

The idea of the proof of the proposition is the following: Suppose that SA

with �A = ∅ is the adjoint hypersurface to X′ ⊂ P5. Then we show that SA is
normal, and we construct a natural desingularization π : V → SA described in
Section 4.1. We obtain a contradiction by considering the pull-back π∗(X′ ∩ SA)

on V using the knowledge of the Picard group of V and the natural duality of V .
In the Appendix we present technical results used in the proofs concerning the
geometry of the orbits of the natural PGL(6) action on P(

∧3 C6).
This work is motivated by the study of the following question of Beauville [B,

p. 4].

Problem 1.3. Is each IHS fourfold with b2 = 23 deformation equivalent to
Hilb2(S) where S is a K3 surface?

More precisely, we are motivated by the special case of this question, called the
O’Grady conjecture [O]: Show that if an IHS fourfold X is numerically equivalent
to S[2] where S is a K3 surface (i.e., the Fujiki invariant c is 3, and (H 2(X,Z), q)

is isometric to U3⊕E2
8 ⊕〈−2〉 with the standard notation), then it is deformation

equivalent to it.
If an IHS fourfold X satisfies the assumptions of the O’Grady conjecture, then

we have b2(X)= 23, and it is proven in [O] that X is either of type K3[2] or is de-
formation equivalent to a polarized manifold (X0,H0) (satisfying the conditions
of [O6, Claim 4.4]) such that ϕ|H0| is a birational map whose image is a hyper-
surface of degree 6 ≤ d ≤ 12. O’Grady conjectured that the latter case cannot
happen. In [K] we showed that d ≥ 9 and that |H0| has at most three isolated base
points. The case where ϕ|H0| is a birational morphism is where the method of [K]
cannot work; see also [O6, Claim 4.9]. Applications of our results to the O’Grady
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conjecture in the case where ϕ|H0| is a birational morphism will be discussed in
Section 5.

2. Preliminaries

It was shown in [Hu] that there are a finite number of deformation types of hyper-
Kähler manifolds with fixed form H 2(X,Z) � α �→ ∫

α2c2 ∈ Z. In a similar way
we obtain the following:

Proposition 2.1. Let X be an IHS fourfold with b2 = 23. The Fujiki constant of
X is an integer of the form 3n2 for some n ∈N. In particular, the minimal degree
of the self-intersection H 4 of an ample divisor H ⊂ X is 12, and in this case
h0(OX(H))= 6.

Proof. First, from the Hirzebruch–Riemann–Roch theorem for IHS fourfolds we
infer that

h0(OX(H))= χ(OX(H))= 1

24
H 4 + 1

24
c2(X)H 2 + χ(OX). (2.1)

Next, by the formula of Hitchin and Sawon we deduce that

(c2(X) · α2)2 = 192
∫ √

Â(X) ·
∫

α4

for any class α ∈H 2(X,R), where the Â-genus in our case is just the Todd genus
of X.

We claim that
∫ √

Â(X) is independent of X with b2(X)= 23. Indeed, by the
Riemann–Roch formula, as in [HS], we have√

Â(X)= 1

2
Â2(X)− 1

8
Â2

1(X),

where Â1(X) = 1
12c2 and Â2(X) = 1

720 (3c2
2 − c4). It remains to show that

c2
2(X)= 828. But this follows from the fact that c4 = 324 and Â2 = 3. This proves

the claim.
We also deduce that (H 2.c2(X))2/H 4 = 300, so

√
300H 4 ∈N. It follows that

H 4 = 3k2. On the other hand, from (2.1) we deduce that k2/8+ 10k/8 ∈ N, and
thus k is even.

Let us now take an element α ∈ H 2(X,Z) with positive square. Then there
exist a deformation Y of X and a Gauss–Manin deformation β ∈ H 1,1(Y,Z) of
α such that ±β is ample (Huybrehts projectivity criterion). In particular, we infer
α4 = 12m2, where m ∈ Z with α of positive square; so also for all α ∈H 2(X,Z).
We conclude that the Fujiki constant is of the form 3n2. �

Remark 2.2. For an IHS manifold X with b2(X)= 23 to admit an ample divisor
with H 4 = 12, there are two possibilities:

• The Fujiki invariant is 3, the B–B lattice is even, and there exists h ∈H 2(X,Z)

with (h,h)= 2.
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• The Fujiki invariant is 12, and there exists h ∈H 2(X,Z) with (h,h)= 1.

It is a natural problem to decide whether the latter case can occur.

3. The Proof of Theorem 1.1

The idea of the proof of our theorem is to construct a quadratic symmetric sheaf
F on the unique sextic SA containing the scheme C ⊂ P5 (we know that the sextic
is unique from [K]). We extract F from a natural resolution of ϕ∗(OX(2)). The
first step will be to find a “symmetric” resolution of ϕ∗(OX(2)). The second is to
restrict this resolution in order to find the equation of the adjoint sextic.

We find that ϕ : X→ X′ ⊂ P5 = P(W) is a birational morphism and a finite
map onto a hypersurface of degree 12. Let us consider the Beilinson monad M
applied to ϕ∗(OX(2)). This is the following complex:

· · · →
5⊕

j=0

Hj(ϕ∗(OX(2+ e− j)))⊗�
j−e

P5 (j − e)→ ·· ·

(see [EFS] and [DE]). We have Hj(ϕ∗(OX(2− k)))=Hj(OX(2− k)) since ϕ is
finite. Let us write the monad M in the following form:

H 4(OX(−3)) H 4(OX(−2)) H 4(OX(−1)) C 0 0
0 0 0 0 0 0
0 0 0 C 0 0
0 0 0 0 0 0
0 0 0 C H 0(OX(1)) H 0(OX(2))

From [EFS, Cor. 6.2] the maps in the last row correspond to the natural multi-
plication map W ⊗H 0(O(k))→H 0(O(k + 1)). Since by a result of Guan [Gu]
we have Sym2 H 0(OX(1))=H 0(OX(2)), the maps in the last row correspond to
the maps in the Beilinson monad of OP5(2). Moreover, we denote by A a vec-
tor space such that A∨ ⊕ Sym3 H 0(OX(1))=H 0(OX(3)). Then analogously the
natural complex

0→�3
P5(3)→�2

P5(2)⊗W →�1
P5(1)⊗ Sym2 W →O⊗ Sym3 W

is exact and is a free resolution of OP5(3). Its Serre dual can be seen as a part of
the first row of the monad.

We claim that our Beilinson monad is cohomologous to the following (cf.
[CS]):

�5
P5(5)⊗A⊕OP5(−4) 0 0 0 0 0

0 0 0 0 0 0
0 0 0 �2

P5(2) 0 0
0 0 0 0 0 0
0 0 0 0 0 OP5(2)

Let us consider the complex T constructed from the bottom row of M,

T : 0→�2
P5(2)→�1

P5(1)⊗H 0(OX(1))→OP5 ⊗H 0(OX(2))→ 0.
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It is naturally a subcomplex of M such that the quotient complex is denoted by
M′. We have an exact sequence of complexes

0→ T →M→M′ → 0. (3.1)

Denote now by N the complex obtained by replacing the bottom row of M by
OP5(2), that is,

�5
P5(5)⊗H 4(OX(−3))→OP5(2)⊕�2

P5(2)⊕�4
P5(4)⊗H 4(OX(−2))

→�3
P5(3)⊗H 4(OX(−1))→�2

P5(2).

This complex also maps surjectively onto M′ with kernel K; we thus obtain an-
other exact sequence of complexes:

0→K→N →M′ → 0. (3.2)

From the long exact homology sequence associated with (3.1) we infer that the
only nonzero homology spaces are

H1(M′)→OP5(2)→ ϕ∗OX(2)→H0(M′).

Looking now at the second sequence (3.2), we infer that the only nonzero homol-
ogy of N is in degree 0. We deduce from the 5-lemma that this term is isomorphic
to ϕ∗OX(2). We treat the upper row of our monad similarly and deduce our claim.

So from [EFS, Thm. 6.1] we obtain an exact sequence

0→OP5(−6)⊕A⊗OP5(−3)
F−→�2

P5 ⊕OP5 → ϕ∗(OX)→ 0, (3.3)

where A is the 10-dimensional vector space, dual to the quotient of H 0(OX(3))

by the cubics of P5.
We shall show that the sheaf ϕ∗(OX) is symmetric, so that we can apply the

results of [EPW] and find that we can choose the map F as symmetric as possible.

Lemma 3.1. There exists a symmetric isomorphism

a : ϕ∗(OX(3))→ Ext1O
P5

(ϕ∗(OX(3)),OP5).

Proof. By relative duality, HomO
P5 (ϕ∗(OX(−3)),ωX′) = ϕ∗(OX(3)). Now ap-

plying the functor HomO
P5 (ϕ∗(OX(−3)), ·) to the exact sequence

0→OP5(−6)→OP5(6)→ ωX′ → 0,

we obtain

HomO
P5 (ϕ∗(OX(−3)),ωX′)→ Ext1O

P5
(ϕ∗(OX(−3)),OP5(−6))

k−→ Ext1O
P5

(ϕ∗(OX(−3)),OP5(6)),

where k is locally given by multiplication by the equation of X′ ⊂ P5, so it is 0.
From the projection formula we obtain an isomorphism

HomO
P5 (ϕ∗(OX(−3)),ωX′)→ Ext1O

P5
(ϕ∗(OX(3)),OP5).
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To see that a is symmetric, we repeat the arguments from [CS, §2]. First, we
get

HomO
P5 (OX′(3),OX′(3))=HomO

P5 (OX′ ,OX′)=C.

Next, a′ = Ext1O
P5

(a,OP5) = λa; but Ext1O
P5

(a′,OP5) = a, thus λ2 = 1, so λ =
±1. If λ = −1, then ϕ∗(OX(3)) is skew-symmetric, so arguing as in [CS, §2],
we find that the hypersurface X′ ⊂ P5 is nonreduced; this is a contradiction. It
follows that λ= 1, so a is symmetric. �

Since S2(OP5(−3)⊕A⊗OP5) is a sum of line bundles, we deduce that

Ext1O
P5

(S2(OP5(−3)⊕A⊗OP5),OP5)= 0.

Thus, we deduce as in the proof of [EPW, Thm. 9.2] that there is no obstruction
for a−1 to be a chain map, so we can find a map ψ that closes the following
diagram:

0−→ OP5(−3)⊕�3
P5(3)

F ∗−→OP5(3)⊕A∨ ⊗OP5 −→ Ext1O
P5

(ϕ∗(OX(3)),OP5)−→ 0

ψ∗
⏐⏐	 ⏐⏐	ψ a−1

⏐⏐	
0−→OP5(−3)⊕A⊗OP5

F−→ OP5(3)⊕�2
P5(3) −→ ϕ∗(OX(3)) −→ 0

(3.4)

Now arguing again as in the proof of [EPW, §5], we can choose a chain map
such that ψF ∗ is a symmetric map.

Our aim now is to make the second step: extract from F a map f whose de-
terminant gives the adjoint sextic. We first show that the resolution of the ideal of
the conductor of ϕ is obtained by restricting the resolution in (3.4).

Recall that the conductor of the finite map ϕ : X→X′ is the annihilator of the
OX′ -module ϕ∗(OX)/OX′ and is isomorphic to the sheaf Hom(ϕ∗(OX),OX′).
From [H, 7.2 page 249] we deduce that ϕ!ωX′ = ωX , so

ϕ∗OX = ϕ∗(ϕ!ωX′)=HomOX′ (ϕ∗(ωX),OX′(6)).

On the other hand, ωX is trivial, so the conductor C is isomorphic to ϕ∗(OX(−6)).
The inclusion C ⊂OX′ can be lifted to a map of complexes:

0−−→OP5(−12)⊕A⊗OP5(−9)
F−−→ OP5(−6)⊕�2

P5(−6)−−→ C −−→ 0⏐⏐	 ⏐⏐	 ⏐⏐	
0−−→ OP5(−12)

detF−−→ OP5 −−→OX′ −−→ 0

By the mapping cone construction [E, Prop. 6.15] we obtain the nonminimal
resolution

0→OP5(−12)⊕A⊗OP5(−9)

→OP5(−6)⊕�2
P5(−6)⊕OP5(−12)→ IC|P5 → 0,
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where C ⊂X′ ⊂ P5 is the subscheme defined by the conductor C. It follows that
the following map b is given by restriction of F :

0→ 10OP5(−9)
b−→�2

P5(−6)⊕OP5(−6)→ IC|P5 → 0. (3.5)

Recall that C is supported on the singular locus of X′; moreover, it is locally
Cohen–Macaulay and has pure dimension 3 and degree 36 (see [K]).

Consider the part of b given by

A⊗OP5(−3)
f−→�2

P5 . (3.6)

The determinant of this map gives the unique sextic SA ⊂ P5 containing C. In-
deed, taking the long exact sequence associated to (3.5) tensorized by OP5(6),
we see that the unique sextic containing C ⊂ P5 is the image of H 0(OP5) ⊂
H 0(OP5 ⊕�2

P5).

Since there is no nonzero map OP5(3)→�2
P5(3), the restriction of the diagram

(3.4) gives

�3
P5(3)

f ∗−−−−→ A∨ ⊗OP5

ρ∗
⏐⏐	 ρ

⏐⏐	
A⊗OP5

f−−−−→ �2
P5(3)

where ρf ∗ is a symmetric map, which is the restriction of ψF ∗ to �3
P5(3). We

saw in (3.6) that detf gives the equation of the adjoint sextic. The cokernels F
and F∗ of f and f ∗ are sheaves supported on the adjoint sextic. We complete the
diagram such that

0 −−−−→ �3
P5(3)

f ∗−−−−→ A∨ ⊗OP5 −−−−→ F∗ −−−−→ 0

ρ∗
⏐⏐	 ρ

⏐⏐	 α

⏐⏐	
0 −−−−→ A⊗OP5

f−−−−→ �2
P5(3) −−−−→ F −−−−→ 0

Since ρf ∗ is symmetric, we infer that F is a symmetric sheaf supported on the
adjoint sextic detf with resolution

0→A⊗O f−→�2
P5(3)→F→ 0,

and thus the adjoint sextic is an EPW sextic (see [EPW, §9.3]).

4. The Proof of Proposition 1.2

For contradiction, suppose that a sextic SA with �A = ∅ can be the adjoint hyper-
surface, which is the image of an IHS fourfold. Recall that such a generic EPW
sextic is singular along a surface of degree 40 with A1 singularities along this
surface. The idea of the proof of our proposition is to construct a resolution V of
singularities of SA and then to consider the pull-back of the fourfold ϕ|H |(X)⊂ P5

on V . We obtain a contradiction by considering the natural duality of V .
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We shall first construct the desingularization V in Section 4.1. In Section 4.2
we describe the duality on V . The proof of our proposition is given in Section 4.3.

4.1. Desingularization of EPW Sextic

Let us construct V . First, consider

O2 = {[α ∧ω] ∈ P(
∧3

W) | α ∈W,ω ∈∧2
W } ⊂ P(

∧3
W),

the closure of the second orbit of the action of PGL(W) on P(
∧3

W) (see the
Appendix). Note that O2 is singular along G(3,W); moreover, we have the dia-
gram

P(W) O2
π1 π2 P(W∨) (4.1)

such that π1([α ∧ v]) = [α] ∈ P(W) and π2([α ∧ v]) = [α ∧ v ∧ v] ∈ P(W∨)
for α ∈ W , ω ∈ ∧2

W . The maps π1 and π2 are rational and defined outside
G(3,W)⊂O2 by Lemma A.1.

Now the wedge product
∧3

W ⊕ ∧3
W → ∧6

W = C induces a skew-
symmetric form on

∧3
W . We consider a maximal 10-dimensional Lagrangian

subspace A⊂∧3
W isotropic with respect to this form. For a fixed A, we define

the manifold

V ′ := P(A)∩O2.

Proposition 4.1. The image π1(V
′) is the EPW sextic SA associated to A. More-

over, if �A = ∅, then V ′ is a smooth Calabi–Yau fourfold.

Proof. In order to find the image π1(V
′), we consider a natural desingularization

of O2 that is the projectivization of the vector bundle P(�3
P5(3)). Comparing the

following construction with the definition of the EPW sextic given in the intro-
duction (see (1.2)), we deduce the first part of the statement.

Let us describe this desingularization. From [EPW, Thm. 9.2] we can see that(f ∗
ρ∨

)
defines an embedding of �3

P5(3) as a symplectic subbundle of (A⊕A∨)⊗
OP5 =∧3

W ⊗OP5 . On the other hand, from [O1, §5.2] we deduce that we can
look at

∧3
W ⊗ OP5 as a symplectic vector bundle with the symplectic form

induced from the wedge product
∧3

W ⊕∧3
W →∧6

W =C such that the fiber
of the subbundle �3

P5(3) over v ∈ P5 corresponds to the 10-dimensional linear
space

Fv = {[v ∧ γ ] ∈ P(
∧3

W) | γ ∈∧2
W } ⊂ P(

∧3
W).

Then ρ∗ is given by the considered embedding composed with the quotient map

∧3
W ⊗OP(W)→ (

∧3
W/A)⊗OP(W),
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where A is a Lagrangian subspace of
∧3

W (there is a canonical isomorphism∧3
W/A=A∨). More precisely, we have a diagram

P(
∧3

W)⊃O2
π1 P5

P(�3
P5(3))

π
α

such that the image of α is the variety O2. The first part follows.
Let us prove the second part. The smoothness follows from Proposition A.5.

Indeed, suppose that V ′ is singular at a point p. Then P(A) intersects the tan-
gent space to O2 in a nontransversal way along a five-dimensional isotropic sub-
space Z. By Proposition A.5 the space Z has to cut G(3,W), a contradiction.

Let us find the canonical bundle of V ′. Observe that α is given by the complete
linear system of the line bundle T :=O

P(�3
P5 (3))(−1). Denote

V := α−1(P(A)∩O2).

Since V is smooth, V ′ is isomorphic to V . We find the canonical divisor of
V using the adjunction formula and the knowledge of the canonical divisor of
P(�3

P5(3)). The dimension of the cohomology group h1(OV ′) is found by using
the Lefschetz hyperplane theorem. �

Remark 4.2. Alternatively, for the proof of the last proposition, we can use the
results from [O1] to prove that V is the blow-up of the quotient of XA by an
antisymplectic involution. We infer in this way that V is a smooth Calabi–Yau
fourfold with Picard group of rank 2.

Remark 4.3. Denote by E the exceptional divisor of α. It maps to G(3,W)⊂O2

such that the fiber over a point U ∈ G(3,W) is a projective plane that maps
under π to P(U) ⊂ P(W). Moreover, E is isomorphic to the projectivization
of the tautological bundle on G(3,W). By Lemma A.6 we deduce that the
pull-back (α ◦ π2)

∗(H2) is a Cartier divisor in the linear system |2T − H | on
P(�3

P5(3)). Moreover, E is the base locus of |2T −H | such that, after blowing-up

E ⊂ P(�3
P5(3)), this linear system become base-point-free and factorizes through

π2.

The idea of the proof of Proposition 1.2 is by contradiction. Denote by H the pull-
back by π : V → P(W) of the hyperplane section in P(W) and T ∈ |T |. From
Proposition A.2 and the Lefshetz theorem (or from Remark 4.2) the divisors H

and T generate Pic(V ). First, we need the following:

Proposition 4.4. There exists a divisor D ⊂ V in the linear system |3H + T |
that projects under π to C.
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Proof. We shall show that D is given by the vanishing of a section of the vector
bundle 10O

P(�3
P5 (3))(−1)⊕ (O

P(�3
P5 (3))(1)⊗OP5(3)) on P(�3

P5(3)). Recall that

the sequence (3.5) defines a codimension 1 subscheme C ⊂ SA. Let us apply
Kempf’s idea and pull back b∨ (where b is defined by (3.5)) by p : P(10OP5)→
P5. Then, as in [L, Appendix B], we obtain a diagram

p∗�3
P5(3)⊕ p∗OP5(−3)

p∗b∨

v

p∗(10OP5)

OP(10O
P5 )(1)

(4.2)

We see that the degeneracy locus of b∨ can be seen on P(10OP5) as the degen-
eracy of v and thus as the zero section of

(O(10O
P5 )(1)⊗ p∗OP5(3))⊕ (O(10O

P5 )(1)⊗ p∗�2
P5(3)).

Finally, note that the zero scheme of the bundle O(10O
P5 )(1)⊗p∗(�2

P5(3)) defines
V set-theoretically and that the restrictions O(10O

P5 )(1)|V and O
P(�3

P5 (3))(−1)|V
are equal. �

Finally, we shall translate geometrical properties of the map ϕ : X→ X′ ⊂ P5

into geometrical properties of the adjoint EPW sextic. Let us also consider the
subschemes Nr ⊂X′ defined by FittX

′
r (ϕ∗(OX)) (e.g., N1 = C). Recall that from

the results of [MP, §4] the scheme N2 has a symmetric presentation matrix and is
of codimension ≤ 3 if it is nonempty. Moreover, N2 is supported on points where
C is not a locally complete intersection (see [MP, p. 131]). Denote by Mr the
degeneracy locus of rank ≤ 10− r of the map

A⊗OP5(−3)
f−→�2

P5 .

Lemma 4.5. The subschemes N2 and M2 of P5 are equal, and the radicals of the
schemes Nr and Mr are equal for r ≥ 2. Moreover, suppose that p ∈Mk−Mk+1.
Then for k ≥ 1, the dimension of the intersection Fp ∩ P(A) is k − 1.

Proof. This is an analogous statement to the rank condition (see [CS, Rem. 2.8]).
We claim that locally the map F can be seen as a symmetric map. Indeed, in the
diagram (3.4) using alternating homotopies as in [EPW, p. 447], we have the free-
dom of choice of the map ψ . In particular, restricting to an affine neighborhood,
we can assume that the matrix A := Fψ is symmetric and that ψ is an isomor-
phism. Note that the matrix B consisting of the last nine columns of A and the
matrix B ′ which is the last nine rows of B have maximal degeneracy loci defining
locally the scheme C and the sextic SA, respectively (see (3.5)). Since we know
that X′ has a nonsingular normalization, we can conclude with [KU, Prop. 3.6(3)].

For the second part, we use [KU, Lem. 2.8]. It follows from the proof of Propo-
sition 4.4 that the dimension of the fiber V ∩ π−1(p) is equal to k − 1. We con-
clude by observing that the map α does not contract curves on π−1(p). �
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4.2. The Duality

Since we have a second fibration π2 of the variety O2, it is natural to consider the
following picture:

P(W) O2 ⊂ P(
∧3

W)
π1 π2 P(W∨)

P(�3
P(W)

(3))

π
α

P(�3
P(W∨)

(3))

π ′
α′

(4.3)

Denote by F ′v the closure of the fiber of π2 and by π2(V
′)= S′A ⊂ P(W∨) the cor-

responding EPW sextic constructed from A. Denote OV ′(H2) := π∗2 (OP(W∨)(1)).
Without lost of generality, we can denote OV ′(H) := π∗1 (OP(W)(1)) (we identify
it with the divisor π∗(OP(W)(1)) on V ).

Lemma 4.6. Assume that the sextic SA ⊂ P(W) is integral. Then S′A ⊂ P(W∨) is
integral and dual to SA.

Proof. It follows from the definition of π1 and π2 that π2(Fv) is a hyperplane in
P(W∨) that is dual to v ∈ P(W). Next, it follows from the description in [O2, Cor.
1.5(2)] of the tangent space T to SA at a smooth point that there is a point w ∈ S′A
such that π1(F

′
w)= T . �

Remark 4.7. As remarked by O’Grady [O2, §1.3], the map π2|Fv is given by
the linear system of Plücker quadrics defining Fv ∩ G(3,W) = G(2,5) ⊂ P9.
Thus, the fibers of π2|Fv are five-dimensional linear spaces spanned by G(2,4)⊂
G(2,5)⊂ P9.

4.3. The Proof of (1.2)

The aim of this section is to prove that an EPW sextic SA constructed by choosing
P(A) disjoint from G(3,W) (i.e., with �A = ∅) cannot be the adjoint hypersur-
face of a birational image of an IHS manifold with b2 = 23.

For contradiction, suppose that SA can be such a hypersurface. Then for the
corresponding Lagrangian space A with �A = ∅, the variety V ′ =O2 ∩ P(A) is
isomorphic to V = α−1(V ′). Thus, let us identify V = V ′.

From [O3, Claim 3.7] we deduce that there are only a finite number of planes
on V contracted to points by π1 and there are no higher-dimensional contracted
linear spaces. Denote by E and E2 the exceptional loci of π1|V and π2|V , respec-
tively, by T the restriction of the hyperplane in P(

∧3
W), and by H and H2 the

pull-backs by π1 and π2, respectively, of the hyperplane sections in P(W) and
P(W∨). By [O2, Prop. 1.9] the singular locus of SA is a surface G of degree 40
that is smooth outside the image of the contracted planes. Moreover, SA has ODP
singularities along the smooth locus of G. Hence, E and E2 are reduced.
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Using Proposition A.2 and the Lefschetz theorem [RS, Thm. 1], which works
when V is smooth and omits the singular locus of O2, we deduce that the Picard
group of V has rank 2 and is generated by the restrictions of H and H2.

Lemma 4.8. In CH 1(V )= Pic(V ) we have the equalities

H2 = 5H −E and H +H2 = 2T .

Proof. The first equality follows from [Dol, §1.2.2] (see Corrolary A.7), and the
second from Lemma A.6. �

Now, using Proposition 4.4, we find a divisor D ⊂ V in the linear system |3H+T |
such that p(D)= C. It follows from Lemma 4.5 that D−E is an effective divisor
D1. Let l ⊂ V be a line contracted by π2 (such lines cover E2). Since l.T = 1,
from Lemma 4.8 we obtain l.H = 2. It follows that

l.(D −E)= l.(3H + T −E)= l.(T +H2 − 2H)=−3

in CH 1(V ). Since D1 is effective, we infer that l ⊂D1; thus, E2 ⊂D1, and D1−
E2 is effective (E2 is reduced). We obtain the following equalities in CH 1(V ):

D1 −E2 = T − 4H2 −H =−3H2 − T .

This is a contradiction because −3H2 − T cannot be effective.

5. On the O’Grady Conjecture

The aim of this section is to apply the results from the previous sections to prove
some special cases of Conjecture 5.3 of O’Grady. In fact, we shall generalize
the results of Proposition 1.2 to a special class of IHS fourfolds with b2 = 23
satisfying an additional condition O described in the next subsection.

5.1. IHS Fourfolds with b2 = 23 Satisfying Condition O

Let (X,H) be a polarized IHS fourfold with b2 = 23 such that H 4 = 12. Consider
the following definition.

Definition 5.1. We say that (X,H) satisfies condition O if for all D1,D2,D3 ∈
|H | that are independent, the intersection D1 ∩D2 ∩D3 is a curve.

Intuitively, condition O says that the image ϕ|H |(X)⊂ P5 does not contain planes.
Note that this is one of the conditions from [O6, Claim 4.4]. Moreover, each IHS
manifold numerically equivalent to Hilb2(S), where S is a K3 surface, can be
deformed to one that satisfies condition O. Motivated by this, we can state the
following:

Problem 5.2. Is each IHS fourfold with b2 = 23 deformation equivalent to a
polarized IHS fourfold (X0,H0) satisfying condition O such that H 4

0 = 12?
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Note that if we find such a deformation, we can repeat the arguments from [O]
in order to show that either ϕ|H0| is the double cover of an EPW sextic (thus, X0

is of type K3[2]) or X0 is birational to a hypersurface of degree 12 ≥ d ≥ 7, or
a 4 : 1 morphism to a cubic hypersurface with isolated singularities, or a 3-to-1
morphism to a normal quartic hypersurface, or dimϕ|H0|(X0) ≤ 3. It is a natural
geometric problem to decide which one of these cases can occur.

5.2. The O’Grady Conjecture

In this section we discuss the following conjecture of O’Grady.

Conjecture 5.3. If an IHS fourfold X is numerically equivalent to Hilb2(S)

where S is a K3 surface (i.e., c= 3 and (H 2(X,Z), q) is isometric to U3⊕E2
8 ⊕〈−2〉 with the standard notation), then it is deformation equivalent to it.

Let X be an IHS manifold numerically equivalent to S[2] where S is a K3 sur-
face. Consider M′

X , a connected component of the moduli space of marked IHS
fourfolds deformation equivalent to X, and the surjective period map

P :M′
X→�L.

Then choose an appropriate ρ ∈ �L such that P−1(ρ) is an IHS manifold X

deformation equivalent to X0 and Pic(X0)= ZH0 where H0 is an ample divisor
with H 4

0 = 12. The special choice of ρ requires X0 to satisfy condition O and
additional conditions that are described in [O6, Claim 4.4]. For such (X0,H0),
O’Grady proved that the linear system |H0| gives a map ϕ|H0| of degree ≤ 2 that
is either birational onto its image or a special double cover of an EPW sextic.
Since this double cover is deformation equivalent to Hilb2(S) where S is a K3
surface, his conjecture follows if we prove that degϕ|H0| 
= 1.

If we suppose that degϕ|H0| = 1 (i.e., ϕ|H0| is a birational map), then O’Grady
remarked that the image of ϕ|H0| is a hypersurface of degree 6 ≤ d ≤ 12. In [K]
we showed that d ≥ 9 and |H0| has at most three isolated base points. Note that if
|H0| has one isolated point, then the scheme defined by the ideal of the conductor
of ϕ|H0| is contained in a unique quintic (containing the singular locus of ϕ|H0|).
There is a lot of geometry appearing as discussed in [G].

In this work we consider the case d = 12 (i.e., |H0| has no base points); this is
the case where the method of [K] does not work and also the most difficult one
from the point of view of O’Grady (see [O6, Claim 4.9]). Then the image of ϕ|H0|
is a nonnormal degree 12 hypersurface ϕ|H0|(X′)⊂ P(W). Our idea is to study the
adjoint hypersurface SA to X′ ⊂ P(W). We know that it is an EPW sextic, so we
can use the classification of such sextics given in [O2; O3; O4], and [IM] in order
to describe SA more precisely. Recall that for SA, the set �A (defined in (1.3)) is
empty for a generic choice of A and if �A 
= ∅, then it measures how singular the
EPW sextic is. For special A, all the values 0≤ dim�A ≤ 6 can be obtained.

Recall again that each numerical (K3)[2] can be deformed to a polarized IHS
fourfold (X0,H0) that satisfies condition O. Our main result of this section is the
following:
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Proposition 5.4. Suppose that a hypersurface X′ ⊂ P5 of degree 12 is the bira-
tional image of a polarized IHS manifold (X,H) with b2 = 23 such that H 4 = 12
satisfying O through a morphism given by the complete linear system |H |. Let
SA ⊂ P5 be the adjoint EPW sextic to the image X′ ⊂ P5. Then, for SA, we have
either dim�A = 1, or SA is the double determinantal cubic, or SA has a nonre-
duced linear component.

The idea of the proof is as follows: We separately treat the cases where dim�A =
0, dim�A ≥ 2, and dim�A = 1 (in Sections 5.4, 5.5, and 5.6, respectively). The
case dim�A = 0 is similar to �A = ∅. In the other cases, for each point U ∈�A,
we consider the plane P(U)⊂ P5 contained in SA such that SA is singular along
P(U). Then we consider after O’Grady (see [O4]) the sets CU,A ⊂ P(U) defined
further in (5.1). Each CU,A ⊂ P(U) is either the whole plane or the support of
some sextic curve CU,A. We show that CU,A has to be contained in X′ and thus
cannot be a plane (by condition O). We also show that CU,A must have degree ≤ 3
(see Lemma 5.15). Checking case by case, we exclude all the possibilities with
dim�A ≥ 2 except where either SA is the double determinantal cubic and X′ has
generically tacnodes along SA ∩ X′, or SA is reducible and equal to 2H0 + Q

where H0 is a hyperplane and Q a quartic such that H0 ∩Q supports the scheme
C defined by the conductor. In particular, in the second case, X′ has triple points
along C that are not ordinary triple points (see the end of Section 5.5 for a precise
description). A new idea is needed to conclude in those cases.

We believe that by the methods of this paper we can also exclude the case
dim�A = 1, but the problem becomes more technical, and we only show that
the Lagrangian subspace A ⊂∧3

W defining SA cannot be generic in the set of
Lagrangian A with dim�A = 1 (see Section 5.6). Before proving Proposition 5.4,
we first introduce some technical results.

5.3. Preliminary Results

For U ∈G(3,W), we see that π(α−1(U))= P(U)⊂ P(W) is the corresponding
plane contained in SA. Let us consider, after O’Grady, the set

CU,A := {[v] ∈ P(U) | dim(Fv ∩ P(A))≥ 1}, (5.1)

where Fv is the linear space being the closure of the fiber of the map π1 : O2 ���
P(W) at the point [v]. There is a natural scheme structure CU,A on CU,A described
in [O4, §3.1] such that CU,A is either a sextic curve or the whole plane P(U).

Proposition 5.5. The set CU,A is contained in X′ ⊂ P(W). In particular, CU,A is
never equal to P(U) if (X,H) satisfies condition O.

Proof. First, over the points from the set CU,A, the map

A⊗OP5(−3)
f−→�2

P5

has corank ≥ 2; so CU,A ⊂M2. But from Lemma 4.5 we have N2 =M2, and thus

CU,A ⊂M2 =N2 ⊂X′.
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Finally, it follows from condition O that X′ ⊂ P(W) cannot contain any plane.
�

Definition 5.6. Recall that O’Grady defined, for A ∈ LG(10,
∧3

W) and U ∈
�A, the set B(U,A) of v ∈ P(U) such that either

(1) there exists U ′ ∈ (�A − {U}) such that v ∈ P(U ′), or
(2) dim(P(A)∩ Fv ∩ TU)≥ 1,

where TU is the projective tangent space to G(3,W) at U .

Lemma 5.7. The curve CU,A ⊂ P(U) can have only isolated singularities outside
B(U,A). If P(U) 
= CU,A, then B(U,A)⊂ singCU,A. Moreover, if U1,U2 ∈�A,
then P(U1) and P(U2) intersect as planes in P5 at the point of intersection CU1,A∩
CU2,A.

Proof. This is proved in [O4, Cor. 3.2.7]. �

We have the following description of the EPW sextic SA in the case dim�A = 0.

Lemma 5.8. If dim�A = 0, then SA is normal. Moreover, V = α−1(V ′) and V ′ =
P(A)∩O2 are irreducible.

Proof. Since SA is locally a complete intersection, the normality of SA follows
from the Serre criterion if SA is nonsingular in codimension 1. On the other hand,
it follows from [O2, §1.3] that SA is only singular along the sum of the planes
P(U) for U ∈�A and along the set D such that, for v ∈D, we have

Fv ∩ P(A)∩G(3,W)= ∅ and dim(Fv ∩ P(A))≥ 1.

From [O2, Prop. 1.9] we infer that D is a surface.
Since the intersection of P(A) with the tangent to O2 at P is five-dimensional

isotropic, we deduce from Proposition A.5 that P(A)∩O2 is smooth at

P ∈ (Fv ∩ P(A))−G(3,W)

when Fv ∩P(A)∩G(3,W)= ∅. Thus, we have to show that the dimension of the
exceptional set of π : V → SA that maps to G := (

⋃
U∈�A

P(U))red is smaller
than 4. From the fact that �A is a finite set it is enough to consider the ex-
ceptional set above CU0,A ⊂ P(U0) for a fixed U0 ∈ �A. Since �A is finite, the
fiber α(π−1(v)) ⊂ Fv for a given v ∈ CU0,A intersects G(2,5) = G(3,W) ∩ Fv

in a finite number of points. Since the dimension of G(3,5) ⊂ P9 is 6, we infer
dimπ−1(v)≤ 3 for all v ∈ CU0,A and dimπ−1(v)≤ 2 for a generic v ∈ CU0,A. It
follows that V ′ and V are irreducible. �

The map V
α−→ V ′ = P(A)∩O2 is an isomorphism outside α−1(G(3,W)). Thus,

from the previous proof we deduce that if dim�A = 0, then V can only be singu-
lar at points that map to a curve CU,A for some U ∈�A.

Proposition 5.9. If dim�A = 0, then the varieties V = α−1(V ′) and V ′ =
P(A)∩O2 are nonsingular in codimension 1. Moreover, V is normal.
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Proof. Note that V is locally a complete intersection; thus, it is enough to show
the first part. Our aim is to show that the singular points of P(A) ∩O2 are con-
tained in the sum of the tangent spaces to G(3,W) at points from �A. Next, we
show that the intersection of P(A)∩O2 with those tangent spaces is of codimen-
sion 2.

We need to consider points in the preimage

B ′ := π−1(CU,A).

Denote by B an irreducible component of B ′. Suppose that for a given U0, this
set is three-dimensional; then either there is a one-parameter family of planes
parameterized by CU0,A, or there is a three-dimensional linear space (i.e., P3)
mapping to a point on CU0,A. Let us consider the first case; the other is treated
similarly.

Suppose that V is singular along B . Then at each p ∈ α(B) −G(3,W), the
space P(A) does not intersect transversally the tangent plane to O2. By Propo-
sition A.5 the intersection P(A) ∩ Fv ∩ F ′w , where v = π1(p) and w = π2(p),
contains the line [p,U ′] ⊂ Fv where U ′ is one of the finite number of points (at
most two) in P(A)∩G(3,W)∩ Fv ∩ F ′w .

We claim that for a generic choice of p ∈ B , the line [p,U ′] is contained in the
tangent space to G(2,5)⊂ Fv at U (i.e., B ⊂ TU ). Since �A is finite, for a generic
choice of p ∈ B , the line [p,U ′] with U ′ ∈ P(A) ∩G(3,W) intersects G(3,W)

in one point. From Remark 4.7 the line is contained in a five-dimensional linear
space Lp = Fv ∩F ′w such that Lp ∩G(2,5) is a quadric. Since this line intersects
G(3,W) in one point, it has to be tangent to G(2,5). The claim follows.

Let TU be the projective tangent space to U ∈G(3,W), and let MU := P(A)∩
TU . The following is a nice exercise.

Lemma 5.10. The intersection KU := TU ∩ G(3,W) can be seen as the set of
planes in P(W) that intersect the plane P(U) along a line. In particular, KU has
dimension 5 and is a cone over the Segre embedding of P2 × P2. The sum of the
linear spaces Fv ∩ TU for v ∈ P(U) is a cone over the determinantal cubic EU .
Moreover, KU is the singular set of EU .

First, we have dimMU ≤ 4 since otherwise we infer

dim�A ≥ dim(MU ∩KU)≥ 1,

contrary to dim�A = 0. So we have three possibilities: dimMU = 2, 3, or 4.
Note that Fv ∩ TU is the tangent space to G(2,5) at U and so has dimension 6.
If dimMU = 4, then each linear space Fv ∩ TU for v ∈ P(U) intersects P(A)

along a linear space of dimension at least 1 (because such an intersection contains
Fv ∩MU ). Thus, CU,A = P(U), contrary to Proposition 5.5.

So we can assume that dimMU ≤ 3. We saw before that the generic fiber of
π |B : B→ CU,A is a plane contained in TU . Since these fibers are contained in
MU and disjoint outside U , we obtain a contradiction. �

Finally, we will use several times the following:
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Proposition 5.11. Suppose that the set of points v ∈ P(W) with dim(Fv ∩
P(A))≥ 2 is a curve C ⊂ P(W). Then the tangent space Tv0 ⊂ P(W) to C at v0 is
perpendicular to the linear space spanned by the image π2(P(A)∩Fv)⊂ P(W∨).

Proof. Denote, after O’Grady,

�̃(0) := {(A,v) ∈ LG(10,
∧3

W) : dim(Fv ∩ P(A))= 2}.
It was observed by O’Grady that �̃(0) is smooth and is an open subset of �̃ where
we have dim(Fv ∩ P(A)) ≥ 2. We know from [O3, Prop. 2.3] the description of
the tangent space to �̃. In particular Tv0 = Ker τv0

K , where K := P(A) ∩ Fv0 , in
the notation of [O3, eq. (2.1.11)]. It remains to show that the linear space spanned
by π2(K) is perpendicular to Ker τv0

K . To see this, note that π2|P(K) is given by
the system of Plücker quadrics φ

v0
v and use [O3, eq. (2.1.11)]. �

5.4. The Case Where dim�A = 0

The aim of this section is to study the case dim�A = 0 in Proposition 5.4 by
showing that an EPW sextic SA with dim�A = 0 cannot be the adjoint hypersur-
face to the birational image of a polarized IHS fourfold (X,H) with b2(X)= 23
and H 4 = 12 satisfying condition O.

The closure in V of the exceptional set of the restriction of the morphism π :

V ��� SA −
( ⋃

U∈�A

P(U)

)

is a reduced Weil divisor EG that maps to the surface suppN2. We also have ex-
ceptional sets of π over points from

⋃
U∈�A

P(U). Since O2∩P(A) is irreducible,
we deduce that there are two kinds of irreducible components of the exceptional
set of π : either

♣ one-parameter families of planes such that the image through π is a curve C0
that is a component of CU,A ⊂ P(U), or

♠ three-dimensional linear spaces Ei for i = 1, . . . , s mapping to points in
CU,A ⊂ SA for some U ∈G(3,W).

We believe that such exceptional sets cannot exist. However, we only prove that
the first type of exceptional set cannot occur (this is enough to complete the proof
of Proposition 5.4). For this, we need to better understand the duality between SA

and S′A. It would be nice to find a simpler proof of the following:

Lemma 5.12. The morphism π has no exceptional set as in ♣.

Proof. Suppose that such an exceptional set G′ ⊂ V exists. Denote by

G⊂ P(A)∩O2

the image of G′ under α such that each fiber G⊃Gv =G∩ Fv is a plane and G

maps to a curve C0 ∈ P(U0) (which is a component of CU0,A).
We claim that Gv intersects TU0 along a line contained in the determinantal

cubic EU0 ⊂ TU0 . Indeed, from the proof of Proposition 5.9 it follows that the
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generic fiber Gv cannot be contained in TU0 . Next, from [O4, Prop. 3.2.6 (3)] we
infer that Gv intersects the tangent space TU0 ∩Fv only at U0 and is disjoint from
�A; thus, C0 has a node at v. The claim follows since the nodes on C0 are at
isolated points. We also deduce that C0 is a triple component of CU,A, so it is
either a multiple conic or a line.

We infer that G ∩ TU0 has dimension ≥ 2. From the proof of Proposition 5.9
we know that dim(TU0 ∩ P(A)) ≤ 3, so either G ∩ TU0 is a plane, or dim(TU0 ∩
P(A))= 3.

Let us show that the second case cannot happen. Suppose that dim(TU0 ∩
P(A)) = 3. Since Gv ∩ TU0 is a line contained in the cubic EU0 , we infer that
G∩ TU0 is a cone over a cubic curve A (which is a section of EU0 ). Denote by N

a generic hyperplane section of G. Note that N is smooth because it maps under
π1 to a smooth curve with linear spaces as fibers. It follows that N is the pro-
jection of a rational normal scroll that has A as P2 section. This is only possible
when A is reducible, but then N should be reducible, a contradiction. We deduce
that G∩ TU0 is a plane.

Claim 5.13. The support of the curve C0 cannot be a line.

Proof. Suppose the contrary and fix a v ∈ C0. Since the morphism π2|Gv is given
by a linear subsystem of conics with base point Gv ∩G(3,W), is birational, and
contracts the line Gv∩TU0 to a point, we deduce that π2(Gv) is a surface that is an
irreducible quadric cone Qv ⊂ P5 tangent to P(U∨0 ) along a line with vertex at the
image of the contracted line (because the image of a line passing through U0 on
Gv is a line passing through the image of Gv∩TU0 ). Consider the rational scroll N

and denote by f a generic fiber of π1|N and by c0 the section TU0∩N . We saw that
c0 is a line (since G∩ TU0 is a plane). We have H |N = f and H2|N = a.f + b.c0

for some a, b ∈ Z.
We have two possibilities: π2(G) is either a quadric surface or a threefold. Let

us treat the first case. Suppose that Qv1 and Qv2 are equal for v1 
= v2. Since C0

is a line, H |c0 has degree 1. Next, from 2T =H +H2 and π2(c0)⊂ P(U∨0 )∩Qv0

we infer that H2|c0 has degree 2 deg c0 − 1 ≤ 2. So c0 is a line. It follows that
N ⊂ P(A) is embedded by c0+ (e+1)f where c2

0 =−e on N . Observe that π2|N
has connected linear fibers that are linear sections of the spaces F ′v . On the other
hand, π2(N)= π2(G)=Qv so 2= (H2|N)2 because π2|N is birational. So using
2T =H+H2, we infer H2 = 2c0+(2e+1)f , contradicting 4(2e+1)= (H2|N)2.

It follows that the dimension of π2(G) is 3 and π2|N is birational. One should
have in mind that π2|G is an isomorphism outside the singular locus

G=G′ ∪
⋃

U∈�A

P(U∨)

of S′A. From Proposition 5.11 the tangent line TrC0 to C0 at r ∈ C0 is projectively
dual to the space P3

r spanned by π(Gr)=Qr . We have assumed that C0 is a line,
so the image of π2(G) is a projective space, which we denote by P. Since the
double point locus of S′A is of codimension 2, we infer that π2|G is birational.
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Consider the locus G′ of points p ∈ P such that there are two different v1, v2 ∈ C0
with p ∈Qv1 ∩Qv2 and G′ ⊂G. We shall obtain a contradiction by proving that
G′ = P. Fix a generic v0 ∈ C0; it is enough to prove that Qv0 ⊂G′. When v ∈ C0
varies, the center of the cone Qv moves along a curve in P(U∨0 )⊂ P such that Qv

is tangent to P(U∨0 ). We conclude by observing that such quadrics cannot be in
the same pencil determined by a common quartic curve. �

We deduce that C0 is a triple conic and TU0 ∩P(A) is a plane. Consider again the
ruled surface N such that c0 is a line and N ⊂ P(A) is embedded by c0+ (e+1)f

for some e ∈ Z. Then H |N = 2f so H2|N = 2c0+ 2e.f . On the other hand, using
again Proposition 5.11, we see that π2(G) ⊂ P(W∨) is contained in a quadric
hypersurface Q of rank 3. More precisely, Q is a cone, with a plane P(U∨0 ) as
vertex, over a conic curve W such that Q is covered by projective spaces P3

r dual
to the tangent lines to C0. It follows that π2|G is an isomorphism outside G∩TU0 .
Consider the pull-back by π2|N of a generic hyperplane containing P(U∨0 ). Since
the intersection of the hyperplane with Q are two projective spaces, the class of
the pull-back H2|N is a.c0 + 2.f . Using 2T = H + H2 (see Lemma 4.8), we
compute that a = 2 and e = 1; thus, N is the blow-up of P2 in one point with
c0 as exceptional line. Moreover, π2|N contracts c0 and maps N to a projective
plane. We infer that π2(N) intersects P(U∨0 ) at only one point, which is the image
of c0. It also follows that π2(N) is either the second Veronese embedding of P2

or a smooth central projection of this second Veronese (because π2(N) can be
singular only at one point). Consider the curve D0 that is the generic fiber of the
projection of π2(N) with center P(U∨0 ) to the curve W . The curve D0 can be
seen as the intersection π2(N) ∩ P3

v for some generic v ∈ C0. Since there are no
lines or degree 3 curve contained in the projection of the double Veronese and
a hyperplane section intersects π2(N) along a degree 4 curve, we deduce that
D0 is an irreducible plane conic. We obtain a contradiction since a smooth conic
D0 ⊂Qv = π(Gv)⊂ P3

v cannot contain the center of the cone Qv . �

We can now return to the proof of Proposition 5.4. We showed that the exceptional
locus of π consists of three-dimensional linear spaces Ei for i = 1, . . . , s mapping
to points in some CU,A ⊂ SA for some U ∈ G(3,W). To obtain a contradiction,
we proceed as in the general case. By [Dol, §1.2.2] the rational map between
the sextic SA and its dual S′A is given by the partial derivatives of the sextic sA
defining SA. The composition

V
π−→ SA ��� S′A ⊂ P(W∨)

is given by the linear system induced by the pull-back of quintics that are the par-
tial derivatives of sA on V . On the other hand, by Remark 4.3, each such generic
quintic q ′ corresponds to an irreducible Cartier divisor Q′ ∈ |2T −H | on V . The
divisor Q′ coincides with the proper transform of the zero locus {q ′ = 0} ∩ SA on
V (they are equal on an open subset of Q′). Recall that SA has ordinary double
points along a generic point of suppN2. It follows from Lemma 5.12 that

π∗(Q′)=EG +
∑

aiEi +B,
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where ai ≥ 0, B ∈ |2T −H | is an effective Cartier divisor on the normal variety
V , Ei are exceptional divisors mapping to points on the singular locus C ⊂ X′,
and EG is the exceptional divisor over suppN2. We infer that EG +∑

aiEi is a
Cartier divisor in the linear system |6H − 2T |.

By Proposition 4.4 we find, as in the general case, a divisor D ⊂ V in the linear
system |3H − T | that maps to C ⊂ SA. From Proposition 4.5 we deduce that D

is decomposable such that D−EG is an effective Weil divisor. We infer that

D −
(

EG +
∑

aiEi

)

is a Cartier divisor in the linear system |3T − 3H | and denote it by D′. Since
the Weil divisor Ei intersects α−1(U) in isolated points, we infer that D′ restricts
to an effective curve on the plane α−1(U), where U ∈�A is fixed. On the other
hand, OV (T )|α−1(U) =Oα−1(U) and

OV (H)|α−1(U) =Oα−1(U)(1).

Thus, the restriction of a divisor from |3T − 3H | cannot be an effective curve
on P(U) (see [KM, Prop. 1.35(1)]). It follows that D contains α−1(U), so X′
contains P(U), a contradiction by Proposition 5.5. It follows that the adjoint sextic
SA has dim�A ≥ 1.

5.5. The Case Where dim�A ≥ 2

In this section we consider adjoint EPW sextics with dim�A ≥ 2. We show that
such a sextic has to be very special as described in Proposition 5.4.

5.5.1. dim�A ≥ 3. We show first that dim�A ≥ 3 cannot happen. Choose an
irreducible component �′A of �A. Denote by

G = (π(α−1(�′A)))red

the reduced sum of the planes P(U) for U ∈�′A.

Lemma 5.14. If �′A has dimension k and G has dimension ≤ k + 1, then there is
a point U ∈�′A such that CU,A is a plane.

Proof. First, (α−1(�′A))red is irreducible of dimension k + 2, so the image G
is irreducible. Suppose it has dimension ≤ k + 1 and all the CU,A are curves
(outside these curves, the fibers of π are points). Then there exists an open set
U ⊂ (α−1(�′A))red such that π |U is 1 : 1 onto a proper subset of G, a contradic-
tion since (α−1(�′A))red is irreducible. �

Since dimG ≤ dimSA ≤ 4 and dim�A ≥ 3, we infer that X′ ⊂ P(W) has to con-
tain a plane, contrary to condition O.
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5.5.2. dim�A = 2. The strategy in this case is to show that in many cases the
support CU,A ⊂ P(U) has degree ≥ 4. Then we apply several times the following:

Lemma 5.15. If P(U) ∩ X′ ⊂ P(W) has dimension 1, then it supports a cubic
curve.

Proof. If dim�A ≤ 1, then the assertion is a consequence of Proposition 4.4.
If dim�A = 2, then similar arguments apply: For a fixed U ∈ �′A, the plane
α−1(U) ⊂ P(�3

P5(3)) is a plane that maps under π to P(U). On the other hand,

α−1(U) is contained in P(10OP5) such that π∗(OP5(1)) is equal to the pull-back
of OP5(1) on P(10OP5) and

O(10O
P5 )(1)|α−1(U) =O(�3

P5 (3))(−1)|α−1(U).

Thus, we can conclude as in Proposition 4.4. �

O’Grady observed also that we can apply the Morin theorem [M]. Indeed, if �′A is
an irreducible component of �A of dimension≥ 1, then it parameterizes mutually
intersecting planes in P(W). By the Morin theorem, �′A is then a linear section of
one of the following sets:

(1) P3 embedded in G(3,W)⊂ P(
∧3

W) by the double Veronese embedding,
(2) G(2,5)⊂ Fv ⊂G(3,W) embedded by the closures of fibers of π1,
(3) G(2,5)⊂ F ′v ⊂G(3,W) embedded by the closures of fibers of π2,
(4) TP ∩G(3,W) where TP is the projective tangent space at P to G(3,W) ⊂

P(
∧3

W),
(5) P2 embedded in G(3,W)⊂ P(

∧3
W) by the triple Veronese embedding.

In order to complete the proof of Proposition 5.4, we check case by case the
possible two-dimensional irreducible components �′A of �A and find that either:

(I) the adjoint EPW sextic SA is a double determinantal cubic, or
(II) the EPW sextic SA ⊂ P(W) has a nonreduced component supported on a

hyperplane.

In case (I), �′A is the third Veronese embedding of P2 in G(3,W) ⊂ P(
∧3

W).
Case (II) happens, for example, when �′A is a plane. Note that by Lemma 5.14
we can assume that G is a hypersurface of degree ≤ 3 (because G is a nonre-
duced component of SA). Let us study using Lemma 5.15 each case of the Morin
theorem separately.

Case (1) From Lemma 5.14 we deduce that �′A is a hyperplane section of the
double Veronese embedding of P3 (this is the only possibility because there are
no planes contained in this double Veronese). It follows from [O2, Claim 1.14]
that G = (π(α−1(�′A)))red is a smooth quadric, and we have the following:

• from [O5, Prop. 2.1] it follows that G has multiplicity 2 in the EPW sextic SA

(thus, SA can be written in the form 2G +R where R is a quadric),
• R ∩ G is contained in the sum of CU,A for U ∈�′A (because the sextic can be

more singular only along such curves),



On IHS Fourfolds with b2 = 23 25

• the restriction of π : (α−1(�′A))red→ G is the blow-up of a plane F contained
in G∩R (α−1(�′A)→�′A is the restriction of P(�1

P3(2))→ P3, and π |α−1(�′A)

is given by the system Oα−1(�′A)(1)).

Since the curves CU,A cover F , we have F ⊂ X′. Since each curve CU,A is con-
tained in X′, this contradicts condition O.

Case (2) The planes parameterized by �′A contain the point v and are defined
by a line lp ⊂G(2,V/[v]). Using [O2, Prop. 2.31], we deduce that �′A is either

(a) a plane or �′A ⊂G(2, T )⊂G(2,5) where T ∈G(4,5), or
(b) �′A is a linear section of G(2,5) which is a del Pezzo surface, or
(c) there is a line l0 ⊂ P(V/[v]) that intersects all the lines P(V/[v]) parameter-

ized by �′A.

We shall treat each case separately.
Assume (a); then the planes parameterized by �′A cover a hyperplane. This

hyperplane has to be a multiple component of SA, so we are in case (II).
Assume (b), so that �′A is a linear section of G(2,5) ⊂ Fv . Then �′A is a

possibly singular del Pezzo surface D5 of degree 5 (observe that D5 cannot be
reduced if it has one component because of the degree). Then the sum of the
planes parameterized by �′A is a cone over a cubic hypersurface; denote it by Q.
More precisely, these planes are spanned by the lines corresponding to points
on D5 ⊂ G(2,5) (the sum of these lines is a cubic threefold, denote it by Q′ ⊂
P(V/[v])). It follows that the corresponding EPW sextic is a double cubic. Since
dim(P(A)∩Fv)= 5, it follows from [O4, Prop. 3.1.2] and [O4, Claim 3.2.2] that
v is a point of multiplicity 6 on CU,A for U ∈D5. Thus, CU,A is a sum of multiple
lines passing through v (if it is the whole plane,then we obtain a contradiction).

Let us now identify the sets B(U,A) in order to prove that CU,A has to be
reduced for a generic U ∈ D5. Let us fix such a generic point U of D5; then
P(A) ∩ TU,G(3,W) has dimension 2. Moreover, dim(Fv ∩ P(A) ∩ TU,G(3,W))= 2
because this space contains the tangent space to the del Pezzo surface D5 ⊂ Fv

and is contained in the previous intersection. It also follows that the set of w ∈
P(U) such that

dim(P(A)∩ Fw ∩ TU,G(3,W))≥ 1

is the singleton {v}. Since D5 is irreducible of dimension 2, we infer that U does
not belong to any line on D5 ⊂ P5 (such lines cannot cover the whole D5). Thus,
for U ′ ∈D5 − {U}, we have P(U ′)∩ P(U)= {v}.

So B(U,A) is the sum of the intersections P(U)∩P(V0), where V0 ∈�A−D5,
and {v}.

For a fixed V0, P(V0) intersects P(U) outside v (because Fv ∩ G(3,W) =
G(2,5)) and from Lemma 5.7 in one point (since CU,A is a sum of lines passing
through v). Since the plane P(V0) has to be contained in our cubic hypersurface
S, the set CV0,A must be the whole P(V0).

It follows that CU,A is a reduced sum of six lines for a generic choice of
U ∈ D5. We deduce that for each such V0, we have CV0,A = P(V0), contradict-
ing condition O.
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Assume (c); then �′A is a linear section of the cone with vertex U0 over the
Segre embedding P1×P2. The planes parameterized by points in �′A are spanned
by the point v and a line in P(V/[v]). More precisely, the line in P(V/[v]) is
described as follows: the first factor of P1×P2 corresponds to a choice of a point
on the line l0, and the second factor corresponds to a choice of a plane containing
l0 ⊂ P4; finally, the directrix of our cone with vertex U0 gives a choice of a line
on this plane passing through our point.

We will obtain a contradiction by showing that P(U0) must be contained in X′.
Thus, it is enough to show that the sum of the curves CU,A for U ∈�′A covers the
line l0. By Lemma 5.7 it is enough to prove that for each point of l0, there are at
least two lines parameterized by �′A that contain this point.

If �′A contains U0, then it is a cone, and we obtain a contradiction unless �′A
is a plane spanned by U0 and a line contained in the second factor of P1 × P2.
Indeed, the planes in P(W) parameterized by the point from �′A intersect in this
case along a line spanned by v and the fixed point from l0 and cover a hyperplane.

If �′A does not contain the vertex U0, then we obtain a contradiction similarly
unless the image of the projection

P1 × P2 ⊃�′A→ P1

is a point. Suppose that the image of this projection is a point, which we denote
by Q0. Then �′A is a plane. Next, the planes parameterized by �′A pass through a
line l (determined by v and Q0) and cover a hyperplane H0 that is a nonreduced
component of SA, so we are in case (II).

Case (3) Suppose that G(2,5) is equal to Fv ∩ G(3,W) for some v ∈ W .
This embedding is given by choosing a point L ∈ G(5,W) that gives a natural
embedding G(3,L)⊂G(3,W). In this case the sum of the planes corresponding
to points in �′A is contained in the hyperplane P(L)⊂ P(W). By Lemma 5.14 we
can assume that this sum covers P(L). It follows from [O2, Cor. 1.5] that SA has
a nonreduced linear component; so we are in case (II).

Case (4) Then from Lemma 5.10 the component �′A is a two-dimensional
linear section of the cone over P2 × P2 in P9 with vertex U0. It is useful to have
in mind the description of the family of planes parameterized by �′A ⊂ P2 × P2:

Lemma 5.16. Geometrically, the first factor of P2 × P2 corresponds to a choice
of a line in P(U0), and the second factor to the choice of a P3 containing P(U0).
The directrix of the cone corresponds to planes containing the fixed line in a fixed
P3.

Suppose first that �′A contains the vertex of the cone U0 ∈ G(3,W). Then the
plane P(U0) is covered by the intersection with other planes corresponding to
points from �′A unless �′A maps to a point under the projection P2×P2 ⊃�′A→
P2. Thus, in the first case, we obtain a contradiction from Proposition 5.5. But
in the second case we see that �′A is a plane; then we are in Case (2) described
before.
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We can assume that �′A does not contain the vertex of the cone, so we can use
[O2, Prop. 2.33]. We want to obtain a contradiction by showing that P(U0)⊂X′.
For this, it is enough to see that the sum of the curves CU,A for U ∈�′A contains
P(U0). Consider the projections to the factors P2←�′A→ P2 (recall that �′A ⊂
P2 × P2 ). Since by Lemma 5.7 the intersection of two planes P(U) and P(V ) is
contained in the curve CU,A, we obtain a contradiction when the images of both
projections have dimension ≥ 1. The remaining case is �′A = v × P2, where v

corresponds to a fixed line in P(U0). But then we are in Case (2).
Case (5) We assume that �′A is the triple Veronese embedding of P2. Then

from [O2, Claim 1.16] we know that G = (π(α−1(�′A)))red is the secant cubic
of the Veronese surface in P5. It follows from [O4, §4.4] that for all U ∈ �′A,
the set CU,A is a triple smooth conic. Consider the restriction E�→ �′A of the
tautological bundle on G(3,W). In this case we obtain E� = S2�1

P2(1) and the
following diagram:

P(�3
P5(3))⊃ P(S2�1

P2(1))
f−→�′A ⊂ P(

∧3
W)

↓ π

P5 ⊃ G
The system of quadrics containing the Veronese surface gives the Cremona trans-
formation

P5 ��� P5

↖c1 ↗c2

K
(5.2)

where c1 and c2 are the blow-ups of the Veronese surface Vi ⊂ P5 for i = 1,2,
respectively. Then the exceptional divisor E of c1 maps under c2 to the determi-
nantal cubic singular along V2. Moreover, the exceptional divisor F of the induced
map E→ G is naturally isomorphic to the projective bundle P(�1

V2
(1)). We also

see that π |
P(S2�1

P2 (1)) can be seen as the blow-up of G along its singular locus, and

thus we can identify it with c2|E.
We deduce from the diagram (5.2) that (2H −F)= 2B on P(S2�1

P2(1)) where

B (resp. H ) is the pull-back of the hyperplane from P2 = �′A (resp. P5). The
linear system |3H + T | can be seen on E as |3H + 3B|. By Proposition 4.5 we
infer that 3H + 3B − F is effective, so it is an element of |H + 5B|.

We can go in the other direction: choose an element from |H + 5B|, map it
to G, and choose a hypersurface of degree 12 singular along the image. Since the
conductor locus is nonreduced, the singularities of this hypersurface have to have
generically tacnodes (see [Re, §4.4]) along the intersection with SA. This can lead
to a possible counterexample to the O’Grady conjecture.

Remark 5.17. Let us describe more precisely the EPW sextic SA in the missing
cases where �′A is a plane. First, observe that if �′A is a plane, then it is contained
in the tangent space to G(2,5)⊂ Fv at one of its points; we can thus assume that
we are in case (c). In this case, SA is singular along a hyperplane H0, which is
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a multiple component such that there is a line l ⊂H0 contained in all the planes
P(U) for U ∈ �′A. By Lemma 5.7 the line l ⊂ H0 is also contained in all the
curves CU,A for U ∈ �′A. Moreover, the divisor D ∈ |3H + T | from Proposi-
tion 4.4 intersects G = α−1(�′A)red (this is just the blow-up of H0 along l) along a
divisor in the system |4H − 2E| +E. So there is a quartic on H0 singular along l

that defines set-theoretically the intersection of H0 with the scheme C defined by
the conductor. So we can describe the situation (in the generic case) as follows:
the EPW sextic is decomposable 2H0 ∪Q such that Q is a quartic intersecting
the hyperplane H0 along a quartic. This quartic is singular along l. Moreover, the
intersection H0 ∩Q supports the singular locus of C ⊂ X′ = ϕ(X) ⊂ P5. Since
C has multiplicity 3 at a generic point of the image, the hypersurface X′ ⊂ P5

has multiplicity 3 along C, and the singularities along C are worse than ordinary
triple points (see [Re, §4.4]).

5.6. The Case Where dim�A = 1

The aim of this section is to show that the adjoint EPW sextic from Theorem 1.1
cannot correspond to a generic A with �A of dimension 1, that is, such that �A

is a line (with some more conditions). Following [O2, §2], we set

G =
( ⋃

P∈�A

P(P )

)
red

,

and we denote by E�A
→�A ⊂G(3,W) the restriction of the tautological bun-

dle from G(3,W) and by f�A
: P(E�A

)→ R�A
the tautological surjective map.

Observe that there is a natural embedding of P(E�A
) in P(�3

P5(3)) (in fact,

into the exceptional set E ⊂ P(�3
P5(3)) described in Remark 4.3). The divisor

D ∈ |3H + T | (that maps to the conductor locus C ⊂ P(W)) intersects P(E�A
)

along an effective divisor D′ that we shall analyze.
Suppose that �′A is an irreducible component of �A. O’Grady applied the

Morin theorem to show that 1≤ deg(�′A)≤ 9. He also presented in [O2, Table 2]
a precise description of the corresponding curves and of the corresponding three-
dimensional sets G.

If deg�A = 1, then �A is a line, which we denote by t . Then the variety G
is a three-dimensional linear space containing a line l such that the exceptional
divisor E′ of f� (in fact, f� is the blow-up along l) maps to l. We compute
that on P(E�) we have T = H − E′, so that D′ = 4H − E′. Since the planes
P(P )⊂ P(W) contain l and CP,A ⊂ P(P ) cannot be a plane, we deduce that the
image of D′ on G is an irreducible quartic containing l or a sum of two quadrics
(if there is a plane component, then we obtain a contradiction with O because this
component has to be contained in X′ ⊂ P(W)).

On the other hand, let us analyze the reduced sum Z ⊂ G of the curves
CP,A ⊂ P(P ) for P ∈ �A. As observed before, we have Z ⊂ suppD′. Observe
that generically CP,A is a sum of a reduced quartic and a double line l, so we
obtain a contradiction in this case. The problem is the special choices of A. There
are a lot of possibilities; we hope to consider them in a future work.
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Appendix

Let W be a six-dimensional vector space. The exterior product defines a sym-
plectic form on the 20-dimensional vector space

∧3
W . The natural action of

PGL(W) on P(
∧3

W) has four orbits P(
∧3

W) \O1, O1 \O2, O2 \O3, and O3,
where O1 ⊃O2 ⊃O3 are subvarieties of dimensions 18, 14, and 9. Moreover, it
is known that O3 =G(3,W), O1 is a quartic described in [Don, Lem. 3.6], and
O2 (resp. O3) is the singular locus of O1 (resp. O2). In this paper we are only
interested in the orbits O3 ⊂O2.

The locus O2 ⊂ P(
∧3

W) can be seen as the set of points lying on more than
one chord of G(3,W) ⊂ P(

∧3
W) (see [Don, Lem. 3.3]) or as the union of all

spaces spanned by some G(3,N) for N ⊂W of dimension 5, which is equal to
the union of all spaces spanned by some flag variety F(p,3,N) for some p ∈W .
With this interpretation, we get a description of O2 as the set of 3-forms

{[α ∧ω] ∈ P(
∧3

W) | α ∈W,ω ∈∧2
W }.

It follows that there are two natural fibrations of π1,π2 : O2 \O3→ P5 such that
the closures of the fibers are nine-dimensional linear spaces. More precisely, π1
is defined as the map

O2 \O3 � [α ∧ω] �→ [α] ∈ P(W),

and π2 is the map

O2 \O3 � [α ∧ω] �→ [α ∧ω ∧ω] ∈ P(W∨).

Lemma A.1. The maps π1 and π2 are well defined on O2 \O3.

Proof. Assume that [α1 ∧ ω1] = [α2 ∧ ω2] ∈ O2 \O3 for some α1, α2 ∈ V and
ω1,ω2 ∈∧2

W . We need to show that [α1] = [α2] and

[α1 ∧ω1 ∧ω1] = [α2 ∧ω2 ∧ω2].
Observe that under our assumption we have α1 ∧ α2 ∧ω2 = 0, but α2 ∧ω2 is not
a simple form; hence, α1 ∧ α2 = 0, and the first part of the assertion follows. We
infer the second part since

[α2 ∧ω2 ∧ω2] = [α1 ∧ω1 ∧ω2] = [α1 ∧ω2 ∧ω1]
= [α2 ∧ω2 ∧ω1] = [α1 ∧ω1 ∧ω1]. �

Proposition A.2. The divisor class group of O2 has rank 2 and is generated by
the closures of the pull-backs of the hyperplane sections by π1 and π2; denote
them by H and H2.

Proof. First, the Picard group of the projectivized vector bundle

P(�3
P5(3))⊂ P(

∧3
W)× P5

has rank 2 and is generated by H and T , the pull-backs of hyperplanes from P(W)

and P(
∧3

W), respectively. So it is enough to consider the map

α : P(�3
P5(3))→O2 ⊂ P(

∧3
W)
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given by the linear system of the big divisor T . By [RS, Thm. 1] the divisor
class group of O2 ⊂ P19 is isomorphic to the divisor class group of its generic
codimension 10 linear section O ′2. Since O ′2 is smooth, the latter is equal to the
Picard group of O ′2. On the other hand, α restricted to the preimage O ′′2 of O ′2 is
an isomorphism. Since O ′′2 is the intersection of ten generic big divisors from the
system |H |, we deduce from the generalized Lefschetz theorem [RS, Thm. 6] that
the Picard group of O ′′2 is isomorphic to the Picard group of P(�3

P5(3)). �

Let us describe the projective tangent space to O2 at a point p ∈O2 \O3. Denote

first by Fp = π−1
1 (π1(p)) and F ′p = π−1

2 (π2(p)) the fibers of πi for i = 1,2.

Lemma A.3. Let p = [α ∧ ω] ∈O2 \O3, where α ∈W and ω ∈∧2
W . Then the

projective tangent space TpO2 is the linear space spanned by the two fibers Fp

and F ′p , passing through p, and by the linear space

�= {[γ ∧ω] ∈ P(
∧3

W) | γ ∈W }.
Proof. It is clear that all three linear spaces are contained in O2 and pass through
p. It follows that they span a subspace of the tangent space TpO2. Recall that
O2 is of dimension 14 and the intersection Fp ∩ F ′p is a P5. It follows that the
two fibers span a hyperplane in TpO2. It is hence enough to prove that � is not
contained in the span of the two fibers. To do so, denote by �p the hyperplane

P({β ∈∧3
W | β ∧ α ∧ω= 0}).

Clearly, Fp ∩ F ′p ⊂�p , whereas � � � since there exists γ ∈W such that γ ∧
α ∧ω ∧ω 
= 0. �

Remark A.4. Observe that �p ∩ TpO2 is the P13 spanned by the two fibers.

Proposition A.5. Let Tp be the projective tangent space to O2 at a smooth point
p ∈O2. Then there are no five-dimensional isotropic subspaces K ⊂ TpO2 such
that p ∈K and

K ∩ Fp ∩ F ′p ∩O3 = ∅.
Proof. Let K be an isotropic subspace of TpO2, and let L be a Lagrangian (max-
imal isotropic) subspace of TpO2 containing K . Then, since p ∈K ⊂ L, we have
L ⊂ �p , where �p is as in the proof of Lemma A.3. By Remark A.4 we get
K ⊂ L⊂ P(U1)+ P(U2). We observe that the projectivized support S of the in-
tersection form on the latter P13 has dimension 7 and is disjoint from Fp ∩ F ′p .
It follows that dim(L ∩ S) = 3, dim(L) = 9, and Fp ∩ F ′p ⊂ L. It is easy to see
that Fp ∩ F ′p ∩O3 is a quadric hypersurface in Fp ∩ F ′p . It follows that any five-
dimensional subspace of L meets Fp ∩ F ′p ∩ O3 since it meets Fp ∩ F ′p in a
line. �

Lemma A.6. Let us keep the previous notation. Then the linear system |H +H2|
is given by the restrictions of quadrics to O2 ⊂ P(

∧3
W).



On IHS Fourfolds with b2 = 23 31

Proof. Let v ∈ W∨ and γ ∈ W = (W∨)∨ correspond to the hyperplanes L1 ⊂
P(W) and L2 ⊂ P(W∨), respectively. Consider the quadric form

Q : ∧3
W : ω �→ ω(v)∧ω ∧ γ ∈∧6

W =C.

It is enough to prove that Q−1(0)∩O2 = π−1
1 (L1)∪ π−1

2 (L2), and this has to be
checked only outside G(3,W)⊂O2.

• We first prove the inclusion ⊇. Take ω ∈ π−1
1 (L1). Then there exists α ∈ H

such that α ∧ ω = 0. We then observe that since α ∈ H , it follows that α ∧
ω(v)= 0. The inclusion of the second component follows by duality.

• Let us pass to the inclusion ⊆. Take

ω ∈O2 \ (π−1
1 (L1)∪ π−1

2 (L2)∪G(3,W)).

Then ω may be written in the form α∧β with β ∈∧2
W such that α∧β2 ∧w

and v(α) are nonzero. The value of the quadric on ω is then the product of these
nonzero values.

�

Denote by G (resp. G′) the singular locus of the EPW sextic SA ⊂ P(W) (resp.
S′A ⊂ P(W∨)). It is known (see [EPW]) that SA has A1 singularities along G

and that G⊂ P5 is a smooth surface of degree 40. It follows that the G is scheme-
theoretically defined by the six quintics that are the partial derivatives of the sextic
SA. Denote by E,E2 ⊂ V ′ :=O2 ∩ P(A) (where A⊂∧3

W is a 10-dimensional
Lagrangian subspace) the exceptional loci of πi for i = 1,2 and by abusing nota-
tion H the restrictions of H to V ′ ⊂O2.

Corollary A.7. The morphism π1 : V ′ → SA is the blow-up of G⊂ SA. More-
over, the birational map π2 : V ′ → S′A is given by the linear system |5H −E|.
We also obtain the following corollary (note that it can also be proved using the
methods from [W]).

Corollary A.8. The degree of O2 ⊂ P19 is 42.

Proof. We have to compute (6H −E)4/16. Thus, it is enough to prove that
H 4 = 6, H 3E = 0, H 2E2 =−80, HE3 =−480, and E4 =−1344. First, by the
adjunction formula, E2H 2 = KEH 2, E3H = K2

EH , and E4 = K3
E . Now from

[O, §4] we deduce that p : E = P(TG)→ G. Thus, KE = −2ψ where ψ is the
tautological divisor. Finally, we need the equality

ψ2 − 3ψ ·H + c2(p
∗(TG))= 0. �

Since E = 2(3H − T ) (see Lemma 4.8) is even in the Picard group of V ′, there
exists a double cover of X→ V ′ ramified along E (we can take the double cover
ramified along E2). The strict transform of E on X can be blown down so that the
image is the irreducible symplectic manifold X constructed by O’Grady.
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