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On Some Varieties Associated with Trees

F. Chapoton

Abstract. We consider some affine algebraic varieties attached to
finite trees and closely related to cluster algebras. Their definition in-
volves a canonical coloring of vertices of trees into three colors. These
varieties are proved to be smooth and to admit sometimes free actions
of algebraic tori. Some results are obtained on their number of points
over finite fields and on their cohomology.

Introduction

The theory of cluster algebras, introduced by S. Fomin and A. Zelevinsky around
2000 [FZ02; FZ03], was motivated initially by the study of total positivity in
Lie groups and canonical bases in quantum groups. It has since then developed
rapidly in many directions, among which we can cite (for example) triangulated
categories [BMR+06], triangulations of surfaces [FST08], and Poisson geometry
[GSV03; GSV10].

Because cluster algebras are commutative algebras endowed with more struc-
ture, it is natural to study them from the point of view of algebraic geometry. The
geometric study of cluster algebras has nevertheless been mostly concentrated on
aspects related to Poisson geometry or symplectic geometry. The appearance of
the known cluster structure on coordinate rings of Grassmannians in a physical
context [ABC+12] has raised recently the interest in the computation of integrals
on the varieties associated with cluster algebras. The natural context for this is of
course the cohomology ring.

In the present article, we aim to study some varieties closely related to the
spectrum of cluster algebras and their cohomology rings. General cluster algebras
are defined using a quiver or a skew-symmetric matrix. For our purposes, as a
starting point, we need a presentation by generators and relations of the cluster
algebras. This is available for cluster algebras with an acyclic quiver [BFZ05]
and in a few other cases (see, e.g., [Mul13]). The choice has been made here to
restrict to a still smaller class, namely cluster algebras with a quiver that is a tree,
in the hope that the answers may be simpler in that case, and also because all finite
Dynkin diagrams are trees.

Cluster algebras come with a subalgebra generated by so-called frozen (or co-
efficient) variables, which are invertible elements. This corresponds to a mor-
phism from the spectrum of the cluster algebra to an algebraic torus. At the start
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of this work, our intention was to study both the fibers of this map and the spec-
trum in full. Later it turned out that it is possible (for cluster algebras associated
with trees) to define more general varieties.

Cohomology and number of points on similar varieties have been considered
in some previous works [GSV05; Mul12; Cha11]. Some results of these articles
will be recalled when necessary.

The article is organized as follows. In Section 1, we recall a canonical tri-
coloring of the vertices of trees, originally defined in [CB04; Cou05; Zit91] and
not so well known. This coloring is closely connected to matchings and indepen-
dent sets in the trees. We will use it in an intensive way in the rest of the article
since it enters in the very definition of the varieties under study. We introduce the
notion of red–green components of a tree and define an important integer invari-
ant, the dimension of a tree.

Section 2 is devoted to the definition of the varieties. This is rather involved,
and the definition itself only appears after a long preparation. We first consider
a very general family of varieties, depending on many invertible parameters. By
considering these varieties as objects in a groupoid, we can reduce this family to
a much smaller one with less parameters. We prove that every variety in the big
family is isomorphic to a variety in the small family. We also introduce an explicit
condition of genericity. Then everything is ready for the definition, which involves
making an independent choice for every red–green component of the tree.

Section 3 is devoted to some geometric properties of these varieties. We prove
by induction that all these varieties are smooth by finding explicit coverings by
products of varieties of the same type and algebraic tori. We next show that some
of these varieties are endowed with a free torus action that turns them into princi-
pal torus bundles.

Section 4 turns to the study of the number of points over finite fields. We show
by induction that the number of points is a polynomial in the cardinality q of
the finite field. This is done by finding an appropriate decomposition into pieces
isomorphic to products of varieties of the same type and algebraic tori. We then
give formulas for some classical trees, including Dynkin diagrams. We also obtain
(Proposition 4.16) a general decomposition as a disjoint union of products of tori
and affine spaces (indexed by independent sets), which allows us to compute the
Euler characteristic.

Sections 5, 6, and 7 deal with some computations regarding the cohomology
rings. Section 5 is a very short reminder about known results about differential
forms on varieties associated with cluster algebras and about the general theory of
(mixed) Hodge structure on the cohomology ring of algebraic varieties. Section 6
deals with some examples of trees, namely linear trees (the case of which forms
a useful building stone) and some trees of shape H with no parameters. Section 7
is about varieties where parameters have been given a generic value. Our results
about cohomology are rather partial, restricted to special cases, but there does not
seem to be any simple general answer. The prominent missing case is in type A

with an odd number of vertices, where one proposes a conjecture.



On Some Varieties Associated with Trees 723

The Appendix presents a simple algorithm for the computation of the canonical
coloring of trees. This algorithm is not needed in the rest of the article.

Let us finish this introduction by a few side remarks.
From the few results obtained here about cohomology we can record several

observations, some of them rather intriguing. First, the cohomology is of mixed
Hodge–Tate type, which is not the case for a general random variety. This can
nevertheless be expected from the results giving decompositions as disjoint unions
of smaller varieties of the same family, which probably imply this property for
the cohomology with compact support. More subtle is the fact that these mixed
Hodge structures are not pure, so that there is room for possible extensions, but
no extension seems to be involved.

Another interesting question that has not been considered here is the study of
the real points of the same varieties and their cohomology. This is probably also
rather complicated but certainly worth looking at.

There seems to be some kind of vague analogy between the counting-points
polynomials considered here and the characteristic polynomials of bipartite Cox-
eter elements (see [McM02] and [Ste08]), namely the general look and feel of
these two families of polynomials are similar in various points (including some
relations to Pisot and Salem numbers).

At the end of Section 1.2 of [CDS80], we can find some speculations about
the idea of “quadratic spectra” for graphs, which would be an analog of the usual
spectrum but related to quadratic equations instead of linear equations. Maybe
we can argue that the cluster varieties considered here and their counting-point
polynomials are a good candidate for such a quadratic spectrum (even if they
involve polynomial relations of arbitrary degree).

1. Combinatorics of Trees

In this article, a tree is a finite connected and simply connected graph. A leaf is a
vertex with at most one neighbor. A forest is a disjoint union of trees.

1.1. Canonical Red–Orange–Green Coloring of Trees

In this section, we recall a canonical coloring of the vertices of all trees, using
the colors red, orange, and green. This coloring has first appeared in an article by
Zito [Zit91] and has been studied independently later by Coulomb [Cou05] and
Coulomb and Bauer [CB04].

Let us consider a tree T . A vertex cover of T is a subset S of the vertices of T

such that every edge of T has at least one end in S. A minimum vertex cover of T

is a vertex cover of minimal cardinality among all vertex covers of T .
Let us use this notion to color the vertices of T according to the following rule:

a vertex v is

• green if v is present in all minimum vertex covers,
• orange if v is present in some but not all minimum vertex covers, and
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Figure 1 Canonical coloring: {1,2} are orange, {4,6} green, and
{3,5,7} red

• red if v is present in no minimum vertex covers.

The colors have been chosen to match this definition with traffic lights colors.
For the tree of Figure 1, the minimum vertex covers are made of the two green

vertices {4,6} and one of the two orange vertices {1,2}.
Remark 1.1. By taking the complementary subset there is a bijection between
minimum vertex covers and sets of nonadjacent vertices of maximal cardinality
(maximum independent sets, also called maximum stable sets).

This coloring is also related to maximum matchings of T . A matching of T is a
set D of edges of T such that every vertex belongs to at most one element of D.
The elements of D will be called dominoes. A maximum matching is a matching
of maximal cardinality among all matchings of T .

Then, a vertex v is

• green if v is present in all maximum matchings, in several different dominoes,
• orange if v is present in all maximum matchings, always in the same domino,

and
• red if v is absent in some maximum matchings.

The proof of the equivalence of these two descriptions of the coloring can be
found in [CB04].

For the tree of Figure 1, the maximum matchings are made of three dominoes,
one of them being the edge between the two orange vertices {1,2}.
Proposition 1.2. The orange vertices are matched in pairs by the unique domino
in which they are contained in any maximum matching. In maximum matchings,
green vertices are matched with red vertices in several different ways.

Proof. This is proved in [CB04]. �

This coloring has a third equivalent description, also given in [CB04].
It is the unique coloring of the vertices such that

• the induced forest on orange vertices has a perfect matching,
• every green vertex has at least two red neighbors, and
• every red vertex has only green neighbors.

It follows from this description that the coloring is stable by any of the follow-
ing operations:

• taking the induced forest on orange vertices,
• taking the induced forest on the union of red and green vertices,
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Figure 2 A typical example

• removing a matched pair of orange vertices, and
• removing a green vertex.

An algorithm to compute the coloring is presented in Appendix. The coloring
for a large random tree is displayed in Figure 2.

1.2. Further Properties of the Coloring

Let us first state a corollary of the third description of the coloring.

Lemma 1.3. A tree admits a perfect matching if and only if all vertices are orange.

Proof. If all vertices are orange, then there is a perfect matching by the first con-
dition in the third description. If the tree has a perfect matching, then letting all
the vertices be orange gives a coloring that satisfies all the required conditions and
therefore is the correct one by uniqueness. �

Note that the maximum matching is unique for these trees. We will call them
orange trees. They are also known as perfect trees or matched trees [Sim91].

Let T be a tree. The red–green components of T are the connected components
of the graph defined by keeping only the edges of T with one red end and one
green end. Every red–green component is a tree, which is moreover bipartite with
only red leaves. In these trees, every green vertex has valency at least two.

This kind of trees has been considered under the name of bc-trees in the study
of blocks and cut-vertices of graphs; see, for example, [Har69, Chap. 4].

Even trees with no orange vertex can have several such components because
there can be edges with two green ends and these edges are not kept in the red–
green components.

By the third description of the coloring, the coloring is stable by taking a red–
green component.

A tree that is equal to its only red–green component will be called a red–green
tree.
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Lemma 1.4. The set of maximum matchings of a tree is in bijection with the prod-
uct of the sets of maximum matchings of its red–green components.

Proof. The dominoes are fixed on the set of orange vertices, and cannot connect
two distinct red–green components by Proposition 1.2. Therefore, we can choose
a maximum matching independently on every red–green component. �
Let us denote by r(T ), o(T ), and g(T ) the numbers of red, orange, and green
vertices in the coloring of T . Let us call the dimension of a tree T the quantity

dim(T ) = r(T ) − g(T ). (1)

Remark 1.5. The dimension of T is also the dimension of the kernel of the ad-
jacency matrix of T (see [CB04]). The kernel and rank of the signed adjacency
matrix (or B-matrix) are known to play a key role in the general theory of cluster
algebras. In particular, the kernel is related with torus actions on cluster varieties;
see, for instance, [Gra13; GL14]. Using the bipartition of trees, we can easily
show that these two kernels are isomorphic. This also means that orange trees are
exactly the trees for which the B-matrix has full rank.

Lemma 1.6. The dimension of T is the number of vertices not covered by domi-
noes in any maximum matching.

Proof. By the precise description of maximum matchings given in Proposi-
tion 1.2, the number of dominoes in a maximum matching is g(T ) + o(T )/2.
The number of covered vertices is therefore 2g(T ) + o(T ), and the statement
follows. �

Lemma 1.7. The dimension of T is the sum of the dimensions of the red–green
components of T . Every red–green component has dimension at least 1.

Proof. Formula (1) for the dimension does not depend on orange vertices and is
clearly additive on red–green components.

Let T be a red–green tree. The Euler characteristic is given by

χ(T ) = 1 = r(T ) + g(T ) − e(T ),

where e(T ) is the number of edges of T . On the other hand,

e(T ) ≥ 2g(T )

because every green vertex has at least two red neighbors. �

Lemma 1.8. Let T be a red–green tree. Let F be the forest obtained by removing
one red vertex of T . Then dim(F ) = dim(T ) − 1.

Proof. Removing the vertex makes a big difference in the colorings of F and T .
The coloring of F can be obtained from the restriction of the coloring of T by
some avalanche of orange vertices as follows.

At start, the restriction of the coloring of T gives a bad coloring of F , where
some green vertices v may have exactly one red neighbor. If not, then the coloring
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is the canonical one. Otherwise, we can turn every such vertex v and its unique
red neighbor into an orange domino. Doing that may create a certain number of
green vertices with exactly one red neighbor. For each of them, replace it and
its unique red neighbor by a domino. Repeat this as long as there is some green
vertex with exactly one red neighbor. This must stop at some point because we
work in a finite union of trees. At the end of this avalanche of orange dominoes,
we obtain a canonical coloring of F .

This construction implies that the dimension of F is the dimension of T minus
1 because it only involves turning pairs (green vertex, red vertex) into orange
dominoes. �

Lemma 1.9. Let T be a red–green tree, and u − v be any edge of T . Let F be the
forest induced from T by removing the vertices u and v. Then the dimension of T

is the sum of the dimensions of the trees in F .

Proof. Assume that u is green and v is red. Let S1, . . . , Sk be the trees in F

attached to u, and let T1, . . . , T� be the trees in F attached to v.
Then the coloring of every Si is just obtained by restriction, because it still

satisfies the third description of the canonical coloring.
On the other hand, let us denote by T̂j the tree obtained from Tj by adding

back the red vertex v. Then the coloring of every T̂j is just obtained by restriction
because it still satisfies the third description of the canonical coloring.

By definition (1) of the dimension we therefore find that

dim(T ) =
∑

i

dim(Si) +
∑
j

(dim(T̂j ) − 1).

By Lemma 1.8 this is equal to the expected result. �

Lemma 1.10. Let T be a tree. Let u − v be a red–green edge of T . There exists a
maximum matching of T containing u − v.

Proof. We can assume that T is a red–green component since maximum match-
ings of different red–green components are independent.

We can take maximum matchings of the connected components of the forest F

induced from T by removing u and v. By Lemma 1.9 and Lemma 1.6 the number
of vertices not covered on F is the dimension of T . Therefore, adding the domino
u − v gives a maximum matching of T . �

Lemma 1.11. Let T be a red–green tree, and let v be a leaf of T . There exists
a maximum matching of T where the vertices that are not covered are leaves.
Moreover, unless T consists of the single vertex v, we can find such a matching
where v is in a domino.

Proof. By induction on the size of the tree T . This is true for the tree with 1
vertex.

Let us call u the green neighbor of the red leaf v. The induced forest F defined
as T \{u,v} is made of red–green trees whose sum of dimensions is the dimension
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of T by Lemma 1.9. By induction we can find a maximum matching of F such
that vertices that are not covered are leaves of F . Moreover, we can choose this
matching such that the vertices that are not covered are in fact leaves of T .

We then obtain, by adding the domino u − v, a maximum matching of T with
all the required properties. �

Lemma 1.12. The trees obtained by removing a leaf in an orange tree are exactly
the trees of dimension 1. They have exactly one red–green component.

Proof. Let us pick an orange tree T and a leaf v with adjacent vertex w. Removing
the leaf v gives a tree T \ {v} with a matching covering all vertices but w. This is
clearly a maximum matching; hence, T \ {v} has dimension 1 by Lemma 1.6.

Conversely, consider a tree T ′ of dimension 1. It has exactly one red–green
component since every red–green component contributes at least 1 to the dimen-
sion by Lemma 1.7. This red–green component has dimension 1. By Lemma 1.11
we can find a maximum matching of T ′ missing only one leaf w. Adding a ver-
tex v attached to w gives a tree with a perfect matching, that is, an orange tree. �

We will call the trees of dimension 1 unimodal trees.

Remark 1.13. The classical Dynkin diagrams are simple examples of trees:

• Type An: orange for even n, unimodal for odd n,
• Type Dn: unimodal for odd n,
• Type En: orange for n = 6,8, unimodal for n = 7.

The type Dn with n even has dimension 2.

2. Affine Algebraic Varieties

Using the coloring of the previous section, we can define several affine alge-
braic varieties attached to a tree T and some auxiliary choices. These varieties
are closely related to cluster algebras.

First, let us consider the system of equations

xix
′
i = 1 + αi

∏
i−j

xj (2)

for all vertices i of T , where the product runs over vertices j adjacent to i. Here
xi and x′

i are called cluster variables, and αi are called coefficient variables.
By a special case of [BFZ05, Corollary 1.17] this system is a presentation of

the cluster algebra associated with the quiver given by a bipartite orientation of T ,
with one frozen vertex attached to every vertex of T (in such a way that all vertices
of T remain sources or sinks). In the context of cluster algebras, equations (2) are
called exchange relations.

We use the expression “coefficients variables” in a more specialized sense than
the general notion of coefficients in cluster algebras. In fact, we will only need
coefficients that are subsets of the principal coefficients.
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We will be interested here in considering the αi as parameters, and letting them
either vary in some well-chosen families or take fixed generic values (and even a
mix of these two possibilities), so that the resulting space is smooth.

Note that Cartesian products of varieties will be denoted by concatenation,
omitting the symbol ×.

2.1. Jumping Around a Groupoid

Let us denote by XT (α) the algebraic scheme defined by fixing some invertible
values for all coefficient variables αi .

Recall the following lemma ([Cha11, Lemma 2.2]).

Lemma 2.1. Let u − v be an edge of T . Let β be defined by βw = αw/αu if w is
a neighbor of v (in particular, βu = 1) and βw = αw otherwise. Then XT (α) and
XT (β) are isomorphic by the change of variables xv �→ αuxv and x′

v �→ x′
v/αu.

We may say that the coefficient αu has jumped away from u over v and its inverse
has got spread over all other neighbors of v. When v has u as only neighbor, the
coefficient αu just disappears from the equations.

From now on, we will only admit the following kinds of jumps:

• a red vertex over one of its green neighbors,
• a green vertex over one of its red neighbors,
• an orange vertex over its matched orange neighbor.

Let us now define a groupoid GT with objects the schemes XT (α) indexed by
invertible values of the parameters α, and isomorphisms XT (α) � XT (ᾱ) of the
shape {

x̄i �→ λixi,

x̄′
i �→ x′

i/λi,
(3)

where λi are some invertible elements. The parameters are then related by

αi = ᾱi

∏
i−j

λj . (4)

More precisely, a morphism in GT is the list of parameters λi . These morphisms
are composed and inverted as dictated by the associated isomorphisms of alge-
braic varieties.

Note that every jump corresponds to an isomorphism in the groupoid GT .

Proposition 2.2. For every maximum matching M and given parameters α, there
exists unique parameters β (given by monic Laurent monomials in α) such that

• the function β is 1 except on the set of red vertices not covered by M ,
• XT (α) is isomorphic to XT (β) by a sequence of jumps.

Moreover,

(a) the function β only depends on the values of α on the red vertices of T ,
(b) the values of β on a red–green component are Laurent monomials in the val-

ues of α on the same red–green component.
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Proof. Let us first prove the existence of such parameters β . The main idea is to
iterate Lemma 2.1 by jumping over dominoes of M .

Let us define an auxiliary oriented graph G as follows: the vertices of G are the
vertices of T , and there is an edge u → w in G if u − v is a domino in M and
v − w is another edge in T .

With this notation, if there are edges starting from u in G, then we can use
Lemma 2.1 (by jumping over v) to turn the coefficient βu into 1 and replace the
coefficients βw by βw/βu for all vertices at the end of an arrow u → w.

We can see that the graph G has no oriented cycle; otherwise, there would be a
cycle in T made of concatenated dominoes. Moreover, edges in the graph G can
only go from green to green, from orange to orange or green, or start from red.

Then we can do these jumps starting from the sources in G and then proceeding
along any linear extension of the partial order defined by G.

At the end of this process, all vertices covered by dominoes have coefficient 1.
There only remains coefficients on the red vertices not covered by the maximum
matching M . This proves the existence of the required parameters β .

The fact that the coefficients βj are products of coefficients αi and their in-
verses is immediate from the definition of jumping.

Let us now prove the uniqueness. Assume that there are two such sets of pa-
rameters β and β̄ . Let x and x̄ be the coordinates on the isomorphic XT (β) and
XT (β̄).

Let us first prove that any isomorphism in the groupoid GT from XT (β) to
XT (β̄) maps x̄j to xj for every green vertex j . This is done by induction using the
auxiliary graph G, starting with the green vertices that do not have any outgoing
edge in G. For every green vertex, we just have to consider equation (2) for the
unique red vertex that is in the same domino in M .

Using then equation (2) for all red vertices i not covered by M , we obtain that
βi = β̄i . This proves the uniqueness.

For statement (a), consider what happens to the coefficient attached to an or-
ange or a green vertex u. By Proposition 1.2 the domino containing u must be
orange or green–red. The coefficient can therefore only jump to green or orange
vertices. So they must disappear at some point because only red vertices bear
coefficients at the end of the process.

Similarly for statement (b), consider the coefficient attached to a red vertex u.
Again by Proposition 1.2, the domino containing u must be red–green. The coeffi-
cient can only jump to red vertices in the same red–green component or to orange
and green vertices. Since the coefficients on orange or green vertices will disap-
pear by the previous point, coefficients can only stay within a given red–green
component. �

Recall that the dimension dim(T ) of T is (by Lemma 1.6) the number of red
vertices that are not covered in any maximum matching of T . Proposition 2.2
justifies this terminology since this gives the number of independent parameters
for the varieties XT (α) (inside the groupoid GT ).
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Remark 2.3. In the particular case where the tree T is orange, all XT (α) are
isomorphic.

By Proposition 2.2, in order to study all isomorphism classes of such varieties,
we can restrict oneself to attach parameters only to red vertices not covered by a
maximum matching M .

For a maximum matching M of T , let us define a scheme XM
T (α) by the set of

equations (2), where αi are invertible fixed parameters, equal to 1 if i is covered
by M .

Given two matchings M and M ′, we can always find by Proposition 2.2
a sequence of jumps that provides an isomorphism in GT between XM

T (α) and
XM ′

T (β), where the parameters β are uniquely determined Laurent monomials
in α.

Let us consider now the automorphism group Aut(XM
T (α)) of the object

XM
T (α) in the groupoid GT .

Proposition 2.4. The automorphism group Aut(XM
T (α)) is an algebraic torus

isomorphic to G
dim(T )
m . If (λi)i∈T is an element of Aut(XM

T (α)), then λi = 1 on
green and orange vertices of T .

Proof. Let us consider an automorphism in GT given by invertible elements λi .
The condition that equation (2) for the vertex i is preserved is∏

j−i

λj = 1. (5)

This just means that the λi belongs to the kernel of the adjacency matrix of T

(seen as an endomorphism of GT
m). Looking at the induced linear equations on

the tangent space at one, we can deduce from Remark 1.5 that the dimension of
Aut(XM

T (α)) is dim(T ).
By the same argument (using induction on the auxiliary graph G) as in the

uniqueness step of the proof of Proposition 2.2, every automorphism fixes xj for
every green vertex j .

By a similar argument (starting with orange vertices attached to green vertices
in the auxiliary graph G) we can then prove that every automorphism fixes xj for
every orange vertex j .

There remains to show that Aut(XM
T (α)) is connected. Let us prove that,

given any choice for the values of λi for i /∈ M , there is a unique element of
Aut(XM

T (α)) extending this choice.
This is once again done by induction using the auxiliary graph G. Let us con-

sider a red vertex j that is pointing in G only toward vertices with known λ. Then
there is a unique way to fix the value λj such that (5) holds for the green vertex i

in the domino of j .
This proves that the kernel is isomorphic to G

dim(T )
m . �
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Note that the torus Aut(XM
T (α)) and its action on XM

T (α) do not depend on α.
This action therefore extends to varieties defined as the union of XM

T (α) over
some family of parameters α.

The torus Aut(XM
T (α)) can be written as a product of several tori, indexed

by the red–green components. Every factor acts only on the red vertices inside
a fixed red–green component C. This factorization will be useful later to describe
free actions on some varieties.

Remark 2.5. Torus actions on general cluster varieties (or equivalently gradings
on cluster algebras) are known to be related to the kernel of the B-matrix; see, for
example, [Gra13; GL14]. Some of the results of this section can be reformulated
in the general case. For example, an extension of the first part of Proposition 2.4
would describe a torus action on the fiber of the coefficient morphism using the
kernel of the B-matrix.

2.2. Genericity

A nonempty set S of red vertices in a red–green component C is called an admis-
sible set if every green vertex in C has either zero or two neighbors in S.

Lemma 2.6. Given a red vertex u in C, there is an admissible set containing u.

Proof. We can build an admissible set S starting from {u} by repeated addition of
red vertices. If there is a green vertex v with exactly one red neighbor in S, then
add to S one of the other red neighbors of v. Repeat until the set S is admissible.

�

Let us now introduce an explicit genericity condition on the parameters attached
to a given red–green component C.

Condition. For every admissible set S of red vertices of C, the alternating prod-
uct ∏

i∈S

α±
i �= (−1)#S, (6)

where any two red vertices sharing a common green neighbor have opposite pow-
ers in the left-hand side.

Lemma 2.7. The genericity condition is preserved under jumping moves.

Proof. Indeed, consider the jumping move from a red vertex u over a green ver-
tex v. The coefficients of all red neighbors of v are divided by αu. Let S be an
admissible set. If the vertex v has no neighbor in S, then nothing is changed in the
genericity condition for S. Otherwise, the vertex v has two neighbors in S. Then
two terms are changed in the left-hand side of (6), both being divided by αu. But
they appear with opposite powers, and hence the product is not changed.
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The two other kinds of jumping moves (green over red and orange over orange)
do not change the parameters of red vertices. �

2.3. Definition of the Varieties

Let us now carefully define the varieties that will be studied in the rest of the
article.

Let us fix a tree T , a choice function ϕ from the set of red–green components
of T to the set {generic,versal}, and a maximum matching M of T .

For every red–green component C such that ϕ(C) is generic, let us fix for
every vertex u of C not covered by the maximum matching M , an invertible
value αu.

To this data,1 we associate a scheme X
ϕ,M
T,α as follows.

The variables are

• xi and x′
i for all vertices of T ,

• αi for all vertices not covered by the matching M in the red–green components
C of T such that ϕ(C) is versal.

The equations are

• the system of equations (2),
• all variables αi are invertible.

In fact, there is no true dependency on the matching M . Let us consider two
maximum matchings M and M ′. Using Proposition 2.2, we can find an isomor-
phism between X

ϕ,M
T,α for arbitrary invertible parameters α and X

ϕ,M ′
T ,β for param-

eters β depending on the parameters α.
We will therefore forget the matching and use the notation X

ϕ
T from now on,

keeping the parameters α implicit as well.
Moreover, by Lemma 2.7, if the genericity condition (6) holds for the param-

eters α with respect to one matching M , then they will also hold for the corre-
sponding parameters β for another matching M ′.

We can therefore impose that the genericity condition (6) holds for all
generic red–green components of T . This will always be assumed from now
on.

Let us summarize this lengthy definition. Once the tree T is chosen, we pick
a maximum matching M of T . Any choice of matching will lead to isomorphic
varieties. We then decide for every red–green component of T either to take the
union over all invertible parameters or to fix some generic parameters.

We will use the simplified notation XT for orange trees since there is then no
choice to be made for the function ϕ. We will also use the notations X

generic
T

and Xversal
T when the function ϕ is constant.

1The αu will in fact be required to satisfy an additional genericity assumption, as explained in one of
the next paragraphs.
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Remark 2.8. We can also consider forests instead of trees in the definition of the
varieties X

ϕ
T , but then everything factors according to the connected components.

This possibility will be used implicitly in the rest of the article.

Let us introduce the notation U(x) for the open set defined by x �= 0.

Lemma 2.9. If a − b is an edge in a tree T , then the two open sets U(xa) and
U(xb) cover the variety X

ϕ
T .

Proof. This follows from the exchange relation

xax
′
a = 1 + αaxby,

where y is some product of other cluster variables. �

Remark 2.10. When removing red vertices or green vertices in a tree T , some
red–green components may split into several red–green components. We can then
define a function ϕ̂ on the new set of red–green components, whose value on
a red green component C is the value of ϕ in the unique red–green component
of T containing C. Abusing the notation, we will denote this induced function ϕ̂

simply by ϕ.

3. Smoothness and Free Actions

Theorem 3.1. For every choice of ϕ, the variety X
ϕ
T is smooth.

Proof. The proof is by induction on the size of the tree T .
For the tree with only one vertex, the only equation is

xx′ = 1 + α. (7)

In the generic case where α is considered to have a fixed value, different
from −1 by the genericity condition (6), the variety is isomorphic to the punctured
affine line Gm and is therefore smooth.

In the versal case where α is considered to be a variable and assumed to be
invertible, the variety is an open set in the variety defined by (7) where α is not
assumed to be invertible. This last variety is isomorphic to the affine plane A2 and
hence smooth.

The rest of the proof by induction is organized as follows. We first consider the
case where the tree has at least one red–green component and treat separately the
case where there is a red–green component that is generic and the case where
there is one that is versal. Otherwise, the tree is orange. These three cases are
done in the next three subsections. �
Let us first state a few useful lemmas.

Lemma 3.2. If one variable xi is assumed to be nonzero, then we can get rid of
the associated variable x′

i and of the equation (2) of index i.

Proof. Indeed, we can just use the equation to eliminate x′
i . �
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Lemma 3.3. If one variable xi is assumed to be zero, then x′
i becomes a free

variable, and the equation (2) of index i reduces to

−1 = αi

∏
i−j

xj .

Let us now introduce a useful variant of the varieties X
ϕ
T . Let v be a vertex of T .

Let X
ϕ
T [v] be defined just as X

ϕ
T , but with one more invertible variable γv attached

to the vertex v as a coefficient (playing the same role as αv in the equations). This
variable defines a morphism γv from X

ϕ
T [v] to Gm.

Lemma 3.4. If v is an orange or green vertex, then X
ϕ
T [v] is isomorphic as a va-

riety over Gm to the product X
ϕ
T Gm endowed with the projection to the second

factor.

Proof. By Proposition 2.2 and its proof we can find an isomorphism in the
groupoid GT between X

ϕ
T and X

ϕ
T [v] that only changes the coordinates xi for

orange and green vertices. More precisely, using the auxiliary oriented graph G,
we can find a sequence of jumps (corresponding to edges in G starting with a green
or orange vertex) that makes the coefficient γv disappear from the equations.

The isomorphism associated with this sequence of jumps is multiplying the
variables xi by monic Laurent monomials in the parameter γv and hence defines
an isomorphism over Gm. �

Lemma 3.5. If v is a red vertex in a versal red–green component C, then X
ϕ
T [v]

is isomorphic as a variety over Gm to X
ϕ
T Gm endowed with the projection to the

second factor.

Proof. If the red vertex v is not covered by the matching M chosen to define X
ϕ
T ,

then we have two coefficient variables αv and γv attached to the vertex v. By
the simple change of coordinates αv := αvγv and γv := γv we get the expected
isomorphism.

Assume now that red vertex v is covered by the matching M .
By Proposition 2.2 and its proof we can find an isomorphism in the groupoid

GT between X
ϕ
T [v] and a variety X

ϕ,M
T,β that only changes the coordinates xi for

orange and green vertices and for red vertices in the red–green component C.
More precisely, using the auxiliary oriented graph G, we can find a sequence of
jumps that moves the coefficient γv toward the red vertices in C not covered by the
matching. At the end, every new coefficient βi is the product of αi by a Laurent
monomial in γv .

The isomorphism associated with this sequence of jumps is multiplying the
variables xi by monic Laurent monomials in the parameter γv and hence defines
an isomorphism over Gm. We can then compose this isomorphism with a rela-
beling of the coefficients αi := βi in order to get the expected isomorphism, still
defined over Gm, between X

ϕ
T [v] and X

ϕ
T Gm. �
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We can say that the coefficient γv can be detached from T in these cases. This
will be used frequently in the rest of the article.

3.1. Trees with a Generic Component

We assume now that T has at least two vertices and a generic component C.
Let us pick an admissible set S of red vertices in C, as defined in Section 2.2.

Lemma 3.6. The open sets U(xi) for i ∈ S form a covering of X
ϕ
T .

Proof. Indeed, the complement of their union is the set where all variables xi for
i ∈ S vanish. This implies that

αi

∏
j−i

xj = −1 (8)

for every i in S. Taking the alternating product of these equalities gives∏
i∈S

α±
i = (−1)#S (9)

because for every green vertex j attached by an edge to some element of S,
the cluster variable xj appears exactly twice by definition of admissible sets and
hence disappears in the alternating product.

But equation (9) is incompatible with the genericity condition (6). �

Let us now show that the open sets U(xi) are smooth.
Let F be the forest T \ {i}. In the forest F , the coloring is changed only on

the red–green component containing i, where an avalanche of orange dominoes
can take place when removing i. The red–green component C is therefore split
into a number of red–green components. Let us moreover introduce a function ϕ

on F , which is generic on every red–green component coming from C and
unchanged on all other red–green components.

Lemma 3.7. The open set U(xi) is isomorphic to the product GmX
ϕ
F .

Proof. The condition that xi is not zero allows us to get rid of the variable x′
i by

using the equation (2) of index i. What remains are the equations for the forest
F = T \ {i}, where now xi is treated as a parameter attached to all neighbors of i

in T .
Because all neighbors of i in T are green, they become either green or or-

ange in F . It follows from Lemma 3.4 that we can, without changing the variety,
consider instead that the parameter xi is not attached to any vertex of F .

Let us check that the genericity condition still holds on all generic red–
green components. If the component D does not come from the splitting of C,
then the genericity conditions are unchanged on this red–green component. Oth-
erwise, let us choose an admissible set in D. It was then already an admissible set
in C, by inspection of what happens during the avalanche of orange dominoes.
Therefore, the genericity condition for D is inherited from that for C. �
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We have therefore obtained an isomorphism

U(xi) � GmX
ϕ
F , (10)

which is smooth by induction. Therefore, X
ϕ
T is also smooth.

3.2. Trees with a Versal Component

We assume now that T has at least two vertices and has a versal component C.
Let us choose a red leaf v in this component. By the characterization of the color-
ing in terms of matchings we can find a maximum matching M not containing v.
Therefore, there is a coefficient variable αv .

Let u be the green vertex adjacent to v. By Lemma 2.9 the two open sets U(xu)

and U(xv) cover X
ϕ
T .

Let us first prove that U(xv) is smooth.
Let T ′ be the tree T \ {v}. The coloring of T ′ is obtained from T by an

avalanche of orange dominoes. The dimension of T ′ is dim(T ) − 1.
The avalanche may split the red–green component of T containing v into sev-

eral components. Let ϕ be the function that maps all these new components to the
versal condition and unchanged condition on all the other red–green compo-
nents.

Lemma 3.8. The open set U(xv) is isomorphic to the product G2
mX

ϕ

T ′ .

Proof. Assuming that xv is not zero allows us to get rid of the variable x′
v by using

(2) with index v. The coefficient variable αv also disappears from the equations;
this gives one factor Gm.

Then the variable xv is seen as a coefficient attached to the vertex u in T ′,
which is either green or orange. The coefficient can therefore be detached by
Lemma 3.4, and we obtain a factor isomorphic to GmX

ϕ

T ′ . �
Therefore, U(xv) is smooth by induction.

Let us now prove that U(xu) is smooth. Let us choose instead a matching M

containing the domino u − v, thanks to Lemma 1.11. This amounts to go through
an isomorphism in the groupoid GT and hence preserves the open set U(xu).

Let F be the forest T \ {u}. Because u is green, the coloring of F is obtained
from that of T by restriction, and the dimension of F is dim(T ) + 1. Let v,
T1, . . . , Tk be the connected components of the forest F . By removing the domino
u − v we can restrict the matching M to a matching of the forest F .

The red–green component of T containing u splits into several red–green com-
ponents in F , one of them being the vertex v. We take the versal condition on
all of these red–green components of F and unchanged condition on all the other
red–green components.

Lemma 3.9. The open set U(xu) is isomorphic to

Xversal{v}
k∏

j=1

X
ϕ
Tj

, (11)
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where the first component is the vertex v with coefficient variable xu.

Proof. Setting xu �= 0 in the equations allows us to get rid of the variable x′
u. The

result can be described as a fiber product over Gm, where the same coefficient
variable xu is attached to every connected component of F at a red vertex in a
versal red–green component. By repeated use of Lemma 3.5 on all connected
components (but not on the isolated vertex v) we find that the open set U(xu) is
isomorphic to the product

Xversal
v

k∏
j=1

X
ϕ
Tj

, (12)

where the first component is the vertex v with coefficient xu. �
Therefore, U(Xu) is smooth by induction, and hence X

ϕ
T is also smooth.

3.3. Orange Trees

Let us now assume that T is an orange tree, and let us choose one domino u − v

in the perfect matching of T . By Lemma 2.9 the two open sets U(xu) and U(xv)

cover the variety XT .
By symmetry between u and v it suffices to prove that U(xu) is smooth.
Let T1, . . . , Tk be the trees attached to u in T \ {v}. The Ti are clearly orange

trees.
Let R be the connected component of v in T \ {u}. The tree R is obtained by

removing a leaf in an orange tree and hence (by Lemma 1.12) has dimension 1 and
a unique red–green component. Moreover, R has a maximum matching avoiding
only v, and the vertex v is red in the coloring of R.

Lemma 3.10. The open set U(xu) is isomorphic to the product of the varieties
XTi

and the variety Xversal
R .

Proof. Assuming that xu is not zero allows us to eliminate the variable x′
u and the

equation (2) of index u.
There remains the equations for the union of R and the Ti , with xu considered

as a parameter attached to all of them at the former neighbors of u.
Because the trees Ti are orange, we can consider instead (by Lemma 3.4) that

the parameter xu is only attached to the vertex v of R.
This proves that the open set U(xu) is isomorphic to the product of the varieties

XTi
and the variety Xversal

R . �
By induction this proves that U(xu) is smooth. Therefore, XT is smooth too.

3.4. Torus Actions

Let T be a tree, and let ϕ be a choice in {generic,versal} for every red–green
component of T . Let us also choose a maximum matching M of T .

One can deduce from Proposition 2.4 and the remarks following it that there
is an action of an algebraic torus of dimension dim(T ) on X

ϕ
T , and that this torus
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(and its action) can be written as a product over red–green components C. The
factors are the tori 	C

T defined by the additional condition that λi = 1 outside of
the component C.

Let us define a smaller torus 	
ϕ
T acting on X

ϕ
T as the product of 	C

T over all
generic red–green components of T . Let us call the rank of (T ,ϕ) and denote
by rk(T ,ϕ) the sum of the dimensions of the generic red–green components of T .
This is the dimension of 	

ϕ
T .

Proposition 3.11. If ϕ(C) is generic, then the action of 	C
T on X

ϕ
T is free.

Proof. Let us assume that there is a nontrivial element λ = (λi)i of 	C
T that fixes

a point (xi)i in X
ϕ
T .

Let i be a red vertex in C such that λi �= 1. For every green neighbor j of i,
because of (5), we can find another red vertex k incident to j such that λk �= 1.
Iterating this process, we can build an admissible set S (as defined in Section 2.2)
such that λs �= 1 for every s ∈ S.

Because λ fixes the given point, we then have xs = 0 for every s ∈ S. But this
is impossible by Lemma 3.6. �

Corollary 3.12. There is on X
ϕ
T a free action by a torus 	

ϕ
T of dimension the

rank rk(T ,ϕ).

This gives X
ϕ
T the structure of a principal bundle with structure group 	

ϕ
T . As we

will see later, this bundle is not trivial in general (i.e., not a product), as can be
seen from our results for the cohomology already in type A3.

4. Number of Points over Finite Fields and Euler Characteristic

Let us denote by N
ϕ
T (q) the number of points on X

ϕ
T over the finite field Fq .

When the tree is orange, we will use the shorthand notation NT . When the
function ϕ is constant, we will use the notations Nversal

T and N
generic
T .

Proposition 4.1. The numbers N
ϕ
T (q) are monic polynomials in q of degree

dimX
ϕ
T .

Proof. The proof is by induction on the size of the tree.
For the tree with one vertex, the number of points is q − 1 in the generic

case and q2 −q +1 in the versal case, by the description given at the beginning
of the proof of Theorem 3.1.

Then either the tree has a red–green component, which can be generic or
versal, or it is an orange tree. The proof is decomposed into the three following
geometric decomposition lemmas, or rather into their obvious corollaries on the
number of points over finite fields. �
Let T be a tree, and v be a red leaf in a red–green component C of T . Because
red vertices have only green neighbors, this implies that v is a leaf in T . Let u

be the neighbor of v. Removing the vertex v creates an orange avalanche and
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may separate the red–green component C into several ones. Let ϕ be the induced
genericity condition (as defined in Remark 2.10). Let F be the forest T \ {u,v}.
The component C may also split into several red–green components in F . Let ϕ

be the induced genericity condition.
As explained in Section 2, the variety X

ϕ
T depends on the choice of a maxi-

mum matching M , but different choices are isomorphic and related by the action
of the groupoid GT . Hence, it is always possible to choose the matching at our
convenience. For the next two lemmas, let us pick a maximum matching M of T

containing v. This is possible by Lemma 1.11.
Let us consider now the case of a generic red–green component C.

Lemma 4.2. In this situation, the variety X
ϕ
T can be decomposed as

X
ϕ
T = GmX

ϕ
T \{v} 	 A1X

ϕ
F . (13)

Proof. Either xv is not zero, or xv is zero. This will give the required disjoint
union. In the case where xv �= 0, we use Lemma 3.7. This gives the first term of
the right-hand side.

Assume now that xv is zero. Then x′
v is a free variable, and xu is equal to −1

because there are no coefficients on v. We then get rid of x′
u. The coloring of the

forest F is by restriction of the coloring of T . Therefore, the parameter xu = −1
is attached to some red vertices of F as a coefficient.

We have to check that the genericity condition still holds on every connected
component of F . Let S be an admissible set in one of these components. Either S

is already an admissible set in T , and then the genericity condition still holds, or
it contains exactly one of the neighbors of u in T . In this case, we can extend S

by adding v to form an admissible set in T . The genericity condition for S 	 {v}
in T implies the condition for S because of the additional coefficient −1 attached
to S in F . �

Keeping the same notations, let us consider now the case of a versal red–green
component C.

Lemma 4.3. In this situation, the variety X
ϕ
T can be decomposed as

X
ϕ
T = G2

mX
ϕ
T \{v} 	 A1X

ϕ
F . (14)

Proof. Either xv is not zero, or xv is zero. This will give the required disjoint
union. If xv �= 0, using Lemma 3.8 gives the first term of the right-hand side.

Assume now that xv is zero. Then x′
v is a free variable, and xu is equal to −1

because there are no coefficients on v. We then get rid of x′
u. The coloring of the

forest F is by restriction of the coloring of T . Therefore, the parameter xu = −1
is attached to red vertices of F . By Lemma 3.5 it can be detached, and this just
gives the expected second term. �

Let T be an orange tree, and u − v be a domino in T . Let (Tu,i)i (resp. (Tv,j )j )
be the connected components of T \ {u,v} that were attached to u (resp. to v).
All these trees are orange. Let us denote by Su,i and Sv,j the forests obtained
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from them by removing the vertex that was linked to u or v. These forests are
unimodal in the sense that they have one unimodal connected component, all the
other connected components being orange.

Lemma 4.4. In this situation, we have

XT = G2
m

∏
i

XTu,i

∏
j

XTv,j
	 A1

∏
i

Xversal
Su,i

∏
j

XTv,j

	 A1

∏
i

XTu,i

∏
j

Xversal
Sv,j

.

Proof. Because the open sets U(xu) and U(xv) are a covering by Lemma 2.9, we
can cut the variety XT into three pieces: either both xu and xv are not zero, or
exactly one of them is zero.

If both are not zero, then we obtain the product of G2
m (with coordinates xu

and xv) with the product of the varieties attached to the Tu,i and the Tv,j . Indeed,
we first get that xu becomes a parameter attached to all trees Tu,i and xv becomes
a parameter attached to all trees Tv,j . But these trees are orange, so xu and xv can
be detached by Lemma 3.4. This gives the first term.

If xu is zero and xv is not zero, then there is a free variable x′
u, and the variable

xv is determined by the variables attached to the vertices of the trees Tu,i linked
to u, which must be nonzero. We obtain therefore a versal condition on each forest
Su,i . For the trees Tv,j , the coefficient xv is attached to all of them, but because
they are orange, it can be detached. This gives the second term.

The third term is the same after exchanging u and v. �

4.1. Reciprocal Property

Recall from Section 3.4 that the rank rk(T ,ϕ) of the pair (T ,ϕ) formed by a tree
T and a choice function ϕ is the sum of the dimensions of the generic red–
green components of T .

Proposition 4.5. The polynomial N
ϕ
T (q) is divisible par (q − 1)rk(T ,ϕ).

Proof. This follows from the existence of the free action obtained in Corol-
lary 3.12. �

Let us refine this slightly. Recall that a polynomial
∑N

j=0 cj q
j is called reciprocal

(or palindromic) if cN−j = cj for 0 ≤ j ≤ N .

Proposition 4.6. The polynomial N
ϕ
T can be written as (q − 1)rk(T ,ϕ) times a

reciprocal polynomial.

Proof. By induction. This is true for the tree with one vertex.
We just have to look carefully at the decompositions given in the three lemmas

that were used to prove polynomiality by induction.
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For Lemma 4.2, let D be the rank for T . Then the rank is D −1 for T \ {v} and
D for F . Using the additional factor q − 1 coming from Gm, we have that there is
a common factor (q −1)D to all terms involved. The factor A1 in the codimension
1 piece ensures that the reciprocal property holds.

For Lemma 4.3, the rank D is the same in all terms involved. We use that
(q − 1)2 is reciprocal. The factor A1 in the codimension 1 piece ensures that the
reciprocal property holds.

For Lemma 4.4, the rank D is 0 in all terms involved since there is no generic
red–green component. We use again that (q − 1)2 is reciprocal. The factor A1 in
the codimension 1 pieces ensures that the reciprocal property holds. �

4.2. Enumeration and Coincidences

In the following remarks, we will describe trees by their numbers in the tables
at the end of [CDS80] and by their graph6 string (which is a standard format for
graphs).

Remark 4.7. We can find distinct orange trees with the same enumerating poly-
nomial. This happens first for trees with 10 vertices, as shown in Figure 3. The
trees 2.188 (graph6 ’IhGGOC@?G’) and 2.189 (graph6 ’IhC_GCA?G’) have
the same polynomial, as well as the trees 2.172 (graph6 ’IhGGOCA?G’) and
2.174 (graph6 ’IhGH?C@?G’). The number of different polynomials for orange
trees with 2n vertices is the sequence

1,1,2,5,13,41,138, . . . ,

whereas the number of orange trees is

1,1,2,5,15,49,180, . . . .

Remark 4.8. For unimodal trees with versal condition, we can also find pairs
with the same enumerating polynomials. The smallest one is made of trees with
nine vertices, shown in Figure 4, and numbered 2.83 (graph6 ’HhCGOCA’) and
2.85 (graph6 ’HhGGGG@’). The number of different polynomials for unimodal
trees with 2n + 1 vertices is the sequence

1,1,2,6,19,65, . . . ,

Figure 3 Trees 2.172 and 2.174, 2.188 and 2.189
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Figure 4 Trees 2.83 and 2.85

whereas the number of unimodal trees is

1,1,2,6,20,76,313,1361, . . . .

Remark 4.9. For unimodal trees with generic condition, we can also find pairs
with the same enumerating polynomials. The smallest one is made of the Dynkin
diagrams A7 and E7. The number of different polynomials for unimodal trees
with 2n + 1 vertices is the sequence

1,1,2,5,13,46,168, . . . .

4.3. Linear Trees

Let us denote by An the linear tree with n vertices.

We can check that An is orange if n is even and unimodal if n is odd.

Proposition 4.10. The number of points on varieties attached to An is given by

NAn
= qn+2 − 1

q2 − 1
(15)

if n is even and by

Nversal
An

= qn+2 + 1

q + 1
and N

generic
An

= (q(n+1)/2 − 1)(q(n+3)/2 − 1)

q2 − 1
(16)

if n is odd.

Proof. This follows easily by induction from Lemmas 4.2, 4.3, and 4.4. �
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4.4. Trees of Type D

Let us denote by Dn the tree with n vertices associated with the Dynkin diagram
of type D.

We can check that Dn is unimodal if n is odd and has dimension 2 if n is even.

Proposition 4.11. The number of points on varieties attached to Dn is given by

Nversal
Dn

= qn+3 − qn+2 + qn + q3 − q + 1

q + 1
and

(17)
N
generic
Dn

= (qn/2 − 1)2

if n is even and by

Nversal
Dn

= qn+3 − qn+2 + qn − q3 + q − 1

q2 − 1
and N

generic
Dn

= qn − 1 (18)

if n is odd.

Proof. This is easily deduced from the type A case, using Lemmas 4.2 and 4.3
applied to a red leaf on a short branch. �

4.5. Trees of Type E

Let us consider now a family of trees containing the Dynkin diagrams of type E.
The tree En is the tree with one triple point and branches of size 1, 2, and n − 4.

We can check that En is orange if n is even and unimodal if n is odd.

Proposition 4.12. The number of points on varieties attached to En is given by

NEn
= (q2 − q + 1)

qn−1 − 1

q − 1
(19)

if n is even and by Nversal
En

= (q2 − q + 1)(1 + qn−1) and

N
generic
En

= qn+1 − qn + qn−1 − q(n+3)/2 − q(n−1)/2 + q2 − q + 1

q − 1
(20)

if n is odd.

Proof. In the even case, we use Lemma 4.4 applied to the domino on the short
branch and the known type A cases. In the odd case, we use Lemmas 4.3 and 4.2
applied to the red leaf on the short branch and the known type A cases. �
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4.6. Orange Trees and Unimodal Trees

Let us now describe a recursion involving only the polynomials for orange trees
and versal unimodal trees.

Let T be an orange tree, and v be a leaf of T . Let T ′ be the unimodal tree
T \ {v}, and let F be the orange forest obtained from T by removing the domino
u − v containing v.

Lemma 4.13. There is a decomposition

XT = Xversal
T ′ 	 A1XF . (21)

Proof. This decomposition is made according to the value of xv .
If xv = 0, then we have a free parameter x′

v , which gives the factor A1. We also
have xu = −1, and we can get rid of x′

u. The value −1 is attached as a coefficient
to some orange vertices of F , but we can detach this coefficient by Lemma 3.4.
There remain the equations for XF .

If xv �= 0, then we can use Lemma 3.10. In the special case of a leaf, this gives
an isomorphism with Xversal

T ′ . �

We can use Lemma 4.13 to compute the enumerating polynomials for orange trees
and versal unimodal trees only by the following algorithm.

Step 0: if the tree T is of type An with n even, then use the known value from
(15) in Proposition 4.10.

Step 1: if the tree T is orange, then find a leaf v whose branch has minimal
length. Here the branch is the longest sequence of vertices of valency 2 starting at
the unique neighbor of the leaf (it could be empty). Then use Lemma 4.13 applied
to the leaf v to compute NT .

Step 2: if the tree T is unimodal, then find a red leaf w whose branch has
maximal length. Adding a vertex v at the end of this branch gives an orange
tree T ′. Then use Lemma 4.13 (backwards) applied to the tree T ′ and its leaf v to
compute NT .

This will work because each step either shortens the shortest branch or adds
some vertex to the longest branch. This makes sure that the tree become more and
more linear and that at some point we are reduced to the initial step. This is a
decreasing induction on the number of points of valency at least 3 and the length
of the longest branch.

Remark 4.14. For orange trees, we can use instead in this algorithm Lemma 4.4,
maybe choosing a domino close to the center of the tree for a better complexity.

4.7. Euler Characteristic and Independent Sets

Let us denote by vc(T ) the number of minimum vertex covers of T . This is also
the number of maximum independent sets.

Let us now describe a decomposition of the versal varieties according to inde-
pendent sets (not necessarily maximum).
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If S is a subset of the vertices of T , we can define WT (S) as the set of points
in Xversal

T where

xu = 0 if u ∈ S, (22)

xu �= 0 if u /∈ S. (23)

The sets WT (S) are obviously disjoint in Xversal
T .

Lemma 4.15. If the set WT (S) is not empty, then S is an independent set in T .

Proof. This follows from Lemma 2.9. �

Proposition 4.16. Let S be an independent set in T . There is an isomorphism

WT (S) � (Gm)t+dim(T )−2s(A1)
s,

where t is the size of T , and s is the size of S.

Proof. Let us fix a maximum matching M of T .
For every u not in S, we can use the hypothesis xu �= 0 to get rid of x′

u and
of the equation of index u. There remain only the equations of index v for v ∈ S.
Because xv = 0 when v ∈ S, the variables x′

v for v ∈ S do no longer appear in the
equations, and hence they are free. This gives the factor (A1)

s .
Then there remain s equations of the general shape

−1 = αi

∏
j−i

xj , (Ei)

involving the t − s invertible variables xu and the dim(T ) coefficient variables αi .
The factor αi is present in this equation only if the vertex i is not covered by the
chosen maximum matching M .

We will use the following auxiliary graph T̂ . The vertices are the vertices of T

and new vertices Zi indexed by coefficient variables αi for i /∈ M . The edges of
T̂ are edges of T and new edges between the vertex Zi and the vertex i for every
i /∈ M . Clearly, this graph is still a tree and admits a perfect matching M̂ by adding
dominoes i − Zi to the matching M .

Because S is an independent set in T , there is at most one element of S in
every edge of T̂ . Let us orient every edge containing an element of S toward
this element if the edge is a domino and in the other way otherwise. This defines
a partial order on the vertices of T̂ , decreasing along the chosen orientation of
edges.

Consider now the equation (Ei ) associated with a vertex i ∈ S. There is
a unique domino i −j in T̂ containing i. The equation can then be used to express
the variable xj in terms of variables of lower index in the partial order.

We can therefore eliminate one variable for every equation. At the end, we
obtain an algebraic torus whose dimension is the difference between the number
t − s + dim(T ) of initial variables and the number s of equations. �

Corollary 4.17. The Euler characteristic of Xversal
T is vc(T ).
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Proof. Every set WT (S) contributes either 0 or 1 to the Euler characteristic. It
contributes by 1 if and only if the exponent t + dim(T ) − 2s is zero.

This exponent can be expressed as

(r(T ) + o(T ) + g(T )) + (r(T ) − g(T )) − 2s.

It is therefore zero if and only if s = r(T ) + o(T )/2, which is the size of the
maximum independent sets in T . �

Of course, we can also use Proposition 4.16 to give a formula for the number of
points Nversal

T as a sum over independent sets.

Corollary 4.18. The value at q = 1 of the polynomial Nversal
T is the number

vc(T ) of maximum independent sets of T .

5. Cohomology: General Setting and Results

In this section, we first describe some differential forms that are always present
in the varieties under study and then very briefly recall the results we need about
(mixed) Hodge structures. For a general reference about mixed Hodge structures,
see, for example, [PS08].

5.1. Weil–Petersson Two-Form

Let T be a tree, and let S be a subset of T . Let S′ be another copy of the set S.
Consider the augmented tree obtained from T by adding a new edge s − s′ out of
every vertex s in S, where s′ ∈ S′ is the element corresponding to s ∈ S. Denote
this tree by T +S′. Endow this tree with a bipartite orientation, where every vertex
is either a sink or a source.

As a simpler variant of the definition of the variety X
ϕ
T , we can define a variety

X(T ;S) attached to this data, with invertible variables associated to the new ver-
tices in S′. The equations are given by one exchange relation (2) for each vertex
of T . The invertible variables attached to vertices in S′ are playing the role of
coefficients in these equations (as the α do).

Let ωi denote d log(xi). The following lemma has been proved by Greg Muller
[Mul12] in a more general context.

Lemma 5.1. The differential form

WP =
∑
i→j

ωiωj , (24)

where the sum is running over edges of T + S′, is an algebraic differential form
on the variety X(T ;S).

Proof. Let us prove that it has no pole. Let us fix i. To study the possible pole
along xi = 0, it suffices to look at the sum

∑
j↔i ωiωj restricted to the edges

containing i.
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By the relation xix
′
i = 1 + ∏

j↔i xj we have

xi dx′
i + x′

i dxi =
∑
j↔i

(∏
k �=j

k↔i

xk

)
dxj , (25)

and therefore

xi dx′
i dxi =

∑
j↔i

(∏
k �=j

k↔i

xk

)
dxj dxi . (26)

This implies

dx′
i dxi

/ ∏
k↔i

xk =
∑
j↔i

ωjωi, (27)

where the left-hand side clearly has no pole at xi . �

Note that here WP stands for Weil–Petersson. This differential form has been
introduced (for general cluster algebras) and given this name in [GSV05], and
it is closely connected to the relations between cluster algebras and Poisson or
symplectic geometry.

The varieties X
ϕ
T can be obtained from the varieties X(T ;S) (where S is taken

to be the set of red vertices not covered by a maximum matching) by fixing the
values of some of the coefficient variables, namely those belonging to red–green
components where ϕ is generic. It follows that this differential form still makes
sense (with the same description) on the varieties X

ϕ
T by pullback.

Abusing notations, we will use the same symbol WP to denote these differ-
ential forms on different varieties. The ambient variety should be clear from the
context.

5.2. Hodge Structures

We will use the notation Q(−i) to denote a one-dimensional vector space over Q
endowed with a pure Hodge structure of Tate type, of weight 2i and type (i, i).
The tensor product of Q(−i) and Q(−j) is Q(−i − j).

Recall that the cohomology of Gm has a Hodge structure described by

Hk(Gm) = Q(−k) (28)

for 0 ≤ k ≤ 1.
There is no morphism between pure Hodge structures of distinct weights.

The Künneth isomorphism is compatible with the Hodge structures. The Mayer–
Vietoris long exact sequence is an exact sequence of Hodge structures.

6. Cohomology: Orange and Versal Cases

This section deals with the cohomology in several cases where either varieties do
not depend on parameters or versal conditions are assumed on all parameters. The
first part is devoted to linear trees; the results there can then be used as building
blocks.
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6.1. Linear Trees A

Let An be the linear tree with n vertices numbered from 1 to n. As seen in Sec-
tion 4.3, this is an orange tree if n is even and an unimodal tree otherwise. Some
of the results of this section were already obtained in [Cha11] using instead the
cohomology with compact supports.

6.1.1. Cohomology of Some Auxiliary Varieties for A. Let us introduce three
varieties Xn, Yn, and Zn with dimensions n, n + 1, and n + 1.

The variety Zn is defined by variables x1, . . . , xn, x′
1, . . . , x

′
n, and α such that

x1x
′
1 = 1 + αx2, (29)

xix
′
i = 1 + xi−1xi+1, (30)

xnx
′
n = 1 + xn−1. (31)

The variety Yn is the open set in Zn where α is invertible. The variety Xn

is the closed set in Yn where α is fixed to a generic invertible value (where
generic means distinct from (−1)(n+1)/2 if n is odd). In our general notation,
Yn is Xversal

An
, and Xn is X

generic
An

.
Let us first describe the variety Zn.

Proposition 6.1. There exists an isomorphism between Zn and the affine space
An+1.

Proof. This has been proved in [Cha11, Prop. 3.6]. �

Therefore, the cohomology of Zn is known for all n:

Hk(Zn) =
{
Q(0) if k = 0,

0 if k > 0.
(32)

The constant function 1 gives a basis of H0(Zn).
Let us now compute the cohomology of Yn by induction. This uses the Mayer–

Vietoris long exact sequence for the covering of Zn by the two open sets U(x1)

and U(α).
First, let us note that U(α) � Yn by definition. Next, we find that U(x1) �

A1Yn−1. Indeed, we can eliminate x′
1 using the first equation. Then α becomes a

free variable, and there remain the equations for Yn−1, with x1 now playing the
role of α. Last, the intersection U(α) ∩ U(x1) is isomorphic to GmYn−1 by the
same argument.

Let us write ωα for d log(α).

Proposition 6.2. The cohomology ring of Yn has the following description:

Hk(Yn) = Q(−k) (33)

for 0 ≤ k ≤ n + 1. It has a basis given by powers of WP in even degrees and by
powers of WP times ωα in odd degrees. It is generated by the 1-form ωα and the
2-form WP.
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Proof. Because of the vanishing of Hk(Zn) for k > 0, the Mayer–Vietoris long
exact sequence gives short exact sequences

0 → H0(Zn) → H0(Yn) ⊕ H0(U(x1)) → H0(U(α) ∩ U(x1)) → 0

and
0 → Hk(Yn) ⊕ Hk(U(x1)) → Hk(U(α) ∩ U(x1)) → 0

for every k > 0. This determines by induction the Hodge structure of the coho-
mology of Yn.

Let us now proceed to the expected basis. We already know that WP and ωα are
indeed algebraic differential forms on Yn. By those short exact sequences we can
check that, for k > 0, the union of the expected basis of Hk(Yn) with the known
basis of Hk(U(x1)) is mapped to a basis of Hk(U(α) ∩ U(x1)). This implies the
statement. �

6.1.2. Cohomology for An with Even n. Let us now consider the linear tree An

for even n and compute the cohomology of Xn.

Proposition 6.3. The Hodge structure of the cohomology of Xn is

Hk(Xn) = Q(−k) (34)

for all even k between 0 and n, and 0 otherwise. A basis is given by powers of WP.
The cohomology ring is generated by WP.

Proof. This follows from the known cohomology of Yn and the Künneth theo-
rem applied to the isomorphism Yn � XnGm given by Lemma 3.4. The Künneth
theorem gives immediately the Hodge structure.

For the basis, it suffices to recall that the Gm factor is given by the value of α

and to check that fixing the value α = 1 maps WP (for Yn) to WP (for Xn). �

6.2. Cohomology for Orange Trees of Shape H

... ... ... ...

... ... ... ...a

b

m

k

n

�

Let us denote by Hk,�,m,n the tree described as two chains joined by an edge
such that by removing the joining edge and its extremities a and b we get two
chains of lengths k and � on the a side (top) and two chains of lengths m and n

on the b side (bottom).
We assume now that Hk,�,m,n is an orange tree. This implies that either k, �,

m, and n are even if the middle edge is an orange domino or that (without loss of
generality) k and m are odd and l and n are even otherwise.

Then we can compute the cohomology of Hk,�,m,n using the Mayer–Vietoris
long exact sequence for the open covering by U(xa) and U(xb).
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When the middle edge is an orange domino, we have

U(xa) � XkX�Ym+n+1,

U(xb) � Yk+�+1XmXn, (35)

U(xa) ∩ U(xb) � (Gm)2XkX�XmXn.

When the middle edge is not an orange domino, we find instead

U(xa) � YkX�Xm+n+1,

U(xb) � Xk+�+1YmXn, (36)

U(xa) ∩ U(xb) � YkX�YmXn.

Let us introduce some notation: let K , L, M , N be the subsets of vertices corre-
sponding to the four branches of H (i.e., the connected components of H \{a, b}).

Let us denote by WS the Weil–Petersson 2-form associated with a subset S

of the vertices of H . For conciseness, we will use shortcuts such as WKaL or
WMabN . Note that there hold

ωaWaL = ωaWL

and other similar simplifications by definition (24) of these forms.
Let us now describe generators and bases of the cohomology of the open sets

U(xa), U(xb), and U(xa)∩U(xb). This can be computed using the isomorphisms
(35) and (36) and the known cohomology of varieties X and Y . It turns out that
the result does not depend on whether or not the middle edge a − b is an orange
domino.

The cohomology of U(xa) is generated by ωa , WKa , WaL, and WMabN . A ba-
sis is given by

Wκ
KaW

λ
aLWB

MabN and ωaW
κ
KWλ

LWB
MbN, (37)

where 0 ≤ κ ≤ k/2, 0 ≤ λ ≤ l/2, and 0 ≤ B ≤ (m + n + 2)/2 (left) or 0 ≤ B ≤
(m + n)/2 (right).

Similarly, the cohomology of U(xb) is generated by ωb, WMb, WbN , and
WKabL. A basis is given by

W
μ
MbW

ν
bNWA

KabL and ωbW
μ
MWν

NWA
KaL, (38)

where 0 ≤ μ ≤ m/2, 0 ≤ ν ≤ n/2, and 0 ≤ A ≤ (k + l + 2)/2 (left) or 0 ≤ A ≤
(k + l)/2 (right).

The cohomology of U(xa) ∩ U(xb) is generated by ωa , ωb, WMb, WbN , WKa ,
and WaL. A basis is given by

Wκ
KaW

λ
aLW

μ
MbW

ν
bN , ωaW

κ
KWλ

LW
μ
MbW

ν
bN ,

(39)
ωaωbW

κ
KWλ

LW
μ
MWν

N, and ωbW
κ
KaW

λ
aLW

μ
MWν

N,

with the same conditions as before on κ , λ, μ, and ν.
There is a bigrading corresponding to the top and bottom parts of the H shape.

Every differential form involved in the bases just described is a sum of products
of ωi . The bidegree of a monomial in the ωi is the pair (the number of ωi where
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i is in the top row, the number of ωi where i is in the bottom row). Among the
various Weil–Petersson forms involved, only the differential forms WKabL and
WMabN are not homogeneous for the bidegree but have terms in bidegrees (2,0)

and (1,1) (resp. (0,2) and (1,1)).
We now need to compute explicitly the following maps in the Mayer–Vietoris

long exact sequence:

Hi (U(xa)) ⊕ Hi (U(xb))
fi−→ Hi (U(xa) ∩ U(xb)).

Because we have bases of all these spaces, this is a matter of matrices.
For odd degree i, let us show that the differential is injective. Because in this

case all basis elements (given by right columns of (37), (38), and (39)) are ho-
mogeneous for the bigrading, we can separate the cases of bidegree congruent
to (0,1) and to (1,0) modulo (2,2). Let us give details only for the first pos-
sibility, the other case being similar after exchanging the top and bottom of H .
The basis of the corresponding bihomogeneous subspace of Hi (U(xb)) is given
by ωbW

A
KaLW

μ
MWν

N with i = 1 + 2A + 2μ + 2ν. The corresponding bihomoge-
neous subspace of Hi (U(xa)) is zero. The basis of the corresponding bihomo-
geneous subspace of Hi (U(xa) ∩ U(xb)) is given by ωbW

κ
KaW

λ
aLW

μ
MWν

N with
i = 1 + 2κ + 2λ + 2μ + 2ν. But WA

KaL can be written as a linear combina-
tion of Wκ

KaW
λ
aL with κ + λ = A. Therefore, the basis elements are mapped to

linear combinations with disjoint supports. It follows that the map fi is injec-
tive.

Let us now turn to even degrees.

Proposition 6.4. For even degree 2i, the kernel of the differential f2i has dimen-
sion 1, spanned by the ith power of the form WP.

Proof. First, note that we can define an injective map  from the space
H2i (U(xa) ∩ U(xb)) to the space Di spanned by all products of i 2-forms of
the shape ωsωt for s − t an edge of the tree (always written in the order given by a
fixed alternating orientation of the tree). Indeed, both terms in the left column of
(39) can be written as linear combinations of such products. The injectivity holds
because distinct elements in this part of the basis are mapped to linear combina-
tions with disjoint supports. To recover a basis element B from any monomial in
its image by , first, count in (B) if the number of ωk in the top row is odd or
even. This tells if the basis elements B contains ωaωb or not. Then it is easy to
recover the exponents (κ,λ,μ, ν) defining B by counting in (B) how many ωk

there are in the different parts of the tree.
To prove the statement of the proposition, it therefore suffices to compute the

kernel of the composite map  ◦ f2i .
It turns out that the matrix of this composite map has a nice description.

First, every monomial d made of i 2-forms ωsωt as before appears in exactly
two images, the image of a form Wκ

KaW
λ
aLWB

MabN and the image of a form
W

μ
MbW

ν
bNWA

KabL (with opposite signs). Let us denote these two forms by Fa(d)
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and Fb(d). On the other hand, the image of every basis element is the sum of
several monomials (at least one) with constant sign.

Let us pick an element z of the kernel of f2i . Then for every monomial d in
Di , the coefficients of Fa(d) and Fb(d) in z must be the same. We can make a
graph with vertices given by all forms in the basis and edges corresponding to the
relations Fa(d) − Fb(d) for all monomials d .

By a combinatorial argument we can check that this graph is connected. For
this, we just have to show that we can go from any monomial d to any monomial
d ′ using two kinds of moves: replace d by another monomial appearing in the
same Fa(d), or replace d by another monomial appearing in the same Fb(d). This
is not difficult once translated in terms of dominoes, and details are left to the
reader.

From the connectedness of this graph we deduce that the kernel is spanned
by the sum of all basis elements of H2i (U(xa)) ⊕ H2i (U(xb)), which is just
(WPi ,WPi ). �

This proposition and the injectivity in the case of odd degree allow us to give a
description of the weights of the Hodge structure on the cohomology. This can
easily be made explicit, but we will not do that here.

There would remain to find explicit expressions for the cohomology classes
coming from the coimage of the differentials fi .

In the case of the Dynkin diagrams E6 and E8, we can go further and compute
explicit representatives of the cohomology classes.

By the general proof the cohomology for E6 is described by

Q(0) | 0 | Q(−2) | 0 | Q(−3) ⊕Q(−4) | 0 |Q(−6),

where the Q(−i) with i even correspond to the powers of WP.
Using the connection homomorphism in the long exact sequence, we find that

the form

dx2 dx3 dx5ω4 (40)

corresponds to Q(−3).
Similarly, the cohomology for E8 is described by

Q(0) | 0 |Q(−2) | 0 | Q(−3) ⊕Q(−4) | 0 | Q(−5) ⊕Q(−6) | 0 |Q(−8),

where the even Q(−i) are the powers of WP.
We find that the form

dx2 dx3 dx5ω4 (41)

corresponds to Q(−3) and its product by WP corresponds to Q(−5).
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7. Cohomology: Generic Cases

This section contains one conjecture and one result in some specific cases about
the cohomology of generic fibers.

7.1. Cohomology for A Odd and Generic

Let us now consider the linear tree An for odd n, which is unimodal. In this
section, we propose a conjectural description for the cohomology of the variety
X
generic
An

(which is also denoted Xn in Section 6.1.1).

Conjecture 7.1. The Hodge structure on the cohomology of Xn is given by

Hk(Xn) = Q(−k) (42)

for even k in 0 ≤ k ≤ (n − 1), and

Hn(Xn) =
n⊕

i=(n+1)/2

Q(−i). (43)

The cohomology ring has a basis given by all powers WPi for 0 ≤ i ≤ (n − 1)/2
and by a basis of Hn(Xn). The cohomology ring is generated by WP in degree 2
and by the elements of Hn(Xn) in degree n.

One approach for this computation would be using the covering of Xn by the
(n + 1)/2 open sets U(xi) (i odd) given by Lemma 3.6. We can then consider the
spectral sequence for this covering (where d1 is the deRham differential, and d2
is the Cech differential).

The intersection of open sets in this covering has a simple description: they are
products Gm times two varieties of the type Xk with k even, times some varieties
of type Yk with k odd.

Lemma 7.2. This spectral sequence degenerates at E2.

Proof. This follows from the purity of the Hodge structure on the cohomology of
the open sets in the covering. �

It would therefore be sufficient to understand the behavior of the Cech differential
acting on the cohomology groups of the open sets. This is still a rather intricate
question. The conjecture has been checked by computer for n ≤ 11. Maybe, we
should look for a better approach.

Remark 7.3. To give an explicit description of the generators of the top coho-
mology group seems to be an interesting problem.

7.2. Cohomology for D Odd and Generic

Let us now consider the tree Dn for odd n, which is unimodal. Our aim is to
compute the cohomology of the variety X

generic
Dn

.
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We will assume that the generic parameter α is attached to the vertex 1, where
1 and 2 are the two red vertices on the short branches. By Lemma 3.6 we have
a covering by U(x1) and U(x2). We will use the Mayer–Vietoris long exact se-
quence for this covering. We have

U(x1) � GmXn−1,

U(x2) � GmXn−1,

U(x1) ∩ U(x2) � GmYn−2.

Given the known explicit description of the cohomology rings of Xn−1 and
Yn−2, we can write very explicitly the long exact sequence.

First, note that the Hodge structure of Hk(U(x1)) ⊕ Hk(U(x2)) is 2Q(−k) for
0 ≤ k ≤ n. Similarly, the Hodge structure of Hk(U(x1) ∩ U(x2)) is 2Q(−k), un-
less k = 0 or n where it is Q(−k).

Using the known basis of the cohomology, we can describe the map ρk from
Hk(U(x1))⊕Hk(U(x2)) to Hk(U(x1)∩U(x2)). We can see that this map has rank
1 if k is even. We can also check that it is an isomorphism if k is odd, unless k = n

where it has rank 1.
It follows that the Hodge structure on Hk(X

generic
Dn

) is given by⎧⎪⎨⎪⎩
Q(−k) if k ≡ 0 (mod 2),

Q(−k + 1) if k ≡ 1 (mod 2), k /∈ {1, n},
Q(−n + 1) ⊕Q(−n) if k = n.

(44)

Moreover, it also follows from the explicit knowledge of the long exact se-
quence that the classes in even cohomological degree are just the powers of the
2-form WP.

We can also see that the Hodge structure Q(−n) in cohomological degree n is
given by the differential form 	n

i=1ωi .
There remains to understand the even Hodge structures present in odd coho-

mological degrees.
By a small diagram chase and using the formula

1 − α

x1x2
= x′

1

x2
− α

x′
2

x1
, (45)

we find that a basis of the Q(−2) part of H3(X
generic
Dn

) is given by the differential
form

dx3ω1ω2. (46)

Moreover, a similar computation shows that products of this form by powers of
WP give a basis for the even Hodge structures in odd cohomological degrees.

The cohomology ring is therefore generated by one generator in each degree
2, 3, and n (of Hodge type Q(−2), Q(−2), and Q(−n)).



756 F. Chapoton

Appendix: Algorithm for the Canonical Coloring of Trees

Let us now describe an algorithm to find the red–orange–green coloring. Let T be
a tree.

1. At start, all vertices are considered to be red.
2. Then, we change the colors according to the following rule:

If a vertex v has exactly one red neighbor w, this red neighbor becomes
green.

If moreover v is green, then we put a domino on the edge v − w.
3. We repeat the previous step until no color can change.
4. Then we color in orange the green vertices that do not have a red neighbor.

We get in that way a coloring of the tree with green, orange, and red vertices,
together with a collection of dominoes.

Proposition A.1. This algorithm defines the same coloring as in Section 1. More-
over, the dominoes obtained are those that are present in all maximum matchings.

Proof. At the end of step 3, we have obtained a tree with red and green vertices,
with the property that every vertex has either no red neighbor or at least two red
neighbors.

Let us prove that a red vertex cannot have at least two red neighbors. Assume
that there is such a vertex v1. Let v2 be one of its red neighbors. Then v2 must also
have at least two red neighbors. Hence, we can find another red neighbor v3 of v2.
Going on in this way and because T is a tree, we can build an infinite sequence of
red vertices, which is absurd.

So, after step 3, we have three kinds of vertices: red vertices (they have only
green neighbors), green vertices with no red neighbors, and green vertices with at
least two red neighbors.

It follows that after step 4, we have the following situation: red vertices with
only green neighbors, green vertices with at least two red neighbors, and orange
vertices with no red neighbors.

Using the third characterization of the coloring, it just remains to prove that
the induced forest on orange vertices has a perfect matching. This matching is
provided by the set of dominoes computed by the algorithm. When a domino is
introduced, both its vertices are green. We need a lemma.

Lemma A.2. During the algorithm, the configuration

where u is red and v − w is a domino does not appear.

Proof. Let us assume the contrary, and let u − v − w be such a configuration.
Because v still has a red neighbor, the domino v − w must have been created

by turning green the vertex v as the last red neighbor of the green vertex w.
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Let us go back to this previous step of this algorithm, where u and v are red,
and w is green with v as only red neighbor:

.

So w must have another neighbor z such that w has turned green as the last red
neighbor of z:

.

We can assume, by changing maybe the order in which the algorithm has been
performed, that z has turned green before w. This is because trees are bipartite,
and the algorithm can be run independently on the two parts of the bipartition.

Therefore, w has turned green as the last red neighbor of the green vertex z and
hence belongs to a domino w−z. Hence, we have found a configuration v−w−z

similar to the initial one:

This can be iterated to provide an infinite sequence of vertices. This is absurd.
�

It follows from the lemma that once a domino is created, its vertices do not have
any red neighbors. Therefore, they will be orange at the end.

This also implies that the dominoes are disjoint because the creation of a
domino takes a red vertex with only green neighbors and a green vertex with
exactly one red neighbor and produces a pair of green vertices with only green
neighbors. Therefore, a vertex can only enter once in a domino.

Moreover, every orange vertex v is in a domino. This is because green vertices
surrounded only by green vertices can only be introduced during the creation of a
domino. �

Remark A.3. From the previous proof we can see that we can modify the algo-
rithm as follows: when creating a new domino, color in orange its two vertices
and forget step 4.
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