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Higher Derivatives of Length Functions
along Earthquake Deformations

Martin Bridgeman

1. Introduction

Let S be a closed surface of genus g ≥ 2, and T (S) the associated Teichmüller
space of hyperbolic structures on S. Given γ ∈ π1(S), let Lγ : T (S) → R be the
associated length function, and Tγ : T (S) →R the associated trace function. The
functions Lγ , Tγ have a simple relation given by

Tγ = 2 cosh(Lγ /2). (1)

Let β be the homotopy class of a simple multicurve (i.e., a union of disjoint
simple nontrivial closed curves in S), and tβ the vector field on T (S) associated
with left twist along the geodesic representative of β (see [4]). In this paper, we
describe a formula to calculate the higher-order derivatives of the functions Lγ ,
Tγ along tβ . In particular, we will find a formula for

tkβLγ = tβ tβ . . . tβLγ .

The formulae we derive generalize formulae for the first two derivatives de-
rived by Kerchoff [4] (first derivative) and Wolpert [5; 6] (first and second deriva-
tives).

Kerckhoff and Wolpert both showed that the first derivative is given by

tβLγ =
∑

p∈β ′∩γ ′
cos θp, (2)

where β ′, γ ′ are the geodesic representatives of β , γ , respectively, and θp is the
angle of intersection at p ∈ β ′ ∩ γ ′. Kerckhoff [4] further generalized the formula
for the case where β , γ are measured laminations.

Wolpert [6] derived the following formula for the second derivative:

tαtβLγ =
∑

(p,q)∈β ′∩γ ′×α′∩γ ′

elpq + elqp

2(eLγ − 1)
sin θp sin θq

+
∑

(r,s)∈β ′∩γ ′×β ′∩α′

emrs + emsr

2(eLβ − 1)
sin θr sin θs,
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where lxy is the length along γ between x, y, and, similarly, mxy is the length
along β .

It follows from Wolpert’s formula that

t2
βLγ = tβ tβLγ =

∑
p,q∈β ′∩γ ′

elpq + elqp

2(eLγ − 1)
sin θp sin θq. (3)

Our formula generalizes equations (2) and (3) to higher derivatives. Our ap-
proach is to derive a formula for the higher derivatives of Tγ and then use the
functional relation in equation (1) to derive the formula for Lγ .

2. Higher-Derivative Formula

We take the geodesic representatives of β and γ . We let the geometric intersection
number satisfy i(β, γ ) = n, and we order the points of intersection x1, . . . , xn by
choosing a base point on γ . We let θi be the angle of intersection of β , γ at xi

and li be the length along γ from x1 to xi . This gives us n-tuples (l1, . . . , ln) and
(θ1, . . . , θn).

In order to describe the formula for the higher derivatives, we first introduce
some more notation.

Given r , we let P(r) be the set of subsets of the set {1, . . . , r}. Then I ∈ P(r)

will be denoted by I = (i1, . . . , ik) where 1 ≤ i1 < i2 < · · · < ik ≤ r . We then
define Î to be the complementary subset. We also let |I | be the cardinality of I .

We define the alternating length LI for I = (ii , . . . , ik) by

LI =
k∑

j=1

(−1)j lij = −li1 + li2 − li3 − · · · + (−1)klik .

We further define a signature for I ∈ P(r). For I = (i1, . . . , ik), we can consider
the integers in {1, . . . , r} in the ordered blocks [1, i1], [i1, i2], . . . , [ik, r]. We take
the sum of the cardinality of the even ordered blocks. Then

s(I ) = (i2 − i1 + 1) + (i4 − i3 + 1) + · · · + (ik − ik−1 + 1), k even,

s(I ) = (i2 − i1 + 1) + (i4 − i3 + 1) + · · · + (r − ik + 1), k odd.

For (θ1, . . . , θn), we also define

cos(θI ) =
k∏

j=1

cos(θij ) = cos(θi1) cos(θi2) . . . cos(θik )

and similarly define f (θI ) for a trigonometric function f .
We let uj = lj + iθj . The function Fr is given by

Fr(u1, . . . , ur ,L)

=
∑

I∈P(r),|I | even

(−1)s(I ) sin(θI ) cos(θ
Î
)(eL/2−LI + (−1)reLI −L/2)
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or, equivalently,

Fr(u1, . . . , ur ,L) =
∑

I∈P(r),|I | even

(−1)s(I )2 sin(θI ) cos(θ
Î
) cosh(L/2 − LI )

for r even and

Fr(u1, . . . , ur ,L) =
∑

I∈P(r),|I | even

(−1)s(I )2 sin(θI ) cos(θ
Î
) sinh(L/2 − LI )

for r odd.
We let C(n, r) be the set of subsets of size r of the set {1,2, . . . , n}. It is given

by

C(n, r) = {I = (i1, i2, . . . , ir ) | 1 ≤ i1 < i2 < · · · < ir ≤ n}.
Given m ∈ N, we let [m] be the parity of m, that is, [m] = 0 if m is even and

[m] = 1 if m is odd.

Theorem 1. Let β be a homotopy class of a simple closed multicurve, and γ a
homotopy class of nontrivial closed curve. Let the geometric intersection number
i(β, γ ) = n. Then

tkβTγ = 1

2k

k∑
r=0

[r]=[k]

Bn,k,r

∑
I∈C(n,r)

Fr(ui1, . . . , uir ,Lγ ),

where Bn,k,r are constants described below.

The first two equations (k = 1,2) correspond to formulae (2) and (3) for the
derivatives of length. Taking k = 3, we derive the next case as an example.

Third Derivative. We use the formula of Theorem 1 to calculate the formula
for the third derivative:

t3
βTγ = 1

8

(
(6n − 4) sinh(Lγ /2)

n∑
i=1

cos(θi)

+ 12

( ∑
i<j<k

sinh(Lγ /2) cos(θi) cos(θj ) cos(θk)

+ sinh(Lγ /2 − lij ) sin(θi) sin(θj ) cos(θk)

− sinh(Lγ /2 − lik) sin(θi) cos(θj ) sin(θk)

+ sinh(Lγ /2 − ljk) cos(θi) sin(θj ) sin(θk)

))
.
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2.1. Constants Bn,k,r

We denote by P(k,n) the collection of partitions of k into n ordered nonnegative
integers, that is,

P(k,n) =
{
p = (p1,p2, . . . , pn) ∈N

n
0

∣∣∣ n∑
i=1

pi = k

}
.

For p ∈ P(k,n), we define [p] = ([p1], . . . , [pn]) where [n] is the parity of n.
We let |p| = [p1] + · · · + [pn]. Then [p] is an n-tuple of 0s and 1s with exactly
|p| 1s.

Given p ∈ P(k,n), we define B(p) as the sum of multinomials given by

B(p) =
∑

q∈P(k,n),[q]=[p]

(
k

q

)
.

It is easy to see that B(p) only depends on n, k, and r = |p|. We therefore
define

Bn,k,r = B(p) for some p with |p| = r.

In particular, if we let pr = (1,1, . . . ,1,0, . . . ,0) ∈ P(k,n), of r 1s followed by
(n − r) 0s, then we have

Bn,k,r =
∑

p∈P(k,n),[p]=[pr ]

(
k

p

)
.

A simple calculation gives

Bn,k,k =
(

k

pk

)
=

(
k

1,1,1, . . . ,0,0, . . . ,0

)
= k! .

3. Twist Deformation

We consider T (S) as the Fuchsian locus of the associated quasi-Fuchsian space
QF(S). Let X ∈ T (S) and X = H

2/�, where � is a subgroup of PSL(2,C) act-
ing on upper half-space H3 = {(u, v,w) ∈R

3 | w > 0} fixing the hyperbolic plane
H

2 = {(u,0,w) | w > 0}. Let �z be the subgroup of PSL(2,C) obtained by com-
plex shear-bend along β by amount z = s + it , that is, left shear by amount s

followed by bend of t . Then, for small z, Xz = H
3/�z ∈ QF(S). In the terminol-

ogy of Epstin–Marden this is a quake-bend deformation. See Section II.3 of [3]
for details on quake-bend deformations and Section II.3.9 for a detailed discus-
sion of derivatives of length along quake-bend deformations.

Let γ ∈ � be a hyperbolic element, let γ (z) ∈ �z be the element of the de-
formed group corresponding to γ , and let L(z) the complex translation length of
γ (z). To see how γ is deformed, by conjugating, we assume that γ has as an axis
the geodesic g with endpoints 0,∞ ∈ Ĉ and is given by

γ =
(

λ 0
0 1/λ

)
with λ = eL/2 where L > 0 is the translation length of γ .
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We consider the lifts of β that intersect the axis g of γ and normalize to have a
lift of β labeled β1 that intersects the axis g at height 1. We enumerate all other
lifts by the order of the height of their intersection point with g starting with the
intersection point of β1. Let n be such that γβ1 = βn+1. Let Ri(z) be the Möbius
transformation corresponding to a complex bend about βi of z. Then, under the
complex bend about β , γ (z) given by

γ (z) = R1(z)R2(z) . . .Rn(z)γ.

A similar description of the deformation of an element in the punctured surface
case can be given in terms of shearing coordinates (see [2] for details).

Taking traces, we have

T (z) = Tr(R1(z)R2(z) . . .Rn(z)γ ) = 2 cosh(L(z)/2).

We can find the derivatives of L(z) by differentiating this formula repeatedly. The
final formula is obtained by applying symmetry relations on the derivatives and
some elementary combinatorics.

We note that both T (z) and L(z) are holomorphic in z. Differentiating in the
real direction, we have

tkβLγ = dkL

dzk
(0) = L(k)(0).

Also, if we let bβ be the vector field on T (S) given by pure bending along β , then
by the analyticity of L(z) we have

bk
βLγ = ikL(k)(0) = (itβ)kLγ .

This corresponds to the observation that bβ = J tβ , where J is the complex struc-
ture on QF(S) (see [1]).

3.1. Derivation of First Two Derivatives

We now calculate the first two derivatives and recover Wolpert’s formulae. By the
product rule we have

T ′(0) =
n∑

i=1

Tr(R′
i (0)γ ),

T ′′(0) =
n∑

i=1

Tr(R′′
i (0)γ ) + 2

n∑
i,j=1
i<j

Tr(R′
i (0)R′

j (0)γ ).

(4)

We now describe Ri(z). Let βi have endpoints ai, bi ∈ R where ai > 0 and bi < 0.
We let λi be the height at which βi intersects g. We orient βi from ai to bi and
g from 0 to ∞ and let θi be the angle βi makes with side g with respect to these
orientations (see Figure 1).

Then

λi = √−aibi, cos θi = −
(

ai + bi

ai − bi

)
, sin θi = 2

√−aibi

ai − bi

.
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Figure 1 Lift of γ

Since β1 intersects at height 1, the distance li between the intersection points of β1
and βi is given by eli = λi . Then let fi ∈ SL(2,R) act on the upper-half space by
fi(z) = (z − ai)/(z − bi), and let S(z) = fiRi(z)f

−1
i . Then Si(z) is the complex

translation given by

S(z) =
(

ez/2 0
0 e−z/2

)
.

Thus, Ri(z) = f −1
i S(z)fi . Taking derivatives, we have R′

i (0) = f −1
i S′(0)fi and

R′
i (0) = 1

ai − bi

(−bi ai

−1 1

)(
1/2 0
0 −1/2

)(
1 −ai

1 −bi

)

= 1

2(ai − bi)

(−(ai + bi) 2aibi

−2 ai + bi

)
.

Therefore,

R′
i (0) = 1

2

(
cos θi −eli sin θi

−e−li sin θi − cos θi

)
.

Also, since S′′(0) = 1
4I , we have R′′

i (0) = 1
4I . Using this, we have that

Tr(R′
i (0)γ ) = Tr

(
1

2

(
cos θi −eli sin θi

−e−li sin θi − cos θi

)(
eL/2 0

0 e−L/2

))
= sinh(L/2) cos θi,

(5)

Tr(R′
i (0)R′

j (0)γ ) = Tr

(
1

4

(
cos θi −eli sin θi

−e−li sin θi − cos θi

)

×
(

cos θj −elj sin θj

−e−lj sin θj − cos θj

)(
eL/2 0

0 e−L/2

))
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= 1

4
(cos θi cos θj (e

L/2 + e−L/2)

+ sin θi sin θj (e
L/2+li−lj + e−(L/2+li−lj ))).

Let lij be the distance along γ from βi to βj with respect to the orientation
of γ . Then, for i < j , we have lij = lj − li , and lj i = L − lij for i > j , so that

Tr(R′
i (0)R′

j (0)γ )

= 1

2
(cos θi cos θj cosh(L/2) + sin θi sin θj cosh(L/2 − lij )). (6)

Combining these, we obtain the first two derivatives of Tγ :

T ′(0) = sinh(L/2)

n∑
i=1

cos θi,

T ′′(0) =
n∑

i,j=1
i<j

(cos θi cos θj cosh(L/2) + sin θi sin θj cosh(L/2 − lij ))

+ n cosh(L/2)

2
.

Since T (z) = 2 cosh(L(z)/2), we have T ′(0) = sinh(L/2)L′(0), which gives

L′(0) =
n∑

i=1

cos θi .

Also, T ′′(0) = 1
2 cosh(L/2)(L′(0))2 + sinh(L/2)L′′(0). Therefore,

T ′′(0) = cosh(L/2)

2

(
n + 2

n∑
i,j=1
i<j

cos θi cos θj

)

+
∑
i,j=1
i<j

sin θi sin θj cosh(L/2 − lij ).

We have

n + 2
n∑

i,j=1
i 
=j

cos θi cos θj =
( n∑

i=1

cos θi

)2

+
n∑

i=1

sin2 θi

and

T ′′(0) = cosh(L/2)((
∑n

i=1 cos θi)
2 + ∑n

i=1 sin2 θi)

2

+
∑
i,j=1
i<j

sin θi sin θj cosh(L/2 − lij ). (7)
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Solving for L′′(0), we obtain

L′′(0) =
n∑

i=1

sin2 θi

2 tanh(L/2)
+

n∑
i,j=1
i<j

sin θi sin θj cosh(L/2 − lij )

sinh(L/2)
.

Since lii = 0, we can write

L′′(0) =
n∑

i,j=1

elij −L/2 + eL/2−lij

2(eL/2 − e−L/2)
sin θi sin θj =

n∑
i,j=1

elij + elji

2(eL − 1)
sin θi sin θj .

The formulae obtained give formulae (2) and (3), as described.

4. Higher Derivatives

We now derive the formula for higher derivatives. We have the formula

T (z) = Tr(R1(z)R2(z) . . .Rn(z)γ ).

Let P(k,n) be the collection of partitions of k into n ordered nonnegative integers,
that is,

P(k,n) =
{
p = (p1,p2, . . . , pn) ∈N

n
0

∣∣∣ n∑
i=1

pi = k

}
.

Then by the product rule the kth derivative of T at zero is

T (k)(0) =
∑

p∈P(k,n)

(
k

p

)
Tr(R(p1)

1 (0) . . .R
(pn)
n (0)γ ).

Thus, we have Ri(z) = f −1
i S(z)fi , where

S(z) =
(

ez/2 0
0 e−z/2

)
.

Since S(2)(z) = 1
4S(z), for m even, we have

R
(m)
i (0) = 1

2m
I,

and for m odd, we have

R
(m)
i (0) = 1

2m−1
R′

i (0) = 1

2m

(
cos θi −eli sin θi

−e−li sin θi − cos θi

)
.

Let z = x + iy and define

A(z) =
(

cosy −ex siny

−e−x siny − cosy

)
.

We let uj = lj + iθj . Then

R
(p)
j (0) =

{
1

2p A(uj ), p odd,
1

2p I, p even.
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Therefore,

T (k)(0) = 1

2k

∑
p∈P(k,n)

(
k

p

)
Tr(A(u1)

[p1] . . .A(un)
[pn]γ ),

where [m] is the parity of m. We define

Fr(z1, . . . , zr ,L) = Tr(A(z1) . . .A(zr )γ ).

Therefore, gathering terms, we have

T (k)(0) = 1

2k

k∑
r=0

Bn,k,r

∑
1≤i1<···<ir≤n

Fr(ui1, . . . , uir ,L),

where Bn,k,r are the coefficients described before. We note that we only get
nonzero terms for [r] = [k], so we have Bn,k,r = 0 for [k] 
= [r].

We define the function

Gr(u1, . . . , un,L) =
∑

I∈C(n,r)

Fr(ui1 , . . . , uir ,L).

Then Gr is symmetric in (u1, . . . , un), and we have

tkβTγ = 1

2k

k∑
r=0

[r]=[k]

Bn,k,rGr(u1, . . . , un,Lγ ).

4.1. Function Fr

We now calculate the formula for Fr .

Lemma 1. The function Fr is given by

Fr(u1, . . . , ur ,L)

=
∑

I∈P(r),|I | even

(−1)s(I ) sin(θI ) cos(θ
Î
)(eL/2−LI + (−1)reLI −L/2)

or, equivalently,

Fr(u1, . . . , ur ,L) =
∑

I∈P(r),|I | even

(−1)s(I )2 sin(θI ) cos(θ
Î
) cosh(L/2 − LI )

for r even and

Fr(u1, . . . , ur ,L) =
∑

I∈P(r),|I | even

(−1)s(I )2 sin(θI ) cos(θ
Î
) sinh(L/2 − LI )

for r odd.

Proof. We have

A(u) =
(

cos θ −el sin θ

−e−l sin θ − cos θ

)
.
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Therefore, Fr(u1, . . . , ur ,L) = Tr(A(u1) . . .A(ur)γ ) has the form

Fr(u1, . . . , ur ,L) =
∑

I∈P(r)

aI sin(θI ) cos(θ
Î
)

for some coefficients aI . Expanding the latter, we have

Fr(u1, . . . , ur ,L) = (A(u1) . . .A(ur)γ )1
1 + (A(u1) . . .A(ur)γ )2

2

= eL/2(A(u1) . . .A(ur))
1
1 + e−L/2(A(u1) . . .A(ur))

2
2.

Similarly, we have

(A(u1) . . .A(ur))
i
j =

∑
I∈P(r)

ai
j (I ) sin(θI ) cos(θ

Î
)

and define
(A(u1) . . .A(ur))

i
j (I ) = ai

j (I ) sin(θI ) cos(θ
Î
).

We prove the lemma by induction. Given I = (i1, . . . , ik) ∈ P(r), we have
Ij = (i1, i2, . . . , ij−1) ∈ P(ij ).

The matrix A(u) has cos terms on the diagonal and sin off the diagonal. Since
sin(θik ) is the last sin term in (A(u1), . . . ,A(ur))

1
1(I ), we have

(A(u1) . . .A(ur))
1
1(I )

= (A(u1) . . .A(uik−1))
1
2(Ik)(A(uik )

2
1A(uik+1)

1
1 . . .A(ur)

1
1)

= cos(θik+1) . . . cos(θr )(−e−lik sin(θik ))(A(u1) . . .A(uik−1))
1
2(Ik).

Now, since the next sin is sin(θik−1), by iterating we have

(A(u1) . . .A(uik−1))
1
2(Ik)

= (A(u1) . . .A(uik−2))
1
1(Ik−1)

× A1
2(uik−1)A

2
2(uik−1+1)A

2
2(uik−1+2) . . .A2

2(uik−1)

= (A(u1) . . .A(uik−2))
1
1(Ik−1)(−e

lik−1 sin(θik−1))

× (− cos(θik−1+1))(− cos(θik−1+2)) . . . (− cos(θik−1)).

Thus, we have

(A(u1) . . .A(ur))
1
1(I )

(A(u1) . . .A(uik−2))
1
1(Ik−1)

= (−1)ik−ik−1+1e
lik−1 −lik sin(θik−1) cos(θik−1+1) . . .

× cos(θik−1) sin(θik ) cos(θik+1) cos(θik+2) . . . cos(θr ).

Since each off-diagonal term switches the index, there must be an even number
of off-diagonal terms in the trace, and therefore |I | is even. Then by induction

(A(u1) . . .A(ur)γ )1
1 = (−1)s(I ) sin(θI ) cos(θ

Î
)eL/2−LI ,

where

s(I ) = (i2 − i1 + 1) + (i4 − i3 + 1) + · · · + (ik − ik−1 + 1)
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and

LI =
k∑

j=1

(−1)j lij = −li1 + li2 − li3 − · · · + (−1)klik .

Similarly,

(A(u1) . . .A(ur))
2
2(I )

(A(u1) . . .A(uik−2))
2
2(Ik−1)

= (−e
−lik−1 sin(θik−1))(cos(θik−1+1))(cos(θik−1+2)) . . . (cos(θik−1))

× (−elik sin(θik ))(− cos(θik+1)) . . . (− cos(θr ))

= (−1)r−ik+2e
−lik−1 +lik sin θik−1 cos(θik−1+1) . . . cos(θik−1)

× sin(θik ) cos(θik+1) cos(θik+2) . . . cos(θr ).

Counting negative signs, we have r − s(I ) + |I | negative signs.

(A(u1) . . .A(ur)γ )2
2 = (−1)r−s(I )+|I | sin(θI ) cos(θ

Î
)eLI −L/2.

Since |I | is even, we get

(A(u1) . . .A(ur)γ )2
2 = (−1)r+s(I ) sin(θI ) cos(θ

Î
)eLI −L/2,

giving the result. �

5. Some Examples

We have from the calculations in the last section that

F0(L) = 2 cosh(L/2), F1(u,L) = 2 sinh(L/2) cos θ,

F2(u1, u2,L) = 2(cos θ1 cos θ2 cosh(L/2) + sin θ1 sin θ2 cosh(L/2 − l12)).

Calculating F3, we have

F3(u1, u2, u3,L) = 2 sinh(L/2) cos(θ1) cos(θ2) cos(θ3)

+ 2 sinh(L/2 − l12) sin(θ1) sin(θ2) cos(θ3)

− 2 sinh(L/2 − l13) sin(θ1) cos(θ2) sin(θ3)

+ 2 sinh(L/2 − l23) cos(θ1) sin(θ2) sin(θ3).

Therefore, we have

G0(L) = 2 cosh(L/2),

G1(u1, . . . , un,L) = 2 sinh(L/2)

n∑
i=1

cos θi,

G2(u1, . . . , un,L) = 2
n∑

i,j=1
i<j

(cos θi cos θj cosh(L/2)

+ sin θi sin θj cosh(L/2 − lij )),
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G3(u1, . . . , un,L) = 2
∑

i<j<k

(sinh(L/2) cos(θi) cos(θj ) cos(θk)

+ sinh(L/2 − lij ) sin(θi) sin(θj ) cos(θk)

− sinh(L/2 − lik) sin(θi) cos(θj ) sin(θk)

+ sinh(L/2 − ljk) cos(θi) sin(θj ) sin(θk)).

Since the functions Gr do not depend on k, once we have calculated all deriva-
tives of orders less than k, we only need calculate Gk to find the kth derivative.

For k = 3, we have

t3
βTγ = 1

8
(Bn,3,1G1(u1, . . . , un,Lγ ) + Bn,3,3G3(u1, . . . , un,Lγ )),

Bn,3,3 = 3! = 6, Bn,3,1 = (n − 1)

(
3

1,2

)
+

(
3
3

)
= 3(n − 1) + 1 = 3n − 2,

t3
βTγ = 1

8

(
(6n − 4) sinh(Lγ /2)

n∑
i=1

cos(θi)

+ 12

( ∑
i<j<k

sinh(Lγ /2) cos(θi) cos(θj ) cos(θk)

+ sinh(Lγ /2 − lij ) sin(θi) sin(θj ) cos(θk)

− sinh(Lγ /2 − lik) sin(θi) cos(θj ) sin(θk)

+ sinh(Lγ /2 − ljk) cos(θi) sin(θj ) sin(θk)

))
.
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