Higher Derivatives of Length Functions along Earthquake Deformations

Martin Bridgeman

1. Introduction

Let S be a closed surface of genus $g \geq 2$, and $T(S)$ the associated Teichmüller space of hyperbolic structures on S. Given $\gamma \in \pi_{1}(S)$, let $L_{\gamma}: T(S) \rightarrow \mathbb{R}$ be the associated length function, and $T_{\gamma}: T(S) \rightarrow \mathbb{R}$ the associated trace function. The functions L_{γ}, T_{γ} have a simple relation given by

$$
\begin{equation*}
T_{\gamma}=2 \cosh \left(L_{\gamma} / 2\right) \tag{1}
\end{equation*}
$$

Let β be the homotopy class of a simple multicurve (i.e., a union of disjoint simple nontrivial closed curves in S), and t_{β} the vector field on $T(S)$ associated with left twist along the geodesic representative of β (see [4]). In this paper, we describe a formula to calculate the higher-order derivatives of the functions L_{γ}, T_{γ} along t_{β}. In particular, we will find a formula for

$$
t_{\beta}^{k} L_{\gamma}=t_{\beta} t_{\beta} \ldots t_{\beta} L_{\gamma}
$$

The formulae we derive generalize formulae for the first two derivatives derived by Kerchoff [4] (first derivative) and Wolpert [5; 6] (first and second derivatives).

Kerckhoff and Wolpert both showed that the first derivative is given by

$$
\begin{equation*}
t_{\beta} L_{\gamma}=\sum_{p \in \beta^{\prime} \cap \gamma^{\prime}} \cos \theta_{p} \tag{2}
\end{equation*}
$$

where $\beta^{\prime}, \gamma^{\prime}$ are the geodesic representatives of β, γ, respectively, and θ_{p} is the angle of intersection at $p \in \beta^{\prime} \cap \gamma^{\prime}$. Kerckhoff [4] further generalized the formula for the case where β, γ are measured laminations.

Wolpert [6] derived the following formula for the second derivative:

$$
\begin{aligned}
t_{\alpha} t_{\beta} L_{\gamma}= & \sum_{(p, q) \in \beta^{\prime} \cap \gamma^{\prime} \times \alpha^{\prime} \cap \gamma^{\prime}} \frac{e^{l_{p q}}+e^{l_{q p}}}{2\left(e^{L_{\gamma}}-1\right)} \sin \theta_{p} \sin \theta_{q} \\
& +\sum_{(r, s) \in \beta^{\prime} \cap \gamma^{\prime} \times \beta^{\prime} \cap \alpha^{\prime}} \frac{e^{m_{r s}}+e^{m_{s r}}}{2\left(e^{L_{\beta}}-1\right)} \sin \theta_{r} \sin \theta_{s}
\end{aligned}
$$

[^0]where $l_{x y}$ is the length along γ between x, y, and, similarly, $m_{x y}$ is the length along β.

It follows from Wolpert's formula that

$$
\begin{equation*}
t_{\beta}^{2} L_{\gamma}=t_{\beta} t_{\beta} L_{\gamma}=\sum_{p, q \in \beta^{\prime} \cap \gamma^{\prime}} \frac{e^{l_{p q}}+e^{l_{q p}}}{2\left(e^{L_{\gamma}}-1\right)} \sin \theta_{p} \sin \theta_{q} \tag{3}
\end{equation*}
$$

Our formula generalizes equations (2) and (3) to higher derivatives. Our approach is to derive a formula for the higher derivatives of T_{γ} and then use the functional relation in equation (1) to derive the formula for L_{γ}.

2. Higher-Derivative Formula

We take the geodesic representatives of β and γ. We let the geometric intersection number satisfy $i(\beta, \gamma)=n$, and we order the points of intersection x_{1}, \ldots, x_{n} by choosing a base point on γ. We let θ_{i} be the angle of intersection of β, γ at x_{i} and l_{i} be the length along γ from x_{1} to x_{i}. This gives us n-tuples $\left(l_{1}, \ldots, l_{n}\right)$ and $\left(\theta_{1}, \ldots, \theta_{n}\right)$.

In order to describe the formula for the higher derivatives, we first introduce some more notation.

Given r, we let $P(r)$ be the set of subsets of the set $\{1, \ldots, r\}$. Then $I \in P(r)$ will be denoted by $I=\left(i_{1}, \ldots, i_{k}\right)$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r$. We then define \hat{I} to be the complementary subset. We also let $|I|$ be the cardinality of I.

We define the alternating length L_{I} for $I=\left(i_{i}, \ldots, i_{k}\right)$ by

$$
L_{I}=\sum_{j=1}^{k}(-1)^{j} l_{i_{j}}=-l_{i_{1}}+l_{i_{2}}-l_{i_{3}}-\cdots+(-1)^{k} l_{i_{k}} .
$$

We further define a signature for $I \in P(r)$. For $I=\left(i_{1}, \ldots, i_{k}\right)$, we can consider the integers in $\{1, \ldots, r\}$ in the ordered blocks $\left[1, i_{1}\right],\left[i_{1}, i_{2}\right], \ldots,\left[i_{k}, r\right]$. We take the sum of the cardinality of the even ordered blocks. Then

$$
\begin{aligned}
& s(I)=\left(i_{2}-i_{1}+1\right)+\left(i_{4}-i_{3}+1\right)+\cdots+\left(i_{k}-i_{k-1}+1\right), \quad k \text { even, } \\
& s(I)=\left(i_{2}-i_{1}+1\right)+\left(i_{4}-i_{3}+1\right)+\cdots+\left(r-i_{k}+1\right), \quad k \text { odd. }
\end{aligned}
$$

For $\left(\theta_{1}, \ldots, \theta_{n}\right)$, we also define

$$
\cos \left(\theta_{I}\right)=\prod_{j=1}^{k} \cos \left(\theta_{i_{j}}\right)=\cos \left(\theta_{i_{1}}\right) \cos \left(\theta_{i_{2}}\right) \ldots \cos \left(\theta_{i_{k}}\right)
$$

and similarly define $f\left(\theta_{I}\right)$ for a trigonometric function f.
We let $u_{j}=l_{j}+i \theta_{j}$. The function F_{r} is given by

$$
\begin{aligned}
& F_{r}\left(u_{1}, \ldots, u_{r}, L\right) \\
& \quad=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right)\left(e^{L / 2-L_{I}}+(-1)^{r} e^{L_{I}-L / 2}\right)
\end{aligned}
$$

or, equivalently,

$$
F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} 2 \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) \cosh \left(L / 2-L_{I}\right)
$$

for r even and

$$
F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} 2 \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) \sinh \left(L / 2-L_{I}\right)
$$

for r odd.
We let $C(n, r)$ be the set of subsets of size r of the set $\{1,2, \ldots, n\}$. It is given by

$$
C(n, r)=\left\{I=\left(i_{1}, i_{2}, \ldots, i_{r}\right) \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\} .
$$

Given $m \in \mathbb{N}$, we let $[m]$ be the parity of m, that is, $[m]=0$ if m is even and $[m]=1$ if m is odd.

TheOrem 1. Let β be a homotopy class of a simple closed multicurve, and γ a homotopy class of nontrivial closed curve. Let the geometric intersection number $i(\beta, \gamma)=n$. Then

$$
t_{\beta}^{k} T_{\gamma}=\frac{1}{2^{k}} \sum_{\substack{r=0 \\[r]=[k]}}^{k} B_{n, k, r} \sum_{I \in C(n, r)} F_{r}\left(u_{i_{1}}, \ldots, u_{i_{r}}, L_{\gamma}\right),
$$

where $B_{n, k, r}$ are constants described below.
The first two equations ($k=1,2$) correspond to formulae (2) and (3) for the derivatives of length. Taking $k=3$, we derive the next case as an example.

Third Derivative. We use the formula of Theorem 1 to calculate the formula for the third derivative:

$$
\begin{aligned}
t_{\beta}^{3} T_{\gamma}= & \frac{1}{8}\left((6 n-4) \sinh \left(L_{\gamma} / 2\right) \sum_{i=1}^{n} \cos \left(\theta_{i}\right)\right. \\
& +12\left(\sum_{i<j<k} \sinh \left(L_{\gamma} / 2\right) \cos \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \cos \left(\theta_{k}\right)\right. \\
& +\sinh \left(L_{\gamma} / 2-l_{i j}\right) \sin \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \cos \left(\theta_{k}\right) \\
& -\sinh \left(L_{\gamma} / 2-l_{i k}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \sin \left(\theta_{k}\right) \\
& \left.\left.+\sinh \left(L_{\gamma} / 2-l_{j k}\right) \cos \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \sin \left(\theta_{k}\right)\right)\right)
\end{aligned}
$$

2.1. Constants $B_{n, k, r}$

We denote by $P(k, n)$ the collection of partitions of k into n ordered nonnegative integers, that is,

$$
P(k, n)=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{N}_{0}^{n} \mid \sum_{i=1}^{n} p_{i}=k\right\}
$$

For $p \in P(k, n)$, we define $[p]=\left(\left[p_{1}\right], \ldots,\left[p_{n}\right]\right)$ where $[n]$ is the parity of n. We let $|p|=\left[p_{1}\right]+\cdots+\left[p_{n}\right]$. Then $[p]$ is an n-tuple of 0 s and 1 s with exactly $|p|$ 1s.

Given $p \in P(k, n)$, we define $B(p)$ as the sum of multinomials given by

$$
B(p)=\sum_{q \in P(k, n),[q]=[p]}\binom{k}{q} .
$$

It is easy to see that $B(p)$ only depends on n, k, and $r=|p|$. We therefore define

$$
B_{n, k, r}=B(p) \quad \text { for some } p \text { with }|p|=r
$$

In particular, if we let $p_{r}=(1,1, \ldots, 1,0, \ldots, 0) \in P(k, n)$, of $r 1$ s followed by $(n-r) 0 \mathrm{~s}$, then we have

$$
B_{n, k, r}=\sum_{p \in P(k, n),[p]=\left[p_{r}\right]}\binom{k}{p} .
$$

A simple calculation gives

$$
B_{n, k, k}=\binom{k}{p_{k}}=\binom{k}{1,1,1, \ldots, 0,0, \ldots, 0}=k!
$$

3. Twist Deformation

We consider $T(S)$ as the Fuchsian locus of the associated quasi-Fuchsian space $\mathrm{QF}(S)$. Let $X \in T(S)$ and $X=\mathbb{H}^{2} / \Gamma$, where Γ is a subgroup of $\operatorname{PSL}(2, \mathbb{C})$ acting on upper half-space $\mathbb{H}^{3}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid w>0\right\}$ fixing the hyperbolic plane $\mathbb{H}^{2}=\{(u, 0, w) \mid w>0\}$. Let Γ_{z} be the subgroup of $\operatorname{PSL}(2, \mathbb{C})$ obtained by complex shear-bend along β by amount $z=s+i t$, that is, left shear by amount s followed by bend of t. Then, for small $z, X_{z}=\mathbb{H}^{3} / \Gamma_{z} \in \mathrm{QF}(S)$. In the terminology of Epstin-Marden this is a quake-bend deformation. See Section II. 3 of [3] for details on quake-bend deformations and Section II.3.9 for a detailed discussion of derivatives of length along quake-bend deformations.

Let $\gamma \in \Gamma$ be a hyperbolic element, let $\gamma(z) \in \Gamma_{z}$ be the element of the deformed group corresponding to γ, and let $L(z)$ the complex translation length of $\gamma(z)$. To see how γ is deformed, by conjugating, we assume that γ has as an axis the geodesic g with endpoints $0, \infty \in \hat{\mathbb{C}}$ and is given by

$$
\gamma=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1 / \lambda
\end{array}\right) \quad \text { with } \lambda=e^{L / 2} \text { where } L>0 \text { is the translation length of } \gamma .
$$

We consider the lifts of β that intersect the axis g of γ and normalize to have a lift of β labeled β_{1} that intersects the axis g at height 1 . We enumerate all other lifts by the order of the height of their intersection point with g starting with the intersection point of β_{1}. Let n be such that $\gamma \beta_{1}=\beta_{n+1}$. Let $R_{i}(z)$ be the Möbius transformation corresponding to a complex bend about β_{i} of z. Then, under the complex bend about $\beta, \gamma(z)$ given by

$$
\gamma(z)=R_{1}(z) R_{2}(z) \ldots R_{n}(z) \gamma .
$$

A similar description of the deformation of an element in the punctured surface case can be given in terms of shearing coordinates (see [2] for details).

Taking traces, we have

$$
T(z)=\operatorname{Tr}\left(R_{1}(z) R_{2}(z) \ldots R_{n}(z) \gamma\right)=2 \cosh (L(z) / 2) .
$$

We can find the derivatives of $L(z)$ by differentiating this formula repeatedly. The final formula is obtained by applying symmetry relations on the derivatives and some elementary combinatorics.

We note that both $T(z)$ and $L(z)$ are holomorphic in z. Differentiating in the real direction, we have

$$
t_{\beta}^{k} L_{\gamma}=\frac{d^{k} L}{d z^{k}}(0)=L^{(k)}(0)
$$

Also, if we let b_{β} be the vector field on $T(S)$ given by pure bending along β, then by the analyticity of $L(z)$ we have

$$
b_{\beta}^{k} L_{\gamma}=i^{k} L^{(k)}(0)=\left(i t_{\beta}\right)^{k} L_{\gamma}
$$

This corresponds to the observation that $b_{\beta}=J t_{\beta}$, where J is the complex structure on $\mathrm{QF}(S)$ (see [1]).

3.1. Derivation of First Two Derivatives

We now calculate the first two derivatives and recover Wolpert's formulae. By the product rule we have

$$
\begin{align*}
T^{\prime}(0) & =\sum_{i=1}^{n} \operatorname{Tr}\left(R_{i}^{\prime}(0) \gamma\right) \\
T^{\prime \prime}(0) & =\sum_{i=1}^{n} \operatorname{Tr}\left(R_{i}^{\prime \prime}(0) \gamma\right)+2 \sum_{\substack{i, j=1 \\
i<j}}^{n} \operatorname{Tr}\left(R_{i}^{\prime}(0) R_{j}^{\prime}(0) \gamma\right) \tag{4}
\end{align*}
$$

We now describe $R_{i}(z)$. Let β_{i} have endpoints $a_{i}, b_{i} \in \mathbf{R}$ where $a_{i}>0$ and $b_{i}<0$. We let λ_{i} be the height at which β_{i} intersects g. We orient β_{i} from a_{i} to b_{i} and g from 0 to ∞ and let θ_{i} be the angle β_{i} makes with side g with respect to these orientations (see Figure 1).

Then

$$
\lambda_{i}=\sqrt{-a_{i} b_{i}}, \quad \cos \theta_{i}=-\left(\frac{a_{i}+b_{i}}{a_{i}-b_{i}}\right), \quad \sin \theta_{i}=\frac{2 \sqrt{-a_{i} b_{i}}}{a_{i}-b_{i}}
$$

Figure 1 Lift of γ

Since β_{1} intersects at height 1 , the distance l_{i} between the intersection points of β_{1} and β_{i} is given by $e^{l_{i}}=\lambda_{i}$. Then let $f_{i} \in \operatorname{SL}(2, \mathbb{R})$ act on the upper-half space by $f_{i}(z)=\left(z-a_{i}\right) /\left(z-b_{i}\right)$, and let $S(z)=f_{i} R_{i}(z) f_{i}^{-1}$. Then $S_{i}(z)$ is the complex translation given by

$$
S(z)=\left(\begin{array}{cc}
e^{z / 2} & 0 \\
0 & e^{-z / 2}
\end{array}\right)
$$

Thus, $R_{i}(z)=f_{i}^{-1} S(z) f_{i}$. Taking derivatives, we have $R_{i}^{\prime}(0)=f_{i}^{-1} S^{\prime}(0) f_{i}$ and

$$
\begin{aligned}
R_{i}^{\prime}(0) & =\frac{1}{a_{i}-b_{i}}\left(\begin{array}{cc}
-b_{i} & a_{i} \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right)\left(\begin{array}{cc}
1 & -a_{i} \\
1 & -b_{i}
\end{array}\right) \\
& =\frac{1}{2\left(a_{i}-b_{i}\right)}\left(\begin{array}{cc}
-\left(a_{i}+b_{i}\right) & 2 a_{i} b_{i} \\
-2 & a_{i}+b_{i}
\end{array}\right) .
\end{aligned}
$$

Therefore,

$$
R_{i}^{\prime}(0)=\frac{1}{2}\left(\begin{array}{cc}
\cos \theta_{i} & -e^{l_{i}} \sin \theta_{i} \\
-e^{-l_{i}} \sin \theta_{i} & -\cos \theta_{i}
\end{array}\right) .
$$

Also, since $S^{\prime \prime}(0)=\frac{1}{4} I$, we have $R_{i}^{\prime \prime}(0)=\frac{1}{4} I$. Using this, we have that

$$
\begin{align*}
\operatorname{Tr}\left(R_{i}^{\prime}(0) \gamma\right)= & \operatorname{Tr}\left(\frac{1}{2}\left(\begin{array}{cc}
\cos \theta_{i} & -e^{l_{i}} \sin \theta_{i} \\
-e^{-l_{i}} \sin \theta_{i} & -\cos \theta_{i}
\end{array}\right)\left(\begin{array}{cc}
e^{L / 2} & 0 \\
0 & e^{-L / 2}
\end{array}\right)\right) \\
= & \sinh (L / 2) \cos \theta_{i}, \\
\operatorname{Tr}\left(R_{i}^{\prime}(0) R_{j}^{\prime}(0) \gamma\right)= & \operatorname{Tr}\left(\begin{array}{cc}
1 \\
\frac{\cos \theta_{i}}{4} & -e^{l_{i}} \sin \theta_{i} \\
-e^{-l_{i}} \sin \theta_{i} & -\cos \theta_{i}
\end{array}\right) \tag{5}\\
& \left.\times\left(\begin{array}{cc}
\cos \theta_{j} & -e^{l_{j}} \sin \theta_{j} \\
-e^{-l_{j}} \sin \theta_{j} & -\cos \theta_{j}
\end{array}\right)\left(\begin{array}{cc}
e^{L / 2} & 0 \\
0 & e^{-L / 2}
\end{array}\right)\right)
\end{align*}
$$

$$
\begin{aligned}
= & \frac{1}{4}\left(\cos \theta_{i} \cos \theta_{j}\left(e^{L / 2}+e^{-L / 2}\right)\right. \\
& \left.+\sin \theta_{i} \sin \theta_{j}\left(e^{L / 2+l_{i}-l_{j}}+e^{-\left(L / 2+l_{i}-l_{j}\right.}\right)\right)
\end{aligned}
$$

Let $l_{i j}$ be the distance along γ from β_{i} to β_{j} with respect to the orientation of γ. Then, for $i<j$, we have $l_{i j}=l_{j}-l_{i}$, and $l_{j i}=L-l_{i j}$ for $i>j$, so that

$$
\begin{align*}
& \operatorname{Tr}\left(R_{i}^{\prime}(0) R_{j}^{\prime}(0) \gamma\right) \\
& \quad=\frac{1}{2}\left(\cos \theta_{i} \cos \theta_{j} \cosh (L / 2)+\sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right)\right) \tag{6}
\end{align*}
$$

Combining these, we obtain the first two derivatives of T_{γ} :

$$
\begin{aligned}
T^{\prime}(0)= & \sinh (L / 2) \sum_{i=1}^{n} \cos \theta_{i} \\
T^{\prime \prime}(0)= & \sum_{\substack{i, j=1 \\
i<j}}^{n}\left(\cos \theta_{i} \cos \theta_{j} \cosh (L / 2)+\sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right)\right) \\
& +\frac{n \cosh (L / 2)}{2}
\end{aligned}
$$

Since $T(z)=2 \cosh (L(z) / 2)$, we have $T^{\prime}(0)=\sinh (L / 2) L^{\prime}(0)$, which gives

$$
L^{\prime}(0)=\sum_{i=1}^{n} \cos \theta_{i}
$$

Also, $T^{\prime \prime}(0)=\frac{1}{2} \cosh (L / 2)\left(L^{\prime}(0)\right)^{2}+\sinh (L / 2) L^{\prime \prime}(0)$. Therefore,

$$
\begin{aligned}
T^{\prime \prime}(0)= & \frac{\cosh (L / 2)}{2}\left(n+2 \sum_{\substack{i, j=1 \\
i<j}}^{n} \cos \theta_{i} \cos \theta_{j}\right) \\
& +\sum_{\substack{i, j=1 \\
i<j}} \sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right)
\end{aligned}
$$

We have

$$
n+2 \sum_{\substack{i, j=1 \\ i \neq j}}^{n} \cos \theta_{i} \cos \theta_{j}=\left(\sum_{i=1}^{n} \cos \theta_{i}\right)^{2}+\sum_{i=1}^{n} \sin ^{2} \theta_{i}
$$

and

$$
\begin{align*}
T^{\prime \prime}(0)= & \frac{\cosh (L / 2)\left(\left(\sum_{i=1}^{n} \cos \theta_{i}\right)^{2}+\sum_{i=1}^{n} \sin ^{2} \theta_{i}\right)}{2} \\
& +\sum_{\substack{i, j=1 \\
i<j}} \sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right) . \tag{7}
\end{align*}
$$

Solving for $L^{\prime \prime}(0)$, we obtain

$$
L^{\prime \prime}(0)=\sum_{i=1}^{n} \frac{\sin ^{2} \theta_{i}}{2 \tanh (L / 2)}+\sum_{\substack{i, j=1 \\ i<j}}^{n} \frac{\sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right)}{\sinh (L / 2)}
$$

Since $l_{i i}=0$, we can write

$$
L^{\prime \prime}(0)=\sum_{i, j=1}^{n} \frac{e^{l_{i j}-L / 2}+e^{L / 2-l_{i j}}}{2\left(e^{L / 2}-e^{-L / 2}\right)} \sin \theta_{i} \sin \theta_{j}=\sum_{i, j=1}^{n} \frac{e^{l_{i j}}+e^{l_{j i}}}{2\left(e^{L}-1\right)} \sin \theta_{i} \sin \theta_{j}
$$

The formulae obtained give formulae (2) and (3), as described.

4. Higher Derivatives

We now derive the formula for higher derivatives. We have the formula

$$
T(z)=\operatorname{Tr}\left(R_{1}(z) R_{2}(z) \ldots R_{n}(z) \gamma\right)
$$

Let $P(k, n)$ be the collection of partitions of k into n ordered nonnegative integers, that is,

$$
P(k, n)=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{N}_{0}^{n} \mid \sum_{i=1}^{n} p_{i}=k\right\}
$$

Then by the product rule the k th derivative of T at zero is

$$
T^{(k)}(0)=\sum_{p \in P(k, n)}\binom{k}{p} \operatorname{Tr}\left(R_{1}^{\left(p_{1}\right)}(0) \ldots R_{n}^{\left(p_{n}\right)}(0) \gamma\right)
$$

Thus, we have $R_{i}(z)=f_{i}^{-1} S(z) f_{i}$, where

$$
S(z)=\left(\begin{array}{cc}
e^{z / 2} & 0 \\
0 & e^{-z / 2}
\end{array}\right)
$$

Since $S^{(2)}(z)=\frac{1}{4} S(z)$, for m even, we have

$$
R_{i}^{(m)}(0)=\frac{1}{2^{m}} I,
$$

and for m odd, we have

$$
R_{i}^{(m)}(0)=\frac{1}{2^{m-1}} R_{i}^{\prime}(0)=\frac{1}{2^{m}}\left(\begin{array}{cc}
\cos \theta_{i} & -e^{l_{i}} \sin \theta_{i} \\
-e^{-l_{i}} \sin \theta_{i} & -\cos \theta_{i}
\end{array}\right) .
$$

Let $z=x+i y$ and define

$$
A(z)=\left(\begin{array}{cc}
\cos y & -e^{x} \sin y \\
-e^{-x} \sin y & -\cos y
\end{array}\right)
$$

We let $u_{j}=l_{j}+i \theta_{j}$. Then

$$
R_{j}^{(p)}(0)= \begin{cases}\frac{1}{2^{p}} A\left(u_{j}\right), & p \text { odd } \\ \frac{1}{2^{p}} I, & p \text { even }\end{cases}
$$

Therefore,

$$
T^{(k)}(0)=\frac{1}{2^{k}} \sum_{p \in P(k, n)}\binom{k}{p} \operatorname{Tr}\left(A\left(u_{1}\right)^{\left[p_{1}\right]} \ldots A\left(u_{n}\right)^{\left[p_{n}\right]} \gamma\right),
$$

where $[m$] is the parity of m. We define

$$
F_{r}\left(z_{1}, \ldots, z_{r}, L\right)=\operatorname{Tr}\left(A\left(z_{1}\right) \ldots A\left(z_{r}\right) \gamma\right)
$$

Therefore, gathering terms, we have

$$
T^{(k)}(0)=\frac{1}{2^{k}} \sum_{r=0}^{k} B_{n, k, r} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} F_{r}\left(u_{i_{1}}, \ldots, u_{i_{r}}, L\right),
$$

where $B_{n, k, r}$ are the coefficients described before. We note that we only get nonzero terms for $[r]=[k]$, so we have $B_{n, k, r}=0$ for $[k] \neq[r]$.

We define the function

$$
G_{r}\left(u_{1}, \ldots, u_{n}, L\right)=\sum_{I \in C(n, r)} F_{r}\left(u_{i_{1}}, \ldots, u_{i_{r}}, L\right)
$$

Then G_{r} is symmetric in $\left(u_{1}, \ldots, u_{n}\right)$, and we have

$$
t_{\beta}^{k} T_{\gamma}=\frac{1}{2^{k}} \sum_{\substack{r=0 \\[r]=[k]}}^{k} B_{n, k, r} G_{r}\left(u_{1}, \ldots, u_{n}, L_{\gamma}\right)
$$

4.1. Function F_{r}

We now calculate the formula for F_{r}.
Lemma 1. The function F_{r} is given by

$$
\begin{aligned}
& F_{r}\left(u_{1}, \ldots, u_{r}, L\right) \\
& \quad=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right)\left(e^{L / 2-L_{I}}+(-1)^{r} e^{L_{I}-L / 2}\right)
\end{aligned}
$$

or, equivalently,

$$
F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} 2 \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) \cosh \left(L / 2-L_{I}\right)
$$

for r even and

$$
F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\sum_{I \in P(r),|I| \text { even }}(-1)^{s(I)} 2 \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) \sinh \left(L / 2-L_{I}\right)
$$

for r odd.
Proof. We have

$$
A(u)=\left(\begin{array}{cc}
\cos \theta & -e^{l} \sin \theta \\
-e^{-l} \sin \theta & -\cos \theta
\end{array}\right) .
$$

Therefore, $F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\operatorname{Tr}\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)$ has the form

$$
F_{r}\left(u_{1}, \ldots, u_{r}, L\right)=\sum_{I \in P(r)} a_{I} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right)
$$

for some coefficients a_{I}. Expanding the latter, we have

$$
\begin{aligned}
F_{r}\left(u_{1}, \ldots, u_{r}, L\right) & =\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)_{1}^{1}+\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)_{2}^{2} \\
& =e^{L / 2}\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{1}^{1}+e^{-L / 2}\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{2}^{2}
\end{aligned}
$$

Similarly, we have

$$
\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{j}^{i}=\sum_{I \in P(r)} a_{j}^{i}(I) \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right)
$$

and define

$$
\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{j}^{i}(I)=a_{j}^{i}(I) \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) .
$$

We prove the lemma by induction. Given $I=\left(i_{1}, \ldots, i_{k}\right) \in P(r)$, we have $I_{j}=\left(i_{1}, i_{2}, \ldots, i_{j-1}\right) \in P\left(i_{j}\right)$.

The matrix $A(u)$ has cos terms on the diagonal and sin off the diagonal. Since $\sin \left(\theta_{i_{k}}\right)$ is the last sin term in $\left(A\left(u_{1}\right), \ldots, A\left(u_{r}\right)\right)_{1}^{1}(I)$, we have

$$
\begin{aligned}
& \left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{1}^{1}(I) \\
& \quad=\left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-1}}\right)\right)_{2}^{1}\left(I_{k}\right)\left(A\left(u_{i_{k}}\right)_{1}^{2} A\left(u_{i_{k}+1}\right)_{1}^{1} \ldots A\left(u_{r}\right)_{1}^{1}\right) \\
& \quad=\cos \left(\theta_{i_{k}+1}\right) \ldots \cos \left(\theta_{r}\right)\left(-e^{-l_{i_{k}}} \sin \left(\theta_{i_{k}}\right)\right)\left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-1}}\right)\right)_{2}^{1}\left(I_{k}\right) .
\end{aligned}
$$

Now, since the next \sin is $\sin \left(\theta_{i_{k-1}}\right)$, by iterating we have

$$
\begin{aligned}
\left(A\left(u_{1}\right)\right. & \left.\ldots A\left(u_{i_{k-1}}\right)\right)_{2}^{1}\left(I_{k}\right) \\
= & \left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-2}}\right)\right)_{1}^{1}\left(I_{k-1}\right) \\
& \times A_{2}^{1}\left(u_{i_{k-1}}\right) A_{2}^{2}\left(u_{i_{k-1}}+1\right) A_{2}^{2}\left(u_{i_{k-1}+2}\right) \ldots A_{2}^{2}\left(u_{i_{k-1}}\right) \\
= & \left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-2}}\right)\right)_{1}^{1}\left(I_{k-1}\right)\left(-e^{l_{i_{k-1}}} \sin \left(\theta_{i_{k-1}}\right)\right) \\
& \times\left(-\cos \left(\theta_{i_{k-1}+1}\right)\right)\left(-\cos \left(\theta_{i_{k-1}+2}\right)\right) \ldots\left(-\cos \left(\theta_{i_{k}-1}\right)\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \frac{\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{1}^{1}(I)}{\left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-2}}\right)\right)_{1}^{1}\left(I_{k-1}\right)} \\
& \quad=(-1)^{i_{k}-i_{k-1}+1} e^{l_{i_{k-1}}-l_{i_{k}}} \sin \left(\theta_{i_{k-1}}\right) \cos \left(\theta_{i_{k-1}+1}\right) \ldots \\
& \quad \times \cos \left(\theta_{i_{k}-1}\right) \sin \left(\theta_{i_{k}}\right) \cos \left(\theta_{i_{k}+1}\right) \cos \left(\theta_{i_{k}+2}\right) \ldots \cos \left(\theta_{r}\right) .
\end{aligned}
$$

Since each off-diagonal term switches the index, there must be an even number of off-diagonal terms in the trace, and therefore $|I|$ is even. Then by induction

$$
\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)_{1}^{1}=(-1)^{s(I)} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) e^{L / 2-L_{I}},
$$

where

$$
s(I)=\left(i_{2}-i_{1}+1\right)+\left(i_{4}-i_{3}+1\right)+\cdots+\left(i_{k}-i_{k-1}+1\right)
$$

and

$$
L_{I}=\sum_{j=1}^{k}(-1)^{j} l_{i_{j}}=-l_{i_{1}}+l_{i_{2}}-l_{i_{3}}-\cdots+(-1)^{k} l_{i_{k}}
$$

Similarly,

$$
\begin{aligned}
& \frac{\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right)\right)_{2}^{2}(I)}{\left(A\left(u_{1}\right) \ldots A\left(u_{i_{k-2}}\right)\right)_{2}^{2}\left(I_{k-1}\right)} \\
&=\left(-e^{\left.-l_{i_{k-1}} \sin \left(\theta_{i_{k-1}}\right)\right)\left(\cos \left(\theta_{i_{k-1}+1}\right)\right)\left(\cos \left(\theta_{i_{k-1}+2}\right)\right) \ldots\left(\cos \left(\theta_{i_{k}-1}\right)\right)}\right. \\
& \quad \times\left(-e^{l_{i_{k}}} \sin \left(\theta_{i_{k}}\right)\right)\left(-\cos \left(\theta_{i_{k}+1}\right)\right) \ldots\left(-\cos \left(\theta_{r}\right)\right) \\
&=(-1)^{r-i_{k}+2} e^{-l_{i_{k-1}}+l_{i_{k}}} \sin \theta_{i_{k-1}} \cos \left(\theta_{i_{k-1}+1}\right) \ldots \cos \left(\theta_{i_{k}-1}\right) \\
& \quad \times \sin \left(\theta_{i_{k}}\right) \cos \left(\theta_{i_{k}+1}\right) \cos \left(\theta_{i_{k}+2}\right) \ldots \cos \left(\theta_{r}\right) .
\end{aligned}
$$

Counting negative signs, we have $r-s(I)+|I|$ negative signs.

$$
\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)_{2}^{2}=(-1)^{r-s(I)+|I|} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) e^{L_{I}-L / 2}
$$

Since $|I|$ is even, we get

$$
\left(A\left(u_{1}\right) \ldots A\left(u_{r}\right) \gamma\right)_{2}^{2}=(-1)^{r+s(I)} \sin \left(\theta_{I}\right) \cos \left(\theta_{\hat{I}}\right) e^{L_{I}-L / 2}
$$

giving the result.

5. Some Examples

We have from the calculations in the last section that

$$
\begin{aligned}
F_{0}(L) & =2 \cosh (L / 2), \quad F_{1}(u, L)=2 \sinh (L / 2) \cos \theta \\
F_{2}\left(u_{1}, u_{2}, L\right) & =2\left(\cos \theta_{1} \cos \theta_{2} \cosh (L / 2)+\sin \theta_{1} \sin \theta_{2} \cosh \left(L / 2-l_{12}\right)\right) .
\end{aligned}
$$

Calculating F_{3}, we have

$$
\begin{aligned}
F_{3}\left(u_{1}, u_{2}, u_{3}, L\right)= & 2 \sinh (L / 2) \cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \cos \left(\theta_{3}\right) \\
& +2 \sinh \left(L / 2-l_{12}\right) \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \cos \left(\theta_{3}\right) \\
& -2 \sinh \left(L / 2-l_{13}\right) \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \sin \left(\theta_{3}\right) \\
& +2 \sinh \left(L / 2-l_{23}\right) \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
G_{0}(L)= & 2 \cosh (L / 2) \\
G_{1}\left(u_{1}, \ldots, u_{n}, L\right)= & 2 \sinh (L / 2) \sum_{i=1}^{n} \cos \theta_{i} \\
G_{2}\left(u_{1}, \ldots, u_{n}, L\right)= & 2 \sum_{\substack{i, j=1 \\
i<j}}^{n}\left(\cos \theta_{i} \cos \theta_{j} \cosh (L / 2)\right. \\
& \left.+\sin \theta_{i} \sin \theta_{j} \cosh \left(L / 2-l_{i j}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
G_{3}\left(u_{1}, \ldots, u_{n}, L\right)= & 2 \sum_{i<j<k}\left(\sinh (L / 2) \cos \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \cos \left(\theta_{k}\right)\right. \\
& +\sinh \left(L / 2-l_{i j}\right) \sin \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \cos \left(\theta_{k}\right) \\
& -\sinh \left(L / 2-l_{i k}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \sin \left(\theta_{k}\right) \\
& \left.+\sinh \left(L / 2-l_{j k}\right) \cos \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \sin \left(\theta_{k}\right)\right) .
\end{aligned}
$$

Since the functions G_{r} do not depend on k, once we have calculated all derivatives of orders less than k, we only need calculate G_{k} to find the k th derivative.

For $k=3$, we have

$$
\begin{aligned}
t_{\beta}^{3} T_{\gamma}= & \frac{1}{8}\left(B_{n, 3,1} G_{1}\left(u_{1}, \ldots, u_{n}, L_{\gamma}\right)+B_{n, 3,3} G_{3}\left(u_{1}, \ldots, u_{n}, L_{\gamma}\right)\right), \\
B_{n, 3,3}= & 3!=6, \quad B_{n, 3,1}=(n-1)\binom{3}{1,2}+\binom{3}{3}=3(n-1)+1=3 n-2, \\
t_{\beta}^{3} T_{\gamma}= & \frac{1}{8}\left((6 n-4) \sinh \left(L_{\gamma} / 2\right) \sum_{i=1}^{n} \cos \left(\theta_{i}\right)\right. \\
& +12\left(\sum_{i<j<k} \sinh \left(L_{\gamma} / 2\right) \cos \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \cos \left(\theta_{k}\right)\right. \\
& +\sinh \left(L_{\gamma} / 2-l_{i j}\right) \sin \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \cos \left(\theta_{k}\right) \\
& -\sinh \left(L_{\gamma} / 2-l_{i k}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{j}\right) \sin \left(\theta_{k}\right) \\
& \left.\left.+\sinh \left(L_{\gamma} / 2-l_{j k}\right) \cos \left(\theta_{i}\right) \sin \left(\theta_{j}\right) \sin \left(\theta_{k}\right)\right)\right) .
\end{aligned}
$$

Acknowledgments. I would like to thank Scott Wolpert and the reviewer for their comments and suggestions.

References

[1] F. Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), 233-297.
[2] L. Chekhov, Lecture notes on quantum Teichmuller theory, preprint, 2007, arXiv:0710.2051.
[3] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces (R. D. Canary, D. B. A. Epstein, A. Marden, eds.), Fundamentals of hyperbolic geometry: selected expositions, London Math. Soc. Lecture Note Ser., 328, Cambridge Univ. Press, Cambridge, 2005.
[4] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-265.
[5] S. Wolpert, An elementary formula for the Fenchel-Nielsen twist, Comment. Math. Helv. 56 (1981), 132-135.
[6] \qquad , Thurston's Riemannian metric for Teichmüller space, J. Differential Geom. 23 (1986), 143-174.

Department of Mathematics
Boston College
Chestnut Hill, MA 02467
USA
bridgem@bc.edu

[^0]: Received July 31, 2014. Revision received November 20, 2014.
 This work was partially supported by grant \#266344 from the Simons Foundation. The author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR Network).

