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On Undulation Invariants of Plane Curves

A. Popolitov & Sh. Shakirov

Abstract. A classical problem introduced by A. Cayley and
G. Salmon in 1852 is to determine if a given plane curve of degree
r > 3 has undulation points, the points where the tangent line meets
the curve with multiplicity four. They proved that there exists an in-
variant of degree 6(r − 3)(3r − 2) that vanishes if and only if the
curve has undulation points. In this paper we give explicit formulas
for this invariant in the case of quartics (r = 4) and quintics (r = 5),
expressing it as the determinant of a matrix with polynomial entries,
of sizes 21 × 21 and 36 × 36, respectively.

1. Introduction

This paper is devoted to a problem in classical invariant theory of plane curves,
due to A. Cayley and G. Salmon (see [1], p. 362). Consider, on the projective
plane CP2 with homogeneous coordinates x1 : x2 : x3, a plane curve

P(x1, x2, x3) =
∑

i+j+k=r

Cijkx
i
1x

j

2 xk
3 = 0,

where P is a homogeneous irreducible degree r polynomial. By the Bezout theo-
rem, any line in CP

2 crosses this curve in exactly r points, if counted with multi-
plicities. The types of possible intersections thus can be put into correspondence
with partitions r = m1 + m2 + · · · , where the parts mi of the partition are the
multiplicities of intersection points. An illustration of this for the case of quartics
is given on Figure 1.

If a line is generic, then it intersects the curve in r distinct points with all
multiplicities 1, that is, it corresponds to the partition (1,1, . . . ,1). The simplest
nongeneric intersection occurs for the tangent line to a curve: then one of the
intersection points has multiplicity 2 (the point of tangency), whereas all the other
intersection points have multiplicity 1. This type of intersection corresponds to the
partition (2,1,1, . . .). The next-to-simplest types of intersection are, respectively,
(3,1, . . . ,1) and (2,2,1, . . . ,1); the former situation is called a line of inflection,
whereas the latter is called a bitangent since in this case the line is simultaneously
tangent to a curve in two distinct points. One can continue further by considering
lines of type (4,1, . . . ,1), (3,2,1, . . . ,1), and so on. These generally do not have
given names, with one notable exception: a line of type (4,1, . . . ,1) is called a line
of undulation, and the corresponding point of intersection is called an undulation
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Figure 1 Types of intersection of a plane quartic and a line

point. Note that conventionally intersection with at least one part of multiplicity
higher than 4 is also called so, motivating the following Definition 1.1.

Definition 1.1. A point is called an undulation point of a plane curve P(x1, x2,

x3) = 0 if a tangent line at that point meets the curve with multiplicity four or
higher.

It is classically known (and it is easy to estimate from degree counting) that a
generic plane curve has no undulation points. For a plane curve to possess un-
dulation points, it should be nongeneric, that is, P should satisfy some algebraic
equation(s). In the classical book [1] Salmon, building on the work of Cayley,
studied this question and proved the following existence theorem.

Theorem 1.2 ([1], Chapter IX, p. 362). There exists a unique up to rescaling
function I , which is a homogeneous polynomial in (r + 1)(r + 2)/2 coefficients
C of degree 6(r − 3)(3r − 2), such that

I (C) = 0

is a necessary and sufficient condition for the curve P(x1, x2, x3) = 0 to have
undulation points.

Unfortunately, this theorem only justifies the existence of such an invariant. In
practice, it is useful to have not only that but also an explicit formula. In this
paper we address the problem of finding an explicit polynomial formula for the
undulation invariant I . Such a formula was not given in the literature devoted to
undulation [1; 2; 3; 4; 5], and the aim of this paper is to fill this gap. We will show
that I (C) is given by a determinant with polynomial entries, of size 21 × 21 for
r = 4 and of size 36 × 36 for r = 5.

We believe that one of the reasons that the explicit formula that we present
here was not found before is the complexity of the invariants: even in the simplest
nontrivial case of quartic curves, for r = 4, the invariant I is a homogeneous poly-
nomial of degree 60 in the 15 coefficients of the quartic and hence has a really
impressive length (number of monomials). This is a typical phenomenon in invari-
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ant theory (see, e.g., Appendix to the book version of [6] for another example).
It is, however, not terrifying at all: these enormous invariant polynomials often
possess a lot of nice properties and can be expressed by simple elegant formulae.
In the previous example, as we find in this paper, the invariant of degree 60 turns
out to be a determinant of a relatively simple 21 × 21 matrix. To find and explore
such formulae, it is often beneficial to use modern computers and software (e.g.,
MAPLE; see Section 6 for more details on the technical tools we used).

2. The Undulation Ideal

The undulation problem is so far defined in the geometric terms of tangent lines
and multiplicities. To proceed to solution of this problem, we will reformulate
it in terms of properties of a certain polynomial ideal called the undulation ideal.
Analyzing this ideal with a combination of relatively simple tools—linear algebra,
representation theory of SL(3), and computer algebra methods—we will be able
to obtain the desired result, the determinantal formula for I .

Definition 2.1. The undulation ideal I is the set of all polynomials in the vari-
ables C, v1, v2, v3 that vanish whenever v1x1 + v2x2 + v3x3 = 0 is the undulation
line of the curve P(x1, x2, x3) = 0:

I = {f ∈ C[C,v1, v2, v3] | f (C,v1, v2, v3) = 0 if v1x1 + v2x2 + v3x3 = 0

is an undulation line for the curve P(x1, x2, x3) = 0}.
The motivation to consider such an ideal essentially comes from the Cayley–
Salmon theorem, Theorem 1.2. In other words, this theorem can be stated as a
fact that the simpler ideal

I ′ = {f ∈C[C] | f (C) = 0 if P(x1, x2, x3) = 0 has at least one undulation line}
is generated by a single element, the undulation invariant:

I ′ = 〈I (C)〉.
Following the general wisdom “to understand something, deform/generalize it”,
we propose to extend I ′ to a bigger ideal I , in a hope that this could reveal an
additional structure and thus shed some light on the nature of the element I (C).
As we will see, this will happen to be the case.

The ideal I admits three useful gradings. The first two are the obvious grad-
ings w.r.t. the total degree in all the coefficients C, and the total degree in all the
coefficients v:

degC(vi) = 0, degC(Cijk) = 1;
degv(vi) = 1, degv(Cijk) = 0.

The last, third, grading is more refined and is determined by

deg(v1) = (1,0,0), deg(v2) = (0,1,0),

deg(v3) = (0,0,1), deg(Cijk) = (i, j, k).
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With respect to these gradings, the ideal I is decomposed into a direct sum of
graded components.

Definition 2.2. Let In,m be the graded components of I w.r.t. the first two grad-
ings, and In,m1,m2,m3 be the graded components w.r.t. all the three gradings:

In,m = {f ∈ I | degC(f ) = n,degv(f ) = m},
In,m1,m2,m3 = {f ∈ I | degC(f ) = n,deg(f ) = (m1,m2,m3)}.

Note that

In,m =
⊕

m1+m2+m3=rn+m

In,m1,m2,m3 .

Note also, that the Cayley–Salmon ideal is nothing but I ′ = ⊕
n In,0.

3. The Structure of the Ideal

To understand the structure of the graded components In,m, various methods can
be used. It is interesting that for the purpose of this paper, it is enough to use the
most basic and straightforward approach possible, direct calculation of the spaces
In,m using only linear algebra.

For this, we will need the following simple lemma.

Lemma 3.1. A line

v(x1, x2, x3) = v1x1 + v2x2 + v3x3 = 0 (1)

is an undulation line of a plane curve P(x1, x2, x3) = 0 iff P can be decomposed
in the form

P(x1, x2, x3) = u(x1, x2, x3)
4h(x1, x2, x3) + v(x1, x2, x3)w(x1, x2, x3), (2)

where u(x1, x2, x3) = u1x1 + u2x2 + u3x3 is some linear polynomial, and
h(x1, x2, x3) and w(x1, x2, x3) are some homogeneous polynomials of degrees
r − 4 and r − 1, respectively.

Proof. (⇐) This is true by the definition of multiplicity.
(⇒) Suppose that v = 0 is tangent to the curve at a point X with intersection

multiplicity at least 4. Assuming without loss of generality that (X1 : X2 : X3) =
(0 : 0 : 1) and v(x1, x2, x3) = x1, the intersection multiplicity equals multiplic-
ity of the zero root of P(0, z,1). This implies P(0, z,1) = z4w(z) for some
polynomial w(z). In turn, this implies P(0, x2, x3) = x4

2w(x2, x3) for some ho-
mogeneous polynomial w(x2, x3) and, ultimately, P(x1, x2, x3) = x4

2w(x2, x3) +
x1h(x1, x2, x3) for some homogeneous polynomial h(x1, x2, x3). �

Lemma 3.1 has an important corollary.

Corollary 3.2. Each In,m can be computed as a solution to a finite linear system
of equations.
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Proof. Denote

sijk(u,h, v,w) = coefficient in front of xi
1x

j

2 xk
3 in (u4h + vw)

with u, h, v, w as in Lemma 3.1. Then, a homogeneous polynomial f ∈
C[C,v1, v2, v3] of degrees degC(f ) = n, degv(f ) = m belongs to In,m iff the
following system of equations is satisfied:

f (s(u,h, v,w), v1, v2, v3) = 0 ∀u,v,h,w. (3)

This is a system of finitely many linear equations, where the coefficients of the
polynomial f are treated as indeterminates. For given pair of natural numbers n,
m, there are only finitely many these coefficients. Therefore, for any given n, m,
one can (at least in principle) write and explicitly solve the corresponding linear
system, obtaining In,m as its solution space. �

Despite the size and complexity of the above linear systems grows quite fast with
n, m, we will see below that this straightforward approach suffices to investigate
the simplest properties of the ideal I . In particular, in the next section we will use
this approach to find several lowest In,m for r = 4 and show that the elements
of these linear spaces can be naturally put together to form a 21 × 21 matrix, the
determinant of which is the Cayley–Salmon invariant. This is the main new result
of this paper, which calls for further research in the nearby directions.Then, in the
next section, we will do the same for r = 5 and obtain similar results, thus giving
evidence that the r = 4 result is not an accident but rather the first step toward
generalizations.

4. Determinantal Formula for r = 4

Using the approach explained in the previous section, we obtain the following.

Theorem 4.1. For plane quartics (r = 4), the dimensions dimIn,m of a few low-
est graded components of the undulation ideal are given by the following numbers:

n\m 0 1 2 3 4 5 6 7 . . .

0 0 0 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 0 0 . . .
2 0 0 0 0 1 3 21 45 . . .
3 0 0 0 0 15 63 325 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. Direct calculation via Corollary 3.2. �
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The spaces I2,5 and I3,5 are spanned, as linear spaces, by 3 and 63 polynomials,
respectively:

I2,5 =
{ 3∑

i=1

ciαi

∣∣∣ c1, . . . , c3 ∈C

}
, I3,5 =

{ 63∑
i=1

ciβi

∣∣∣ c1, . . . , c63 ∈ C

}
.

Since I is an ideal, the product of any element of I2,5 and any element of C

belongs to I3,5. Computation shows that there are no relations between such
products, that is, the subspace spanned by them has dimension 45. I3,5 can be
then decomposed1 as a sum of this 45-dimensional subspace and a complemen-
tary 18-dimensional subspace. Let β1, . . . , β18 be the basis elements of that 18-
dimensional subspace. Together with the three basis elements of I2,5, they form
a set of 21 linearly independent polynomials of degree 5 in v1, v2, v3. At the
same time, the dimension of the space of homogeneous polynomials of degree
5 in three variables v1, v2, v3 is exactly 21! This allows us to arrange these
3 + 18 polynomials into a 21 × 21 matrix with the following remarkable prop-
erty.

Theorem 4.2. Let M be the 21 × 21 matrix the rows of which are obtained
by expanding the 21 polynomials α1, . . . , α3;β1, . . . , β18 in the 21 homogeneous
monomials of degree 5 in v1, v2, v3. Then the determinant of this matrix is the
Cayley–Salmon undulation invariant of plane quartics:

I (C)r=4 = det
21×21

M. (4)

Proof. By construction, if the curve P(x1, x2, x3) = 0 possesses an undulation
line V1x1 + V2x2 + V3x3 = 0, then all the polynomials α1, . . . , α3;β1, . . . , β18
vanish at v = V . This implies that the 21-dimensional vector the components
of which are the 21 monomials of degree 5 in V1, V2, V3 belongs to the kernel
of M. Hence, M is degenerate whenever the curve P(x1, x2, x3) = 0 possesses
an undulation line. Hence, its determinant is an element of the Cayley–Salmon
undulation ideal:

det
21×21

M ∈ I ′ = 〈I (C)〉.
By the Cayley–Salmon theorem this ideal is generated by a unique element, the
Cayley–Salmon undulation invariant I (C), and therefore detM has to be propor-
tional to I (C):

det
21×21

M = i(C) · I (C).

Here i(C) is some polynomial in C. It is easy to calculate its degree:

degC i(C) = degC det
21×21

M− degC I (C) = 3 · 2 + 18 · 3 − 60 = 0.

1This decomposition is, of course, not unique, but the results of this section are valid for any choice
of it. This choice affects only the shape and simplicity of the resulting determinantal formula.
A natural choice of the decomposition, which also leads to the simplest shape of the determinantal
formula, comes from SL(3) representation theory, discussed in the next section.
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Figure 2 Structure of I3,5

So i(C) does not depend on C, that is, is just a constant. The determinant of M
thus has the same degree as the Cayley–Salmon undulation invariant and coin-
cides with it up to an overall constant. Computing this determinant for any curve
without undulation lines, say, for x4

1 + x4
2 + x4

3 + (x1 + x2 + x3)
4 = 0, shows that

this constant is not zero. Consequently, it can be always put to 1 (since I (C) is
itself defined up to rescaling). �

5. Explicit Formulas

As usual, the symmetry group of the problem (in our case, SL(3)) acts on the
space of solutions, decomposing it into irreducible representations. To find this
decomposition, the easiest way is to consider, instead of the graded components
In,m, the more refined components In,m1,m2,m3 . In complete analogy, their dimen-
sions and spanning polynomials can be computed via Corollary 3.2. For n = 3 and
m = 5, this gives the following triangle of integers, as shown in Fig. 2. Decompos-
ing this triangle into the usual multiplicity diagrams of irreducible representations
of SL(3), we find

This indicates that the 63 basis polynomials of I3,5 consist of the uninteresting
15 · 3 = 45 polynomials obtained from I3,4, the 15 polynomials transforming in
the irreducible representation (3,2), and the three polynomials transforming in
the irreducible representation (1,1) = (1̄). This completes the description of the
decomposition of I3,5 into irreducibles. Finally, it is an easy exercise to check that
I2,5 is itself an irreducible representation of SL(3), namely, just the fundamental
representation (1). Together, these 21 = 15 + 3 + 3 polynomials, transforming in
representations (3,2) ⊕ (1,1) ⊕ (1), form the matrix M. To describe this matrix,
it suffices to give explicit formulas for the highest weight vectors in the respective
representations:

(1): α1 = A3, (5)
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(1,1): β1 = 2B32312 − 3B12332 +B31232 +B22331 −B22133, (6)

(3,2): β4 = 2B23233 −B23332 −B32233, (7)

where, explicitly in components,

Ai = εa1a2a3εb1b2b3εc1c2c3εd1d2d3Pa1b1c1d1Pa2b2c2d2va3vb3vc3vd3vi, (8)

Bi1i2i3i4i5 = εa1a2a3εb1b2b3εc1c2c3εj1j2j3εk1k2k3

Pa1b1i2i3Pa2c1i4j1Pb2c2i5k1va3vb3vc3vj3vk3 . (9)

Here Pijkl = ∂xi
∂xj

∂xk
∂xl

P is the symmetric tensor of derivatives, εijk stands for
the completely antisymmetric tensor, and the summation over repeated indices
is assumed. The polynomials α1, . . . , α3, β1, . . . , β3 and β4, . . . , β18 are obtained
from these highest weight vectors by the action of SL(3). One can straightfor-
wardly check that they indeed vanish, provided that P = u4h + vw.

6. Determinantal Formula for r = 5

Having solved the undulation problem for r = 4, it is natural to go further and
consider the case of quintics, r = 5. For plane quintics, the undulation invariant
has degree 6(r − 3)(3r − 2) = 156. Despite this is an impressively large degree,
our calculations suggest that the same structure that we observed in the case of
plane quartics exists for plane quintics as well.

Proposition 6.1. For plane quintics (r = 5), the dimensions dimIn,m of a few
lowest graded components of the undulation ideal are given by the following num-
bers:

n\m ≤5 6 7 . . .

0 0 0 0 . . .
1 0 0 0 . . .
2 0 6 15 . . .
3 0 126 315 . . .
. . . . . . . . . . . . . . .
6 0 63,756 159,411 . . .

Proof. Direct calculation via Corollary 3.2. For dimI2,7, this calculation is just as
direct as for Theorem 5.1 and gives precisely 15. However, for dimI6,7, it is sig-
nificantly harder because sizes of linear systems (3), which define the generators
of the ideal, become so large that solving them with MAPLE (and even finding
their rank) is no longer possible.

We tackle this technical problem by utilizing the linear algebra package “lin-
box”. However, we are not using it directly, writing program to compute the ranks
in pure C. We rather use SAGE, which is a great tool for mathematicians, written
in Python and has bindings for “linbox”. To glue our MAPLE and SAGE codes
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together (that is, to convert linear systems from polynomial form of notation, gen-
erated by the former to sparse-matrix form, understood by the latter), we use a
simple Perl script. We believe, that such an approach of using several distinct
computational and modeling tools, each of which is well suited for a particular
task—rather than using all-in-one swiss-knives—and then gluing them together
with the help of scripting languages (such as Perl, Python, and Lisp) will turn out
to be very useful in attacking future problems of mathematics and physics that
require computation. With this approach, we obtain the following dimensions of
solution spaces for I6,m1,m2,m3 (horizontal axis is m1, and vertical axis is m2,
whereas m3 = 7 − m2 − m1):

The sum of entries in this table is, indeed, equal to 159,411. �
By Proposition 6.1, the spaces I2,7 and I6,7 are spanned, as linear spaces, by 15
and 159,411 polynomials, respectively. As before, let us denote the basis poly-
nomials in these spaces by α1, . . . , α15 and β1, . . . , β159,411. Since I is an ideal,
the product of any element of I2,7 and any polynomial of degree 4 of C belongs
to I6,7. Computation shows that there are no relations between such products,
that is, the subspace spanned by them has dimension 15 dim(S4 span(C)). The
dimension of the complementary subspace in decomposition of I6,7 is therefore

159,411 − 15 · dim(S4 span(C)) = 159,411 − 15 · (21 + 4 − 1)!
4!(21 − 1)!

= 159,411 − 159,390 = 21.
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Let β1, . . . , β21 be the basis elements of that 21-dimensional subspace. Together
with the 15 basis elements of I2,6, they form a set of 36 linearly independent
polynomials of degree 7 in v1, v2, v3. At the same time, the dimension of the
space of homogeneous polynomials of degree 7 in three variables v1, v2, v3 is
exactly 36! This allows us to arrange these 15 + 21 polynomials into a 36 × 36
matrix with the following remarkable property.

Theorem 6.2. Let M be the 36 × 36 matrix, the rows of which are obtained
by expanding the 36 polynomials α1, . . . , α15;β1, . . . , β21 in the 36 homogeneous
monomials of degree 7 in v1, v2, v3. Then detM is the Cayley–Salmon undulation
invariant of plane quintics:

I (C)r=5 = det
36×36

M. (10)

Proof. Analogously to Theorem 4.2, the statement simply follows from the fact
that detM vanishes when the curve has undulation points, has the correct degree
15 · 2 + 21 · 6 = 156, and is nonvanishing for one curve that has no undulation
lines, say, for x5

1 + x5
2 + x5

3 + (x1 + x2 + x3)
5 = 0. �

7. Conclusion

In this paper we have found an explicit polynomial formula for the Cayley–
Salmon invariant of plane quartics and plane quintics. The formula is expressed as
a determinant of a finite-size matrix with polynomial entries; it is therefore very
convenient for practical calculations and allows one to determine in reasonable
time and space whether the curve has undulation points or not.

The existence of such a formula rises several interesting questions:

• It would be interesting to find a generalization of these formulae to higher r > 5
or to make sure that such a generalization does not exist.

• It would be interesting to apply the method used in this paper to other types of
invariants associated with various other types of decomposition of curves. The
undulation condition is associated with the decomposition

P = a1a1a1a1 + b1c3,

where the letters denote different polynomials, and the indices show their de-
grees. Similarly, we can consider other different types of decompositions, in
particular,

P = a1a1a1a1 + b2c2,

P = a2b1b1 + c2d1d1,

P = a1b1c1d1 + a1b1c1e1 + a1b1d1e1 + a1c1d1e1 + b1c1d1e1,

P = a1a1a1a1 + b1b1b1b1 + c1c1c1c1 + d1d1d1d1 + e1e1e1e1,

P = a1a1a1a1 + b2b2 + c2c2.

It is easy to show that existence of each of these decompositions is equivalent to
vanishing of a certain invariant polynomial in coefficients of P . Some of these
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decompositions were discussed already for a long time: for example, the fourth
decomposition corresponds to the Clebsch invariant, which has a well-known de-
terminantal representation of degree six (see [7], p. 283). A more complicated
case is the third decomposition, which defines the so-called Luroth quartics [8],
and the corresponding invariant is called the Lueroth invariant. In analogue with
the Cayley–Salmon undulation invariant, it has a high degree (54). An explicit
formula for this invariant in terms of the elementary system of invariants has been
recently obtained in [9]; it would be interesting to see whether the method of this
paper can produce a determinantal formula for it.
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