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Cycles of Polynomial Mappings in Several Variables over
Discrete Valuation Rings and over Z

T. Pezda

Abstract. We find all possible cycle lengths of polynomial mappings
in several variables over unramified discrete valuation domains. As a
consequence, we determine the sets of all cycle lengths in RN (where
N ≥ 2) for some Dedekind rings R. Finding these sets for R = Z and
any N is the main purpose of this paper.

1. Introduction

For a commutative ring R with unity and � = (�1, . . . ,�N), where �i ∈
R[X1, . . . ,XN ], we define a cycle for � as a k-tuple x̄0, x̄1, . . . , x̄k−1 of different
elements of RN such that

�(x̄0) = x̄1, �(x̄1) = x̄2, . . . , �(x̄k−1) = x̄0.

The number k is called the length of this cycle.
Let CYCL(R,N) be the set of all possible cycle lengths for polynomial map-

pings in N variables with coefficients from R (we clearly assume that the elements
of the considered cycles lie in RN ).

The main motivation to write this paper is finding CYCL(Z,N) for all natu-
ral N . As an exercise, one may treat the equality CYCL(Z,1) = {1,2}. In [Pe2],
the formula CYCL(Z,2) = {24,18,16, and divisors} was established. In [Pe5], it
was shown that the biggest element in CYCL(Z,N) equals 2 · 4N + o(4N).

One of the main ingredients in obtaining these results is a local-to-global prin-
ciple for polynomial cycles (see Section 2.4). This principle for N ≥ 2 gives an
expression of CYCL(R,N) in terms of CYCL(Rp,N), where p runs over the
family of all nonzero prime ideals of a Dedekind domain R.

Thus, in order to determine CYCL(Z,N), it is enough to determine
CYCL(Zp,N) for all prime p, where Zp denotes the ring of p-adic num-
bers. In fact (see Theorem 2), it suffices to determine CYCL(Z2,N) and
CYCL(Z3,N).

Using the notation of Theorem 1 and Section 2.1, we see that Zp is a dis-
crete valuation ring (DVR) of characteristic zero satisfying e = 1 (and therefore
unramified). For the rings Zp , the number f equals 1.

The main result of this paper is the following:
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Theorem 1. Let R be a discrete valuation ring of characteristic 0, and assume
that P is the unique maximal ideal of R. We assume that the field R/P is finite
and has pf elements (p prime). Let w be the exponent of R. We assume that the
ramification index e = w(p) is equal to 1; in other words, R is unramified. Then
CYCL(R,N) consists of all natural numbers of the form

c · k · pα,

where 1 ≤ c ≤ pf N , k|[pf a1 − 1, . . . , pf ar − 1] for some positive a1, . . . , ar :
a1 + · · · + ar ≤ N , and if (for k > 1) a is the smallest sum a1 + · · · + ar such that
k|[pf a1 − 1, . . . , pf ar − 1] (and a = 0 for k = 1), then

(i) for p ≥ 3, we have α ≤ max{0, logp(
2(N−a)

p−1 p)};
(ii) for p = 2, we have

α < 2 + log2(N − a) for a ≤ N − 2,
α ≤ 2 for 1 ≤ a = N − 1,
α ≤ 1 for all other possibilities, that is, a = N or N = 1.

Theorem 1 generalizes a result from [Pe1] and [Zie], where it was obtained
that CYCL(Zp,1) = {a · b : 1 ≤ a ≤ p,b|p − 1} for p ≥ 5, CYCL(Z3,1) =
{1,2,3,4,6,9}, and CYCL(Z2,1) = {1,2,4}.

As a consequence of Theorem 1, we obtain the following:

Theorem 2. Let S be a Dedekind domain of characteristic 0 such that there are
prime ideals p of S with S/p finite. Let m = minp-prime #(S/p). Assume that for all
prime ideals of S having norms smaller than m2, the corresponding localizations
Sp are unramified. Then for N ≥ 2, the set CYCL(S,N) is completely determined.
Namely, for N ≥ 2, we have

CYCL(S,N) =
⋂

p-prime

#(S/p)<m2

CYCL(Sp,N).

In particular, CYCL(Z,N) is completely determined and equals CYCL(Z2,N)∩
CYCL(Z3,N) (for N ≥ 2).

Example 1. By Theorems 1 and 2 we have CYCL(Z,3) = CYCL(Z2,3) ∩
CYCL(Z3,3) = {112,98,96,84,72,70,64,60,40, and divisors} ∩ {702,676,

650, 648, 624, 600, 598, 576, 572, 552, 546, 528, 520, 504, 494, 480, 468, 456,

442, 432, 416, 408, 390, 384, 364, 360, 336, 243, 225, 207, 198, 189, 171, 153,

135, and their divisors} = {112,96,84,72,64,60,40, and their divisors}.
Let ZK be the ring of algebraic integers lying in a finite extension K of the ratio-
nals. It is known that if (ZK)p are unramified DVR for all nonzero prime ideals p,
then K = Q. So, from the formal point of view, the local-to-global principle and
Theorem 1 determine CYCL(ZK,N) for all N ≥ 2 only for K = Q (in this case,
ZQ = Z). However, owing to Theorem 2, the sets CYCL(ZK,N) may be deter-
mined also for some K �= Q and some N ≥ 2.
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Example 2. Let L = Q(
√

d) with square-free d satisfying d ≡ 5 (mod 8), d ≡ 1
(mod 3), d ≡ 2 (mod 5), d ≡ 2 (mod 7) (for example, d = 37).

Then p2 = 2ZL is prime with norm 4, 3ZL = p3p
′
3 with different prime p3 and

p′
3, p5 = 5ZL is prime with norm 25, 7ZL = p7p

′
7 with different prime p7 and p′

7.
We then obtain that

(ZL)p2 is a discrete valuation ring corresponding to p = 2, f = 2, e = 1;
(ZL)p3

∼= (ZL)p′
3

are discrete valuation rings corresponding to p = 3, f = 1,
e = 1;
(ZL)p5 is a discrete valuation ring corresponding to p = 5, f = 2, e = 1; and
(ZL)p7

∼= (ZL)p′
7

are discrete valuation rings corresponding to p = 7, f = 1,
e = 1.

Note that p2, p3, p′
3, p7, p′

7 are the only prime ideals of ZL with norm smaller

than m2 = 32 = 9. Since (̂ZL)p3
∼= Z3, (̂ZL)p7

∼= Z7, by Theorem 2 we obtain,
for N ≥ 2,

CYCL(ZL,N) = CYCL((ZL)p2 ,N) ∩ CYCL(Z3,N) ∩ CYCL(Z7,N).

One may check that CYCL(Z3,3) ⊂ CYCL(Z7,3), and we obtain
CYCL(Z

Q(
√

37)
,3) = CYCL((Z

Q(
√

37)
)p2 ,3) ∩ CYCL(Z3,3) = {702,648,624,

600, 576, 552, 546, 528, 520, 504, 480, 468, 456, 432, 416, 408, 390, 384, 364,

360,336,243,225,207,198,189,171,153,135, and their divisors}.
From the proof of Theorem 2 (using the notation from Theorem 2) we have that,
for N ≥ 2,

CYCL(S,N) =
⋂

p-prime

#(S/p)<m2

CYCL(Sp,N)

if Sp is unramified for some p such that #(S/p) = m.

Theorem 1 determines CYCL(R,N) for unramified (i.e., satisfying e = 1)
DVR of characteristic zero. It seems that finding a closed formula for all ram-
ification indices e is difficult, if not impossible. It is worth emphasizing that a
possible formula for CYCL(R,N) would not depend solely on p, e, f , N . For
example, by Proposition 3.5 from [Pe4] it follows that 48 /∈ CYCL(R,2) for R

such that p = 2, f = 1, e = 2, π2 ≡ 2 (mod P 4), whereas 48 ∈ CYCL(R,2)

for R such that p = 2, f = 1, e = 2, π2 + π3 ≡ 2 (mod P 4). The element π is
precisely defined in Section 2.1.

In [Pe4], we managed to gain enough knowledge of CYCL(R,2) for some
DVR R satisfying ef ≤ 2 and p ≤ 7 to determine CYCL(ZK,2) for [K : Q] = 2
(there are 14 such sets possible).

Estimates for cycle lengths in DVR R for polynomials, morphisms, and power
series may be found in [Zie; Pe3; MorSil].

The local-to-global principle is not valid for N = 1. In this case, we have only
the inclusion CYCL(R,1) ⊂ ⋂

p CYCL(Rp,1) for any integral domain R. This
sometimes significantly reduces the number of possible elements of CYCL(R,1),
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and the remaining possibilities are treated by other methods, mainly by unit equa-
tions. Such an approach was used to find CYCL(ZK,1) for [K : Q] = 3 with
negative discriminant in [Na2] and for K of signature (0,2) in [Pe6] (the sets
CYCL(ZK,1) for quadratic K were determined in [Bo] and [Ba]), and in [Na1],
where CYCL(Z[ 1

p
],1) and CYCL(Z[ 1

2p
],1) for prime p were found (the fact that

CYCL(R,N) is finite for any finitely generated integral domain of characteristic
zero was emphasized in [H-KNa]).

Recently (see [Pe7]), we managed to find a finitary procedure to find
CYCL(ZK,1), working for any algebraic number field K .

For various aspects concerning polynomial cycles and precycles, we refer to
[Ben; Can; FPS; NaPe; Erk; Mor].

1.1. A Sketch of the Proof

In Section 2.1, we may find the basic definitions and (in Lemma 2.1) some sim-
ple properties of polynomial mappings in DVR. In Proposition 2.1, we collect
some useful results from earlier papers. Proposition 2.1(v) is of special impor-
tance since it connects the length of a cycle with the characteristic polynomial of
some derivative.

In Section 2.2, we collect some identities concerning binomial coefficients.
Lemma 2.4 is very useful since it frequently allows us to restrict our attention

to maps � whose derivative at 0̄ is of a very particular form.
For a local domain R (with a maximal ideal P ), a cycle x̄0, x̄1, . . . in RN

is called a (�)-cycle if x̄i − x̄j ∈ P N for all i, j . In the rest of the proof, we
consider (�)-cycles starting from 0̄, which, according to Proposition 2.1(i) and
Lemma 2.1(i), does not restrict the problem we consider.

In view of Proposition 2.1(v)–(vi), the p-free parts of elements from
CYCL � (R,N) (defined in an obvious way) constitute the set of all divisors
of the elements [pf a1 − 1, . . . , pf ar − 1] with a1 +· · ·+ ar ≤ N . So, the problem
of finding CYCL(R,N) for DVR R is equivalent to the following one:

Let k divide [pf a1 − 1, . . . , pf ar − 1] for some a1 + · · · + ar ≤ N .

Find all α such that k · pα ∈ CYCL � (R,N).

In Section 3, we examine (�)-cycles of length pα for mappings � such that A :=
(�)′(0̄) satisfies A(A − I )M ≡ 0 (mod P) for some M . This assumption on A

seems to be very restrictive, but according to the beginning of Section 5, it is not.
In the very important Propositions 3.1 and 3.2, we obtain the estimate M ≥

pα−1 p−1
2 . In Proposition 3.1, we consider the case w(x̄pα−1) ≥ 2 and, in Proposi-

tion 3.2, the case w(x̄pα−1) = 1. These two cases require quite different proofs. In

addition, in these propositions we give conditions when M = pα−1 p−1
2 may take

place. Here, we notice the distinction between the cases p = 2 and p > 2.
In Section 4, in Proposition 4.1 (for p ≥ 3) and Proposition 4.2 (for p = 2),

we give key examples of (�)-cycles of length pα in RN for N ≥ pα−1 p−1
2 (for

p ≥ 3) and N > 2α−2 (for p = 2). Since we search for (�)-cycles of length pα ,
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we should have (�pα
)(0̄) = 0̄ and (�pα−1

)(0̄) �= 0̄ (and this is a necessary and
sufficient condition).

In Propositions 4.1 and 4.2, the mapping � is defined with the use of N

unspecified coefficients ri , aj (in Proposition 4.1), and ri (in Proposition 4.2).
Since we are not able to avoid using terms of degree ≥ 2, the calculation of suit-
able iterations is very tedious. Fortunately, for the proof of these propositions, it
is sufficient to calculate everything (mod P 4). One of the required conditions,
(�pα−1

)(0̄) �= 0̄, is satisfied independently of the choice of ri , aj (we point out a

suitable coordinate of (�pα−1
)(0̄), which certainly is not equal to 0).

In Lemmas 4.1 and 4.2, we, roughly speaking, calculate (�pα
)(0̄) (mod P 4).

After division by suitable powers of p, we see that the condition (�pα
)(0̄) = 0̄

is equivalent to a system of N equations in N variables in R. The existence of a
solution of this system follows from the N -dimensional generalization of Hensel’s
lemma (a proof of that generalization is very similar to the proof of the basic
version of Hensel’s lemma from the theory of p-adic numbers).

We finish Section 4 with the Proposition 4.3, which gives the existence part of
Theorem 1. In the proof of Proposition 4.3, we introduce a simple construction,
which for cycles of length k in Rm for � and of length l in Rn for � gives a
cycle of length [k, l] for (�,�) in Rm × Rn = Rm+n. Owing to this construction
and propositions from Section 4, we prove Proposition 4.3 with the exception of
(�)-cycles of lengths 4[2f a1 − 1, . . . ,2f ar − 1] for 1 ≤ a ≤ N − 1, which require
an additional construction.

In Section 5, we consider (�)-cycles of length kpα for a mapping �. De-
note C := �′(0̄) and write the characteristic polynomial of the matrix B := C

(mod P) as (−1)NXa0(X − 1)b0F1(X)b1 · . . . · Fr(X)br , where Fi are irre-
ducible and monic, and the degree of Fi is ai . Using Proposition 2.1(v), we
get k|[pf a1 − 1, . . . , pf ar − 1]. We take a suitably chosen iteration � of �

and notice that � has a (�)-cycle of length pα . A linear mapping A := (�)′(0̄)

satisfies A(A − I )max{b0,b1,...,br } ≡ 0 (mod P). For a given k dividing some
[pf a1 − 1, . . . , pf ar − 1], we therefore, using the results from Section 3, obtain
in Lemma 5.1 an estimate for α in terms of p, M , where M is the smallest b such
that A(A − I )b ≡ 0 (mod P).

The purpose of Lemma 5.2 is to find all tuples k,N,a,M, r, a0, b0, . . . , r, br ,

p,α such that the estimate from Lemma 5.1 is weaker than the estimate from
Theorem 1. All such tuples are threatening the validity of Theorem 1. The “threat-
ening” tuples from Lemma 5.2 are then discarded in Proposition 5.1.

2. Auxiliary Results

Let 0̄ = (0,0, . . . ,0), and let I denote the unit matrix. We sometimes use the
symbol δi≥k , which equals 1 if i ≥ k and 0 otherwise. Let ēi be the ith vector
from the canonical basis, that is, it has 1 at the ith coordinate and 0 otherwise.
The ith coordinate of a vector ū is denoted by (ū)i .
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2.1. Cycles in Some Discrete Valuation Domains

Throughout, R is a discrete valuation domain of characteristic zero, and P is the
unique maximal ideal of R. We assume that the quotient field K = R/P is finite
and has pf elements (p-prime). Let π be a generator of the principal ideal P ,
and let v be the norm of R normalized so that v(π) = 1

p
. We denote by w the

corresponding exponent defined by w(x) = − logv(x)
logp

for x �= 0 and w(0) = ∞.

We put e := w(p). Thus, e is the ramification index of R. We extend w to RN

by putting w(x1, . . . , xN) = min{w(x1), . . . ,w(xN)}.
The congruence symbol x̄ ≡ ȳ (mod P d) will be used for vectors x̄, ȳ ∈ RN to

indicate that their corresponding components are congruent (mod P d) or, equiv-
alently, w(x̄ − ȳ) ≥ d . We use a similar convention for matrices.

A polynomial cycle x̄0, x̄1, . . . , x̄k−1 is called a (polynomial) (�)-cycle if
w(x̄i − x̄j ) ≥ 1 for all i, j . Let CYCL � (R,N) be the set of all possible lengths
of (�)-cycles for polynomial mappings in N variables with coefficients from R.

If � is a polynomial mapping in N variables with coefficients from R, then
�′(x̄) denotes the Jacobian matrix of � at x̄.

Lemma 2.1. Let R,P, . . . be as before. Then

(i) if in RN there is a (�)-cycle of length k, then in RN there is a (�)-cycle of the
form 0̄ = x̄0, x̄1, . . . , x̄k−1;

(ii) let � : RN → RN be a polynomial mapping with coefficients from R. Let
�(0̄) = x̄ �= 0 and w(x̄) = d > 0. Put �′(0̄) = A. Then for every positive
integer l, we have �l(0̄) ≡ (Al−1 + Al−2 + · · · + A + I )x̄ ≡ ((A − I )l−1 +(
l
1

)
(A − I )l−2 + · · · + (

l
l−2

)
(A − I ) + lI )x̄ (mod P 2d);

(iii) let � : RN → RN be a polynomial mapping with coefficients from R,
w(�(0̄)) = d . Then (�r)′(0̄) ≡ (�′(0̄))r (mod P d) holds for every positive
integer r ;

(iv) let A be a linear mapping of RN with coefficients from R. Let ω be a nonneg-
ative integer or ∞ (we put P ∞ = (0)). Let W1(X),W2(X) ∈ Z[X]; ū ∈ RN .
Assume that W(X) ∈ (W1(X),W2(X)) or (in case of ω = ∞) that W(X) is
any gcd of W1(X), W2(X) in Q[X].

If W1(A)ū ≡ W2(A)ū ≡ 0̄ (mod P ω), then W(A)ū ≡ 0̄ (mod P ω).
In particular, let b, c, d be nonnegative integers. Then A(A − I )bū ≡ 0̄

(mod P d), (A − I )cū ≡ 0̄ (mod P d) implies (A − I )min{b,c}ū ≡ 0̄ (mod P d).

Proof. (i) This is a special case of Lemma 4.1(i) from [Pe3].
(ii) The congruence �l(0̄) ≡ (Al−1 + Al−2 + · · · + A + I )x̄ (mod P 2d) is

given in Lemma 4.6 from [Pe3]. The rest follows from the identity
∑l−1

i=0 xi =∑l−1
i=0

(
l
i

)
(x − 1)l−1−i .

(iii) Clearly, z̄ ≡ ȳ (mod P d) implies �′(z̄) ≡ �′(ȳ) (mod P d) and �(z̄) ≡
�(ȳ) (mod P d). Hence, �r−1(0̄) ≡ �r−2(0̄) ≡ · · · ≡ �(0̄) ≡ 0̄ (mod P d) and
(�r)′(0̄) = �′(�r−1(0̄)) ◦ · · · ◦ �′(�(0̄)) ◦ �′(0̄) ≡ (�′(0̄))r (mod P d).
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(iv) Let ω be an integer. There are polynomials F1(X),F2(X) ∈ Z[X] such
that W(X) = F1(X)W1(X) + F2(X)W2(X). Hence, W(A)ū = F1(A)W1(A)ū +
F2(A)W2(A)ū ≡ 0̄ (mod P ω).

The proof for ω = ∞ requires only minor changes. �
In the following proposition, we collect some useful facts about cycles in discrete
valuation rings.

Proposition 2.1. Let R,P,p,f, v, . . . be as before. Then

(i) a number k lies in CYCL(R,N) if and only if k = ab, where a ≤ pf N , and
b is the length of a suitable (�)-cycle in RN . In particular, {1,2, . . . , pf N } ⊂
CYCL(R,N);

(ii) if R̂ is the completion of R with respect to the norm v, then

CYCL(R,N) = CYCL(R̂,N) and CYCL � (R,N) = CYCL � (R̂,N)

(note that for R̂, the numbers p, e, f are the same as for R);
(iii) for every 1 ≤ r ≤ N , we have pf r − 1 ∈ CYCL � (R,N);
(iv) if, in addition, R is complete, then in RN there is a (�)-cycle x̄0, x̄1, . . . of

length pf N − 1, having all coordinates of all x̄i in P , for a linear mapping
A having different eigenvalues and whose eigenvalues are primitive roots of
unity of order pf N − 1;

(v) let 0̄ = x̄0, x̄1, . . . , x̄m−1 be a (�)-cycle for a (polynomial) mapping � in
N variables with coefficients from R. Put �′(0̄) := A. Write the char-
acteristic polynomial F(X) ∈ K[X] (recall that K = R/P ) of the ma-
trix B = A (mod P) as (−1)NXa0(X − 1)b0F1(X)b1 · . . . · Fr(X)br , where
a0, b0 ≥ 0, F1, . . . ,Fr are pairwise different, monic, and irreducible poly-
nomials �= X,X − 1 in K[X], and b1, . . . , br > 0. Put ai := degFi for
1 ≤ i ≤ r . Hence, a1 +a2 +· · ·+ar ≤ a0 +b0 +a1b1 +· · ·+arbr = N . Write
m = kpα , where α ≥ 0 and p does not divide k. Hence, k = 1 for r = 0, and
k divides [pf a1 − 1, . . . , pf ar − 1] (= lcm (pf a1 − 1, . . . , pf ar − 1)) for
r > 0;

(vi) let m be a positive integer not divisible by p. Then there is a (�)-cycle of
length m in RN if and only if there are r > 0 and positive integers a1, . . . , ar

with a1 + · · · + ar ≤ N such that m divides [pf a1 − 1, . . . , pf ar − 1];
(vii) assume, in addition, that e = 1 and p = 2. Then the lengths of (�)-cycles in

RN are bounded by 2(2f N − 1).

Proof. (i) The first part is Lemma 4.4 in [Pe3]. Since 0̄ is a (�)-cycle for the zero
mapping, we have {1,2, . . . , pf N } ⊂ CYCL(R,N).

(ii) This is Proposition 4.1 in [Pe3].
(iii) This is Theorem 3.1(iii) in [Pe3].
(iv) It follows from the proof of Theorem 3.1(iii) in [Pe3]. Namely, the state-

ment is clear for pf N − 1 = 1. For pf N − 1 > 1, we consider an element ξ that is
a primitive root of unity of order pf N − 1 and a root of an irreducible polynomial
F ∈ R[X] of degree N . Each root of F is also a primitive root of unity of order
pf N − 1.
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Let 
 : R[ξ ] → R[ξ ] be the multiplication by ξ . One sees that the eigenvalues
of 
, treated as a linear mapping over R, are exactly the roots of F . To finish the
proof, notice that R[ξ ] is, as an R-module, naturally isomorphic to RN , and to 


there corresponds a linear mapping of RN with the same eigenvalues.
(v), (vi) This is Proposition 3.1 in [Pe5].
(vii) This is Proposition 3.2(ii) in [Pe5]. �

2.2. Some Facts Concerning Binomial Coefficients

Lemma 2.2. Let p be prime.

(i) For n, k ≥ 0, the number
(
n
k

) = n!
k! (n−k)! is not divisible by p if and only if

all the digits in the expansion of n in the base p are not smaller than the
corresponding digits for k;

(ii) for α > 0 and 0 < i < pα , we have p2 �
(
pα

i

)
if and only if pα−1|i;

(iii) for a, b, c ≥ 0, we have
∑c

i=0

(
i
a

)(
c−i
b

) = (
c+1

a+b+1

)
;

(iv) for a, b, c, d ≥ 0, we have
∑d

i=0

(
i
a

)(
d−i
b

)(
d−i
c

) = ∑c
l=0

(
b

c−l

)(
b+l
l

)(
d+1

a+b+l+1

)
;

(v) If 0 ≤ c, d, b−m,a +m+ l +1 < 2α−1, then
∑2α−1

J=0

(
J
c

)(
J
d

)(
J+1
b−m

)( 2α−1−J
a+m+l+1

)
is even.

Proof. (i) may be proved on its own or stated as a consequence of Lucas’ theorem.
(ii) follows easily from the known formula for the maximal power of p divid-

ing n!.
Formula in (iii) has a natural combinatorial interpretation.
(iv) From (iii) we obtain that

d∑
i=0

(
i

a

)(
d − i

b

)(
d − i

c

)
=

d∑
i=0

(
i

a

)(
d − i

b

) c∑
l=0

(
d − i − b

l

)(
b

c − l

)

=
c∑

l=0

(
b

c − l

) d∑
i=0

(
i

a

)(
d − i

b

)(
d − i − b

l

)

=
c∑

l=0

(
b

c − l

) d∑
i=0

(
i

a

)(
d − i

b + l

)(
b + l

l

)

=
c∑

l=0

(
b

c − l

)(
b + l

l

)(
d + 1

a + b + l + 1

)
.

(v) It follows from the observation (resulting from (i)) that
(
J
n

) ≡ (
J+2α−1

n

)
(mod 2) for any 0 ≤ n < 2α−1. Hence, for 0 ≤ J < 2α−1, the summand cor-
responding to J is congruent (mod 2) to the summand corresponding to J +
2α−1. �
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Lemma 2.3. Let � = (�1, . . . ,�N) : RN −→ RN , where �i = bi + Xi +∑
j gijXj + p

∑
j cijXj + ∑

j≤k rijkXjXk . Put H = (gij + pcij )
N
i,j=1 and

�(0̄) = x̄. Then, for any W ≥ 0,

(i)

�W(0̄) =
∑
m≥0

(
W

m + 1

)
Hmx̄

+
∑

1≤i,j,k≤N

rijk

∑
m,s,t≥0

αmst (H
sx̄)j (H

t x̄)kH
mēi + E,

where

αmst =
t+1∑
n=0

(
s + 1

t + 1 − n

)(
s + 1 + n

n

)(
W

m + s + n + 2

)
,

and each summand in each coordinate of E has the homogenous degree with
respect to rijk at least 2.

(ii) In each summand of each coordinate of �W(0̄) (written in the simplest form),
the homogenous degree with respect to rijk is fewer by 1 than the homoge-
nous degree with respect to bi .

(iii) Assume, in addition, that N = 2α−2 + 1; α ≥ 4; G := (gij )i,j = JN(0)

(for the precise definition of Jm(λ), see Section 2.3); A := I + G; cij = 0;
x̄ = 2ēN . Assume, moreover, that W = 2α .

Then ET (the T th coordinate of E from (i)) equals ET + FT , where

ET = 8
∑

i2,k2,l2

∑
i1,k1,l1

ri2k2l2ri1k1l1

×M(i2 − T ,N + 1 − l2,N + 1 − k1,N + 1 − l1, i1 − k2)

+ 8
∑

i2,k2,l2

∑
i1,k1,l1

ri2k2l2ri1k1l1

×M(i2 − T ,N + 1 − k2,N + 1 − k1,N + 1 − l1, i1 − l2),

each summand in FT has the homogenous degree with respect to rikl at least
3 (in particular, by (ii), 16|FT ), and

M(a, b, c, d, z) =
b∑

m=0

z∑
l=0

(
m

z − l

)(
m + l

l

)

×
2α−1∑
J=0

(
J

c

)(
J

d

)(
J + 1

b − m

)(
2α − 1 − J

a + m + l + 1

)
(1)

for a, b, c, d, z ≥ 0. If any of a, b, c, d , z is negative, then, by definition,
M(a, b, c, d, z) = 0.

(iv) Assume, in addition, that x̄ = pēN . Then in each summand of each coordi-
nate of �W(0̄) (written in the simplest form), the homogenous degree with
respect to rijk and cij is fewer by at least 1 than the exponent ω such that pω

divides this summand.
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Proof. (i) By induction or using the ideas from the proof of Lemma 2.1(ii), we ob-
tain that the part of �W(0̄) not depending at all on rijk equals

∑
m≥0

(
W

m+1

)
Hmx̄.

We see that the term of the form γ rijk , with a vector γ , depending only on bi1 ,
gi1j1 , and ci1j1 , appears in �W(0̄) with

γ =
∑

0≤J≤W−1

(I + H)W−1−J

(∑
s≥0

(
J

s + 1

)
Hsx̄

)
j

(∑
t≥0

(
J

t + 1

)
Ht x̄

)
k

ēi .

So, γ = ∑
m,s,t≥0 αmst (H

sx̄)j (H
t x̄)kH

mēi , where αmst = ∑W−1
J=0

(
W−1−J

m

)×(
J

s+1

)(
J

t+1

)
.

Lemma 2.2(iv), applied for a = m, b = s + 1, c = t + 1, d = W − 1, gives the
required formula for αmst .

(ii) and (iv) follow by an easy induction on W .
(iii) Put AJ = I + A + A2 + · · · + AJ−1. Note that AJ x̄ is the part of �J (0̄)

with no rikl . By a direct induction, the summands of �W(0̄) of (homogenous)
degree 2 with respect to rikl give E equal to

∑
i2,k2,l2

∑
i1,k1,l1

ri2k2l2ri1k1l1

×
∑

J+K+L=W−2

(AJ x̄)k1(AJ x̄)l1((A
Kēi1)k2(AJ+K+1x̄)l2

+ (AKēi1)l2(AJ+K+1x̄)k2)A
Lēi2 .

One may alternatively justify this formula as follows. For fixed (i2, k2, l2),
(i1, k1, l1), the terms in the inner sum corresponding to fixed J,K,L ≥ 0 sat-
isfying J + K + L = W − 2 correspond to ri1k1l1 emerging at the J th itera-
tion of � (then such “marked” ri1k1l1 appears in i1th row with the coefficient
(AJ x̄)k1(AJ x̄)l1 ). Then this term is mapped K times by linear terms of �, and in
�J+K+1(0̄), it appears as ri1k1l1A

K(AJ x̄)k1(AJ x̄)l1 ēi1 .
Next, we act by � with the use of ri2k2l2Xk2Xl2 . If we take ri1k1l1 from

(�J+K+1(0̄))k2 , then from (�J+K+1(0̄))l2 we must take the terms with no rikl ,
that is, (AJ+K+1x̄)l2 . We can also take ri1k1l1 from (�J+K+1(0̄))l2 , and then from
(�J+K+1(0̄))k2 we must take terms with no rikl , that is, (AJ+K+1x̄)k2 .

Hence, at the (J + K + 1)th iteration, we have terms divisible by ri2k2l2ri1k1l1 ,
and then we act by A (we cannot use any rikl in order to receive terms of degree 2)
L times. Since we are computing �W(0̄), we have J + K + L = W − 2.

Since A = I + G, we have AJ = ∑
m≥0

(
J
m

)
Gm and (cf. Lemma 2.1(ii)) AJ =∑

m≥0

(
J

m+1

)
Gm. Taking this into account, we get

E = 8
∑

i2,k2,l2

∑
i1,k1,l1

ri2k2l2ri1k1l1

×
∑

r,s,t,μ,v≥0

∑
J+K+L=W−2

(
L

r

)(
J + K + 1

s + 1

)(
J

t + 1

)(
J

v + 1

)(
K

μ

)
A,
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where

A = (Gt ēN )k1(G
vēN)l1((G

sēN )k2(G
μēi1)l2 + (GsēN )l2(G

μēi1)k2)G
r ēi2 .

Let W = 2α .
Since (Gsēi)j is nonzero only for s = i −j ≥ 0, we get that the T th coordinate

of E equals

ET = 8
∑

i2,k2,l2

∑
i1,k1,l1

ri2k2l2ri1k1l1

× (M(i2 − T ,N + 1 − l2,N + 1 − k1,N + 1 − l1, i1 − k2)

+M(i2 − T ,N + 1 − k2,N + 1 − k1,N + 1 − l1, i1 − l2)),

where

M(a, b, c, d, z) =
∑

J+K+L=2α−2

(
L

a

)(
J + K + 1

b

)(
J

c

)(
J

d

)(
K

z

)
,

and if any argument from a, b, c, d, z is negative, then M(a, b, c, d, z) = 0 by
definition.

Since
(
J+K+1

b

) = ∑b
m=0

(
J+1
b−m

)(
K
m

)
, we get

M(a, b, c, d, z) =
b∑

m=0

2α−2∑
J=0

(
J + 1

b − m

)(
J

c

)(
J

d

)

×
2α−2−J∑

K=0

(
K

m

)(
K

z

)(
2α − 2 − J − K

a

)
.

Let a, b, c, d, z ≥ 0. Lemma 2.2(iv) gives
∑2α−2−J

K=0

(
K
m

)(
K
z

)(2α−2−J−K
a

) =∑z
l=0

(
m

z−l

)(
m+l

l

)( 2α−1−J
a+m+l+1

)
. Hence, (1) holds. �

2.3. Using Matrices in the Jordan Form

Recall that the Jordan form of a given square matrix A ∈ MN×N(K) is built from
m × m matrices of the form

Jm(λ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0

0 λ 1 0
...

... 0
. . .

. . . 0
...

... 0 λ 1
...

...
... 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with an eigenvalue λ (lying in a fixed algebraic closure of K) on the main diago-
nal.

Let Jm(λ) be the class of all upperdiagonal m×m matrices with λ on the main
diagonal.
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Lemma 2.4. Let R be as in Section 2.1, and let 0̄ = x̄0, . . . , x̄k−1 be a cycle
in RN for �. Put �′(0̄) = A. Assume that all the eigenvalues of A (mod P)

∈ MN×N(K) (lying in the algebraic closure of K) lie in K . Then there is an
invertible matrix H with coefficients from R such that

(i) (H�H−1)′(0̄) (mod P) is equal to the Jordan form of A (mod P);
(ii) 0̄ = ȳ0, ȳ1, . . . , ȳk−1 is a cycle for � = H�H−1, where ȳi = Hx̄i . Moreover,

w(ȳi) = w(x̄i) (in particular, 0̄ = x̄0, x̄1, . . . , x̄k−1 is a (�)-cycle if and only if
0̄ = ȳ0, ȳ1, . . . , ȳk−1 is such), and for all r , (A − I )r x̄1 ≡ 0̄ (mod P w(x̄1)+1)

iff (B − I )r ȳ1 ≡ 0̄ (mod P w(ȳ1)+1), where B = � ′(0̄).

Proof. From the theory of linear spaces it follows that there is a matrix H1 with
coefficients from K (here we use the assumption) such that H1A (mod P)H−1

1
is the Jordan form of A (mod P). Let H be an N × N matrix with coefficients
from R : H (mod P) = H1. H is invertible since R is local. Put ȳi = Hx̄i .
Then 0̄ = ȳ0, ȳ1, . . . , ȳk−1 is a cycle for � = H ◦ � ◦ H−1 (clearly, � is a
polynomial mapping with coefficients from R). Clearly, w(ȳi) = w(x̄i) holds,
and (H�H−1)′(0̄) (mod P) = H1A (mod P)H−1

1 . The rest follows from (B −
I )r ȳ1 ≡ (HAH−1 − I )rH x̄1 ≡ H(A − I )r x̄1 (mod P w(x̄1)+1) and w(Hx̄) =
w(x̄) for any x̄ ∈ RN . �

2.4. A Local-to-Global Principle

We shall use the following theorem (it is Theorem 3.2 from [Pe3]).

Theorem. Let R be a Dedekind domain, and let P(R) denote the family of all
nonzero prime ideals of R. If N ≥ 2, then

CYCL(R,N) =
⋂

p∈P(R)

CYCL(Rp,N) =
⋂

p∈P(R)

CYCL(R̂p,N),

where R̂p is the completion of Rp with respect to the obvious valuation. In partic-
ular, this holds for the rings of integers in finite extensions of Q.

3. Cycles of Length pα

In this section, we assume that R is as in Section 2.1 and, in addition, e =
w(p) = 1. We use the notation from Section 2.1. We denote

∏r
i=0 Ci :=

CrCr−1 · · ·C0.

Proposition 3.1. Let 0̄ = x̄0, x̄1, . . . , x̄pα−1 be a (�)-cycle in RN of length
pα(α ≥ 1) for a (polynomial) mapping � such that A = �′(0̄) fulfills A(A −
I )M ≡ 0 (mod P). Assume that w(x̄pα−1) ≥ 2.

Then M ≥ pα−1(p − 1)/2, and the equality may take place only if the condi-
tions p = 2, α ≥ 2, and w((A − I )2α−2−1x̄1) = 1 hold simultaneously.

Proof. Below W1,W2, . . . are some polynomials with integer coefficients such
that Wi(0) = 0 for all i ≥ 1.
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Let γ be the smallest such that w(x̄pγ ) ≥ 2. Put δ = α − 1 − γ . So, we have

δ ≥ 0. Put (�pγ
)′(0̄) = B and (�pα−1

)′(0̄) = D. Then, by Lemma 2.1(iii), we
get D ≡ Bpδ

(mod P 2), D ≡ Apα−1
(mod P), and B ≡ Apγ

(mod P). Hence,
B − I = (A − I )p

γ + pC for some matrix C with coefficients from R.
Since Apγ − I = (A − I )p

γ + pW1(A − I ); B − I ≡ (A − I )p
γ

(mod P);
D − I ≡ (A − I )p

α−1
(mod P), we have, using p ∈ P ,

(D − I )p−1 +
(

p

p − 1

)
(D − I )p−2 + · · · +

(
p

2

)
(D − I ) + pI

≡ (Bpδ − I )p−1 + pI + pW2(A − I )

≡ (B − I )p
δ(p−1) + pI + pW3(A − I )

≡ ((A − I )p
γ + pC)p

δ(p−1) + pI + pW3(A − I )

≡ (A − I )p
α−1(p−1) + p

pδ(p−1)−1∑
J=0

(A − I )p
γ J C(A − I )p

γ (pδ(p−1)−1−J )

+ pI + pW3(A − I ) (mod P 2). (2)

Put d = w(x̄pα−1). Hence, d ≥ 2.

From Lemma 2.1(ii) it follows that 0̄ = (�pα
)(0̄) = ((�pα−1

)p)(0̄) ≡ ((D −
I )p−1 + (

p
1

)
(D − I )p−2 +· · ·+pI)x̄pα−1 ≡ (A− I )p

α−1(p−1)x̄pα−1 (mod P d+1).

Thus, (A − I )p
α−1(p−1)x̄pα−1 ≡ 0̄ (mod P d+1), and from A(A − I )Mx̄pα−1 ≡

0̄ (mod P d+1), using Lemma 2.1(iv), we arrive at (A − I )min(M,pα−1(p−1)) ×
x̄pα−1 ≡ 0̄ (mod P d+1). In particular, M > 0.

Assume that M ≤ pα−1 p−1
2 . Hence,

(A − I )p
α−1(p−1)/2x̄pα−1 ≡ 0̄ (mod P d+1). (3)

Since M ≥ 1, the number pα−1(p − 1) is even.
Assume, in addition, that pδ(p − 1) is even.
If J < pδ p−1

2 , then J ≤ pδ p−1
2 −1, and pγ (pδ(p−1)−1−J ) ≥ pγ pδ p−1

2 =
pα−1 p−1

2 follows. So, by (3), for such J , we obtain p(A − I )p
γ J C(A −

I )p
γ (pδ(p−1)−1−J )x̄pα−1 ≡ 0̄ (mod P d+2).
Thus, by Lemma 2.1(ii) and (2) (for some matrix C1 with coefficients from R)

we get 0̄ = ((�pα−1
)p)(0̄) ≡ ((D−I )p−1 +· · ·+pI)x̄pα−1 ≡ ((A−I )p

α−1(p−1)+
p(A−I )p

α−1(p−1)/2C1 +pI +pW3(A−I ))x̄pα−1 ≡ 0̄ (mod P d+2). Putting ū =
((A − I )p

α−1(p−1)/2 + pC1)x̄pα−1 , we then obtain

p(I + W3(A − I ))x̄pα−1 + (A − I )p
α−1(p−1)/2ū ≡ 0̄ (mod P d+2). (4)

From (3) it follows that ū ≡ 0̄ (mod P d+1). Since (A − I )p
α−1(p−1)/2 and

W3(A − I ) commute, using (3), we infer by acting (A − I )p
α−1(p−1)/2 on both

sides of (4) that (A − I )p
α−1(p−1)ū ≡ 0̄ (mod P d+2).
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The last congruence, ū ≡ 0̄ (mod P d+1), and A(A − I )Mū ≡ 0̄ (mod P d+2)

(using Lemma 2.1(iv)) give (A− I )p
α−1(p−1)/2ū ≡ 0̄ (mod P d+2), and by (4) we

obtain (pI +pW3(A−I ))x̄pα−1 ≡ 0̄ (mod P d+2) or, equivalently, (I + (W3(A−
I ))x̄pα−1 ≡ 0̄ (mod P d+1). Since 1 + W3(X)|1 − (W3(X))p

α−1(p−1) (as polyno-
mials), we then obtain

(I − (W3(A − I ))p
α(p−1))x̄pα−1 ≡ 0̄ (mod P d+1). (5)

But W3(0) = 0, and in view of (3), we obtain (W3(A − I ))p
α(p−1)x̄pα−1 ≡ 0̄

(mod P d+1).
Hence, from (5), we get x̄pα−1 ≡ 0̄ (mod P d+1), a contradiction.

So, we obtained that if M ≤ pα−1 p−1
2 , then pδ(p − 1) is odd, and it follows

that δ = 0 and p = 2. Since M ≤ pα−1 p−1
2 , we get α ≥ 2.

In view of δ = 0, we obtain, using Lemma 2.1(ii) and Lemma 2.2(i), that 0̄ �≡
x̄2α−2 ≡ ((A− I )2α−2−1 + (2α−2

1

)
(A− I )2α−2 +· · ·+ 2α−2I )x̄1 ≡ (A− I )2α−2−1x̄1

(mod P 2).
By Lemma 2.1(ii), 0̄ = (�2α

)(0̄) ≡ (A − I )2α−1x̄1 (mod P 2). Now, for
M < pα−1 p−1

2 = 2α−2, the last congruence, by Lemma 2.1(iv), would give

(A − I )2α−2−1x̄1 ≡ 0̄ (mod P 2), a contradiction. �

Remark 3.1. In the proof of Proposition 3.1, we obtained M > 0 not using
w(x̄pα−1) ≥ 2, but only w(x̄pα−1) > 0.

Proposition 3.2. Let 0̄ = x̄0, x̄1, . . . , x̄pα−1 be a (�)-cycle in RN of length pα

(α ≥ 1) for a (polynomial) mapping � such that A = �′(0̄) fulfills A(A−I )M ≡ 0
(mod P). Assume that w(x̄pα−1) = 1. Then M ≥ pα−1 p−1

2 , and the equality may

take place only for p ≥ 3 and (A − I )p
α−1(p−1)/2−1x̄1 �≡ 0̄ (mod P 2).

Proof. Let us first consider p = 2. Since x̄2α−1 ≡ (A − I )2α−1−1x̄1 (mod P 2),
the inequality M ≤ pα−1 p−1

2 = 2α−2 would, by Lemma 2.1(iv), give (A −
I )2α−2

x̄1 ≡ 0̄ (mod P 2) (note that, since M > 0 by Remark 3.1, we have α ≥ 2).
This, in view of 2α−2 ≤ 2α−1 − 1, gives w(x̄2α−1) ≥ 2, a contradiction.

So, let p ≥ 3.
Let I1, . . . , Is be the sizes of the basic blocks corresponding to the eigenvalue

1 with the help of which the Jordan form of the matrix A (mod P) is built.
Let Is+1 be the multiplicity of the possible eigenvalue 0 of A (mod P). Note

that, by Remark 3.1, we have s > 0; Is+1 may be 0. Notice that I1, . . . , Is ≤ M

(which follows from the considering the Jordan form of A (mod P)).
Using Lemma 2.4 and renaming the variables in the pattern X1 → X(1,1),

X2 → X(1,2), . . . ,XI1 → X(1,I1),XI1+1 → X(2,1), and so on, we may thus as-
sume that A = G + pC, where C is a matrix with coefficients from R, and
the ((i, j), (k, l))th entry of G equals 0 except for (i, j) = (k, l) (with i ≤ s) or
(i = k ≤ s, l = j + 1), where it equals 1.
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Since 0̄ ≡ (A − I )p
α−1x̄1 (mod P 2), we may define n0 as the smallest n sat-

isfying (A − I )nx̄1 ≡ 0̄ (mod P 2). Moreover, (x̄1)(s+1,l) ≡ 0 (mod P 2) for any
l ≤ Is+1.

In view of A(A − I )Mx̄1 ≡ 0̄ (mod P 2) and (A − I )p
α−1x̄1 ≡ 0̄ (mod P 2),

using Lemma 2.1(iv), we obtain (A−I )Mx̄1 ≡ 0̄ (mod P 2), and M ≥ n0 follows.
Since x̄pα−1 ≡ (A − I )p

α−1−1x̄1 (mod P 2) and w(x̄pα−1) = 1, we get M ≥
n0 ≥ pα−1.

From the definition of n0 it follows that n0 is the biggest n such that (x̄1)(i,n) �≡
0 (mod P 2) for some i ≤ s. After some possible reordering of variables, we may
assume that this holds for i = 1, that is, (x̄1)(1,n0) �≡ 0 (mod P 2).

In order to prove the assertion of the proposition, it suffices to disprove M =
pα−1 p−1

2 > n0.

Assume the contrary, that is, M = pα−1 p−1
2 > n0.

Let  := (�pα
(0̄))(1,n0−pα−1+1). We are going to get that  �≡ 0 (mod P 3),

contradicting �pα
(0̄) = 0̄.

Lemma 3.1. Under the same notation and assumptions,

(i) only constant and linear terms of � may influence  (mod P 3),
(ii)  �≡ 0 (mod P 3).

Proof. Put H := G − I .
(i) Clearly, it suffices to deal with summands of � of degree 2. Let γ be the co-

efficient of X(i,j)X(k,l) in �(m,n), the (m,n)th coordinate of �. By Lemma 2.3(i),
γ influences (linearly)  (mod P 3) with the coefficient

c :=
∑

m1,s1,t1≥0

αm1s1t1(H
s1 x̄1)(i,j)(H

t1 x̄1)(k,l)(H
m1 ē(m,n))(1,n0−pα−1+1).

Taking into account the very special form of H (mod P), we get
(Hm1 ē(m,n))(1,n0−pα−1+1) ∈ P for m > 1 or m1 ≥ I1 − (n0 − pα−1) and
(Hs1 x̄1)(i,j) ∈ P 2 for s1 ≥ n0 (and a similar relation for t1).

So, we restrict our interest to summands of c corresponding to m1 ≤ I1 − (n0 −
pα−1) − 1 ≤ M − (n0 − pα−1) − 1; s1, t1 ≤ n0 − 1.

But for such indices (for n1 ≤ t1 + 1), we have m1 + s1 + n1 + 2 ≤ M −
(n0 − pα−1) − 1 + n0 − 1 + n0 + 2 ≤ pα−1 p−1

2 + n0 + pα−1 < pα and (in

view of n0 < pα−1 p−1
2 and Lemma 2.2(i)) p|( pα

m1+s1+n1+2

)
. Hence, p|αm1s1t1 =∑t1+1

n1=0

(
s1+1

t1+1−n1

)(
s1+1+n1

n1

)(
pα

m1+s1+n1+2

)
. Finally, p3|c.

(ii) By (i) and Lemma 2.3(i) we have

 ≡
∑
m≥0

(
pα

m + 1

)
((H + pC)mx̄1)(1,n0−pα−1+1) (mod P 3).
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Since p|( pα

m+1

)
for 0 ≤ m < pα − 1, we then obtain

 ≡
pα−1∑
m=0

(
pα

m + 1

)
(Hmx̄1)(1,n0−pα−1+1)

+
pα−2∑
J=0

(Hpα−2−J pCHJ x̄1)(1,n0−pα−1+1)

:= S1 + S2 (mod P 3).

In S2, if J ≥ M or pα − 2 − J ≥ M − (n0 − pα−1), then

(Hpα−2−J pCHJ x̄1)(1,n0−pα−1+1) ≡ 0 (mod P 3).

However, J ≤ M − 1 and pα − 2 − J ≤ M − (n0 − pα−1) − 1 would give pα ≤
2M − n0 + pα−1 < pα , a contradiction. So, S2 ≡ 0 (mod P 3).

From the definition of n0 and Lemma 2.2(i) we get

S1 ≡
(

pα

pα−1

)
(Hpα−1−1x̄1)(1,n0−pα−1+1) ≡ p(x̄1)(1,n0) �≡ 0 (mod P 3).

Thus,  �≡ 0 (mod P 3). �

The proof of the proposition is now completed. �

4. Examples of (�)-Cycles of Length pα

Here, R is as in Section 3.

Proposition 4.1. Let p ≥ 3 and α ≥ 1. Then for N ≥ pα−1 p−1
2 , there is a (�)-

cycle of length pα in RN .

Proof. Clearly, it suffices to take N = pα−1 p−1
2 . Moreover (see Proposi-

tion 2.1(ii)), we assume that R is complete. Let � = (�1, . . . ,�N) : RN → RN

be defined as follows:

�i(X1, . . . ,XN) = Xi + Xi+1 + pciX2+pα−1(p−3)/2 for i �≡ 1 (mod pα−1),
i < N ;
�i(X1, . . . ,XN) = Xi + Xi+1 for i ≡ 1 (mod pα−1), i < N ;
�N(X1, . . . ,XN) = p + XN + ∑(p−3)/2

t=0 rtX1X1+tpα−1 for α = 1 (i.e., N ≡ 1
(mod pα−1));
�N(X1, . . . ,XN) = p + XN + ∑(p−3)/2

t=0 rtX1X1+tpα−1 + pcNX2+pα−1(p−3)/2
for α > 1.

Notice that 1 + p−3
2 pα−1 ≤ pα−1 p−1

2 . Moreover, 2 + pα−1 p−3
2 ≤ pα−1 p−1

2 fails
only for α = 1, but then i ≡ 1 (mod pα−1) for all i < N . Thus, � is well defined.

We are going to show that for a suitable choice of ci, rt , the tuple 0̄,�(0̄), . . . ,

�pα−1(0̄) is a (�)-cycle of length pα for �.
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Lemma 4.1. The T th coordinate of (�pα
)(0̄) is of the following form:

(i) (
pα

pα−1((p − 1)/2 − g)

)
p + p2

(
pα−1((p + 1)/2 + g)

pα−1(1 + g)

)
r(p−3)/2−g

+ p2Up,α,g

(
rm : 0 ≤ m <

p − 3

2
− g

)

+ p3Vp,α,g(r0, . . . , r(p−3)/2, ci : i �≡ 1 (mod pα−1))

for T = 1 + gpα−1 with some g: 0 ≤ g ≤ p − 3

2
;

(ii) (
pα

pα−1(p − 1)/2 − T + 1

)
p + p2

(
pα

pα−1

)
cT

+ p3cT r0

((
pα−1(p − 1)

pα−1(p − 1)/2

)
+ 2

(
T − 1 + pα−1(p + 1)/2

pα−1(p − 1)/2

))

+ p3Ũp,α,T (r0, . . . , r(p−3)/2, ci (i �≡ 1 (mod pα−1), i > T ))

+ p4Ṽp,α,T (r0, . . . , r(p−3)/2, ci : i �≡ 1 (mod pα−1))

for T �≡ 1 (mod pα−1),

where the polynomials Up,α,g , Vp,α,g , Ũp,α,T , Ṽp,α,T have integer coefficients,
and Up,α,(p−3)/2 = 0.

Proof. Write �′(0̄) = I + G + pC, where G = Jpα−1(p−1)/2(0). For i �≡ 1
(mod pα−1), let Ci be an N × N matrix with only one nonzero entry, namely
its (i,2 + pα−1 p−3

2 )th entry equals ci .

We write �pα
(0̄) in the simplest form, that is, without any redundant terms. Let

us take a particular summand  of (�pα
(0̄))T . Let a be the homogenous degree

of  with respect to rh, and let b be the corresponding degree with respect to ci .
Lemma 2.1(iv) shows that  is divisible by pa+b+1.

From the point of view of the validity of the lemma, only some values of (a, b)

(as listed in cases 1–5) are of interest.
Case 1: a = 1, b = 0. Let  be divisible by rh.
According to Lemma 2.3(i), such a term equals

 = rh
∑

m,s,t≥0

αmst (G
s(pēN ))1(G

t (pēN))1+hpα−1(G
mēN)T

with

αmst =
t+1∑
n=0

(
s + 1

t + 1 − n

)(
s + 1 + n

n

)(
pα

m + s + n + 2

)
.

Since (GsēN )1 �= 0 only for s = N − 1 = pα−1 p−1
2 − 1 (and then equals 1),

we may assume that s = pα−1 p−1
2 − 1. In a similar manner, we may assume that
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t = pα−1(
p−1

2 − h) − 1; m = pα−1 p−1
2 − T . Hence,

 = p2rhαN−T ,N−1,pα−1((p−1)/2−h)−1

= p2rh

pα−1((p−1)/2−h)∑
n=0

(
N

pα−1((p − 1)/2 − h) − n

)

×
(

N + n

n

)(
pα

2N − T + n + 1

)
.

Then write  := p2rhγ .
Using Lemma 2.2(i), we obtain that if T �≡ 1 (mod pα−1), then p|γ , in full

accordance with the assertion.
So, let T ≡ 1 (mod pα−1) and put T = 1 + gpα−1 (for some 0 ≤ g ≤ p−3

2 ).
This gives

γ ≡ δh≤(p−3)/2−g

(
pα−1(p − 1)/2

pα−1((p − 3)/2 − h − g)

)

×
(

pα−1((p + 1)/2 + g)

pα−1(1 + g)

)
(mod p),

again in full accordance with the assertion of the lemma.
Case 2: a = 1, b = 1 (only for T �≡ 1 (mod pα−1)). Let  be divisible by rgci .

It suffices to deal with i ≤ T .
Lemma 2.3(i) gives

 = p3rg(γ1 + γ2 + γ3),

where

γ1 := ∑
m,s,t≥0 αmst (

∑s−1
J=0 Gs−1−J CiG

J ēN)1(G
t ēN )1+gpα−1(GmēN)T ;

γ2 := ∑
m,s,t≥0 αmst (G

sēN )1(
∑t−1

J=0 Gt−1−J CiG
J ēN )1+gpα−1(GmēN)T ; and,

finally,
γ3 := ∑

m,s,t≥0 αmst (G
sēN )1(G

t ēN )1+gpα−1(
∑m−1

J=0 Gm−1−J CiG
J ēN )T .

We are going to look for nonzero terms in γ1, γ2, γ3. Put αmst =∑t+1
n=0

(
s+1

t+1−n

)(
s+1+n

n

)(
pα

m+s+n+2

) := ∑t+1
n=0 βn.

In γ1 we must have (otherwise, the corresponding summand is 0) J = pα−1 −
2; m = N − T ; t = pα−1(

p−1
2 − g) − 1; s − 1 − J = i − 1; s = i − 2 + pα−1.

We see that the only possibility that p � βn is when m + s + n + 2 = pα ,
which leads to N − T + i − 2 + pα−1 + pα−1(

p−1
2 − g) + 2 ≥ pα and i − T −

pα−1g ≥ 0. Since i ≤ T , we see that p � βn only for i = T , g = 0, and n = t +1 =
pα−1(

p−1
2 − g) = pα−1 p−1

2 .
Hence, if i < T or (i = T , g > 0), then p|γ1; if i = T , g = 0, then γ1 ≡(T −1+pα−1(p+1)/2
pα−1(p−1)/2

)
cT (mod p).

For γ2, γ3, we proceed in a similar manner and obtain: if i < T or (i = T ,
g > 0), then p|γ2, γ3; if (i = T , g = 0), then γ1 ≡ γ2 (mod p) and γ3 ≡ (2N

N

)
cT

(mod p).
This agrees with the assertion of the lemma.
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Case 3: a = 0, b = 2 (only for T �≡ 1 (mod pα−1)). Lemma 2.3(i) shows that
the sum γ of all  with a = 0, b = 2 in (�pα

(0̄))T equals γ = p3 ∑
m≥0

(
pα

m+1

)×∑
i,j �≡1 (mod pα−1)

∑
J+K+L=m−2(G

J CiG
KCjG

LēN)T .

Hence,

γ ≡ p3
∑

i,j �≡1 (mod pα−1)

∑
J+K+L=pα−3

(GJ CiG
KCjG

LēN)T (mod p4).

In the last inner sum, it suffices to take L = pα−1 − 2; K = j − 2 − pα−1 p−3
2 ;

J = i−T (otherwise, the corresponding summand is 0). But, for such values of J ,
K , L, we have J +K +L = i+j −T −4−pα−1 p−5

2 . Since J +K +L = pα −3,

we then obtain i + j − T = pα−1 3p−5
2 + 1, and min{i, j} > T follows.

Thus, only (i, j) such that min{i, j} > T may influence γ (mod p4), which
agrees with the assertion of the lemma.

Case 4: a = 0, b = 1. Let  be divisible by ci . Lemma 2.3(i) gives

 = p2
∑
m≥0

(
pα

m + 1

) ∑
J+K=m−1

(GJ CiG
KēN)T .

The summand (GJ CiG
KēN)T is nonzero only for K = pα−1 − 2; J = i − T ,

and then m = i − T + pα−1 − 1.

Hence,  = p2
( pα

i−T +pα−1

)
ci for i ≥ T , and  = 0 for i < T . Since i − T +

pα−1 < pα , we have p|( pα

i−T +pα−1

)
, again in full agreement with the assertion of

the lemma.
Case 5: a = 0, b = 0. Lemma 2.3(i) shows that

 = p
∑
m≥0

(
pα

m + 1

)
(GmēN)T = p

(
pα

pα−1(p − 1)/2 + 1 − T

)
.

The lemma is proved. �

Lemma 2.3(i) gives (�pα−1
(0̄))N−pα−1+1 ≡ p (mod p2), and �pα−1

(0̄) �= 0̄ fol-
lows.

Let (�pα
(0̄))1+gpα−1 = p2Lg for 0 ≤ g ≤ p−3

2 , and (�pα
(0̄))T = p3MT for

T �≡ 1 (mod pα−1). Observe that MT , Lg are polynomials with coefficients
from R.

We order the polynomials MT , Lg as follows. First, we put MT according to
rising indices, and then we put Lg according to rising indices. Each MT precedes
each Lg .

Let � : RN → RN be a map whose coordinates are of the form MT or
Lg , respecting the just mentioned order. For example, if pα = 25, then � =
(M2,M3,M4,M5,M7,M8,M9,M10,L0,L1). We treat � as the polynomial
mapping in {ci}, {rg}.
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We order these variables as follows. This order is similar to the way we ordered
the polynomials MT , Lg . The only change is that we order {rg} according to de-
creasing indices. For example, if pα = 25, then c2, c3, c4, c5, c7, c8, c9, c10, r1, r0
is the proper order of variables.

We observe that there is a unique solution z̄0 = z̄ (mod P) of �(z̄) ≡ 0̄
(mod P). Namely, using L(p−3)/2 = 0, we first determine the last coordinate
of z̄0, that is, r0 (mod P). Then we determine r1 (mod P) (using L(p−5)/2 = 0),
. . . , r(p−3)/2 (mod P), and cT (mod P) starting from the biggest T (using
MT = 0).

We observe that � ′(z̄0) (mod P) is upperdiagonal (recall the order of vari-
ables introduced before) with nonzero terms on the main diagonal. The key obser-

vation is that for any 1 ≤ T ≤ N +pα−1 p−1
2 , we have 1

p

( pα

pα−1

)+r0
( pα−1(p−1)

pα−1(p−1)/2

)+
2r0

(T −1+pα−1(p+1)/2
pα−1(p−1)/2

) ≡ 2r0
(T −1+pα−1(p+1)/2

pα−1(p−1)/2

) �≡ 0 (mod p) for r0 satisfying

L(p−3)/2 = 0.
Hence, � ′(z̄0) is invertible. Using the N -dimensional Hensel’s lemma, we ob-

tain that there is a unique solution of �(z̄) = 0̄. The coordinates of this solution,
that is, cT and rg determine entirely � such that the tuple 0̄,�(0̄), . . . is a (�)-
cycle of length pα for �. The proof of the proposition is now completed. �

Proposition 4.2. Let p = 2 and α ≥ 1. Then for N > pα−1 p−1
2 = 2α−2, there is

a (�)-cycle of length pα = 2α in RN .

Proof. The mapping X �→ −X + 2 has the (�)-cycle 0,2 of length 2 = 21 in R1.
The mapping (X,Y ) �→ (−Y,X) has the (�)-cycle (2,0), (0,2), (−2,0), (0,−2)

of length 4 = 22 in R2.
For α ≥ 3, we take R complete (see Proposition 2.1(ii)). Clearly, it suffices to

take N = 2α−2 + 1.
First, we consider α ≥ 4. So, we have to show that in R2α−2+1 there is a (�)-

cycle of length 2α . Let � = (�1, . . . ,�N) : RN → RN be defined as follows:
�2k−1(X1, . . . ,XN) = X2k−1 + X2k + r2k−1X1X2 + r2kX1X3,�2k(X1, . . . ,

XN) = X2k + X2k+1 for 1 ≤ k ≤ 2α−3; and �N(X1, . . . ,XN) = 2 + XN +
rNX1X2 + rN+1X1X3.

We are going to show that for a suitable choice of r1, . . . , rN+1 a tuple
0̄,�(0̄), . . . ,�2α−1(0̄) is a (�)-cycle for � (of length 2α). We need the follow-
ing:

Lemma 4.2. Let �,p,R,α,N = 2α−2 + 1, . . . be as before. Put IN = 16Z[r1,

. . . , rN+1], and for T < N = 2α−2 + 1, we put IT = 8Z[rT +1, rT +2, . . . , rN+1]+
16Z[r1, . . . , rN+1]. Then

(i) (�2α−1
(0̄))N ≡ 4rN+1 (mod 8Z[r1, . . . , rN+1]);

(ii) (�2α
(0̄))T (mod IT ) equals

8rT rN+1 for T < N , T odd;
8rNrN+1 + 8rN+1 for T = N ;
8rT rN for T even.
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Proof. We sometimes switch to the notation from Lemma 2.3. For example,
r5,1,3 = r6; r2,3,4 = 0.

(i) Since (in �) rijk may be nonzero only for (j = 1; k ∈ {2,3}), for nonzero
rijk , we obtain j = 1 and k = 2 + � with � ∈ {0,1}. Lemma 2.3(i) gives

(�2α−1
(0̄))N ≡ 2α + 4rN,1,2α0,N−1,N−2

+ 4rN,1,3α0,N−1,N−3 (mod 8Z[r1, . . . , rN+1]).
Since α ≥ 4, we obtain that 8|2α and α0,N−1,N−2 is even, whereas α0,N−1,N−3 is
odd. Moreover, rN,1,3 = rN+1, and we are done.

(ii)1. The part of (�2α
(0̄))T consisting of all terms divisible by at most one ri ,

by Lemma 2.3(i), equals

2

(
2α

N − T + 1

)
+ 4

∑
i≥0

1∑
�=0

ri,1,2+�δi≥T αi−T ,2α−2,2α−2−1−�. (6)

Since N − T + 1 < 2α−1, we have 8|( 2α

N−T +1

)
. For T = N , we even have

16|2( 2α

N−T +1

)
. Hence, the first term of (6) has no influence on the validity of the

assertion.
For i ≥ T , we have

αi−T ,2α−2,2α−2−1−�

=
2α−2−�∑

n=0

(
2α−2 + 1

2α−2 − � − n

)(
2α−2 + 1 + n

n

)(
2α

i − T + 2α−2 + n + 2

)
. (7)

Since i − T + 2α−2 + n + 2 ≤ 3 · 2α−2 + 2 < 2α , we have 2|( 2α

i−T +2α−2+n+2

)
, and

2|αi−T ,2α−2,2α−2−1−� follows. Hence, in the second term of (6), only summands
corresponding to i = T may influence the validity of the assertion of this lemma.

Let therefore i = T . The only summand of (7) possibly not divisible by 4

corresponds to n = 2α−2 −2. Hence, α0,2α−2,2α−2−1−� ≡ 2
(2α−2+1

2−�

)
(mod 4), and

α0,2α−2,2α−2−1−� is not divisible by 4 only for � = 1. Hence, the second term
(equal to 8rN+1) in (6) influences the validity of the assertion only for i = T = N .

(ii)2. Now we consider terms divisible by two ri (note that, by Lemma 2.3(ii),
we may neglect considering terms divisible by three ri ). Hence, we consider ET

from Lemma 2.3(iii).
We have k1 = k2 = 1 and l1 = 2 + �; l2 = 2 + δ for some �,δ ∈ {0,1}.
Lemma 2.3(iii) shows that

ET = 8
∑

i1,i2 odd

1∑
�,δ=0

ri2,1,2+δri1,1,2+�

×M(i2 − T ,2α−2 − δ,2α−2 + 1,2α−2 − �, i1 − 1)

+ 8
∑

i1,i2 odd

1∑
�,δ=0

ri2,1,2+δri1,1,2+�

×M(i2 − T ,2α−2 + 1,2α−2 + 1,2α−2 − �, i1 − 2 − δ). (8)
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We are interested in terms of this sum not belonging to IT .
First, let us deal with even T . Note that for odd i > T , the variables ri,1,2,

ri,1,3 correspond to ri , ri+1, and i, i + 1 > T . Since we look in (8) for terms not
belonging to IT , we may assume that min{i1, i2} ≤ T − 1. If i2 < T , then, by
definition, the corresponding summand vanishes.

Note that all arguments of M in (8) are smaller than 2α−1, and (still under
min{i1, i2} < T ) (i2 − T ) + (2α−2 − δ) + (i1 − 1) + 1, (i2 − T ) + (2α−2 + 1) +
(i1 − 2 − δ) + 1 ≤ 2α−1, with equality only for i2 = 2α−2 + 1, i1 = T − 1, δ = 0.
In view of the formula for M in Lemma 2.3(iii) and Lemma 2.2(v), we then get
that, for even T ,

ET ≡ 8
1∑

�=0

rN,1,2rT −1,1,2+�(1 + 2) (mod IT ),

with 1 := M(N − T ,2α−2,2α−2 + 1,2α−2 − �,T − 2) and 2 := M(N −
T ,2α−2 + 1,2α−2 + 1,2α−2 − �,T − 3).

Lemma 2.3(iii) and Lemma 2.2(i), (iv), (v) show that

1 ≡
(

2α−2 + T − 2

T − 2

) 2α−1∑
J=0

(
J

2α−2 + 1

)(
J

2α−2 − �

)(
2α − 1 − J

2α−1

)

≡
(

2α−2 + 1

2 − �

)
(mod 2),

and 1 is odd only for � = 1.

Since 2|(2α−2+1+(T −3)
T −3

)
, the same lemmas as above show that 2|2. Altogether,

we get ET ≡ 8rN,1,2rT −1,1,3 = 8rNrT (mod IT ) for even T .
Secondly, let T be odd. Like in the case of even T , it suffices to deal with

min{i1, i2} ≤ T . Moreover, if min{i1, i2} < T (and therefore min{i1, i2} ≤ T − 2)
or max{i1, i2} ≤ N − 1, then (i2 −T )+ 2α−2 − δ + i1 − 1 + 1, (i2 −T )+ 2α−2 +
1 + (i1 − 2 − δ) + 1 < 2α−1, and, by Lemma 2.2(v) and Lemma 2.3(iii), the
corresponding terms in (8) do lie in IT . Hence, it suffices to deal with (i1, i2)

satisfying {i1, i2} = {T ,2α−2 + 1}. Since rT ,1,3 corresponds to rT +1, by (8) we
obtain that, for odd T < N ,

ET ≡ 8
1∑

δ=0

rN,1,2+δrT (1 + 2) + 8
1∑

�=0

rT rN,1,2+�(3 + 4) (mod IT ),

where 1 := M(N − T ,2α−2 − δ,2α−2 + 1,2α−2, T − 1); 2 := M(N −
T ,2α−2 + 1,2α−2 + 1,2α−2, T − 2 − δ); 3 := M(0,2α−2,2α−2 + 1,2α−2 −
�,2α−2); 4 := M(0,2α−2 + 1,2α−2 + 1,2α−2 − �,2α−2 − 1). In a similar
manner, we get

EN ≡ 8
1∑

�,δ=0

rN,1,2+δrN,1,2+�(5 + 6) (mod IT ),
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where 5 := M(0,2α−2 − δ,2α−2 +1,2α−2 −�,2α−2) and 6 := M(0,2α−2 +
1,2α−2 + 1,2α−2 − �,2α−2 − 1 − δ).

Claim 4.1. Under the same notation and assumptions, i is odd only for:

(i) i = 4; � = 1;
(ii) i = 5; δ = � = 1;

(iii) i = 6; � = 1; δ ∈ {0,1}.
Proof. The scheme of the proof of all items is similar. For i = 1, . . . ,6, put i =
M(a, b, c, d, z). Lemma 2.3(iii) gives (for i �= 2 or T �= 1) that

i =
b∑

m=0

z∑
l=0

(
m

z − l

)(
m + l

l

) 2α−1∑
J=0

(
J

c

)(
J

d

)(
J + 1

b − m

)(
2α − 1 − J

a + m + l + 1

)
. (9)

Put m = b − φ1; l = z − φ2. Note that

a + m + l + 1 = 2α−1 + (1 − δ − φ1 − φ2) ≤ 2α−1 + 1 for i = 1,2,5,6;
a + m + l + 1 = 2α−1 + (1 − φ1 − φ2) ≤ 2α−1 + 1 for i = 3,4.

Clearly, c, d,φ1 < 2α−1, and if a + m + l + 1 < 2α−1, then, by Lemma 2.2(v),
the inner sum in (9) is even.

Note that c = 2α−2 +1 is odd. Lemma 2.2(i) gives that, for any J , the numbers(
J
c

)(
J+1

1

)
and

(
J
c

)(2α−1−J
2α−1+1

)
are even.

Hence, the inner sum in (9) may be odd only for φ1 = 0; a +m+ l +1 = 2α−1.
The last condition gives φ2 = 1 − δ for i = 1,2,5,6; φ2 = 1 for i = 3,4. From
this point on we assume that φ2 assumes these values. We therefore obtain i ≡
δφ2≤z

(
b
φ2

)(
b+z−φ2
z−φ2

)∑2α−1
J=0

(
J
c

)(
J
d

)(2α−1−J
2α−1

)
(mod 2) and, using Lemma 2.2(iv),

i ≡ δφ2≤z

(
b

φ2

)(
b + z − φ2

z − φ2

)

×
d∑

L=0

(
c

d − L

)(
c + L

L

)(
2α

2α−1 + c + L + 1

)
(mod 2).

Since c = 2α−2 + 1;2α−2 − 2 ≤ d , using Lemma 2.2(i), we then get

i ≡ δφ2≤z

(
b

φ2

)(
b + z − φ2

z − φ2

)(
2α−2 + 1

d − 2α−2 + 2

)(
2α−1 − 1

2α−2 − 2

)
(mod 2). (10)

We have d ∈ {2α−2,2α−2 −1}, and the last but one binomial coefficient in (10),

that is,
( 2α−2+1
d−2α−2+2

)
, is odd only for d = 2α−2 − 1.

Hence, 1, 2 are even, and the remaining i may be odd only for � = 1.
Let us assume that � = 1 and i ∈ {3,4,5,6}. Therefore, d = 2α−2 − 1 and

φ2 ≤ z.
In 3, the coefficient

(
b
φ2

)
is even, and so is 3.

As to 4, for � = 1, we have 4 ≡ (2α−2+1
1

)(2α−2+1+2α−2−1−1
2α−2−2

) ≡ 1 (mod 2).
Hence, 4 is odd only for � = 1.
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For 5, for � = 1, we have 5 ≡ (2α−2−δ
1−δ

)( 2α−1−1
2α−2−1+δ

) ≡ (2α−2−δ
1−δ

)
(mod 2).

Hence, 5 is odd only for δ = � = 1.

As to 6, for � = 1, we obtain 6 ≡ (2α−2+1
1−δ

)(2α−1−1
2α−2−2

) ≡ 1 (mod 2). Hence,
6 is odd only for � = 1 and any δ ∈ {0,1}. �

The assertion of the lemma follows from Claim 4.1 (do not forget about 8rN+1

for T = N from (ii)1). �

Put rN+1 = 1.
Since the N th coordinate of �2α−1

(0̄) is congruent to 4 (mod 8Z[r1, . . . , rN ]),
we obtain �2α−1

(0̄) �= 0̄.
To reach our goal, that is, �2α

(0̄) = 0̄, we proceed in a similar way as
in the proof of Proposition 4.1. Notice only that we first determine the coset
of rN (mod P) (namely rN ≡ 1 (mod P)) and then the cosets (mod P) of
rN−1, rN−2, . . . , r1.

Let r ′
1, . . . , r

′
N be a solution of a suitable system of congruences (mod 16R).

In particular, r ′
N ≡ 1 (mod P). After dividing the resulting equations by 8, we

compose a mapping from RN to RN whose Jacobian matrix (mod P) taken at
(r ′

1, . . . , r
′
N) is upperdiagonal with 1 on the main diagonal. We finish like in the

proof of Proposition 4.1.
We are left with α = 3.
Take �(x,y, z) = (x + y + x2, y + z + bx2 + axy,2 + z + cx2). We see that

�4(0̄) = (12,∗,∗) �= 0̄. By a direct calculation, �8(0̄) = (8a + 8c + 8ac + 8 +
16U1(a, b, c),8 + 8b + 8a + 8ac + 16U2(a, b, c),8c + 16U3(a, b, c)) for some
polynomials U1, U2, U3 with integer coefficients.

Put �(a,b, c) = (a + c+ac+1+2U1(a, b, c),1+b+a +ac+2U2(a, b, c),

c + 2U3(a, b, c)).
We see that �(1,0,0) ≡ 0̄ (mod P). Moreover,

� ′(1,0,0) ≡
⎛
⎝1 0 0

1 1 1
0 0 1

⎞
⎠ (mod P), and � ′(1,0,0) is invertible.

The existence of a, b, c ∈ R: �(a,b, c) = 0̄ follows from Hensel’s lemma. �

Using Propositions 2.1, 4.1, and 4.2 and the preceding lemmas, we get the fol-
lowing:

Proposition 4.3. Let R be as in this section. Let k be such that k|[pf a1 −
1, . . . , pf ar − 1] for some a1, . . . , ar fulfilling a1 + · · · + ar ≤ N . For k > 1, let a

be the minimum of a1 + · · ·+ ar : k|[pf a1 − 1, . . . , pf ar − 1] (and a = 0 if k = 1).
Then in RN there are (�)-cycles of length kpα for all α satisfying

(i) α ≤ max{0, logp(
2(N−a)

p−1 p)} for p ≥ 3;
(ii) and for p = 2:

α < 2 + log2(N − a) for a ≤ N − 2,
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α ≤ 2 for 1 ≤ a = N − 1,
α ≤ 1 for a = N or N = 1.

Proof. (i) By Proposition 2.1(vi), in Ra there is a (�)-cycle 0̄,�(0̄), . . . ,�k−1(0̄)

of length k for some polynomial mapping � : Ra → Ra with coefficients
from R. By Proposition 4.1, for N − a ≥ pα−1 p−1

2 in RN−a , there is a (�)-
cycle 0̄,�(0̄), . . . ,�pα−1(0̄) of length pα for a suitable � : RN−a → RN−a .
Then we see that the mapping (�,�) : Ra × RN−a → Ra × RN−a = RN

given by (�,�)(x̄, ȳ) = (�(x̄),�(ȳ)) has a (�)-cycle 0̄, (�,�)(0̄), . . . of length
[k,pα] = kpα (if a = 0 or a = N in this reasoning, then we skip considering �

or � , respectively).
(ii) We proceed in a similar manner to (i). Using Proposition 4.2, we have that

for N − a > 2α−2 in RN−a , there is a (�)-cycle of length 2α . This settles the case
a ≤ N − 2.

In the remaining possibility a ≥ N − 1, we take R complete (see Proposi-
tion 2.1(ii)).

Let k|m := [2f a1 − 1, . . . ,2f ar − 1] with a = a1 + · · · + ar �= 0. Let (see
Proposition 2.1(iv)) x̄i,0, x̄i,1, . . . , x̄i,2f ai −2 be a (�)-cycle for a linear mapping
�i : Rai → Rai having different eigenvalues and whose eigenvalues are primi-
tive roots of unity of order 2f ai − 1. Put A = (�1, . . . ,�r) : Ra1 × · · · × Rar →
Ra1 × · · · × Rar = Ra and x̄0 = (x̄1,0, . . . , x̄r,0). Then x̄0,A(x̄0), . . . is a (�)-cycle
of length m �= 1 for the linear mapping A : Ra → Ra . In particular, x̄0 �= 0̄. We
may also assume that all the coordinates of x̄0 lie in P .

Let s > 0 be the smallest satisfying (−A)sx̄0 = x̄0. Since
(−A)2mx̄0 = A2mx̄0 = x̄0, we see that s|2m. If s is odd, then s|m and x̄0 =
(−A)mx̄0 = −Amx̄0 = −x̄0, contradicting x̄0 �= 0̄. Hence, s = 2t for some t |m.
Then x̄0 = (−A)2t x̄0 = A2t x̄0, and m|t follows. We have obtained that

(∗) x̄0, (−A)x̄0, . . . is a (�)-cycle in Ra of length 2m for −A.

For the remaining subcase 1 ≤ a = N − 1, we take x̄0, A already fixed and put
�(x, ȳ) = (−x + 2, x̄0 + (1 − x)Aȳ) for x ∈ R and ȳ ∈ RN−1.

To get the assertion of the proposition, it suffices to prove the following:

Lemma 4.3. (0, 0̄),�((0, 0̄)), . . . is a (�)-cycle of length 4m for �.

Proof. Let �0 = �2. Thus, �0(0, ȳ) = (0, (I − A)x̄0 − A2ȳ). Put �(ȳ) = (I −
A)x̄0 − A2ȳ. Since �2l+1((0, 0̄)) = (2, �), in order to prove the assertion, it suf-
fices to get

(i) �2m(0̄) = 0̄;
(ii) �2m/q(0̄) �= 0̄ for any prime q|2m.
By Proposition 2.1 or Lemma 2.3 we have �2m(0̄) = (I − A2 + (−A2)2 +

· · · + (−A2)2m−1)(I − A)x̄0.
Since X2m − 1|(1 −X2 + (−X2)2 + · · ·+ (−X2)2m−1)(1 −X) (note that m is

odd) and (A2m − I )x̄0 = ((−A)2m − I )x̄0 = 0̄, we get (i).
Let q|2m be prime. Put W0(X) = X2m − 1, Wq(X) = (1 − X2 + (−X2)2 +

· · · + (−X2)
2m
q

−1
)(1 − X).
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Let W(X) ∈ Z[X] be any gcd of W0(X) and Wq(X) (in Q[X]).
Suppose that �2m/q(0̄) = 0̄, that is, Wq(A)x̄0 = 0̄. Since W0(A)x̄0 = x̄0, we

obtain by Lemma 2.1(iv) that W(A)x̄0 = 0̄.
If q = 2, then W(X) = 1 −X. But then (I −A)x̄0 = 0̄, (−A)2x̄0 = x̄0, contra-

dicting (∗).
If q > 2, then W(X) = X2m/q − 1, and we get ((−A)2m/q − I )x̄0 = 0̄, contra-

dicting (∗). �

The proof of the proposition is now completed. �

Notice that Proposition 4.3, together with Proposition 2.1(i), proves the “exis-
tence” part of Theorem 1.

5. (�)-Cycles of Length kpα . Estimates of α.
The Finish of the Proof of Theorem 1

Let R be as in Sections 3 or 4. Proposition 2.1(ii) gives CYCL�(R,N) = CYCL�

(R̂,N), and thus we may assume that R is complete.
Let kpα ∈ CYCL � (R,N) (with p � k). By Lemma 2.1(i), in RN there is a

(�)-cycle of the form 0̄ = x̄0, x̄1, . . . , x̄kpα−1 for some mapping �. Put �′(0̄) = C

and B := C (mod P). We treat B as the matrix with entries from K = R/P .
Write the characteristic polynomial F(X) of the matrix B as (−1)NXa0(X −

1)b0F1(X)b1 · . . . · Fr(X)br , where a0, b0 ≥ 0, F1, . . . ,Fr are pairwise different
monic polynomials �= X,X − 1 that are irreducible over K , and b1, . . . , br > 0.
Put ai := degFi for 1 ≤ i ≤ r . By Proposition 2.1(v), k = 1 if r = 0, and k divides
[pf a1 − 1, . . . , pf ar − 1] if r > 0. Put J := [pf a1 − 1, . . . , pf ar − 1](p + 1)N ,
� = �J , and � ′(0̄) = A. Considering the Jordan form of the matrix B , we see,
using Fi(X)|Xpf ai −1 −1, that (I +B +· · ·+BJ−1)max{b1,...,br }(B − I )b0Ba0 = 0
(the size of the biggest basic block not corresponding to the eigenvalue 0 in the
Jordan form is not bigger than max{b0, . . . , br}) and (BJ − I )max{b0,b1,...,br } ×
Ba0 = 0.

Hence,

(I + C + · · · + CJ−1)max{b1,...,br }(C − I )b0Ca0 ≡ 0 (mod P) (11)

and
(A − I )max{b0,b1,...,br }A ≡ 0 (mod P). (12)

From the simple properties of periodic points we get that 0̄,�(0̄),�2(0̄), . . . ,

�pα−1(0̄) is a (�)-cycle of length pα for � (the crucial fact here is p � J =
[pf a1 − 1, . . . , pf ar − 1](p + 1)N ).

Let a be defined as in Theorem 1. In particular, a ≤ a1 + · · · + ar ≤ N .
Let M be the smallest b such that (A − I )bA ≡ (CJ − I )bCJ ≡ 0 (mod P).

In particular, M ≤ max{b0, . . . , br}. We have the following:

Lemma 5.1. Let R be as before. Then we have

(i) pα−1 p−1
2 ≤ M ≤ max{b0, b1, . . . , br}.
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(ii) Suppose that pα−1 p−1
2 = M . Then

(I +C +· · ·+CJ−1)p
α−1(p−1)/2(C − I )p

α−1(p−1)/2−1Ca0 �≡ 0 (mod P), (13)

and, in particular, max{b1, . . . , br} > pα−1 p−1
2 or b0 ≥ pα−1 p−1

2 .

Proof. (i) follows from Propositions 3.1 and 3.2.
(ii) Put W1(X) = (1 + X + · · · + XJ−1)p

α−1(p−1)/2(X − 1)p
α−1(p−1)/2−1 =

(XJ − 1)p
α−1(p−1)/2−1(1 + X + · · · + XJ−1); W2(X) = W1(X)Xa0 ; W3(X) =

(1 + X + · · · + XJ−1)p
α
(X − 1)p

α−1.
If pα−1 p−1

2 = M , then by Propositions 3.1 and 3.2 we get w((A −
I )p

α−1(p−1)/2−1�(0̄)) = 1. Since �(0̄) ≡ (I + C + · · · + CJ−1)x̄1 (mod P 2)

and A ≡ CJ (mod P), we obtain W1(C)x̄1 �≡ 0̄ (mod P 2).
Suppose that (13) does not hold. Then W2(C)x̄1 ≡ 0̄ (mod P 2). Lemma 2.1(ii)

and Lemma 2.2(i) give 0̄ ≡ (A − I )p
α−1�(0̄) ≡ W3(C)x̄1 (mod P 2). Since

W1(X) ∈ (W2(X),W3(X)), Lemma 2.1(iv) then gives W1(C)x̄1 ≡ 0̄ (mod P 2),
a contradiction.

The final assertion of (ii) follows from comparison of (11) with (13). �

Now we characterize tuples k,N,a,M, r, a0, b0, . . . , ar , br ,p,α (with the same
notation) satisfying the following condition:

(C) α obeys the estimates from Lemma 5.1 and disobeys the estimate from
Proposition 4.3.

Note that for p = 2, it suffices to deal with α ≥ 2.

Lemma 5.2 (with the same notation). (C) may take place only if one of the fol-
lowing possibilities holds:

(i) p = 2; a0 = b0 = 0; r = 1; a = a1 = 1; N = 2d + 1 (for some d ≥ 1); M =
b1 = N ; α = d + 2.

(ii) p = 2; a0 = 0; M = b0 = N − a = 2d (for some d ≥ 1 or, only for a = 0,
d = 0); r ≥ 0; b1 = · · · = br = 1 and α = d + 2.

Proof. Assume that (C) holds. We may assume that b1 ≥ b2 ≥ · · · ≥ br .
1. Suppose that b1 > pα−1 p−1

2 .

In this case, pα−1 p−1
2 ≤ b1 − 1 ≤ a1(b1 − 1) ≤ N − a0 − b0 − a1 − a2b2 −

· · · − arbr ≤ N − a.
We then see that pα−1 p−1

2 ≤ N − a, and the equality implies that b1 =
pα−1 p−1

2 + 1, a1 = 1, a0 = 0, b0 = 0, and r = 1 (for if r ≥ 2, then in view
of a1 = 1, we have [pf a1 − 1, . . . , pf ar − 1] = [pf a2 − 1, . . . , pf ar − 1] and
a ≤ a2 + · · · + ar follows). Moreover, using Lemma 5.1, we get M ≥ pα−1 p−1

2 ,
but the equality here is impossible due to (13).

Looking at Proposition 4.3, we see that if b1 > pα−1 p−1
2 , then (C) may hold

only for p = 2, N = 2d + 1, d = α − 2 ≥ 1, a0 = 0, b0 = 0, r = a1 = 1, b1 =
M = N , and this gives (i) of the lemma.

2. Suppose that b0 > pα−1 p−1
2 .
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In this case, pα−1 p−1
2 ≤ b0 − 1 < N − (a1 + · · ·+ ar) ≤ N − a, and (C) is not

satisfied.
3. Suppose that max{b0, b1, . . . , br} ≤ pα−1 p−1

2 .

Lemma 5.1 then gives b0 = pα−1 p−1
2 and pα−1 p−1

2 ≤ b0 ≤ N − a0 − (a1 +
· · · + ar) ≤ N − a. Hence, pα−1 p−1

2 ≤ N − a, and the equality here implies that
a0 = 0, b1 = · · · = br = 1.

Looking at Proposition 4.3, we see, using Lemma 5.1, that if max{b0, b1, . . . ,

br} = pα−1 p−1
2 , then (C) may hold only for p = 2, N = 2d + a, d = α − 2 (and

d ≥ 1 or, only for a = 0, d ≥ 0), a0 = 0, b0 = 2d , r ≥ 0, b1 = · · · = br = 1,
M = 2d , and this gives (ii) of the lemma. �

In order to prove Theorem 1, we shall show that condition (C) on α cannot be
satisfied. We use the notation from the very beginning of this section.

Lemma 5.2 gives us two cases to be considered.
First case: (i) of Lemma 5.2.
In this case, F1(X) = X − λ for some λ ∈ K , λ �= 0,1. By Lemma 2.4 we may

assume that �′(0̄) = C ≡ JN(λ) (mod P).
Since x̄J ≡ (I +C +· · ·+CJ−1)x̄1 (mod P 2), we see that the last coordinate

of x̄J lies in P 2.
Let β1 be the coefficient of the term X1X2 in the N th coordinate of �. An easy

induction gives that the coefficient βn of the term X1X2 in the N th coordinate of
�n is congruent to λn−1(1 + λ + λ2 + · · · + λn−1)β1 (mod P). In particular,
βJ ∈ P . Take � = �J .

Hence, 0̄, x̄J , . . . would be a (�)-cycle for � of length 2α , satisfying the just
mentioned conditions for x̄J and � . However, the existence of such a cycle is
denied by Proposition 5.1(2) below.

Second case: (ii) of Lemma 5.2.
Let R′ = R[ξ ], where ξ is the primitive J th root of unity, and P ′ is the maximal

ideal of R′ and K ′ = R′/P ′. Since p � J , we obtain that R′ is an unramified
discrete valuation domain.

We treat our original (�)-cycle as a cycle in R′N . Then the characteristic
polynomial of �′(0̄) (mod P ′) (treated as a polynomial with coefficients from
K ′) equals (−1)N(X − 1)2α−2 ∏a

i=1(X − λi), where λi are distinct elements
of K ′ satisfying λJ

i = 1. Moreover, the Jordan form of �′(0̄) (mod P ′) equals

C1 := ( J2α−2 (1) 0
0 


)
, where 
 is an a × a diagonal matrix with λi on the diagonal.

Using Lemma 2.4, we obtain then that in R′N there is a (�)-cycle 0̄, ȳ1, . . .

for some mapping �0 satisfying �′
0(0̄) ≡ C1 (mod P ′). We easily see that the

j th coordinate of ȳJ (mod P ′2) may be nonzero only for j ≤ 2α−2. Hence,
0̄, ȳJ , ȳ2J , . . . would be a (�)-cycle for �J

0 of length 2α , satisfying the just men-
tioned conditions for ȳJ and �J

0 . However, the existence of such a cycle is further
denied by Proposition 5.1(1).

Thus, in order to prove Theorem 1, it suffices to prove the following:
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Proposition 5.1. Let R be as in this section (in particular, e = w(p) = 1). In
addition, we assume that p = 2 and α ≥ 2.

Let � : RN → RN be a polynomial mapping with coefficients from R satisfy-
ing (for A := � ′(0̄)) one of the following conditions:

(1) (for some L ≥ 0, but for α = 2, we require L = 0) A ≡ (J 0
0 I

)
(mod P),

where I is the L × L identity matrix, 0s refer to zero matrices of obvious
sizes, and J ∈ J2α−2(1) has coefficients from R;.

(2) (only for α ≥ 3) A ≡ J (mod P) for some J ∈ J2α−2+1(1), and the coeffi-
cient of the term X1X2 in the (N = 2α−2 + 1)th coordinate of � lies in P .

Then there are no (�)-cycles for � of the form 0̄ = x̄0, x̄1, . . . , x̄2α−1 such that
the j th coordinate of x̄1 (mod P 2) may be nonzero only for j ≤ 2α−2.

Proof. Assume the contrary. Let 0̄ = x̄0, x̄1, . . . , x̄2α−1 be a (�)-cycle in RN for �

such that the j th coordinate of x̄1 (mod P 2) may be nonzero only for j ≤ 2α−2.
Write � in the form � = �1 +�2 +�3, where �1 consists of all terms of degree
0 or 1 in � , and �2 consists of all terms of degree 2 in � .

From Lemma 2.1(ii) and Lemma 2.2(i) it follows that x̄2α−1 ≡ (A−I )2α−1−1x̄1

(mod P 2). Using 2α−1 − 1 ≥ 2α−2 + 1 (for α ≥ 3), we then get x̄2α−1 ≡ 0̄
(mod P 2). Put d := w(x̄2α−1) ≥ 2.

For 1 ≤ j < 2α−2, the binomial coefficient
(2α−2

j

)
is even. Thus, we may write

A2α−2
(mod P) in the form A2α−2

(mod P) = I + T , where T = 0 (for case (1))
and (in case (2)) T has possibly only one nonzero term (which lies in the first row
and in the last column).

In view of w(p) = 1, we have � ′(x̄i) = A + � ′
2(x̄i) + � ′

3(x̄i) ≡ A + � ′
2(x̄i)

(mod P 2). Since we are dealing with (�)-cycles, we have � ′
2(x̄i) ≡ 0̄ (mod P).

Hence, using A2α−2 ≡ I + T (mod P), we get

I + (�2α−1
)′(0̄) = I +

2α−1−1∏
i=0

� ′(x̄i)

≡ I +
2α−1−1∏

i=0

(A + � ′
2(x̄i))

≡ I + A2α−1 +
2α−1−1∑

i=0

A2α−1−1−i� ′
2(x̄i)A

i

≡ 2I + 2T + (A2α−2 − I )2 +
2α−2−1∑

i=0

(A2α−2
A2α−2−1−i� ′

2(x̄i)A
i

+ A2α−2−1−i� ′
2(x̄i+2α−2)A

iA2α−2
)

≡ 2I + 2T + (A2α−2 − I )2
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+
2α−2−1∑

i=0

((I + T )A2α−2−1−i� ′
2(x̄i)A

i

+ A2α−2−1−i� ′
2(x̄i+2α−2)A

i(I + T ))

≡ 2I + 2T + (A2α−2 − I )2 + T

(2α−2−1∑
i=0

A2α−2−1−i� ′
2(x̄i)A

i

)

+
(2α−2−1∑

i=0

A2α−2−1−i� ′
2(x̄i+2α−2)A

i

)
T

+
2α−2−1∑

i=0

(A2α−2−1−i� ′
2(x̄i + x̄i+2α−2)A

i) (mod P 2).

We are going to show that I + (�2α−1
)′(0̄) ≡ 2G (mod P 2) for some G ∈

JN(1), and this follows from the following lemma.

Lemma 5.3 (under the assumptions and notation from the proposition).

(i) The j th coordinates of vectors v̄1 := ∑2α−2−1
i=0 x̄i (mod P 2) and v̄2 :=∑2α−2−1

i=0 x̄i+2α−2 (mod P 2) may be nonzero only for j ≤ 2.
(ii) For any 0 ≤ i ≤ 2α−2 − 1, we have x̄i + x̄i+2α−2 ≡ 2cē1 (mod P 2) for some

(independent of i) c ∈ R.

The following matrices have only zero terms on and below the main diagonal:

(iii) 2T (mod P 2),
(iv) (A2α−2 − I )2 (mod P 2),

(v) T (
∑2α−2−1

i=0 (A2α−2−1−i� ′
2(x̄i)A

i) (mod P 2),

(vi) (
∑2α−2−1

i=0 A2α−2−1−i� ′
2(x̄i+2α−2)Ai)T (mod P 2),

(vii)
∑2α−2−1

i=0 (A2α−2−1−i� ′
2(x̄i + x̄i+2α−2)Ai) (mod P 2).

Proof. (i) For α = 2, the assertion is clear.

Hence, let α ≥ 3. Lemma 2.1(ii) gives that v̄1 ≡ ∑2α−2−1
i=1 (I + A + · · · +

Ai−1)x̄1 ≡ (A − I )2α−2−2x̄1 (mod P 2), and the assertion concerning v̄1 holds.
In order to prove the assertion concerning v̄2, it suffices to show that v̄3 :=∑2α−1−1
i=0 x̄i ≡ 0̄ (mod P 2). We have v̄3 ≡ (A − I )2α−1−2x̄1 (mod P 2). Since

2α−2 ≤ 2α−1 − 2, we are done.
(ii) Owing to the assumed properties of x̄1 (mod P 2) and A (mod P), by

Lemma 2.1(ii) we get x̄i+2α−2 ≡ (I +· · ·+Ai−1)x̄1 +Ai(I +· · ·+A2α−2−1)x̄1 ≡
x̄i + Ai(A − I )2α−2−1x̄1 ≡ x̄i + 2cē1 (mod P 2) for some (independent on i)
c ∈ R.

(iii) It is obvious.
(iv) If A is as in (1) of Proposition 5.1, then the assertion is clear. So, let A

be as in (2). In particular, α ≥ 3 and N = 2α−2 + 1. Write A in the form A =
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I + M + 2W for M having nonzero terms only above the main diagonal (and,
clearly, W has terms from R). Using Lemma 2.2, we get

A2α−2 = (I + M + 2W)2α−2

≡ (I + M)2α−2 +
2α−2−1∑

i=0

(I + M)i2W(I + M)2α−2−i−1

≡ (I + M)2α−2 + 2
2α−2−1∑

i=0

( ∑
r,s≥0

(
i

r

)
MrW

(
2α−2 − i − 1

s

)
Ms

)

≡ (I + M)2α−2 + 2
∑
r,s≥0

(
2α−2

r + s + 1

)
MrWMs (mod P 2).

Since 2α−2 ∈ P and M is upperdiagonal and nilpotent, we obtain that the co-
efficient in the N th row and in the first column of A2α−2

lies in P 2.
Put A2α−2 − I = T + 2W1. Hence, the (N,1)th entry of W1 lies in P , and this

easily gives the assertion.
(v) Again, it suffices to consider A as in (2). It suffices to show that γ equal to

the (N,1)th entry of the matrix
∑2α−2−1

i=0 (A2α−2−1−i� ′
2(x̄i)A

i) lies in P 2.
Since A (mod P) ∈ J2α−2+1(1), we easily see that γ is congruent (mod P 2) to

the (N,1)th entry of
∑2α−2−1

i=0 � ′
2(x̄i) = � ′

2(v̄1). The assertion now follows from
the assumption concerning the coefficient of X1X2 in the last coordinate of � .

(vi) Very similar to (v).
(vii) Write A (mod P) = I + M , with M upperdiagonal and nilpotent.
Lemma 5.3(ii) gives � ′

2(x̄i + x̄i+2α−2) ≡ � ′
2(2cē1) ≡ 2c� ′

2(ē1) := 2B

(mod P 2).
Thus, we get

2α−2−1∑
i=0

A2α−2−1−i� ′
2(x̄i + x̄i+2α−2)A

i

≡ 2
2α−2−1∑

i=0

A2α−2−1−iBAi ≡ 2
2α−2−1∑

i=0

(I + M)2α−2−1−iB(I + M)i

≡ 2
2α−2−1∑

i=0

( ∑
r,s≥0

(
2α−2 − i − 1

r

)
MrB

(
i

s

)
Ms

)

≡ 2
∑
r,s≥0

(
2α−2

r + s + 1

)
MrBMs (mod P 2).

Put Cr,s := ( 2α−2

r+s+1

)
MrBMs . To get the assertion of this point, it suffices to

show for any i that Cr,s ēi is congruent (mod P) to some linear combination of
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vectors ē1, ē2, . . . , ēi−1. Since
( 2α−2

r+s+1

)
is odd only for r + s + 1 = 2α−2, we may

assume that r + s = 2α−2 − 1.
First case. A is as in (1) of Proposition 5.1.
For α = 2 and L = 0, the assertion is clear. We thus assume that α ≥ 3.
First, let i > 2α−2. If s > 0, then Mēi ≡ 0̄ (mod P), and therefore also

Cr,s ēi ≡ 0̄ (mod P). If s = 0 and r = 2α−2 −1, then Cr,s ēi is congruent (mod P)

to a scalar multiplicity of ē1, and we are done.
Secondly, let i ≤ 2α−2. If i ≤ s+1, then Msēi (mod P) is a scalar multiplicity

of ē1. Since the first column of B = c� ′
2(ē1) is congruent to 0̄ (mod P), we

obtain BMsē1 ≡ 0̄ (mod P), and we are done.
Let s + 1 < i ≤ 2α−2. Then r > 0 and Cr,s ēi (mod P) ∈ Lin{ē1, . . . ,

ē2α−2−r} = Lin{ē1, . . . , ēs+1} ⊆ Lin{ē1, . . . , ēi−1}, and we are done.
Second case. A is as in (2) of Proposition 5.1. Then the assumptions in (2) give

that all entries in the first column and the (N,2)th entry of B = � ′
2(0̄) lie in P .

If i ≤ s + 1, then Msēi ≡ 0̄ (mod P) is a scalar multiplicity of ē1. Hence,
BMsē1 ≡ 0̄ (mod P).

Let i ≥ s + 3. Then Cr,s ēi ∈ Lin{ē1, . . . , ē2α−2+1−r}. Since 2α−2 + 1 − r =
s + 2 ≤ i − 1, we are done.

Finally, let i = s + 2. Then Msēi ∈ Lin{ē1, ē2}, BMsēi ∈ Lin{ē1, . . . , ē2α−2},
and Cr,s ēi ∈ Lin{ē1, . . . , ē2α−2−r}. Since 2α−2 − r = s + 1 = i − 1, we are done.

�

So I + (�2α−1
)′(0̄) ≡ 2G (mod P 2) for some G ∈ JN(1). In particular, G is

invertible, and

w((I + (�2α−1
)′(0̄))x̄2α−1) = 1 + w(x̄2α−1) = 1 + d. (14)

But, by Lemma 2.1(ii) and d ≥ 2 (and consequently 2d ≥ 2 + d), it fol-
lows that 0̄ = �2α

(0̄) ≡ (I + (�2α−1
)′(0̄))x̄2α−1 (mod P d+2) and w((I +

(�2α−1
)′(0̄))x̄2α−1) ≥ 2 + d , contradicting (14). �

Theorem 1 is now proved.

6. Proof of Theorem 2

By the theorem from Section 2.4 we have for N ≥ 2 that CYCL(S,N) =⋂
p-prime CYCL(Sp,N).

Let p0 be prime such that #(S/p0) = pf = m (p prime).
It suffices to show that CYCL(Sp0 ,N) ⊂ CYCL(Sp,N) for p prime with

#(S/p) ≥ m2.
Let first p ≥ 3. By Proposition 2.1(i) it suffices to show that CYCL(Sp0 ,N) ⊂

{1,2, . . . , p2f N }.
By Theorem 1, any element of CYCL(Sp0 ,N) is not bigger than (we use

the notation from Theorem 1) pf Npf ap�max(0,logp(2(N−a)p/(p−1)))�. It suffices
to have �max(0, logp(

2(N−a)p
p−1 ))� ≤ f (N − a), which clearly holds.
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So let p = 2. Let c · k · 2α (with odd k) be the length of a cycle in SN
p0

, where
c ≤ pf N = 2f N and k · 2α is the length of a (�)-cycle in RN .

If α = 0, then c · k · 2α ≤ 22f N , and we are done.
So let α > 0. But in this case, by Proposition 2.1(vii), k · 2α < 2 · 2f N . Since

2 is the length of a (�)-cycle in SN
p for any prime p, from c · k · 2α−1 < 22f N ,

by Proposition 2.1(i), we obtain c · k · 2α ∈ CYCL(Sp,N) for prime p fulfilling
#(S/p) ≥ m2 = 22f .
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