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Euler–Mellin Integrals and A-Hypergeometric Functions

Christine Berkesch, Jens Forsgård, & Mikael Passare†

Abstract. We consider integrals that generalize both Mellin trans-
forms of rational functions of the form 1/f and classical Euler inte-
grals. The domains of integration of our so-called Euler–Mellin in-
tegrals are naturally related to the coamoeba of f , and the compo-
nents of the complement of the closure of this coamoeba give rise
to a family of these integrals. After performing an explicit meromor-
phic continuation of Euler–Mellin integrals, we interpret them as A-
hypergeometric functions and discuss their linear independence and
relation to Mellin–Barnes integrals.

1. Introduction

In the classical theory of hypergeometric functions, a prominent role is played by
the Euler integral formula

2F1(s; t;u) = �(t)

�(s1)�(s2)

∫ 1

0
xs1−1(1 − x)t−s1−1(1 − ux)−s2 dx,

which yields an analytic continuation of the Gauss hypergeometric series 2F1

from the unit disk |u| < 1 to the larger domain | arg(1 − u)| < π . However, this
Euler integral is not symmetric in s1 and s2, even though the function 2F1 enjoys
such symmetry. Following Erdélyi [Erd37], we can introduce another variable of
integration and obtain the symmetric formula

2F1(s; t;u) = G(s, t)

∫ 1

0

∫ 1

0
xs1−1ys2−1(1 − x)t−s1−1

× (1 − y)t−s2−1(1 − uxy)−t dx ∧ dy,

where G(s, t) = �(t)2

�(s1)�(s2)�(t − s1)�(t − s2)
. (1.1)

After making the substitutions z = x/(1 − x), w = y/(1 − y), and c = 1 − u, we
find that the double integral in (1.1) takes the simple form∫ ∞

0

∫ ∞

0

zs1ws2

(1 + z + w + czw)t

dz ∧ dw

zw
, (1.2)

Received February 1, 2013. Revision received August 2, 2013.
The first author was supported by NSF Grant OISE 0964985.
†The first draft of this article was written before the tragic death of Mikael Passare in September 2011.

We are grateful for his mentorship and the opportunity to collaborate with him.

101

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


102 C. Berkesch, J . Forsgård, & M. Passare

which restricted to t = −1 is a twofold Mellin transform of 1/f , where f (z,w) =
1 + z + w + czw. In this paper, we introduce a generalization of the Mellin trans-
form of a rational function 1/f , which we call an Euler–Mellin integral. The
general form of an Euler–Mellin integral is given in Definition 2.1.

Euler–Mellin integrals are closely related to A-hypergeometric Euler-type inte-
grals, as studied in [GKZ90; SST00]. The most notable difference between these
previously studied functions and the Euler–Mellin integrals we introduce here
is the domain of integration. We integrate over explicit, simply connected, but
noncompact sets, whereas previous authors used compact yet rather elusive cy-
cles. We show that the simple connectivity of our domain of integration allows
us to handle the multivaluedness of the integrand; however, to achieve conver-
gence, the noncompactness initially restricts the values of the parameters (s, t);
see Theorem 2.3. In Theorem 2.5, we remove the restrictions on (s, t) through
an explicit meromorphic continuation of an Euler–Mellin integral. This yields a
meromorphic function whose singular locus is contained in certain families of
hyperplanes. Taking these into account, we obtain a function that is entire in the
parameters (s, t).

A further generalization of the results of Section 2 is achieved by considering
the coamoeba of the polynomial f , as defined in (3.1). In practice, we rotate the
domain of integration of the Euler–Mellin integral to Arg−1(θ) = {z ∈ (C∗)n |
Arg(z) = θ} for appropriate choices of θ (see Section 3). In the previous example,
this means replacing the integral (1.2) by∫

Arg−1(θ)

zs1ws2

(c1 + c2z + c3w + c4zw)t

dz ∧ dw

zw
.

The A-hypergeometric approach considers a polynomial f with general coeffi-
cients on a fixed set of monomials, which are identified with a matrix A. We show
in Theorem 4.2 that for a generic choice of coefficients of f , the corresponding
Euler–Mellin integral with parameters (s, t) satisfies an A-hypergeometric system
HA(β) of differential equations with parameter β = −(t, s) (see Definition 4.1).
In particular, the meromorphic continuations of Euler–Mellin integrals obtained
through Sections 2–3 provide a family of A-hypergeometric functions that are
entire in β .

A key problem in the study of the A-hypergeometric system is to describe the
variation with the parameter β of its solution space of germs of analytic functions
at a nonsingular point. To begin this study, we must first find solutions of HA(β)

that vary nicely with β . Saito, Sturmfels, and Takayama [SST00] presented an
algorithm to compute such a basis for arbitrary β , called canonical series solu-
tions; however, because this algorithm uses Gröbner degeneration, the solutions
it produces are not well suited to the variation of β . For generic (nonresonant) β ,
Gelfand, Kapranov, and Zelevinsky [GKZ90] computed a basis of Euler-type in-
tegral solutions. These integrals are also unsuitable for understanding parametric
behavior, as their domains of integration are not explicit, and, at nonresonant β ,
they do not span the solution space of HA(β).
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In contrast, since our meromorphic continuations of Euler–Mellin integrals are
entire in β , they provide a new tool for describing the parametric variation of A-
hypergeometric solutions by Theorem 4.2. It is thus natural to ask whether these
“extended” Euler–Mellin integrals arising from different connected components
of the complement of the corresponding coamoeba are linearly independent, and
if so, in which cases they span the solution space. The final sections of this article
address this question from different viewpoints.

Most notably, in Theorem 6.4, we relate Euler–Mellin integrals to Mellin–
Barnes integrals. These are another class of A-hypergeometric integrals previ-
ously considered in the literature [Nil09; Beu11a] (see Definition 6.1); in particu-
lar, Mellin–Barnes integrals are used by Beukers to compute elements in the local
monodromy group of an A-hypergeometric system. As a corollary, there are at
least as many linearly independent extended Euler–Mellin integrals as Mellin–
Barnes integrals, providing examples in which extended Euler–Mellin integrals
are linearly independent at generic β .

Outline

In Section 2, we introduce Euler–Mellin integrals, show their convergence, and
perform their meromorphic continuation, which is our main result. In Section 3,
we employ coamoebas to extend the results of the previous section to include
more general domains of integration. Euler–Mellin integrals are shown to be A-
hypergeometric functions in Section 4, and in Section 5, we show that they pro-
vide a basis of solutions to A-hypergeometric systems in the case of curves. In
Section 6, we relate Euler–Mellin integrals to Mellin–Barnes integrals, obtaining
further insight into the linear independence of both sets of integrals. Finally, Sec-
tion 7 contains an example to illustrate the behavior of Euler–Mellin integrals at
a rank-jumping parameter of an A-hypergeometric system.

2. Convergence and Meromorphic Continuation of Euler–Mellin
Integrals

This section contains our main result, Theorem 2.5, which provides an explicit
presentation of a meromorphic continuation of the Euler–Mellin integral of a
polynomial in several variables.

Definition 2.1. Given a polynomial f = ∑
α∈supp(f ) cαzα , the Euler–Mellin in-

tegral is a natural generalization of the Mellin transform of the rational function
1/f of several variables given by

Mf (s, t) :=
∫
R

n+

zs

f (z)t

dz1 ∧ · · · ∧ dzn

z1 · · · zn

=
∫
Rn

e〈s,x〉

f (ex)t
dx1 ∧ · · · ∧ dxn, (2.1)

where R
n+ := (0,∞)n denotes the positive orthant in R

n. Here we employ the
multi-index notation for variables z1, . . . , zn and polynomials f1, . . . , fm; that is,
for s ∈C

n and t ∈ C
m, we write zs := z

s1
1 · · · zsn

n and f (z)t := f1(z)
t1 · · ·fm(z)tm .
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Whenever there is no risk of confusion, we use the notation f (z) := f (z)(1,...,1) =∏m
i=1 fi .

In order for such an integral to converge, restrictions must a priori be placed on
both the exponent vector (s, t) and the polynomial f ; it is not enough to demand
only that each fi is nonvanishing on R

n+. We next provide such a domain of con-
vergence for the Euler–Mellin integral (2.1), generalizing [NP13, Theorem 1].

Definition 2.2. If � is a face of the Newton polytope �f of f , then the truncated
polynomial with support � is given by

f� :=
∑

α∈�∩supp(f )

cαzα.

The polynomial f is said to be completely nonvanishing on a set X if for each
face � of �f (including �f itself), the truncated polynomial f� has no zeros
on X. In particular, the polynomial f itself does not vanish on X.

For a vector τ ∈ R
m+, we denote by τ�f the weighted Minkowski sum

∑m
i=1 τi�fi

of the Newton polytopes of the fi with respect to τ . Note that with this notation,
the Newton polytope of f satisfies �f = (1, . . . ,1)�f .

Theorem 2.3. If each of the polynomials f1, . . . , fm is completely nonvanishing
on the positive orthant Rn+ (as in Definition 2.2), then the Euler–Mellin integral
Mf (s, t) of (2.1) converges and defines an analytic function in the tube domain

{(s, t) ∈ C
n+m | τ := Re t ∈ R

m+, σ := Re s ∈ int(τ�f )}. (2.2)

Proof. It suffices to prove that for any (s, t) with all τi > 0 and σ ∈ int(τ�f ),
there exist positive constants c and k such that

|f (ex)t e−〈s,x〉| = |f (ex)t |e−〈σ,x〉 ≥ cek|x| for all x ∈R
n.

In fact, it is enough to show that this inequality holds outside some ball B(0) in
R

n.
Since σ ∈ int(τ�f ), we can expand it as a sum σ = σ1 +· · ·+σm of m vectors

such that σi/τi ∈ int(�fi
). It is shown in the proof of [NP13, Theorem 1] that for

each σi ∈ int(�fi
), there are positive constants ci and ki such that for x outside

some ball Bi(0),

|fi(e
x)|e−〈σi ,x〉 ≥ cie

ki |x|.
Note that it is essential in [NP13, Theorem 1] that fi is completely nonvanishing
on the positive orthant. Thus, for x outside of B(0) = ⋃m

i=0 Bi(0), we have

|f (ex)t |e−〈σ,x〉 =
m∏

i=1

(|fi(e
x)|e−〈σi/τi ,x〉)τi ≥

m∏
i=1

c
τi

i eτiki |x| = cek|x|, (2.3)

where c = c
τ1
1 · · · cτm

m and k = τ1k1 +· · ·+τmkm are the desired positive constants.
�
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Example 2.4. By a classical integral representation of the Gauss hypergeometric
function 2F1,∫ ∞

0

zs

(1 + z)t1(c + z)t2

dz

z

= �(t1 + t2 − s)�(s)

�(t1 + t2)
2F1(t2, t1 + t2 − s; t1 + t2;1 − c) (2.4)

for Re(t1 + t2) > Re(t1 + t2 − s) > 0 and | arg(c)| < π , where arg denotes the
principal branch of the argument mapping. Note that | arg(c)| < π if and only if
f (z) = (1 + z)(c + z) is completely nonvanishing on R+. Since �f1 = �f2 =
[0,1], the condition that σ ∈ int(τ�f ) is the same as 0 < Re(s) < Re(t1 + t2).
We also note that the right-hand side of (2.4) is analytic in this domain. Further,
since Re(t1) > 0 and Re(t2) > 0, the convergence domain given in Theorem 2.3
is not optimal; however, being full-dimensional, it is large enough for our goal of
meromorphic continuation.

As the right-hand side of (2.4) is a meromorphic function in s and t , it provides a
meromorphic extension of the corresponding Euler–Mellin integral. On this right
side, we have the regularized 2F1 as one factor, and thus the polar locus of the
meromorphic extension is contained in two families of hyperplanes given by the
polar loci of the gamma functions. Our main result shows that this kind of mero-
morphic continuation is possible for all Euler–Mellin integrals.

To obtain the strongest form of this result, we choose a specific presentation
for τ�f . To begin, each Newton polytope �fi

can be written uniquely as the
intersection of a finite number of halfspaces

�fi
=

Ni⋂
j=1

{σ ∈ R
n | 〈μi

j , σ 〉 ≥ νi
j }, (2.5)

where the νi
j are integer vectors, and the μi

j are primitive vectors. In particular,
each μi

j has coordinates that are relatively prime.

Fixing an order, let {μ1, . . . ,μN } be equal to the set {μi
j | 1 ≤ i ≤ m,≤ j ≤

Ni}, where we assume that μi �= μj for all i �= j . We now extend the definitions
of νi

j from (2.5) to each μk ; namely, for each k, let νk := (ν1
k , . . . , νm

k ) with

νi
k := min{〈μk,α〉 | α ∈ �fi

},
and set |νk| := ν1

k + · · · + νm
k . By definition of the νk , we have int(τ�f ) =∑m

i=1 τi int(�fi
) and

τ�f =
N⋂

k=1

{σ ∈R
n | 〈μk,σ 〉 ≥ 〈νk, τ 〉}. (2.6)

We are now prepared to state our main result, which provides a meromorphic
continuation of (2.1), generalizing [NP13, Theorem 2]. In Section 3, we obtain
a stronger form of the result by relaxing the condition that the fi be completely
nonvanishing on R

n+.
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Theorem 2.5. If the polynomials f1, . . . , fm are completely nonvanishing on the
positive orthant Rn+ (as in Definition 2.2) and the Newton polytope �f1···fm is of
full dimension n, then the Euler–Mellin integral Mf (s, t) admits a meromorphic
continuation of the form

Mf (s, t) = �f (s, t)

N∏
k=1

�(〈μk, s〉 − 〈νk, t〉), (2.7)

where �f (s, t) is an entire function, and μk , νk are given by (2.6). We call
�f (s, t) an extended Euler–Mellin integral.

Proof. By Theorem 2.3, the original Euler–Mellin integral Mf (s, t) of (2.1) con-
verges on

{(s, t) ∈C
n+m | τ := Re(t) ∈R

m+,

σ := Re(s) such that 〈μk,σ 〉 > 〈νk, τ 〉 for all 1 ≤ k ≤ N},
which is a domain since �f is of full dimension. Our goal is to expand the con-
vergence domain of the integral (2.1) at the cost of multiplication by factors cor-
responding to the poles of the gamma functions appearing in (2.7). We do this
iteratively, integrating by parts in the direction of a vector μk at each step. This
expands the domain of convergence in the opposite direction of μk by a distance
dk , which we determine explicitly.

To begin, we set the notation for the first iteration in one direction. Fix k be-
tween 1 and N , and let � be the face of �fi

corresponding to μk and νk . For
α ∈ supp(f ), consider the integers

dα
k := 〈μk,α〉 − |νk|.

Since α ∈ �f , it follows that dα
k ≥ 0. In particular, since there is a decomposition

α = ∑
i αi with αi ∈ �fi

, we see that dα
k = 0 if and only if 〈μk,αi〉 = νi

k for all i.
For a fixed i, the polynomial (fi)� has the homogeneity (fi)�(λμkz) =

λνi
k (fi)�(z), where λ is any nonzero complex number, and λμkz = (λμ1

k z1, λ
μ2

k z2,

. . . , λμn
k zn). Hence, the coefficients of the scaled polynomial λ−νi

k (fi)�(λμkz) are
independent of k and the λ. In particular, we have that the Newton polytope of

f ′
i (z) := d

dλ
(λ−νi

k fi(λ
μkz))

∣∣∣∣
λ=1

is disjoint from �. This fact allows us to extend the domain of convergence of
(2.1) over the hyperplane defined by 〈μk,σ 〉 = 〈νk, τ 〉 as follows. Since Mf (s, t)

is independent of λ, we have

0 = d

dλ

∫
R

n+

(λμkz)s

f (λμkz)t

dz

z
= d

dλ

[
λ〈μk,s〉−〈νk,t〉

∫
R

n+

zs

λ−〈νk,t〉f (λμkz)t

dz

z

]
.

Thus, differentiating (2.1) with respect to λ and setting λ = 1 yields the identity

Mf (s, t) = 1

〈μk, s〉 − 〈νk, t〉
∫
R

n+

zsgk(z)

f (z)t+1

dz

z
, (2.8)



Euler–Mellin Integrals and A-Hypergeometric Functions 107

where gk is the polynomial

gk =
m∑

i=1

ti · f1 · · ·f ′
i · · ·fm.

Note that supp(gk) is contained in supp(f ); moreover, since � is the face of �f

corresponding to μk and supp(f ′
i ) is disjoint from �fi

∩ �, we see that supp(gk)

is disjoint from �. In other words, dα
k > 0 for each α ∈ supp(gk).

Rewrite (2.8) as the sum

Mf (s, t) =
∑

α∈supp(gk)

hα(t)

〈μk, s〉 − 〈νk, t〉
∫
R

n+

zs+α

f (z)t+1

dz

z
(2.9)

for some linear polynomials hα(t), noting that each term of (2.9) is a translation
of the original Euler–Mellin integral. By Theorem 2.3, the term corresponding to
α converges on the domain given by τ + 1 > 0 and

〈μj ,σ + α〉 > 〈νj , τ + 1〉 for j = 1, . . . ,N,

where the latter is equivalent to

〈μj ,σ 〉 > 〈νj , τ + 1〉 − 〈μj ,α〉 = 〈νj , τ 〉 − dα
j for j = 1, . . . ,N.

The sum (2.9) converges on the intersection of these domains, which is given by

τ + 1 > 0,

〈μj ,σ 〉 > 〈νj , τ 〉 if j �= k, and

〈μk,σ 〉 > 〈νk, τ 〉 − dk,

where dk := min{dα
k | α ∈ supp(gk)}. Since dk is by definition strictly greater than

0, (2.9) has a strictly larger domain of convergence than (2.1); we say that it has
been extended by the “distance” dk in the direction determined by μk .

Before iterating this procedure, we set some notation. Let Gk be the semi-
group generated by the integers {dα

k | α ∈ supp(f ) and 1 ≤ k ≤ N} ⊆ N. Let
β = (α1, . . . , αq) be an ordered q-tuple with αi ∈ supp(f ) for each i. We some-
times write β as an exponent of z, viewing β = α1 + · · · + αq . Similarly, set

d
β
k := d

α1
k + · · · + d

αq

k ∈ Gk .
Now after q iterations, let μj(i) denote the direction of the extension in the ith

iteration. Let d
βi

j (i) := d
α1
j (i) +· · ·+d

αi−1
j (i) ∈ Gj(i) be the sum of the distances of the

first i − 1 components of β in the direction μj(i). Then there is a rational function
of the type

Lβ(s, t) =
q∏

i=1

hβi
(t)

〈μj(i), s〉 − 〈νj (i), t〉 + d
βi

j (i)

, (2.10)

where hβ(t) := (hβ1(t), . . . , hβq (t)) is an ordered q-tuple of linear polynomials
such that Mf can be expressed as a finite sum of translations of the original Euler–
Mellin integral:

Mf (s, t) =
∑
β

Lβ(s, t)

∫
R

n+

zs+β

f (z)t+q

dz

z
. (2.11)
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Fixing k, we next expand the domain of convergence of (2.11) in the direction de-
termined by μk . This is achieved through simultaneous expansion of the domains
of convergence of all terms, arguing as above. This yields the expression

Mf (s, t) =
∑
β

Lβ(s, t)
∑

α∈supp(gk)

h(β,α)q+1(t)

〈μk, s〉 − 〈νk, t〉 + d
β
k

∫
R

n+

zs+β+α

f (z)t+q+1

dz

z

=
∑
β ′

Lβ ′(s, t)
∫
R

n+

zs+β ′

f (z)t+q ′
dz

z
, (2.12)

where β ′ = (β,α), q ′ = q +1, and the resulting rational function Lβ ′(s, t) is given
by

Lβ ′(s, t) = Lβ(s, t)

hβ ′
q′ (t)

〈μk, s〉 − 〈νk, t〉 + d
β
k

.

Since the convergence domain of each term in (2.11) is extended by the dis-
tance dk in the direction determined by μk , the convergence domain of the sum is
similarly extended. In addition, since dα

k > 0, we have that d
β+α
k > d

β
k ; therefore,

the products Lβ(s, t) will never repeat factors in their denominators. As (2.12) is
in the same form as (2.11), we may iterate this procedure to extend the domain of
convergence.

Finally, note that after q iterations that have extended the domain of conver-
gence of Mf (s, t) in the direction determined by μj for qj of the q steps, we
obtain a meromorphic function on the tube domain given by (s, t) ∈ C

n+m such
that τ + ∑N

j=1 qj = τ + q > 0 and

〈μj ,σ 〉 > 〈νj , τ 〉 − qjdj for j = 1, . . . ,N.

Continuing this process, Mf (s, t) can be extended to a meromorphic function
on C

n+m as in (2.7). We note that because the denominator of the products of
the rational functions Lβ(s, t) never has repeated terms, all poles of the extended
Euler–Mellin integral are simple. It now follows from the removable singularities
theorem that �f (s, t) in (2.7) is an entire function, as desired. �

The entire function �f (s, t) is of great interest to the study of A-hypergeometric
functions. The gamma functions appearing in (2.7) may introduce some unneces-
sary zeros in the meromorphic continuation of the Euler–Mellin integral, which
hinder A-hypergeometric applications.

Remark 2.6. In the proof of Theorem 2.5, we see that the linear form 〈μk,σ 〉 −
〈νk, τ 〉 − d appears in the denominator of some rational function Lβ if and only
if d ∈ Gk . Hence, if Gk �= N, then our meromorphic continuation has introduced
unnecessary zeros into the entire function �f (s, t).

Remark 2.7. If m = 1, then hβi
(t) = kβi

(t + i) for some constant kβi
, where

hβi
is as in (2.10). Therefore, each Lβ is divisible by (t)i+1 = t (t + 1) · · · (t +

i), which can thus be factored outside the sum (2.11). In particular, �̃f (s, t) :=
�(t)�f (s, t) is an entire function.
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We conclude this section with examples to illustrate Theorem 2.5 and our recent
remarks.

Example 2.8. Consider the case of m + 1 linear functions of one variable,

Mf (s, t) =
∫ ∞

0

zs

(1 + z)t0(c1 + z)t1 · · · (cm + z)tm

dz

z
. (2.13)

Note that we have reindexed t for this example. When m = 0, (2.13) is the beta
function. Here �f (s, t) = 1/�(t), or with the notation of Remark 2.7, �̃f (s,

t) = 1. When m = 1, we showed in Example 2.4 that

�f (s, t) = 1

�(t0 + t1)
2F1(t1, t0 + t1 − s; t0 + t1;1 − c1).

This equality is obtained by the change of variables w = z/(1+z) and application
of the generalized binomial theorem. By similar calculations for m = 2,

�f (s, t) = 1

�(t0 + t1 + t2)
F1(t0 + t1 + t2 − s, t1, t2; t0 + t1 + t2;1 − c1,1 − c2),

where F1 denotes the first Appell series. For arbitrary m and |ci | < 1,

�f (s, t) = 1

�(t0 + |t |)
∑

k∈Nm

(t0 + |t | − s)|k|
(t0 + |t |)|k|

(t)k

k! (1 − c)k,

where t = (t1, . . . , tm), |t | = t1 + · · · + tm, and (t)k = (t1)k1 · · · (tm)km .

Example 2.9. Finally, consider the case of one linear function of n variables,

Mf (s, t) =
∫
R

n+

z
s1
1 · · · zsn

n

(1 + z1 + · · · + zn)t

dz1 ∧ · · · ∧ dzn

z1 · · · zn

.

We claim that

Mf (s, t) = �(s1) · · ·�(sn)�(t − s1 − · · · − sn)

�(t)
,

and hence �f (s, t) = 1/�(t). This is clear when n = 1 because we again have
the beta function. For n > 1, we can argue by induction, making the change of
variables given by wn = zn and wi = zi/(1 + zn) for i �= n. To generalize this
example to an arbitrary simplex, consider the Euler–Mellin integral

Mf (s, t) =
∫
R

n+

z
s1
1 · · · zsn

n

(1 + zT1 + · · · + zTn)t

dz1 ∧ · · · ∧ dzn

z1 · · · zn

,

where the exponent vectors Ti are the columns of an invertible matrix T . By the
change of variables wi = zTi we find that

Mf (s, t) = �((T −1s)1) · · ·�((T −1s)n)�(t − |T −1s|)
|det(T )|�(t)

.
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3. Relation to Coamoebas

For Theorems 2.3 and 2.5 to hold, each fi(z) must be completely nonvanishing on
the positive orthant. This is a strong restriction that many polynomials do not ful-
fill. However, the goal of this section is to modify this hypothesis by considering
the coamoeba of f (z).

The amoeba Af and the coamoeba A′
f of a polynomial f are defined to be the

images of the zero set Zf = {z ∈ (C∗)n | f (z) = 0} under the real and imag-
inary parts of the coordinate-wise complex logarithm mapping, Log and Arg,
respectively. More precisely, if Log(z) = (log |z1|, . . . , log |zn|) and Arg(z) =
(arg(z1), . . . , arg(zn)), then the amoeba and coamoeba of f are, respectively,

Af := Log(Zf ) and A′
f := Arg(Zf ). (3.1)

The amoeba Af lies in Rn; however, since the argument mapping is multi-
valued, the coamoeba A′

f can be viewed either in the n-dimensional torus Tn =
(R/2πZ)n or as a multiply periodic subset of Rn. Amoebas were introduced by
Gelfand, Kapranov, and Zelevinsky [GKZ94], whereas the term coamoeba was
first used by the third author in 2004 at a conference at Johns Hopkins University.

Proposition 3.1. For θ ∈ T
n, a polynomial f (z) is completely nonvanishing on

the set Arg−1(θ) if and only if θ /∈A′
f .

Proof. The claim is equivalent to the statement

A′
f =

⋃
�

A′
f�

,

where f� is the truncated polynomial with support �. This has been proven by
Johansson [Joh10] and independently by Nisse and Sottile [NS11]. �
By Proposition 3.1, when polynomials f1, . . . , fm are such that the closure of the
coamoeba of f (z) = ∏m

i=1 fi(z) is a proper subset of Tn, there is a θ /∈ A′
f for

which the Euler–Mellin integral with respect to θ is well defined:

Mθ
f (s, t) :=

∫
Arg−1(θ)

zs

f (z)t

dz

z
. (3.2)

Note that after fixing the matrix A, and hence the set of monomials of the polyno-
mials fi , any choice of coefficients for the fi with positive real part ensures that
0 ∈ T

n. In particular, this means that there is always a choice of coefficients for the
fi so that A′

f is a proper subset of Tn. For another discussion on the components

of Tn \A′
f , see the end of Section 4.

As (3.2) differs from our earlier definition of the Euler–Mellin integral in (2.1)
only by a change of variables, it is immediate that θ -analogues of Theorems 2.3
and 2.5 hold. In addition, a slight perturbation of θ does not impact the value of
(3.2).

Theorem 3.2. The Euler–Mellin integral Mθ
f of (3.2) is a locally constant func-

tion in θ . Thus, it depends only on the choice of connected component  of the
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complement of A′
f , and we thus write M

f := Mθ
f . Accordingly, there is an ex-

tended Euler–Mellin integral �
f := �θ

f given by a meromorphic continuation of

M
f .

Proof. First, consider the case n = 1 and suppose that θ1 and θ2 lie in the same
connected component of the complement of A′

f ; in fact, assume that the interval

[θ1, θ2] ⊆ T
n \ A′

f . In other words, f (z) has no zeros with arguments in this in-
terval, and hence zs−1/f (z)t is analytic in the corresponding domain. Connecting
the two rays Arg−1(θ1) and Arg−1(θ2) with the circle section of radius r yields a
closed curve, and the integral of zs−1/f (z)t over this (oriented) curve is zero by
residue calculus. By the proof of Theorem 2.3, the integral over the circle section
tends to 0 as r → ∞, and so the two Euler–Mellin integrals M

θ1
f and M

θ2
f are

equal.
In arbitrary dimensions, we obtain the desired equality by considering one vari-

able at a time while the remaining variables are fixed. �

Example 3.3. Revisiting the polynomial f (z1, z2) = c1 + c2z1 + c3z2 + c4z1z2
from the Introduction, we see that if we choose θ = (arg(c1/c2), arg(c1/c3)), then

�
f (s1, s2, t) = c

s1+s2−t
1 c

−s1
2 c

−s2
3

�(t)2 2F1

(
s1, s2; t;1 − c1c4

c2c3

)
,

where  is the component of the complement of A′
f containing θ . By Remark 2.7,

we may ignore one of the �(t) in the denominator, and 2F1/�(t) is the regular-
ized Gauss hypergeometric function.

4. Integral Representations of A-Hypergeometric Functions

We now fix a connected component  of the complement of A′
f and study the

entire function �f (s, t) = �
f (s, t) from (3.2). In particular, we consider its de-

pendence on the coefficients ci = {ci,α} of the polynomials fi , where f (z) =∏m
i=1 fi and fi = ∑ri

j=1 cij z
αij (so ri = | supp(fi)|). In order to emphasize this

dependence, we write �f (s, t, c) rather than �f (s, t). Generalizing [NP13, Sec-
tion 6], we show that the extended Euler–Mellin integral �f (s, t, c) is an A-
hypergeometric function in the sense of Gelfand, Kapranov, and Zelevinsky. More
precisely, Theorem 4.2 states that c �→ �f (s, t, c) satisfies the A-hypergeometric
system of partial differential equations, where the exponents αij of the fi provide
a matrix A via the Cayley trick,

A =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
... · · · ...

... · · · ... · · · ... · · · ...

0 · · · 0 0 · · · 0 1 · · · 1
α11 · · · α1r1 α21 · · · α2r2 αm1 · · · αmrm

⎤
⎥⎥⎥⎥⎥⎦

∈ Z
(m+n)×r , (4.1)
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where r := ∑m
i=1 ri , and the desired homogeneity parameter is β = −(t, s).

We now recall the definition of an A-hypergeometric system. For a vector v ∈
Z

r , denote by u+ and u− the unique vectors in N
r with disjoint support such that

u = u+ − u−.

Definition 4.1. Let A = (aij ) ∈ Z(m+n)×r be a matrix. Define the differential
operators �u and Ei to be

�u :=
(

∂

∂c

)u+
−

(
∂

∂c

)u−
and Ei :=

r∑
j=1

aij

∂

∂cj

.

The A-hypergeometric system HA(β) at β ∈C
m+n is given by

�uF (c) = 0 for u ∈ Z
r with Au = 0

and (Ei − βi)F (c) = 0 for 1 ≤ i ≤ m + n.

A local multivalued analytic function F that solves this system is called an A-
hypergeometric function with homogeneity parameter β . Such solutions of HA(β)

form a C-vector space.

The ideal IA cuts out an affine variety XA ⊆ C
r , which has an action of an alge-

braic torus (C∗)m+n. To understand the role of the Euler operators Ei − βi , note
that a germ of an analytic function at a nonsingular point c ∈ C

r that is annihilated
by c1

∂
∂c1

+ c2
∂

∂c2
+· · ·+ cr

∂
∂cr

−β0 is homogeneous, in the usual sense, of degree
β0. In general, the Euler operators in HA(β) force solutions to have weighted ho-
mogeneities. From this point of view, it becomes natural to fix A and view β as a
parameter of HA(β).

We now consider the behavior of the entire function (s, t) �→ �f (s, t, c), as
described in Theorem 2.5, when c is viewed as a variable. Let �A ⊆ C

r denote
the singular locus of all A-hypergeometric functions, which is the hypersurface
defined by the principal A-determinant (also known as the full A-discriminant)
[GKZ94].

Theorem 4.2. Let c ∈Cr \�A, and let  be a connected component of Rn \A′
f ,

where f is the polynomial f (z) = ∏m
i=1 fi with fi = ∑ri

j=1 cij z
αij . Then, for any

θ ∈ , the analytic germ �
f (s, t, c) has a (multivalued) analytic continuation to

C
m+n × (Cr \ �A) that is everywhere A-hypergeometric (in the variables c) with

homogeneity parameter β = −(t, s).

Proof. Let us first consider the case τ := Re t > 0 and σ := Re s ∈ int(τ�f ),
where we have

�
f (s, t, c) = 1∏

k �(〈μk, s〉 − 〈νk, t〉)
∫

Arg−1(θ)

zs

f (z)t

dz

z
. (4.2)

Fix a representative θ ∈ . Since θ is disjoint from A′
f for polynomials f with

coefficients c near the original ones, say in a small ball B(c), the integral in (4.2)
does indeed define an analytic germ �f = �θ

f (s, t, c). By Theorem 2.5, �f can
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be extended to an entire function with respect to the variables s and t . In other
words, �f has been analytically extended to the infinite cylinder Cm+n × B(c).

To see that �f is an A-hypergeometric function with homogeneity parameter
β as given, we fix s and t under the above condition, noting that the product of
gamma functions in �f is simply a nonzero constant. Thus, it is enough to show
that the integral itself is A-hypergeometric at β . This is accomplished through
the argument of [SST00, Theorem 5.4.2], which applies since differentiation and
integration may be interchanged because Euler–Mellin integrals are uniformly
convergent by the bound in (2.3). See also [GKZ90, Remark 2.8(b)].

Having established that �f is an A-hypergeometric function in the product
domain given by (s, t, c) in (R+ int(τ�f )+ iRn)×(Rm+ × iRm)×B(c), it follows
from the uniqueness of analytic continuation that its extension to the cylinder
C

m+n ×B(c) will remain A-hypergeometric. Now, for each fixed (s, t), there is a
(typically multivalued) analytic continuation of c �→ �f = �θ

f (s, t, c) from B(c)

to all of Cr \ �A. As these continuations still depend analytically on s and t , we
have now achieved the desired analytic continuation to the full product domain
C

m+n × (Cr \�A). The uniqueness of analytic continuation again guarantees that
�f will everywhere satisfy the A-hypergeometric system with the homogeneity
parameter β , as desired. �

A parameter β is nonresonant if β + Z
n+m does not meet any facet of the cone

R≥0A spanned by A. When β is nonresonant, the dimension of the solution space
of HA(β) is equal to vol(A), which is (m + n)! times the Euclidean volume of
the convex hull of A and the origin. In general, vol(A) is a lower bound for this
dimension.

We turn now to the question of constructing a basis of solutions of HA(β) via
extended Euler–Mellin integrals arising from different connected components of
the complement of the coamoeba of f . Before this question can be answered fully,
we must gain a better knowledge of the geometry of coamoebas. Indeed, in order
to construct a basis of solutions of HA(β) consisting of extended Euler–Mellin
integrals, one must first find a coamoeba with the correct number of connected
components of its complement. In the context of this article, it may come as no
surprise that the conjectured maximal number of connected components of a (hy-
persurface) coamoeba is the normalized volume vol(A) of the appropriate Newton
polytope. The paper [N08] discusses this issue; see also the examples in [For12,
Section 2.5].

5. Bases of Solutions at Nonresonant Parameters in Low Dimension

We show in this section that if n = 1 and β is nonresonant, then the extended
Euler–Mellin integrals given by the components of T1 \ A′

f form a basis of so-
lutions of HA(β). We then illustrate how similar methods can be used to show
the linear independence of the extended Euler–Mellin integrals for the Gauss A-
hypergeometric system, for which n = 2, at nonresonant parameters.
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Proposition 5.1. If β = −(t, s) is nonresonant and n = 1, then the extended
Euler–Mellin integrals �

f (s, t, c), where  ranges over the components of T1 \
A′

f , form a basis of solutions of the A-hypergeometric system HA(β).

Proof. For a generic choice of coefficients c, f has distinct roots r1, r2, . . . , rvol(A)

with distinct arguments 0 ≤ θ1 < θ2 < · · · < θvol(A) < 2π . That is, A′
f will have

vol(A)-many components in its complement in T
1. For convenience, we use the

convention that θvol(A)+1 := θ1. Now fix 0 < ε � 1 so that the circles Bε(ri) :=
{z ∈C | |z− ri | = ε}, viewed as 1-chains oriented counterclockwise, have disjoint
supports for 1 ≤ i ≤ vol(A). By [GKZ90], the integrals∫

Bε(ri )

zs

f (z)t

dz

z
for 1 ≤ i ≤ vol(A)

are linearly independent, forming a basis for the solution space of HA(β). By
the convergence of M

θi

f (s, t, c) from Theorems 2.3 and 2.5 we see that as non-
compact chains, Arg−1(θi)− Arg−1(θi+1) and Bε(ri) are homologous, providing
the second statement. For a nongeneric choice of coefficients c for f , which still
lie away from �A, a similar argument implies linear independence of the Euler–
Mellin integrals given by the distinct components of the complement of A′

f . �

Example 5.2. In Example 3.3, it was shown that if f (z) = c1 + c2z1 + c3z2 +
c4z1z2 and θ is near (arg(c1/c2), arg(c1/c3)), then

�θ
f (s, t, c) = c

s1+s2−1
1 c

−s1
2 c

−s2
3

�(t)2 2F1

(
s1, s2; t;1 − c1c4

c2c3

)
.

By Theorem 4.2 this is a solution of HA(β) when

A =
⎡
⎣1 1 1 1

0 1 0 1
0 0 1 1

⎤
⎦ and β = −(t, s).

Now consider points c of the form (1, i, i, c4), where c4 is near 1, and define the
polynomials

fρ := 1 + e(πi/2)ρz1 + e(πi/2)ρz2 + c4z1z2 for 0 ≤ ρ ≤ 1

and gρ := 1 + e(πi/2)(2−ρ)z1 + e(πi/2)(2−ρ)z2 + c4z1z2 for 0 ≤ ρ ≤ 1.

As shown in Figure 1, the complement of the coamoeba for f1 = g1 has two con-
nected components, one containing (0,0) and another containing (π,π). These
yield two solutions of HA(β) at c = (1, i, i, c4) by Theorem 4.2, namely, �(0,0)

f1
(s,

t, c) and �
(π,π)
f1

(s, t, c). In addition, (0,0) /∈ A′
fρ

and (π,π) /∈ A′
gρ

for all ρ, so

we let �
(0,0)
fρ

(s, t, c) and �
(π,π)
gρ

(s, t, c) denote the entire functions corresponding
to fρ and gρ , respectively.
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Figure 1 The coamoebas of the polynomials f0, f1 = g1, and g0,
respectively, shown inside the fundamental domain [−π,π ]×[−π,π ]
of T2 in R

2, have been colored in black

Figure 2 The loop L in the (1 + c4)-complex plane is given by the
reverse of the arrow labeled fρ , followed by the arrow labeled gρ

Let L be the loop in the coefficient space given by first following the coeffi-
cients in the reverse of fρ and then those in gρ . Since f1 = g1 and �

(π,π)
g0 (s, t,

c) = e(s1+s2)πi�
(0,0)
f0

(s, t, c), we can explicitly perform an analytic continuation

of �
(0,0)
f1

(s, t, c) along the loop L; see Figure 2. When the monodromy of HA(β)

is irreducible, it follows that �
(0,0)
f1

(s, t, c) and �
(π,π)
f1

(s, t, c) form a basis for the
solution space of HA(β) of analytic germs at (1, i, i, c4). Since the monodromy
irreducibility of HA(β) is equivalent to the nonresonance of β [Beu11b; SW10],
the conclusion of Proposition 5.1 also holds in this case.

6. Mellin–Barnes Integrals and Lopsided Coamoebas

In this section, we continue our investigation of the linear independence of ex-
tended Euler–Mellin integrals, obtaining partial results in arbitrary dimensions. To
do this, we employ another class of integral representations of A-hypergeometric
functions, known as Mellin–Barnes integrals [Nil09; Beu11a]. The main result of
this section is Theorem 6.4, which identifies the set of Mellin–Barnes integral so-
lutions of HA(β) with a certain subset of its set of extended Euler–Mellin integral
solutions. This yields the linear independence of certain collections of extended
Euler–Mellin integrals at totally nonresonant parameters β , as stated in Corol-
lary 6.5. We say that β ∈ C

m+n is totally nonresonant for A if the shifted lattice
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β +Z
m+n has empty intersection with any hyperplane spanned by any m + n − 1

linearly independent columns of A.
The definition of a Mellin–Barnes integral requires the input of a Gale dual of

A, which is an integer r × (r − m − n)-matrix B with relatively prime maximal
minors such that AB = 0. Typically in the sequel, we will not require that the
condition on maximal minors holds; in this case, the matrix B is called a dual
matrix of A. Connections between coamoebas and Gale duals are explored in
[NP13; FJ12].

Definition 6.1. Fix a Gale dual B of A, and let γ be such that Aγ = β . Then
for c ∈C

r , the Mellin–Barnes integral has the form

L(c) = L(c1, . . . , cr )

=
∫

(iR)m

r∏
i=1

�(−γi − 〈bi,w〉)cγi+〈bi ,w〉
i dw1 ∧ · · · ∧ dwm. (6.1)

Given θ ∈ T
n and c ∈ (C∗)r , we write

Lθ(c) := L(c1e
i〈α1,θ〉, . . . , cre

i〈αr ,θ〉),
viewed as the germ of an analytic function at c.

Related to Mellin–Barnes integrals are two objects arising from a dual matrix B .
These are the zonotope

ZB :=
{

π

2

r∑
i=1

μibi

∣∣∣ |μi | < 1

}
,

where bi denotes the ith row of B , and the sublattice Z[B] of Z
r−m−n gener-

ated by b1, . . . , br . The following result on Mellin–Barnes integrals summarizes
Corollary 4.2, Theorem 3.1, and Proposition 4.3 of [Beu11a].

Theorem 6.2 [Beu11a]. Consider c, c1, . . . , ck ∈ (C∗)r .

(1) If Arg(c)B ∈ int(ZB), then the integral L(c) converges absolutely.
(2) If Arg(c)B ∈ int(ZB) and γi < 0 for each i, then L(c) is a solution of HA(β).
(3) If β is totally nonresonant for A and the (r − m − n)-tuples Arg(c1)B, . . . ,

Arg(ck)B are distinct elements of the set int(ZB) ∩ (Arg(c)B + 2πZ[B]),
then the Mellin–Barnes integrals L(c1), . . . ,L(ck) are linearly independent.

By choosing c1, . . . , ck as in Theorem 6.2.3, we obtain a set of linearly inde-
pendent solutions to HA(β) that are in bijective correspondence with int(ZB) ∩
(Arg(c)B + 2πZ[B]), provided that β is sufficiently generic.

The set int(ZB) ∩ (Arg(c)B + 2πZ[B]) is closely related to a certain subset
of the set of connected components of the complement of the coamoeba associ-
ated to A. This relationship can be made precise through the notion of a lopsided
coamoeba. Consider the polynomial

F(c, z) =
∑
α∈A

cαzα,



Euler–Mellin Integrals and A-Hypergeometric Functions 117

Figure 3 The coamoeba (left) and the lopsided coamoeba (right) of
f (z1, z2) = 1 + z1 + z2 + iz1z2, both colored in grey

where the coefficients c are also viewed as variables. The corresponding variety
has a coamoeba A′

F , which is contained in T
n+r . Given f (z) = ∑

α∈A cαzα with
fixed coefficients c, the lopsided coamoeba of f , denoted by LA′

f , is by definition
the intersection of A′

F with the sub-Tn-torus of Tn+r obtained by fixing Arg(c)

as prescribed by f . The lopsided coamoeba LA′
f is viewed as a subset of Tn.

The name “lopsided coamoeba” might be misleading; the lopsided coamoeba
is not per se a coamoeba, but it can be viewed as a crude approximation of one.
Figure 3 provides a comparison between these objects. The following properties
of lopsided coamoebas, as summarized from [FJ12, Theorem 4.1 and Propositions
4.4 and 4.5] and [For12, Theorem 2.3.10], will be used to relate Mellin–Barnes
and Euler–Mellin integrals.

Theorem 6.3 [FJ12; For12].

(1) There is a natural inclusion A′
f ⊆ LA′

f . In particular, each component of

Tn \ LA′
f is contained in a component of Tn \ A′

f . While this map on com-
ponents is injective, it is in general not surjective.

(2) The lopsided coamoeba is equipped with an order map v. That is, there is
a surjective map from the set of connected components of Tn \ A′

f to the
set int(ZB) ∩ (Arg(c)B + 2πZ[B]). The fiber over each point consists of gA

many connected components, where gA is the greatest common divisor of the
maximal minors of A.

(3) If the polynomial f contains the constant monomial with coefficient c0 and
Arg(c0) is equal to zero, then for a connected component  of Tn \LA′

f , the
value v() is

v(θ) = argπ (c1e
i〈α1,θ〉, . . . , cre

i〈αr ,θ〉)B some θ ∈ ,

where argπ denotes the principal branch of the argument map.

We now show that the order map for the set of components of Tn \ LA′
f lifts to

a bijection between the set of Mellin–Barnes integrals corresponding to points in
int(ZB)∩ (Arg(c)B +2πZ[B]) and the set of Euler–Mellin integrals arising from
the components of Tn \LA′

f .
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Theorem 6.4. For all θ ∈ Tn \ LA′
f and (s, t) in the tube domain (2.2), the

Mellin–Barnes integral Lθ(c) and Euler–Mellin integral Mθ
f (c) satisfy the rela-

tion
gBLθ(c) = 2πie−i〈s,θ〉�(t)gAMθ

f (c),

where gA and gB respectively denote the greatest common divisors of the maximal
minors of the matrices A and B .

Proof. Since the order map v from Theorem 6.3 sends each point in T
n \ LA′

f

to a point in the set int(ZB) ∩ (Arg(c)B + 2πZ[B]), the Mellin–Barnes integral
Lθ(c) is convergent by Theorem 6.2.

By meromorphic extension, it is enough to give the proof in the case where the
A-hypergeometric homogeneity parameter β is such that the integral expression
in (2.1) converges. We may also assume that A is of the form

A =
[

1 1 1
0 AI AII

]
,

where AI is a nonsingular n × n-matrix; we will use the same decomposition
for c = (c0, cI, cII). For simplicity of notation, we will take β to be of the form
β = −(t,AIs). Let B denote the dual matrix of A of the form

B =
⎡
⎢⎣

−a0

A−1
I AII

−Im

⎤
⎥⎦D,

where a0 is chosen so that each column sum of B is zero, and D is an integer
diagonal matrix chosen so that B is an integer matrix. It will be later useful that

gB

gA

= |det(D)|
|det(AI)| . (6.2)

To see this, assume that gA = 1. Following [Nil09, Proposition 4.2], this implies
that A can be extended to an r × r unimodular matrix

Ã =
⎡
⎣1 1 1

0 AI AII
∗ ∗ ∗

⎤
⎦ with inverse Ã−1 = [∗ B̃

] =
⎡
⎢⎣∗ b̃0

∗ B̃1

∗ B̃2

⎤
⎥⎦ .

It follows that B̃ is a Gale dual of A, and by the Schur complement formula,
|AI| = |B̃2|. Since B = B̃T for some affine transformation T , equality (6.2) thus
holds.

Note that it is enough to give the proof for this particular choice of dual
matrix B . Write xi = cBi , where Bi denotes the ith column of B , and hence
Arg(x) = Arg(c)B . Then the Euler–Mellin integral is

Mθ
f (c) =

∫
Arg−1(θ)

zAIs/(c0 + c1z
α1 + · · · + cnz

αn

+ c1+nz
α1+n + · · · + cm+nz

αm+n)t
dz

z
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= c
|s|−t
0

cI
s

∫
zAIs/(1 + zα1 + · · · + zαn

+ x
1/d1
1 zα1+n + · · · + x

1/dm
m zαm+n)t

dz

z
, (6.3)

where the integration in the second integral takes place over the domain given
by the fiber of Arg over the point θ + Arg(cI )A

−1
I . Let us denote by Mθ

f (x) the

function given by the integral in (6.3). Note that θ ∈ T
n \ LA′

f is equivalent to
the convergence of the integral ∫

xwMθ
f (x)

dx

x
,

where the integration takes place over the domain given by the fiber of Arg over
the point Arg(x) = Arg(c)B , and w is chosen to fulfill the requirements of The-
orem 2.3. However, this integral is precisely the Mellin transform with respect to
x of Mθ

f (x) with variables w. Consequently, after making the change of variables

xi �→ x
di

i , we find that

{MMθ
f (x)(w)}

= |det(D)|
|det(AI)|

∫
zs−A−1

I A2DwxDw

(1 + z1 + · · · + zn + x1 + · · · + xm)t

dz ∧ dx

zx

= |det(D)|
|det(AI)|

�(s − A−1
I AIIDw)�(Dw)�(t − |Dw| − |s| + |A−1

I AIIDw|)
�(t)

,

by Example 2.9. For γ in (6.1), write γ = (γ0, γI, γII). Assuming that sj > 0 for
all j , that t > |s| (note that this is in accordance with our previous assumptions on
β), and that −1 � γII > 0, we set γI = −s−A−1

I AIIγII and γ0 = |s|− t +〈b0, γII〉.
It follows that γk < 0 for all k. With this notation,

{MMθ
f (x)(w)} = |det(D)|

|det(AI)|
∏r

i=1 �(−γi − 〈bi,w − γII〉)
�(t)

.

Furthermore, with ai denoting the (i + 1)th column of A,

r−1∑
i=0

γiai = Aγ =
[ −t

−AIs

]
.

Turning to the Mellin–Barnes integral, we find that

Lθ(c) =
∫

(iR)m

r∏
i=1

�(−γi − 〈bi,w〉)cγi+〈bi ,w〉
i dw

=
∫

γII+(iR)m

r∏
i=1

�(−γi − 〈bi,w − γII〉)cγi+〈bi ,w−γII〉
i dw

= c
|s|−t
0

ei〈AIs,θ〉cs
I

∫
γII+(iR)m

( r∏
i=1

�(−γi − 〈bi,w − γII〉)
)

dw

xw
.
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The bounds in the proof of Theorem 2.3 imply that we can apply the Mellin
inversion formula, which yields the equality

|det(D)|Lθ(c) = 2πie−i〈AIs,θ〉�(t)|det(AI)|Mθ
f (c).

Applying (6.2) thus completes the proof. �

Corollary 6.5. If β is totally nonresonant for A, then when viewed as ana-
lytic germs at some c ∈C

r \�A, the extended Euler–Mellin integrals �
f (s, t, c),

where  ranges over the components of Tn \ LA′
f , are linearly independent so-

lutions of the A-hypergeometric system HA(β).

Proof. Let θ1, . . . , θk be representatives for the components of Tn \ LA′
f . If the

indicated set of extended Euler–Mellin integrals is linearly dependent, then there
exist constants �1, . . . , �k providing a vanishing linear combination of M

θ1
f (c),

. . . ,M
θk

f (c) such that

gB

k∑
j=1

�j e
i〈s,θj 〉Lθj (c) = 2πi�(t)gA

k∑
j=1

�jM
θj

f (c) = 0.

It then follows from Theorem 6.2.3 that �1 = · · · = �k = 0. �

If A is a circuit, then when β is totally nonresonant, there always exists a Mellin–
Barnes, and hence an extended Euler–Mellin, basis of integral representations for
solutions of the system HA(β) [FJ12]. However, it is noted in [Beu11a] that for
general A, it is not always possible to construct a basis for the solution space of
HA(β) by considering only Mellin–Barnes integrals of the form (6.1). By The-
orem 6.4, this also holds for extended Euler–Mellin integrals arising only from
the set of components of Tn \ LA′

f ; however, Tn \A′
f has in general more con-

nected components than T
n \ LA′

f . In many cases, it is possible to construct a
basis of Euler–Mellin integral solutions even though Mellin–Barnes integrals do
not suffice, as illustrated in the following example.

Example 6.6. Consider the matrix

A =
[

1 1 1 1
0 2 3 6

]
.

By [NP10], since the coamoeba of the A-discriminant covers T
4, the maximal

number of points in the set int(ZB)∩ (Arg(c)B +2πZ[B]) is five. Hence, there is
no basis of solutions of HA(β) represented by Mellin–Barnes integrals. However,
for a generic choice of coefficients c, the coamoeba of f (z) = c0 + c1z

2 + c2z
3 +

c3z
6 has six components in its complement. Thus, by Proposition 5.1, at each

nonresonant β , this set of components provides a basis of solutions of HA(β)

represented by extended Euler–Mellin integrals.
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7. An A-Hypergeometric Rank-Jumping Example

We conclude with an example first studied in [ST98], where it was shown that
some parameters β admit a higher-dimensional solution space for HA(β) than the
expected dimension of vol(A). We illustrate how extended Euler–Mellin integrals
capture these extra solutions at nongeneric parameters β , offering a new tool to
understand how these special functions arise.

Consider the system HA(β) given by

A =
[

1 1 1 1
0 1 3 4

]

and the unique parameter β = (1,2) for which the dimension of the solution space
of HA(β) is one larger than expected. For this A, the Euler–Mellin integral is

M
f (s, t, c) =

∫
Arg−1(θ)

zs

(c1 + c2z + c3z3 + c4z4)t

dz

z
(7.1)

for the polynomial f (z) = c1 + c2z+ c3z
3 + c4z

4 and θ ∈  for a fixed connected
component  of T2 \ A′

f . In order to calculate the corresponding �
f , we first

expand (7.1) five times in different directions, so that it converges for (s, t) =
(−2,−1). Upon expansion, M

f (s, t, c) is equal to

(t)2

s

∫
zsh1(z)

f (z)t+2

dz

z
+ (t)3

s

∫
zsh2(z)

f (z)t+3

dz

z

+ (t)4

s

∫
zsh3(z)

f (z)t+4

dz

z
+ (t)5

s

∫
zsh4(z)

f (z)t+5

dz

z
, (7.2)

where all integrals are taken over Arg−1(θ), and (t)n = �(t + n)/�(t) is the
Pochhammer symbol. This shows that when (s, t) = (−2,−1), the entire function
�

f falls into the situation noted in Remark 2.7, and we thus ignore the factor
(t + 1) in (7.2). To be explicit,

h1(z) = 3c2c3z
4

s + 1
+ 3c2c3z

4

s + 3
+ 4c2c4z

5

s + 1
+ 4c2c4z

5

s + 4
,

h2(z) = 36c1c
2
3z

6

(s + 3)(4t − s + 2)
+ 48c1c3c4z

7

(s + 3)(4t − s + 1)

+ 48c1c3c4z
7

(s + 4)(4t − s + 1)
+ 64c1c

2
4z

8

(s + 4)(4t − s)

+ c3
2z

3

(s + 1)(s + 2)
+ 3c2

2c3z
5

(s + 1)(s + 2)

+ 4c2
2c4z

6

(s + 1)(s + 2)
+ 27c2c

2
3z

7

(s + 3)(4t − s + 2)

+ 36c2c3c4z
8

(s + 3)(4t − s + 1)
+ 36c2c3c4z

8

(s + 4)(4t − s + 1)
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+ 48c2c
2
4z

9

(s + 4)(4t − s)
+ 9c3

3z
9

(s + 3)(4t − s + 2)
,

h3(z) = 48c1c
2
3c4z

10

(s + 3)(4t − s + 1)(4t − s + 2)
+ 48c1c

2
3c4z

10

(s + 4)(4t − s + 1)(4t − s + 12)

+ 64c1c3c
2
4z

11

(s + 4)(4t − s + 1)2
+ 36c2c

2
3c4z

11

(s + 3)(4t − s + 1)(−s + 4t + 2)

+ 36c2c
2
3c4z

11

(s + 4)(4t − s + 1)(4t − s + 2)
+ 48c2c3c

2
4z

12

(s + 4)(4t − s)(4t − s + 1)

+ 12c3
3c4z

13

(s + 3)(4t − s + 1)(4t − s + 2)
+ 12c3

3c4z
13

(s + 4)(4t − s + 1)(4t − s + 2)
,

and

h4(z) = 64c1c
2
3c

2
4z

14

(s + 4)(4t − s)(4t − s + 1)(4t − s + 2)

+ 48c2c
2
3c

2
4z

15

(s + 4)(4t − s)(4t − s + 1)(4t − s + 2)

+ 16c3
3c

2
4z

17

s(s + 4)(4t − s)(4t − s + 1)(4t − s + 2)
.

Each term in (7.2) corresponds to a translation of the original integral (7.1) and
converges at (s, t) = (−2,−1). In addition, the lack of a degree 2 term in f means
that no term of any hi(t) has both (s + 2) and (4t − s + 2) as factors in its denom-
inator. Thus, there are entire functions �1, �2, and �3 in s and t such that

�
f = (4t − s + 2)�1 + (s + 2)�2 + (s + 2)(4t − s + 2)�3.

From this expression we see that since �(−2,−1, c) = 0 independently of c

and , we also obtain two functions �1 and �2 that are also solutions of HA(β).
Explicit calculation reveals that

�
1 (−2,−1, c) = 2

c2
2

c1
and �

2 (−2,−1, c) = 2
c2

3

c4

for any choice of . These span the Laurent series solutions of the system HA(1,

2), which has dimension two only at this parameter [CDD99]. The vanishing of
� at β = (1,2), together with the appearance of �1 and �2, illustrates the first
direct relationship between the computation of the local cohomology of the com-
mutative ring C[∂c]/〈�u | Au = 0〉 with respect to 〈∂c〉 and the Laurent polyno-
mial solutions of HA(1,2).
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