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Domains with a Contracting Automorphism at
a Boundary Point

J isoo Byun & Kang-Hyurk Lee

1. Introduction

The aim of this paper is to classify smoothly bounded pseudoconvex domains with
a contracting automorphism at a boundary point. According to Kim–Yoccoz [10],
this is the same as to study the smoothly bounded realization of weighted homo-
geneous models. Let us consider the complex Euclidean space Cn+1 with the stan-
dard coordinates (w, z) = (w, z1, . . . , zn). By a weight to the vector z, we mean
an n-tuple δ = (δ1, . . . , δn) of nonnegative real numbers. Given the weight δ, the
total degree of the monomial zαzβ̄ = z

α1
1 · · · zαn

n z̄
β1
1 · · · z̄βn

n of multi-indices α =
(α1, . . . , αn) and β = (β1, . . . , βn) is defined by δ(α + β) = ∑n

j=1 δj (αj + βj ).
We say that a polynomial Q in z, z̄ is weighted homogeneous if each monomial
of Q has the same total degree for the given weight δ, that is, Q can be written
as Q(z, z̄) = ∑

δ(α+β)=μ Qαβ̄zαzβ̄ for some complex numbers Qαβ̄ . A weighted
homogeneous polynomial Q is said to be balanced if Qαβ̄ �= 0 only for (α,β)

with δ(α) = δ(β).
A weighted homogeneous model is a domain in C

n+1 defined by

MP = {(w, z) ∈C×C
n : Rew + P(z, z̄) < 0}, (1.1)

where P is a weighted homogeneous polynomial of total degree 1 for a weight
δ = (δ1, . . . , δn). Each weighted homogeneous model MP admits the dilation,

Dt (w, z) = (etw, eδ1t z1, . . . , e
δnt zn) (t ∈R),

and the translation,

Tt (w, z) = (w + it, z) (t ∈R),

as its automorphisms. Thus MP has a noncompact automorphism group. Simul-
taneously, the dilation Dt with t �= 0 extends to the CR automorphism of the
boundary ∂MP which is contracting or dilating at the origin.

In this paper, we shall prove the following theorem.
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Theorem 1.1. Let � be a smoothly bounded pseudoconvex domain in C
n+1. Sup-

pose that there exists f ∈ Aut(�) ∩ Diff(�) such that f |∂� and f −1|∂� are CR
contractions of ∂�. Then � is biholomorphic to a weighted homogeneous model
MP with a weight δ = (δ1, . . . , δn) such that

(i) P is plurisubharmonic and balanced,
(ii) P(z, z̄) ≥ 0 for any z ∈C

n and P(z, z̄) = 0 only if z = 0,
(iii) there is a positive integer mj with δj = 1/2mj for each j = 1, . . . , n.

Here a CR contraction of a CR manifold H means a CR mapping f : H → H

leaving a point p ∈ H fixed such that each eigenvalue of df p : C⊗ TpH → C⊗
TpH has a modulus strictly smaller than 1. Note that each MP in Theorem 1.1
admits the Cayley transform,

(w, z) �→
(

1 + w

1 − w
,

21/m1z1

(1 − w)1/m1
, . . . ,

21/mnzn

(1 − w)1/mn

)
,

which is a biholomorphism from MP to the smoothly bounded domain EP =
{(w, z) ∈ C × C

n : |w|2 + P(z, z̄) < 1}. For the biholomorphic equivalence be-
tween weighted homogeneous models, see Coupet–Pinchuk [4].

According to a result of S.-Y. Kim [12], we also have the following.

Corollary 1.2. Let � be a smoothly bounded pseudoconvex domain in Cn+1.
Suppose that the Bergman kernel of � extends to � × � minus the boundary di-
agonal set as a locally bounded function. If there is an automorphism orbit ϕν(q)

with ϕν(q) → p1 and ϕ−1
ν (q) → p2 as ν → ∞ for some different p1,p2 ∈ ∂�,

then � is biholomorphic to a weighted homogeneous model MP as in Theo-
rem 1.1.

The research of this paper pertains to the classification program of smoothly
bounded domains with a noncompact automorphism group. For the general de-
scription of the program, see [6; 9]. The general scheme for the classification
which has been developed by E. Bedford and S. Pinchuk as in [1; 2; 3] involves
two steps. The first step is to construct a biholomorphism by the scaling method
from the initial domain � with noncompact Aut(�) to a certain unbounded model
domain invariant under the action by the translation {Tt }. However, the unbounded
model after scaling is not unique and generically has no smoothly bounded real-
ization. The second step is to analyze the geometry of the parabolic fixed point of
� under the holomorphic vector field corresponding to the infinitesimal generator
of {Tt }. Then one can determine which model is biholomorphic to the initial �. In
[3], the analysis of the parabolic fixed point is systematically generalized in terms
of tangential polynomial vector fields on the weighted homogeneous model.

However, the scaling method cannot be applied to general smoothly bounded
domains. An alternative approach is to classify smooth CR manifolds with a con-
tracting CR automorphism as studied in [8; 11; 10]. In their paper [10], K.-T. Kim
and J.-P. Yoccoz show that a smoothly bounded domain with an automorphism
inducing a CR contraction at a boundary point is biholomorphic to a weighted
homogeneous model MP . Theorem 1.1 partly completes their classification.
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In order to prove Theorem 1.1 in Section 3, we shall follow the Bedford–
Pinchuk scheme. As the first step, we use Kim–Yoccoz [10] in place of the scaling
method. Then, in order to complete the proof, we apply the Bedford–Pinchuk
theory [3] which is summarized as Theorem 2.1 in Section 2.

2. Holomorphic Vector Fields on Weighted Homogeneous Models

For a domain �, we denote by aut(�) the algebra of complete holomorphic vector
fields on �, which corresponds to the Lie algebra of the automorphism group
Aut(�). In this section, we introduce the graded Lie algebra structure of aut(MP )

for the weighted homogeneous model MP as in Bedford–Pinchuk [3].
For convenience, we especially set δ0 = 1, the weight to w. Then we can also

consider a weighted homogeneous polynomial of variables w, z, w̄, z̄. For in-
stance, the defining function Rew + P(z, z̄) in (1.1) is a weighted homogeneous
polynomial of total degree 1.

2.1. Infinitesimal Automorphisms

A holomorphic vector field X locally defined on C
n+1 is called a polynomial vec-

tor field if in the expression X = X0∂/∂w + ∑n
j=1 Xj∂/∂zj , each holomorphic

function Xa (a = 0, . . . , n) is a polynomial in w and z. It is a global vector field on
C

n+1. For a weighted homogeneous model MP with the weight δ = (δ1, . . . , δn),
the polynomial vector fields

D = w
∂

∂w
+

n∑
j=1

δj zj

∂

∂zj

, T = i
∂

∂w

belong to aut(MP ) which infinitesimally generate Dt and Tt , respectively. Given
D associated by the weight δ, we say that a polynomial vector field X on C

n+1 is
of degree μ if it satisfies [D,X] = μX. Equivalently, each Xa in X = X0∂/∂w +∑n

j=1 Xj∂/∂zj is identically vanishing or a weighted homogeneous polynomial
of total degree μ + δa for a = 0, . . . , n.

We denote by g(MP ) the set of all polynomial vector fields in aut(MP ) and by
gμ = gμ(MP ) the set of polynomial vector fields of degree μ in aut(MP ).

For the model MP , we consider two kinds of nondegeneracy conditions to P

(see (2.7), (2.8) in [3]). We say that a real-valued polynomial P on C
n is nonde-

generate if {z ∈ C
n : P(z, z̄) = 0} contains no nontrivial analytic set, and weakly

nondegenerate if there is no nontrivial holomorphic vector field Y on C
n with

YP ≡ 0. The nondegeneracy of a weighted homogeneous polynomial implies its
weak nondegeneracy (Lemma 2.2 in [3]). Denote by P (0) the summation of all
balanced monomials of the weighted homogeneous polynomial P .

Theorem 2.1 [3]. Let δ = (δ1, . . . , δn) be a weight with rational 0 < δj ≤ 1/2,
and let MP be a weighted homogeneous model. If P is nondegenerate and P (0)

is weakly nondegenerate, then g(MP ) can be decomposed by

g(MP ) = g−1 + g−δ1 + · · · + g−δn + g0 + g1/2 + g1 + g3/2 + · · · .
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Moreover,

(i) [gμ,gν] ⊂ gμ+ν .
(ii) g−1 = {cT : c ∈R}.

(iii) If X ∈ g0, then X = cD + L for some c ∈ R and L is a holomorphic vector
field on C

n with variable z, that is, L = ∑n
j=1 Lj (z)∂/∂zj .

(iv) If X ∈ g−1 + g−δ1 + · · · + g−δn is nontrivial, then X(0) �= 0.
(v) If gμ �= {0} for some μ > 0, then P is balanced.

The original theorem has the restriction to the weight δ by δj = 1/2mj for a
positive integer mj . However, E. Bedford and S. Pinchuk (and also the authors of
this paper) confirmed that the same argument is also valid for any weight δ with
rational 0 < δj ≤ 1/2.

At this juncture, we shall introduce a similar property of weighted homoge-
neous models with the Siegel domains (see Theorem 1 in [7]).

Proposition 2.2. Let MP be a weighted homogeneous model. If the automor-
phism group Aut(MP ) is a finite-dimensional Lie group, then all complete holo-
morphic vector fields of MP are polynomial vector fields, that is, aut(MP ) =
g(MP ).

Proof. The proof is based on Section 2 of [7]. Consider the translation (w, z) �→
(w + 1, z) and its image D of MP . Then D contains the origin, and the cor-
responding vector fields of D, T are D∗ = (w − 1)∂/∂w + ∑n

j=1 δj zj ∂/∂zj ,
T∗ = i∂/∂w, respectively. Thus the complex Lie algebra autC(D) generated by
aut(D) contains D = D∗ − iT∗. Since the translation is affine, it suffices to show
that every element of autC(D) is a polynomial vector field.

Consider any X ∈ autC(D) that should be a holomorphic vector field. From
the Taylor expansion of each coefficient of X at the origin, we can write X =∑

μ≥−1 Xμ, where Xμ is a polynomial vector field of degree μ. It follows that
[D,X] = adD(X) = ∑

μ μXμ. Since autC(D) is a finite-dimensional complex
vector space, we can consider the minimal polynomial φ of the operator adD in
autC(D). Then φ(adD)X = ∑

μ φ(μ)Xμ so that φ(μ)Xμ = 0 for any μ. That
means that Xμ ≡ 0 for all but finitely many μ. This completes the proof. �

2.2. Note on the Nondegeneracy

In [3], the weak nondegeneracy of (P 2)(0) is additionally assumed for Theo-
rem 2.1. But it is indeed given by the nondegeneracy of P as follows.

Proposition 2.3 (proof of Theorem 1 in [3]). Let P be a real-valued weighted
homogeneous polynomial. If P is nondegenerate and P(z, z̄) ≥ 0 for any z ∈ C

n,
then P (0) is strictly plurisubharmonic at some point, so weakly nondegenerate.

In this section, we shall show that the weak nondegeneracy of P (0) is also given
by the strict plurisubharmonicity of the plurisubharmonic P at a point.
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Lemma 2.4. If a real-valued weighted homogeneous polynomial P is nondegen-
erate and plurisubharmonic on C

n and strictly plurisubharmonic at z ∈ C
n, then

P (0) is also strictly plurisubharmonic at z, so weakly nondegenerate.

Proof. Let P be a nondegenerate, weighted homogeneous polynomial on C
n of

the weight δ = (δ1, . . . , δn). The nondegeneracy of P means that each δj is ratio-
nal. Choose an integer m, for which each mδj is also an integer, and denote by
eimδθ z = (eimδ1θ z1, . . . , e

imδnθ zn) for the vector z = (z1, . . . , zn) ∈ C
n. Then we

have

P (0)(z, z̄) = 1

2π

∫ 2π

0
P(eimδθ z, eimδθ z) dθ.

When we simply denote by Pjk̄ = ∂2P/∂zj ∂z̄k ,

P
(0)

j k̄
(z, z̄) = 1

2π

∫ 2π

0
eimδj θ e−imδkθPjk̄(e

imδθ z, eimδθ z) dθ.

For any complex vector v = (v1, . . . , vn), it follows that
n∑

j,k=1

P
(0)

j k̄
(z, z̄)vj vk̄ =

n∑
j,k=1

1

2π

∫ 2π

0
eimδj θ e−imδkθPjk̄(e

imδθ z, eimδθ z)vj vk̄ dθ

=
n∑

j,k=1

1

2π

∫ 2π

0
Pjk̄(e

imδθ z, eimδθ z)(eimδθv)j (e
imδθv)k̄ dθ.

Suppose that P is plurisubharmonic on Cn and strictly plurisubharmonic at
z ∈ C

n. Then the term
∑n

j,k=1 Pjk̄(e
imδθ z, eimδθ z)(eimδθv)j (e

imδθv)k̄ is always

nonnegative and positive near θ = 0 when v �= 0. That means
∑n

j,k=1 P
(0)

j k̄
(z, z̄)×

vjvk̄ > 0 for any nonzero vector v so that P (0) is strictly plurisubharmonic at z.
�

3. Proof of Theorem 1.1

Let � be a bounded pseudoconvex domain in C
n+1 with smooth boundary, and let

f ∈ Aut(�) ∩ Diff(�) such that f and f −1 are contracting at different boundary
points q1 and q2, respectively. By the results in Section 4.3 of [10], there are two
weighted homogeneous models MP1 and MP2 , both of which are biholomorphic
to � by ψ1 : � → MP1 and ψ2 : � → MP2 . Simultaneously, ψ1 : ∂� \ {q2} →
∂MP1 and ψ2 : ∂� \ {q1} → ∂MP2 are CR diffeomorphisms with ψ1(q1) = 0 and
ψ2(q2) = 0. Moreover, we have

ψ1 ◦ f ◦ ψ−1
1 = Dt1, ψ2 ◦ f −1 ◦ ψ−1

2 = Dt2 (3.1)

for some negative real numbers t1, t2 (see also [11]). Since MP1 is biholomorphic
to MP2 , we may assume that the weights for P1 and P2 are the same from Main
Theorem in [4]. We denote this by δ = (δ1, . . . , δn).

Since � is a bounded pseudoconvex domain and ψ1, ψ2 are CR diffeomor-
phisms, each MPk

(k = 1,2) is pseudoconvex and also strongly pseudoconvex on
an open subset of ∂MPk

. Equivalently, each Pk : Cn →R is plurisubharmonic on
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C
n and should be strictly plurisubharmonic on an open subset of Cn. By Corol-

lary 4.4 in [10], ∂� is of finite type at q1 and q2, so is ∂MPk
near the origin. Since

∂MPk
is of real-analytic type, there is no nontrivial complex analytic set in ∂MPk

passing through a point of finite type (see [5]). Because of Dt ∈ Aut(MPk
), there

is no nontrivial complex analytic set in ∂MPk
; thus each Pk should be nonde-

generate. Simultaneously, each P
(0)
k is weakly nondegenerate by Lemma 2.4 and

each δj is a rational number with 0 < δj ≤ 1/2. Now we can apply Theorem 2.1
to MPk

.
Let us consider the biholomorphism ϕ = ψ2 ◦ψ−1

1 : MP1 → MP2 and the holo-
morphic vector field D ∈ g(MP1). Since � is bounded, the automorphism group
Aut(�) � Aut(MPk

) is a finite-dimensional Lie group. Proposition 2.2 says that
aut(MPk

) = g(MPk
) for k = 1,2. Hence ϕ∗D should be a polynomial vector field

in MP2 . It is also achieved by Lemma 3.3 in [4].

Step 1. Expecting a contradiction, we suppose that P1 is not balanced. By (v) of
Theorem 2.1, we can write

ϕ∗D = cD +L+ E,

where cD+L ∈ g0(MP2) as in (iii) of Theorem 2.1 and E is the summation of all
components of negative degree in ϕ∗D.

The dynamics of −D on each MPk
is a contraction at the origin, so it coin-

cides with the dynamics of Dt for t < 0. Since ϕ ◦ Dt1 ◦ ϕ−1 = D−1
t2

= D−t2 for
negative t1, t2 by (3.1), the vector field ϕ∗D = −ϕ∗(−D) ∈ g(MP2) should be a
contraction at the origin. Therefore we get c < 0 and E ≡ 0 simultaneously. See
(iv) of Theorem 2.1.

Since L is independent of variable w, we have [L,T ] = 0, where T = i∂/∂w ∈
g−1(MP2). This means [ϕ∗D,T ] = [cD,T ] = −cT . Pushing forward by ϕ−1, it
follows that [D, ϕ−1∗ T ] = −c(ϕ−1∗ T ). Therefore the nontrivial vector field ϕ−1∗ T ∈
g(MP1) has the positive number −c as its degree. This is a contradiction to (v) of
Theorem 2.1 under the unbalanced assumption. Hence P1 is balanced.

Step 2. From here on, we let Pk = P . In order to show that δ1 = 1/2m1 for
some positive integer m1, we consider the complex plain L = {z2 = · · · = zn = 0}.
Since P is now balanced, we have a pseudoconvex domain MP ∩ L = {(w, z1) :
Rew + r|z1|1/δ1 < 0} in L � C

2 for some real constant r . Being pseudoconvex at
every boundary point, 1/δ1 should be a positive even integer and r > 0. Similarly,
there is a positive integer mj with δj = 1/2mj for each j = 1, . . . , n.

Now, for any p = (p1, . . . , pn) ∈ C
n \ {0}, we consider the holomorphic map-

ping ι : C2 → C
n+1 defined by ι(ζ, ξ) = (ζ, ξ2mδ1p1, . . . , ξ

2mδnpn), where m =
m1 · · ·mn. Then it is a proper mapping from ι−1(MP ) = {(ζ, ξ) ∈ C

2 : Re ζ +
P(p, p̄)|ξ |2m < 0} to MP . Since ι−1(MP ) should be pseudoconvex and hyper-
bolic, we have P(p, p̄) > 0. This completes the proof of Theorem 1.1.
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