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Sofic Profile and Computability
of Cremona Groups

Yves Cornulier

0. Synopsis

In this paper, we show that Cremona groups are sofic. We actually introduce a
quantitative notion of soficity, called sofic profile, and show that the group of bira-
tional transformations of a d-dimensional variety has sofic profile at most polyno-
mial of degree d. We also observe that finitely generated subgroups of the Cremona
group have a solvable word problem. This provides examples of finitely gener-
ated groups with no embeddings into any Cremona group, answering a question
of S. Cantat.

1. Introduction

Let K be a field. The Cremona group Crd(K) of K in dimension d is defined
as the group of birational transformations of the d-dimensional K-affine space.
It can also be described as the group of K-automorphisms of the field of rational
functions K(t1, . . . , td).

We are far from a global understanding of finitely generated subgroups of Cre-
mona groups. They include, notably, linear groups (since we have an obvious
inclusion GLd(K) ⊂ Crd(K)) as well as examples of groups that are not linear
over any field [CeD]. On the other hand, very few restrictions are known about
these groups. In the case of d = 2, and sometimes assuming that K has character-
istic 0, there has been a lot of recent progress including [Be; BeB; B1; B2; B3; Do;
DoI1; DoI2]; see notably the survey [Se2] about finite subgroups and [B2; BD1;
BD2; Ca1; D] for other subgroups. For d = 3 there is much less information cur-
rently known; in this direction, see [Pr1; Pr2; PrSh] concerning finite subgroups.
For greater d, very little information is known; interesting methods have recently
been developed in [Ca2].

We here provide the following.

Theorem 1.1. The Cremona group Crd(K) is sofic for all d and all fields K.

More generally, for any absolutely irreducible variety X over a field K, the group
of birational transformations BirK(X) is sofic.
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Denote by N the set of positive integers, and recall that a group � is sofic if it sat-
isfies the following: for every finite subset E of � and every ε > 0, there exist an
n∈ N and a mapping φ : E → Symn satisfying

• dn
Ham(φ(g)φ(h),φ(gh)) ≤ ε for all g,h∈E such that gh∈E;

• φ(1) = 1;
• dn

Ham(φ(u),φ(v)) ≥ 1 − ε for all u 	= v.

Here dn
Ham is the normalized Hamming distance on the symmetric group Symn:

dn
Ham(u, v) = 1

n
#{i : u(i) 	= v(i)}. (1.1)

Note that a group is sofic if and only if all its finitely generated subgroups are
sofic. Sofic groups were independently introduced by Weiss [Wei] and Gromov
[Gr]. Sofic groups notably include residually finite groups and amenable groups.
For more on this topic, see also [ESz2; Pe].

Soficity is a very weak way of approximating a group by finite groups. Theo-
rem1.1was only known for n = 1since then Cr1(K) = PGL2(K) has all its finitely
generated subgroups residually finite. There exists no example, at this time, of a
group failing to be sofic, although it is likely to exist.

Nevertheless, the sofic property is interesting because of its various positive
consequences. For instance, if G is a group and K is a field, a conjecture by
Kaplansky asserts that the group algebra K[G] is directly finite; that is, it satisfies
xy = 1 ⇒ yx = 1. This conjecture is known to hold when G is sofic, by a re-
sult of Elek and Szabo [ESz1]. Another conjecture, by Gottschalk, is that if M is
a finite set then any G-equivariant continuous injective map MG → MG is sur-
jective (the product MG is endowed with the product topology, which makes it a
compact topological space); Gromov [Gr] proved that this claim is true when G

is sofic.
The second restriction, of a totally different nature, is the following.

Theorem 1.2. For every field K and integer d ≥ 0, every finitely generated sub-
group of Crd(K) has a solvable word problem.

To avoid any reference to group presentations, here we define a group to have a
solvable word problem if it is either finite or isomorphic to the set N endowed with
a recursive group law; see Section 5.

This theorem provides explicit examples of finitely generated—or even finitely
presented—groups that are not subgroups of any Cremona group. (This answers
a question of S. Cantat.)

Example 1.3. Let I be a subset of N. If the group

GI = 〈t, x | [t nxt−n, x] = 1 ∀n∈ I 〉 (where [g,h] = ghg−1h−1)

has a solvable word problem, then I is recursive. Indeed, an elementary argument
shows that for n ∈ N we have [t nxt−n, x] = 1 in GI if and only if n ∈ I ; that
is, ([t nxt−n, x])n∈N is an independent family of relators [Bau1]. (It can be shown
that, conversely, if I is recursive then GI has a solvable word problem, but this
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is irrelevant here.) Thus, by Theorem 5.3, if I is not recursive then GI does not
embed into any Cremona group (if I is recursively enumerable then note that GI

is recursively presented).
Construction of finitely presented groups with an unsolvable word problem is

considerably harder and was done by Boone and Novikov. It follows from The-
orem 5.3 that these groups do not embed into any Cremona group. M. Sapir in-
dicated to me that there exist finitely presented groups, constructed in [BirRS],
whose word problem is solvable but not in exponential time. Thus these groups
do not embed into Cremona groups although they have a solvable word problem.

On the other hand, Miller [M] improved the construction of Boone and Novikov
by exhibiting nontrivial finitely presented groups all of whose nontrivial quotients
have a nonsolvable word problem. We deduce the following corollary.

Corollary 1.4. There exists a nontrivial finitely presented group with no non-
trivial homomorphism to any Cremona group over any field.

However, Cantat’s problem is in no way closed, as we are still far from even a
rough understanding of the structure of subgroups of Cremona groups. Many nat-
ural instances of groups have an efficiently solvable word problem and yet are not
expected to embed into any Cremona group—for instance, when they fail to sat-
isfy the Tits alternative (which holds in Cr2(C) by a result of Cantat [Ca1]). For
example, it is expected that if n(d ) is the smallest number such that Crn(d ) con-
tains a copy of the symmetric group on d letters, then limd→∞ n(d ) = ∞. This
would imply in particular that the group of finitely supported permutations of the
integers (or any larger group) does not embed into any Cremona group.

Theorem 1.1 is proved in Section 2 in the case of Cremona groups and in general
in Section 4. Although the latter supersedes the former, the proof in the Cremona
case is much less technical, so we include it. The main two steps are:

(1) reduction to finite fields;
(2) case of finite fields.

The second step uses the “quasi-action” on the set of points, using that the indeter-
minacy set being of positive codimension, its number of points over a given finite
field can be bounded above in a quantitative way. The first step is fairly easy in
the case of Cremona groups but is much more technical in the general case.

No example is known of a nonsofic group; in particular, so far Theorem 1.1 pro-
vides no example of groups that cannot be embedded into any Cremona group.
However, the proof provides a property stronger than soficity—namely, that
Crd(K) (or more generally BirK(X) when X is d-dimensional) has its sofic pro-
file in O(nd) (see Corollary 4.5). This might result in new explicit examples of
groups not embedding into Cremona groups without exhibiting nonsofic groups
yet with an efficiently solvable word problem. See Section 3, in which the sofic
profile is defined and then related to the classical isoperimetric profile (or Følner
function).
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Outline of the Paper. Section 2 contains the proof of soficity of the Cremona
group Crd(K). Section 3 introduces the notion of sofic profile, yielding various
examples. Section 4 proves Theorem 1.1 in full generality; although the proof uses
only basic notions of commutative algebra that are extensively used by algebraic
geometers (generic flatness, openness conditions), these notions may not be famil-
iar to readers in geometric group theory, who can stick to Sections 2 and 3. Sec-
tion 3 can also be read independently (i.e., without reference to Cremona groups).
Finally, Section 5, which is also independent of the remainder, includes a proof of
Theorem 1.2 as well as related remarks.

We end this introduction with the following open questions.

Questions 1.5. For d ≥ 2 and any field K, is Crd(K) locally residually finite
(i.e., is every finitely generated subgroup residually finite)? Is it approximable by
finite groups (see Definition 2.1)? (I heard the question of local residual finiteness
for Crd(C) from S. Cantat.)

Acknowledgments. I thank Jeremy Blanc for pointing out several inaccuracies
in an earlier version of the paper. I am grateful to Serge Cantat for stimulating dis-
cussions. I thank Julie Deserti and the referee for many useful corrections. I also
thank Goulnara Arzhantseva and Pierre-Alain Cherix for letting me know about
their work.

2. Soficity of Cremona Groups

We begin with the notion of approximation, which was studied in a much wider
context by Mal’cev [Ma2] and is classical in model theory.

Definition 2.1. Let C be a class of groups. We say that a group G is approx-
imable by the class C (or initially sub-C in Gromov’s terminology [Gr]) if, for
every finite symmetric subset S of G containing 1, there exist a group H ∈ C and
an abstract injective map φ : S → H such that φ(1) = 1 and, for all x, y, z ∈ S,
we have φ(x)φ(y) = φ(z) whenever xy = z (in particular, φ(x−1) = φ(x)−1

for all x ∈ S). Equivalently, G is approximable by the class C if and only if it is
isomorphic to a subgroup of an ultraproduct of groups of the class C.
Clearly, if a group is approximable by C then so are all its subgroups, and con-
versely if all its finitely generated subgroups are approximable by C then so is the
whole group.

It is straightforward from the definition that if a group is approximable by sofic
groups, then it is sofic as well. Therefore the first part of Theorem 1.1 follows from
the following two propositions.

Proposition 2.2. For any field K and d, the Cremona group Crd(K) is approx-
imable by the family

{Crd(F) : F is a finite field}.
Proposition 2.3. For any finite field F and d, the Cremona group Crd(F) is
sofic.
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Remark 2.4. A strengthening of Proposition 2.2 would be the assertion that, for
every field K, the group Crd(K) is “locally residually Crd of a finite field” in the
sense that every finitely generated subgroup embeds into a product of groups of
the form Crd(F) with F a finite field; we do not know if this assertion holds. On
the other hand, it is clear that every finitely generated subgroup of Crd(K) is con-
tained in Crd(L) for some finitely generated subfield L of K.

To prove the propositions, we begin with some basic material about birational trans-
formations of affine spaces. Consider f = (f1, . . . , fd), where fi ∈ K(t1, . . . , td).
Its (affine) indeterminacy set Xf is by definition the union of the zero sets of the
denominators of the fi written in irreducible form. (The notion of indeterminacy
set is sensitive to our choice to work in affine coordinates; here the indeterminacy
set usually has codimension 1, whereas in projective coordinates the indetermi-
nacy set has codimension at least 2.) Such a d-tuple corresponds to the regular
map defined outside its singular set mapping, for any extension L of K,

(x1, . . . , xd)∈Ld \ Xf (L) �→ (f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)).

We say that f is nondegenerate if f has a Zariski-dense image. If g is another d-
tuple and f is nondegenerate, then we can define the composition g � f by

(
g1(f1(t1, . . . , td), . . . , fd(t1, . . . , td)), . . . , gd(. . .)

) ∈K(t1, . . . , td).

The nondegenerate d-tuples thus form a semigroup under composition, and by
definition the Cremona group Crd(K) is the set of invertible elements of this semi-
group. If f ∈ Crd(K) and f ′ is its inverse (which will be written f −1 in the sequel,
but not in the next line in order to avoid a confusion with the inverse image by the
map f defined outside Xf), we define the singular set Zf = Xf ∪f −1(Xf ′). Then
f induces a bijection for every extension L of K,

Ld \ Zf → Ld \ Zf −1.

Proof of Proposition 2.2. Since any field extension K ⊂ L induces a group em-
bedding Crd(K) ⊂ Crd(L), it is enough to prove the proposition when K is alge-
braically closed.

Let W be a finite symmetric subset of Crd(K) containing 1. Write each coordi-
nate of every element of W as a quotient of two polynomials. Let c1 be the product
in K of all nonzero coefficients of denominators of coordinates of elements of
WW ; let c2 be the product of all nonzero coefficients of numerators of coordinates
of elements of the form u − v, where (u, v) ranges over pairs of distinct elements
of W. Let A be the domain generated by all coefficients of elements of W, so that
c = c1c2 ∈A − {0}. Since the ring A is residually a finite field [Ma1], there exists
a finite quotient field F of A in which c̄ 	= 0, where x �→ x̄ is the natural projec-
tion A → F. If u∈ F, then we can view u as an element of F(t1, . . . , td)d as before
(the denominator does not vanish because c̄1 	= 0). Also, the condition c̄1 	= 0
implies that whenever uv = w, we also have ūv̄ = w̄. In particular, since W is
symmetric and contains 1, it follows that the elements ū are invertible (i.e., belong
to Crd(F)). Finally, whenever u 	= v, since c̄2 	= 0 we have ū 	= v̄.
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Remark 2.5. It follows from the proof that Crd(K) is approximable by some
suitable subclasses of the class of d-Cremona groups over finite fields: if K has
characteristic p then it is enough to restrict to finite fields of characteristic p; and
if K has characteristic 0 then it is enough to restrict to the class of finite fields of
characteristic p ≥ p0 for any fixed p0. Also, if K = Q then it is enough to restrict
to the class of cyclic fields Z/pZ for p ≥ p0.

Proof of Proposition 2.3. Write F = Fq . Let W be a finite symmetric subset of
Crd(Fq) containing 1.

For anyu∈ Crd(Fq) and for every Fq-fieldL,u induces a bijection fromLd−Zu

to Ld − Zu′ . We extend it arbitrarily (for each given L) to a permutation û of Ld.

Note that for all u, v, the permutations ûv̂ and ûv coincide on the complement of
Zv ∪ v−1(Zu).

Then there exists a constant C > 0 such that, for all u ∈ W and all m, we
have #Zu(Fqm) ≤ Cqm(d−1) (this is a standard consequence, for instance, of the
Lang–Weil estimates [LaW] but can be checked directly). So when L = Fqm , the
Hamming distance in Sym(Ld) between ûv̂ and ûv is less than or equal to 2Cq−m,
which tends to 0 as m tends to +∞.

Also, by considering the zero set Duv of the numerator of u − v, we obtain that
if u 	= v then the Hamming distance from û and v̂ is no less than 1 − 2C ′q−m for
some fixed constant C ′ and for all m. We have thus proved that Crd(K) is sofic.

Remark 2.6. We actually proved that for every field K, the group Crd(K) satis-
fies the following property. For every finite subset S ⊂ Crd(K) there is a constant
cS > 0 such that, for every integer n, there exist a k ≤ n and a map S → Symk

satisfying:

• dk
Ham(φ(g)φ(h),φ(gh)) ≤ cSn

−1/d for all g,h∈ S such that gh∈ S;
• φ(1) = 1 and φ(g) = φ(g−1) for all g ∈ S;
• dk

Ham(φ(u),φ(v)) ≥ 1 − cSn
−1/d for all u 	= v.

Here dk
Ham is the normalized Hamming distance on the symmetric group Symk.

(In Section 3, we will interpret this by saying that the “sofic profile” of Crd(K)

is in O(nd).) Note that for every integer m ≥ 1 there exists a distance-preserving
homomorphism (Symk , dk

Ham) → (Symmk , dmk
Ham); in particular, k can be chosen

so that k ≥ n/2.

3. Sofic Profile

3.1. Isoperimetric Profile

Let us first recall the classical notion of isoperimetric profile (or Følner function)
of a group G (see [PiSa] for a more detailed survey). If S and X are subsets of G,
define ∂SX = SX − X. Following Vershik [V], define the isoperimetric profile of
(G, S) as the nondecreasing function αG,S defined for r > 1 by

αG,S(r) = inf{n ≥ 1 | ∃E ⊂ G : #(E) = n, #(∂S(E))/#(E) < r−1},
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where inf{∅} = +∞. The group G is amenable if αG,S(r) < +∞ for every fi-
nite subset S ⊂ G and all r > 1. The equivalence between this definition and the
original definition of amenability by von Neumann [vN] is due to Følner [F].

Note that the isoperimetric profile of (G, S) is bounded for every finite subset S
(i.e., for all S finite, supr αG,S(r) < ∞) if and only if G is locally finite. A con-
venient fact is that the asymptotics of αG,S does not depend on S when the latter
is assumed to be a symmetric generating subset of G.

When u, v : ]1, ∞[ → [0, ∞] are nondecreasing functions, we write u � v if
there exist positive real constants such that u(r) ≤ Cv(C ′r)+C ′′ for all r ≥ 1 and
we write u � v if u � v � u.

Remark 3.1. If G is a finitely generated group and S, T are finite subsets with
S a symmetric generating subset, then αG,S � αG,T . In particular, if T is also a
symmetric generating subset then αG,S � αG,T . So if G is finitely generated, the
�-class of the function αG,S does not depend on the finite symmetric generating
subset S. This class is usually called the isoperimetric profile of G (and it is � ∞
if and only if G is nonamenable).

By a result of Coulhon and Saloff-Coste [CoSa], the isoperimetric profile grows
at least as fast as the volume growth. If G = Zd, the isoperimetric profile � r d

and this is optimal; the same estimate holds for groups of polynomial growth of
degree d. If G has exponential growth, then the isoperimetric profile � exp(r)
and this is optimal for polycyclic groups [Pi].

Let us mention that the isoperimetric profile is closely related to the nonincreas-
ing function IG,S (also called “isoperimetric profile” in some papers) defined by

IG,S(n) = inf{#(∂S(E))/#(E) : E ⊂ G, 0 < #(E) ≤ n}.
We check immediately that for all reals r ≥ 1 and integers n ≥ 1 we have αG,S(r) ≤
n if and only if r < IG,S(n)

−1. Thus αG,S and 1/IG,S are essentially inverse func-
tions to each other. For instance, if G is a polycyclic group of exponential growth
then IG,S grows as 1/log(n) whenever S is a finite symmetric generating subset.

3.2. Sofic Profile and Basic Properties

Here we introduce a notion of sofic profile that is intuitively associated to a group
but more formally associated to its finite pieces or “chunks”. A similar but dif-
ferent notion of the “sofic dimension growth” of a finitely generated group was
independently introduced by Arzhantseva and Cherix (see Remark 3.13 for the pre-
cise definition and comments).

Definition 3.2. We call a chunk a finite set E endowed with a basepoint 1E
and a subset D of E × E × E satisfying the condition that (x, y, z), (x, y, z ′) ∈
D implies z = z ′. So we can view a chunk as a partially defined composition law
(x, y) �→ z, and we write xy = z to mean that (x, y, z)∈D.

If E is an abstract chunk and G is a group, we call a representation of E into
G a mapping f : E → G such that f(1E) = 1G and f(x)f(y) = f(z) whenever
xy = z.



830 Yves Cornulier

Suppose E is a subset of a group G with 1G ∈E. Then E is naturally a chunk with
basepoint 1G by setting xy = z whenever this holds in the group G; we call E a
chunk of G (a symmetric chunk if E is symmetric in G).

This allows the following immediate restatement of the notion of approxima-
bility from Definition 2.1.

Fact 3.3. Let C be a class of groups. Then a group G is approximable by the
class C if and only if every chunk of G has an injective representation into a group
in the class C.
Definition 3.4. Let E be a chunk. If n is an integer and ε > 0, define an ε-
morphism from E to Symn as a mapping f : E → Symn such that f(1E) = id
and dn

Ham(f(xy), f(x)f(y)) ≤ ε for all x, y ∈ E, where the Hamming distance
dn

Ham is defined in (1.1). A mapping from E to the symmetric group Symn is said
to be (1 − ε)-expansive if dn

Ham(x, y) ≥ 1 − ε whenever x, y are distinct points
of E.

Define the sofic profile of the chunk E as the nondecreasing function

σE(r) = inf{n | ∃f : E → (Symn, dn
Ham),

f is a (1 − r−1)-expansive r−1-morphism} (r > 1),

where inf{∅} = +∞. We say that the chunk E is sofic if its sofic profile takes
finite values: σE(r) < ∞ for all r ≥ 1.

The following elementary fact shows that the sofic profile of a chunk is either
bounded or grows at least linearly.

Fact 3.5. If E is a chunk, then one of the following statements holds.

• E has an injective representation into a finite group and hence its sofic profile
is bounded ; that is, supr σE(r) < ∞.

• The sofic profile of E satisfies σE(r) ≥ r for all r > 1.

Proof. If E has an injective representation into a finite group H, then this repre-
sentation is a (1 − r−1)-expansive r−1-morphism for every r > 1. Hence, picking
n such that H embeds into Symn, we have σE(r) ≤ n for all r ≥ 1.

To show the alternative, assume that the second condition fails; that is, suppose
σE(r) < r for some r > 1. Then E has a (1 − r−1)-expansive r−1-morphism φ

into Symn for some n < r; since r > 1, necessarily φ is injective. Since the Ham-
ming distance dn

Ham takes values in {0,1/n, . . . ,1} and since r−1 < n−1, this shows
that φ is a 0-morphism; in other words, φ is an injective representation.

Definition 3.6. A group G is sofic if every chunk in G is sofic—that is, if
σE(r) < ∞ for every chunk E in G and r ≥ 1.

This definition is a restatement of the one given in the Introduction. We wish to
attach to G a “sofic profile”, namely the family of the function σE , when E ranges
over finite subsets of G. Let us be more precise.
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Definition 3.7. The sofic profile of G is the family of �-equivalence classes of
the functions σE when E ranges over finite subsets of G. If this class has great-
est element (in the set of classes of nondecreasing functions modulo �)—namely,
the class of a (unique up to �) function u—then we say that the sofic profile of G
is � u.

We have the following immediate consequence of Fact 3.5.

Fact 3.8. Let G be a group. Then one of the following statements holds.

• G has a bounded sofic profile in the sense that supr σE(r) < ∞ for every
chunk E in G; this occurs precisely when G is approximable by finite groups.

• The sofic profile of G grows at least linearly; more precisely, there exists a
chunk E in G such that σE(r) ≥ r for all r > 1.

The class of groups approximable by (the class of ) finite groups is well known
[Ste; VGo]; they are also called “LEF groups”, which stands for “locally embed-
dable into finite groups”. A residually finite group is always approximable by finite
groups, and the converse holds for finitely presented groups but not for general
finitely generated groups (see [Ste; VGo]).

Example 3.9. Most familiar groups are locally residually finite (in the sense that
every finitely generated subgroup is residually finite). Such groups are approx-
imable by finite groups and hence have a bounded sofic profile. They include:

• abelian groups and, more generally, abelian-by-nilpotent groups (groups with
an abelian normal subgroup such that the quotient is nilpotent) [H];

• linear groups—that is, subgroups of GLn(A) for any n and commutative ring A

(see [We]);
• groups of automorphisms of affine varieties over a field [BaL]; and
• compact groups (i.e., groups that admit a Hausdorff compact group topology)

by the Peter–Weyl theorem.

Examples of groups approximable by finite groups are (locally finite)-by-cyclic
groups. Indeed, if such a group is finitely generated then it is, by [BiSt, Thm. A],
an inductive limit of a sequence of finitely generated virtually free groups. Such
groups are not necessarily locally residually finite [Ste; VGo]. For examples of
groups not approximable by finite groups, see Proposition 3.17 and Example 3.19.

To pursue the discussion, we use the following useful terminology, which in a cer-
tain sense allows one to think of the sofic profile as a function.

Definition 3.10. Given fixed functions u, v, we say that the sofic profile of G

is � u if σE � u for every chunk E in G and is � v if σE � v for some chunk E

in G. Similarly, we say that the sofic profile of G is polynomial (resp., at most
polynomial of degree k) if, for every chunk E of G, there is a polynomial (resp.,
polynomial of degree k) f such that σE � f.

Note that to say that the sofic profile is at most polynomial of degree 0 just means
that it is bounded.
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Remark 3.11. An advantage of this definition is that for a group it depends only
on its chunks and therefore, tautologically, if any group in C has the property that
its sofic profile is � u(r) then this property still holds for any group approximable
by the class C. In particular, for any u, to have sofic profile � u(r) is a closed
property in the space of marked groups (see e.g. [CGP, Sec. 1] for basics about
this space).

Remark 3.12. In contrast to the isoperimetric profile, it is not true that the sofic
profile of a finitely generated group G is the sofic profile of any chunk attached to
a symmetric generating subset (with unit). A natural assumption is to require that
the corresponding subset S contain enough relations—namely, that G has a pre-
sentation with S as set of generators and relators of length ≤ 3. However, I do not
know if, for such an S and corresponding chunk E, σE is the sofic profile of G in
the sense of Definition 3.7, nor if an arbitrary presented group has a sofic profile
�-equivalent to some function as in Definition 3.7.

Remark 3.13. The notion of sofic dimension growth due to Arzhantseva and
Cherix (work in progress) is the following. Let G be generated by a finite sym-
metric subset S. The sofic dimension growth φ(n) is, in the language introduced
here, φS(n) = σSn(n). Arzhantseva and Cherix showed that its asymptotics de-
pend only on G and not on the choice of S, and they related the sofic dimension
growth to the isoperimetric profile. However, the sofic dimension growth is quite
different in spirit from the sofic profile because the former takes into account the
shape of balls. In particular, it is bounded only for finite groups.

I have so far been unable to adapt the specification process used to estimate the
sofic profile of Cremona groups (Proposition 2.2) to give any upper bound on the
sofic dimension growth of their finitely generated subgroups. This could proba-
bly be done—but at the cost of some tedious estimates on the degrees of singular
subvarieties arising in the proof, which would not give better than an exponential
upper bound for the sofic dimension growth.

Note that the knowledge of the function of two variables 0(m, n) = σSm(n) en-
compasses both the sofic dimension growth φS(n) = 0(n, n) and the sofic profile
(asymptotic behavior of 0(m, n) when m is fixed).

3.3. Sofic versus Isoperimetric Profile

Informally, soficity of G means that points in G are well separated by “quasi-
actions” of G on finite sets, and amenability is the additional requirement that
these finite sets lie inside G endowed with the action of left multiplication. With
this in mind, it is elementary to check that the sofic profile is asymptotically
bounded above by the isoperimetric profile; more precisely, we have the following
result.

Proposition 3.14. For any finite subset S of G, we have the following compari-
son between the sofic profile and the isoperimetric profile:

σS(r/3) ≤ αG,S(r) ∀r ≥ 3.
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Proof. Suppose that αG,S(r) ≤ n and let us show that σS(r/3) ≤ n. By assump-
tion, there exists an E ⊂ G with 0 < #(E) ≤ n and #(SE −E)/#(E) < r−1. For
s ∈ S, define φ(s) : E → E to map x �→ sx if sx ∈ E, and extend this mapping
arbitrarily to a bijection. By assumption, for each s, the proportion of x ∈E such
that φ(s)(x) = sx is greater than 1 − r−1. It follows that the Hamming distance
between φ(s) and φ(s ′) is greater than 1− 2r−1 whenever s, s ′ ∈ S and s 	= s ′ and
that the Hamming distance between φ(st) and φ(s)φ(t) is less than 3r−1 when-
ever s, t, st ∈ S. Therefore, σS(r/3) ≤ n.

It is known [ESz2] that any sofic-by-amenable group (i.e., a group lying in an
extension with sofic kernel and amenable quotient) is still sofic. The proof given
there is an explicit construction that yields, without any change, the following
theorem.

Theorem 3.15. Let G be a group in a short exact sequence 1 → N → G →
Q → 1. Then, for every symmetric chunk E in G, there exist a symmetric chunk E ′
in N and a finite symmetric subset S in Q such that σE(r) ≤ σE ′(r)αQ,S(r) for
all r > 1.

In particular, given nondecreasing functions u, v : ]1, ∞[ → [1, ∞], if the sofic
profile of N is � u(r) and the isoperimetric profile of Q is � v(r), then the sofic
profile of G is � u(r)v(r).

Example 3.16. It follows from Theorem 3.15 that the class of groups with poly-
nomial sofic profile (see Definition 3.10) is stable under extension with virtually
abelian quotients. Since this class is also stable under taking filtering inductive
limits, it follows that every elementary amenable group has a polynomial sofic
profile. (Recall that the class of elementary amenable groups is the smallest class
that contains the trivial group and is stable under direct limits and extensions with
finitely generated virtually abelian quotients.) In particular, any solvable group
has a polynomial sofic profile. Note that this does not prove that it has a sofic pro-
file � r d for some d, since the degree d may depend on the chunk.

Proposition 3.17. For k, 4 ∈ Z \ {0}, the sofic profile of the Baumslag–Solitar
group

� = BS(k, 4) = 〈t, x | tx kt−1〉
is at most linear (i.e., � r); more precisely, it is linear (i.e., � r) unless |k| = 1,
|4| = 1, or |k| = |4|, in which case it is bounded.

Proof. Let N be the kernel of the homomorphism of � onto Q = Z mapping (t, x)
to (1, 0). The assertion follows from Theorem 3.15, the linearity of Z’s isoperi-
metric profile, and because N is approximable by finite groups (so its sofic profile
is bounded). Let us check the latter fact. Using that � is the HNN-extension of Z
by the two embeddings of Z into itself via multiplication by k and 4, respectively,
the group N is an iterated free product with amalgamation · · · Z ∗Z Z ∗Z Z ∗Z · · · ;
here each embedding of Z to the left (resp., right) is given by multiplication by k

(resp., by 4) [Se1, I.1.4, Prop. 6]. This group is locally residually finite; in other
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words, every such finite iteration Z∗Z Z∗Z · · ·∗Z Z is residually finite—as follows,
for instance, from [Ev]. (In case k, 4 are coprime, Campbell [Cam] showed that
N itself is not residually finite and even that all of its finite quotients are abelian.)

By Fact 3.8, the sofic profile � r unless � is approximable by finite groups.
Since � is finitely presented, that occurs if and only if � is residually finite, which
holds precisely in the given cases by a result of Meskin [Me] (correcting an error
in [BauSo]).

Note that BS(k, 4) being residually solvable (indeed, free-by-metabelian) imme-
diately implies its soficity but yields a much worse upper bound on its sofic profile.

Problem 3.18. Develop methods to compute lower bounds for the sofic profile
of explicit groups. Is there any group for which the sofic profile is unbounded and
not � r? Can such a group be sofic?

This problem only concerns groups not approximable by finite groups, since other-
wise the sofic profile is bounded. Then the sofic profile grows at least linearly, as
we observed previously, but we have no example with a better lower bound.

Example 3.19. Here are some examples of finitely generated groups that are not
approximable by finite groups but whose sofic profiles could be overlooked.

• Infinite isolated groups. A group G is by definition isolated if it has a chunk S

such that any injective representation of S into a group H extends to an injec-
tive homomorphism G → H. (This clearly implies that G is generated by S

and actually is presented with the set of conditions st = u, s, t, u ∈ S, as a set
of relators.) These groups include finitely presented simple groups. Many more
examples—including Thompson’s group F of the interval—are given in [CGP],
which also gives several examples that are amenable (solvable or not) and there-
fore sofic. In addition, we can find in [CGP] examples of nonamenable isolated
groups, but whether they are sofic is not known; however, an example of a non-
amenable isolated group that is known to be sofic is given in [C].

• Other finitely presented nonresidually finite groups. This category includes most
Baumslag–Solitar groups (as established in Proposition 3.17) as well as various
other one-relator groups [Bau2; BauMT]. Another example is Higman’s group

〈x1, x2, x3, x4 | xi−1xi x
−1
i−1 = x 2

i (i = 1, 2, 3, 4 mod 4)〉
[Se1, I.1.4, Prop. 5], which has no proper subgroup of finite index. Whether it
is sofic is not known.

• Direct products of the preceding groups. For instance, BS(2, 3)d has sofic pro-
file � nd.

4. General Varieties

The purpose of this section is to prove Theorem 1.1 in its general formulation (for
an arbitrary absolutely irreducible variety). Since the group of birational transfor-
mations of an absolutely irreducible variety can be canonically identified with that
of an open affine subset, we can, in the sequel, stick to affine varieties.
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If X is an affine variety over the field K, we define a specification of X over a
finite field F as an affine variety X ′′ over F that satisfies the following condition.
If we denote by B and B ′′ the K-algebras of functions of X and the F-algebra of
functions on X ′′ (respectively), then there exist a finitely generated subdomain A

of K, a finitely generated A-subalgebra B ′ of B, and a surjective homomorphism
A → F such that B ′ ⊗A F � B ′′ as A-algebras and the natural K-algebra homo-
morphism B ′ ⊗A K → B is an isomorphism. Note that dim(X ′′) ≤ dim(X).

Proposition 4.1. Let X be an affine d-dimensional absolutely irreducible va-
riety over a field K. Then the group BirK(X) is approximable (in the sense of
Definition 2.1) by the family of groups {BirF(X

′)}, where F ranges over finite
fields and X ′ ranges over d-dimensional specifications of X over F that are abso-
lutely irreducible over F.

Proof. Let B be the K-algebra of functions on X and let L be its field of fractions,
so that BirK(X) = AutK(L).

Suppose that a finite symmetric subset W containing the identity is given in
AutK(L); this subset consists of a finite family (vi) of pairwise distinct elements
of AutK(L). Then there exists an f ∈B − {0} such that vi(B) ⊂ B[f −1] for all i.
Denote by ui : B → B[f −1] the K-algebra homomorphism that is the restriction
of vi.

Fix generators t1, . . . , tm of B as a K-algebra, so that B[f −1] is generated
by t1, . . . , tm, f −1 as a K-algebra. For each (i, j), we can write ui(tj ) as a cer-
tain polynomial with coefficients in K and m + 1 indeterminates evaluated at
(t1, . . . , tm, f −1). Let C1 be the (finite) subset of K consisting of the coefficients
of these polynomials (i, j varying). Also, under the mapping Xj �→ tj , the K-
algebra B is the quotient of K[X1, . . . ,Xm] by some ideal; we can consider a cer-
tain finite set of polynomials with coefficients in K generating this ideal. Let C2

be the finite subset of K consisting of the coefficients of those polynomials. Also,
f can be written as a polynomial in t1, . . . , tm; let C3 ⊂ K consist of the coeffi-
cients of this polynomial. Let A0 be the subring of K generated by C1 ∪ C2 ∪ C3.

Let B ′
0 be the A0-subalgebra of B generated by the tj . By generic flatness [SGA,

Lemma 6.7], there exists an s ∈A0 − {0} such that B ′ = B ′
0[s−1] is flat over A =

A0[s−1]. Because A contains coefficients of the polynomials defining B, we have,
in a natural way, B = B ′ ⊗AK. Moreover, f ∈B ′ and the homomorphisms ui ac-
tually map B ′ to B ′[f −1]; if u′

i denotes the corresponding restriction map B ′ →
B ′[f −1], then u′

i ⊗A K = ui (here we view “· ⊗A K” as a functor). In particular,
since the ui are pairwise distinct by definition, the u′

i are pairwise distinct as well.
This means that, for all i 	= i ′, there exists an element xii′ ∈B ′ such that ui(xii′) 	=
ui′(xii′). Let x ∈ B ′ − {0} be the product of all ui(xii′) − ui′(xii′), where {i, i ′ }
ranges over pairs of distinct indices. Also, fix k large enough that the element g =
f k

∏
i ui(f )∈B ′[f −1] − {0} belongs to B ′ − {0}.

There is a natural map φ : Spec(B ′) → Spec(A) that consists of taking the
intersection with A. This map is continuous for the Zariski topology. Consider
the open subset of Spec(B ′) consisting of those primes not containing gx; this is
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an open subset of Spec(B ′) containing {0}. Since B ′ is A-flat, the map φ is open
[SGA, Thm. 6.6]. Hence there exists an a ∈ A − {0} such that every prime of A
not containing a is of the form P ∩ A for some prime P of B ′ not containing gx.

Now, since B ′ is A-flat and absolutely integral, by [EGA, 12.1.1] there exists an
a ′ ∈A − {0} such that, for every prime Q of A not containing a ′, the quotient ring
B ′ ⊗A (A/Q) = B ′/QB ′ is an absolutely integral (A/Q)-algebra.

It follows that if m is a maximal ideal of A not containing aa ′, then B ′/mB ′
is an absolutely integral (A/m)-algebra and mB ′ does not contain gx. Let us fix
such a maximal ideal m ⊂ A (it exists because, in a finitely generated domain,
the intersection of maximal ideals is trivial; see e.g. [Ei, Thm. 4.19]). Since u′

i is
an A-algebra homomorphism, it sends mB ′ to mB ′[f −1] and therefore induces an
(A/m)-algebra homomorphismu′′

i : B ′/mB ′ → B ′[f −1]/mB ′[f −1]. Since x 	= 0
in B ′/mB ′, the u′′

i are pairwise distinct.
We need to check that dim(B ′/mB ′) ≤ d. First, by [Ei, Thm. 13.8], dim(B ′) ≤

dim(A)+d. Now, since B ′ is A-flat, by [Ei, Thm. 10.10] we have dim(B ′/mB ′) ≤
dim(B ′)−dim(Am). Since A is a finitely generated domain and since m is a max-
imal ideal, it follows that dim(Am) = dim(A) (see Lemma 4.3); then the two
preceding inequalities allow us to deduce that dim(B ′/mB ′) ≤ d. (Actually, both
inequalities are equalities (same references): for the first one, [Ei, Thm. 13.8] uses
that A is universally catenary, which follows because Z is universally catenary
according to [Ei, Cor. 18.10].)

To conclude, it is enough to prove the following claim.

Claim 4.2. The homomorphisms u′′
i uniquely extend to pairwise distinct (A/m)-

automorphisms v ′′
i of the field of fractions of B ′/mB ′ and, whenever vivj = vk , we

have v ′′
i v

′′
j = v ′′

k .

To check the claim, begin with the following general remark. If R is a domain, s
a nonzero element of R, and there exist two homomorphisms α,β : R → R[s−1]
such that α(s) is nonzero, then α uniquely extends to a homomorphism R[s−1] →
R[(sα(s))−1] and we can define the composite map αβ : R → R[(sα(s))−1].

Since g 	= 0 in B, this remark can be applied to the K-algebra homomorphisms
ui : B → B[f −1], which are given by

t4 �→ ui(t4) = vi(t4) = U4i(t1, . . . , tm)/f
d;

here U4i ∈A[X1, . . . ,Xm]. We thus have, for all 4,

vi(vj(t4)) = vi(U4j(t1, . . . , tm)/f
d)

= U4j(ui(t1), . . . , ui(tm))/ui(f )d

= U4j(U1i(t1, . . . , tm)/f
d, . . . ,Umi(t1, . . . , tm)/f

d)/ui(f )d.

For all 4, j, we can write the formal identity

U4j(X1/Y, . . . ,Xm/Y )Y δ = V4j(T1, . . . , Tm,Y )

for some V4j ∈ B[X1, . . . ,Xm,Y ] and some positive integer δ. Thus vivj = vk (or
equivalently uiuj = uk) means that, for all 4, we have the following equality in L:

U4j(U1i(t1, . . . , tm)/f
d, . . . ,Umi(t1, . . . , tm)/f

d)/ui(f )d = U4k(t1, . . . , tm)/f
d;

that is,
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V4j(U1i(t1, . . . , tm), . . . ,Umi(t1, . . . , tm)) = U4k(t1, . . . , tm)ui(f )df dδ−d,

which actually holds in B ′ ⊂ L. This equality still holds modulo the ideal mB ′.
Since g 	= 0 in B ′/mB ′ (i.e., f and uj(f ) are nonzero elements of the domain
B ′/mB ′), this equality exactly means that u′′

i u
′′
j = u′′

k in the sense just described.
Since in particular for every i there exists an ι such that vivι and vιvi are the

identity, it follows that u′′
i u

′′
ι and u′′

ι u
′′
i are the identity; in particular, u′′

i extends to
an automorphism v ′′

i of the fraction field of B ′/mB ′. Since the u′′
i are pairwise dis-

tinct, so are the v ′′
i . Moreover, if uiuj = uk then u′′

i u
′′
j = u′′

k , which implies that
v ′′
i v

′′
j = v ′′

k . Thus the claim is proved and hence Proposition 4.1 as well.

We used the following standard lemma.

Lemma 4.3. Let A be a finitely generated domain. Then, for any maximal ideal
m, we have dim(A) = dim(Am).

Proof. If the characteristic p is positive, then A is a finitely generated algebra over
the field on p elements and so [Ei, Cor. 13.4] (based on Noether normalization)
applies; therefore, dim(A) = dim(Am) + dim(A/m) = dim(Am).

If the characteristic is 0 then we use that the ring Z is universally catenary [Ei,
Cor. 18.10] to apply [Ei, Thm. 13.8], which yields dim(Am) = dim(Zm∩Z) +
dim(A ⊗Z Q). Since m has finite index, m ∩ Z = pZ for some prime p and
dim(Zm∩Z) = 1; hence dim(Am) = 1 + dim(A ⊗Z Q). Because this value does
not depend on m, we can deduce that dim(Am) = dim(A).

Proposition 4.4. For every absolutely irreducible affine variety X over a fi-
nite field F, the group BirF(X) is sofic. Actually, its sofic profile � nd, where
d = dim(X).

The proof is similar to that for Proposition 2.3 and is left to the reader. The only
additional feature is the fact, which follows from the Lang–Weil estimates (making
use of the assumption that X is absolutely irreducible), that—for some constants
c > 0 and c ′ ∈ R and every finite extension F ′ of F with q elements—the number
of points in X(F ′) is no less than cq d − c ′.

From Propositions 4.1 and 4.4 we deduce the following result.

Corollary 4.5. For every absolutely irreducible affine variety X over a field
K, the group BirK(X) is sofic. Actually, its sofic profile � nd, where d = dim(X).

5. Solvability of the Word Problem

Definition 5.1. A countable group has a solvable word problem if it is finite or
isomorphic to N endowed with a recursive group law—that is, recursive as a map
N × N → N.

The terminology is motivated by the following elementary characterization in the
case of finitely generated groups.

Proposition 5.2. A finitely generated group �, given with a surjective homomor-
phism p : F → � with F a free group of finite rank, has a solvable word problem
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if and only if the kernel N of p is a recursive subset of F. (In particular, this
depends neither on the choice of F nor on the surjective homomorphism p.)

Proof. Suppose that � has solvable word problem in the sense of Definition 5.1.
We can suppose that � = N (or a finite segment therein) with a recursive group
law whose unit is a fixed number e. Write F = Fk = 〈t1, . . . , tk〉 and set ui =
p(ti). If we input any word w ∈ F, then we can compute w(u1, . . . , uk) (computed
according to the given law on N) and answer Yes or No according as whether or
not w(u1, . . . , uk) = e.

Conversely, suppose that the condition is satisfied. Start from a recursive enu-
meration u : N → F. Given n, we define κ(n) = inf{k ≤ n : u(k)u(n)−1 ∈ N}.
Since N is recursive, κ must be computable. Note that κ � κ = κ. Define

J = {n∈ N : κ(n) = n};
this is a recursive subset of N. By construction, the composite map J

u−→ F −→
F/N = � is a bijection. If J is finite, we are done. So suppose J is infinite; then
there is a recursive enumeration q : N → J defined by an obvious induction. Fi-
nally, define n∗m = q−1

(
κ

(
u−1(u(q(n))u(q(m))

)))
. This is a recursive law on N

and, by construction, the composite map N
q−→ J

u−→ F −→ F/N is a magma iso-
morphism. Thus � is isomorphic to (N, ∗).
Theorem 5.3. Let K be a field and n a nonnegative integer. Then every finitely
generated subgroup of Crd(K) has solvable word problem.

Proof. Since every finitely generated subgroup of Crd(K) is contained in Crd of a
finitely generated field, we can suppose that K is finitely generated. Therefore, K
is a degree m extension of some purely transcendental field L = F(t1, . . . , tn) with
F a prime field (Fp or Q). Given that there is an inclusion Crd(K) ⊂ Crmd(L),
we can suppose that K is itself a purely transcendental field. Hence we can im-
plement formal calculus of K, where for F = Q the elements of Q are written as
a pair (denominator and numerator) of integers, written in radix 2.

We can also implement formal calculus on Crd(K). Each element can be writ-
ten as a d-tuple of elements in K(u1, . . . , ud); each is given as a pair of polynomials
(numerator and nonzero denominator). The product of two elements in Crd(K)

can be computed by way of composition. That these elements belong to Crd(K)

ensures that no zero denominator incurs. Therefore, any product can be computed
and put in irreducible form.

The equality of two fractions P1/Q1 and P2/Q2 can be established by comput-
ing P1Q2 − P2Q1 and then checking whether this difference is the zero poly-
nomial in F(t1, . . . , tn, u1, . . . , ud). In particular, we can check the equality of
(P1/Q1, . . . ,Pd/Qd) and (ud , . . . , ud).

Remark 5.4. The composition of elements of the Cremona group is submulti-
plicative for the length of formulas (i.e., the number of symbols involved). It
follows that, given fixed Cremona transformations g1, . . . , gk , the preceding algo-
rithm—whose input is a group word w ∈Fk and whose output isYes or No accord-
ing as whether or not w(g1, . . . , gk) = 1 in Crd(K)—has exponential time with
respect to the length of w.
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The proof of Theorem 5.3 is similar to the proof (due to Rabin [Ra]) of the
more specific case of finitely generated linear groups. However, in the latter case
the elements can be implemented as matrices, from which it follows that the algo-
rithm has polynomial time. We do not know whether finitely generated subgroups
of the Cremona groups have word problem solvable in polynomial time (however,
some of them have no faithful finite-dimensional linear representation).

Remark 5.5. More generally, the proof of Theorem 5.3 shows that finitely gener-
ated sub-semigroups of the Cremona semigroup (the group of dominant self-maps
of the affine space or, equivalently, the semigroup of K-algebra endomorphisms
of the field K(t1, . . . , tn)) has a solvable word problem. In other words, given
g1, . . . , gk , there is an algorithm whose input is a pair of words w,w ′ in k let-
ters and whose output is Yes or No according as whether or not w(g1, . . . , gk) =
w ′(g1, . . . , gk). For the same reason as given in Remark 5.4, this algorithm has
exponential time.
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