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On Distance Sets and Product Sets in
Vector Spaces over Finite Rings

Do Duy Hieu & Le Anh Vinh

1. Introduction

The classical Erdős distance problem asks for the minimal number of distinct dis-
tances determined by a finite point set in Rn, n ≥ 2. This problem in the Euclidean
plane was solved by Guth and Katz [9], who showed that a set of N points in R2

has at least cN/logN distinct distances. For developments on the Erdős distance
problem in higher dimensions, see [13; 15] and the references therein.

Throughout the paper, q = pr (r ≥ 1), wherep is a prime large enough to over-
come a few minor technical problems. Here and throughout, the notation X � Y

means that there exists a C > 0 such that X ≤ CY. Let Fq denote a finite field
with q elements. For E ⊂ Fnq (n ≥ 2), the finite analogue of the classical Erdős
distance problem is to determine the smallest possible cardinality of the set

�Fq(E ) = {‖x − y‖ = (x1 − y1)
2 + · · · + (xn − yn)

2 : x, y ∈ E} ⊂ Fq .

The first nontrivial result on the Erdős distance problem in vector spaces over fi-
nite fields is due to Bourgain, Katz, and Tao [3], who showed that if q is a prime,
q ≡ 3 (mod 4), then for every ε > 0 and E ⊂ F2

q with |E | ≤ Cεq
2−ε there exists a

δ > 0 such that |�Fq(E )| ≥ Cδ|E |1/2+δ for some constants Cε,Cδ. However, the
relationship between ε and δ in their arguments is difficult to determine. In addi-
tion, it is quite subtle to address higher-dimensional cases with these arguments.
Iosevich and Rudnev [12] used Fourier analytic methods to show that there exist
absolute constants c1, c2 > 0 such that, for any odd prime power q and any set
E ⊂ Fdq of cardinality |E | ≥ c1q

n/2,

|�Fq(E )| ≥ c2 min{q, q(n−1)/2|E |}. (1.1)

In [20], Vu gave another proof of (1.1) using the graph-theoretic method (see
also [16] for a similar proof ). Iosevich and Rudnev reformulated the question in
analogy with the Falconer distance problem: How large must E ⊂ Fnq , n ≥ 2, be
in order to ensure that�Fq(E ) contains a positive proportion of the elements of Fq?
The inequality (1.1) implies that if |E | ≥ 2q(n+1)/2 then �Fq(E ) = Fq; this is di-
rectly in line with Falconer’s result in the Euclidean setting that, for a set E with
Hausdorff dimension greater than (n+1)/2, the distance set is of positive measure.

Received October 9, 2012. Revision received March 25, 2013.
Research of the second author is supported by Vietnam National University, Hanoi, under the project

“Some Problems on Matrices over Finite Fields”.

779



780 Do Duy Hieu & Le Anh Vinh

At first, it seems reasonable that the exponent (n + 1)/2 may be unprovable—in
line with the Falconer distance conjecture just stated. Yet Hart, Iosevich, Koh,
and Rudnev [11] discovered that the arithmetic of the problem makes the expo-
nent (n+ 1)/2 best possible in odd dimensions, at least in general fields. In even
dimensions it is still possible that the correct exponent is n/2, in analogy with the
Euclidean case. In [4], Chapman and colleagues took a first step in this direction
by showing that, if E ⊂ F2

q satisfies |E | ≥ q4/3, then |�Fq(E )| ≥ cq. This is in ac-
cordance with Wolff ’s result for the Falconer conjecture in the plane, which states
that the Lebesgue measure of the set of distances determined by a subset of the
plane of Hausdorff dimension greater than 4/3 is positive.

In [6], Covert, Iosevich, and Pakianathan extended (1.1) to the setting of finite
cyclic rings Zq = Z/qZ (q = pr, p a sufficiently large prime). One reason for
considering this situation is that, if one is interested in answering questions about
sets E ⊂ Qn of rational points, then it is possible to ask questions about the dis-
tance sets for such sets and how they compare to their counterparts in Rn. By the
scale invariance of these questions, the problem of obtaining sharp bounds for the
relationship between |�Zq(E )| and |E | for a subset E of Qn would be the same as
for subsets of Zn. Here, the distance set of E in vector space over a finite ring is
defined similarly by

�Zq(E ) = {‖x − y‖ = (x1 − y1)
2 + · · · + (xn − yn)

2 : x, y ∈ E} ⊂ Zq .

In [6], a nearly sharp bound was obtained for the distance problem in vector spaces
over the finite ring Zq . More precisely, the authors proved that if E ⊂ Zn

q is of
cardinality

|E | � r(r + 1)q(2r−1)n/2r+1/2r (1.2)

then
Z×
q ⊂ �Zq(E ).

In [19] this result was extended using graph-theoretic methods. Roughly speak-
ing, it was shown that any sufficiently large subset E ⊂ Zn

q determines all possible
nondegenerated k-simplices.

A related question that has recently received attention is the following. For A ⊂
Fq , how large must A must be in order to ensure that F∗

q ⊂ A · A + · · · + A · A
(n times)? Bourgain [2] showed that if A ⊂ Fq is of cardinality |A| ≥ Cq3/4 then
A · A + A · A + A · A = Fq . Glibichuk and Konyagin [8] proved in the case
of prime fields Zp that, for n = 8, one can take |A| > √

q . Glibichuk [7] then
extended this result to arbitrary finite fields. We remark that this question can be
stated in a more general setting. If E ⊂ Fnq , then how large must E be in order to
ensure that the equation

x · y = λ, x, y ∈ E , (1.3)

is solvable for any λ ∈ F∗
q ? Hart and Iosevich [10] used exponential sums to

show that one can take |E | > q(n+1)/2 for any n ≥ 2. Covert, Iosevich, and
Pakianathan [6] extended this result to the setting of finite cyclic rings Zq . They
proved that if E ⊂ Zn

q is of cardinality
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|E | � rq(2r−1)n/2r+1/2r, (1.4)

then (1.3) is solvable for all λ ∈ Z×
q. Using spectral graph theory, Vinh [19] gave

alternative proofs of these theorems. In fact, it is shown there that (almost) all sys-
tems of dot-product equations are solvable in any sufficiently large subset E ⊂ Zn

q .

The lower bounds (1.2) and (1.4) establish that there exists a constant D =
D(p, r) > 0 such that (a) |E | > Dqn(2r−1)/2r implies Z

×
pr ⊂ �Zq(E , E ) and

(b) equation (1.3) is solvable for all λ ∈ Z×
q . In contrast, it was shown in [6] that

for any n ≥ 3 there exist sets E ⊂ Zn
q of size |E | = bqn(2r−1)/2r, where

b =
{

1 if n is even,

1/
√
p if n is odd,

yet |�Zq(E )| = o(pr ) (1.3) is not solvable for any λ ∈ Z×
q . Since |Z×

pr | =
pr − pr−1, these bounds are best possible up to the factor of 1/2r. The main pur-
pose of this paper is to improve the lower bounds (1.2) and (1.4) under the addi-
tional assumption that E is the Cartesian product of sets.

2. Statement of Results

2.1. Distance Sets and Product Sets over Finite Fields

Let q = pr (r ≥ 1), where p is a sufficiently large prime, and let Fq be the finite
field of q elements. The finite Euclidean space Fdq consists of column vectors x

with j th entry xj ∈ Fq . Define the distance between x, y ∈ Fdq by

‖x − y‖ =
d∑
j=1

(xj − yj )
2.

Given a subset E ⊂ Fdq , we define the distance set of E as

�Fq(E ) = {‖x − y‖ : x, y ∈ E}.
Similarly, we define the product set of E as

�Fq(E ) = {x · y : x, y ∈ E},
where x · y = x1y1 + · · · + xdyd is the usual dot product.

Using Fourier analytic methods over finite fields, Iosevich and Rudnev [12]
showed that if |E | ≥ 2q(d+1)/2 then �(E ) ≡ Fq . Hart and Iosevich [10] improved
the threshold to q d

2/(d−1) under the additional assumptions that E has product struc-
ture and that the distance set covers a positive proportion of the field Fq .

Theorem 2.1 [10, Thm. 1.1, Cor. 1.2]. Suppose that E = E1 × · · · × En, where
E1, . . . ,En ⊂ Fq , and suppose

|E | � qn
2/(2n−1).

Then |�Fq(E )| � q.
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Hart and colleagues [11] obtained a similar result for the product sets in vector
spaces over finite fields.

Theorem 2.2 [11, Thm. 2.5]. Suppose that E = E1 × · · · × En, where
E1, . . . ,En ⊂ Fq , and suppose

|E | � qn
2/(2n−1).

Then |�Fq(E )| � q.

In this paper, we extend the method used in [18] to obtain alternative versions of
these results. Note that moving from one-set formulations in Theorem 2.3 and
Theorem 2.4 to multi-set formulations in Theorem 2.1 and Theorem 2.2 is simply
a matter of inserting a different letter in a few places.

Theorem 2.3. Let A ⊂ Fq be of cardinality |A| � q1/2. Then

|�F(A
n)| � min

{
q,

|A|2n−1

qn−1

}
.

Theorem 2.4. Let A ⊂ Fq be of cardinality |A| � q1/2. Then

|�F(A
n)| � min

{
q,

|A|2n−1

qn−1

}
.

In particular, Theorem 2.3 and Theorem 2.4 imply that, ifA ⊂ Fq is of cardinality
|A| � qn/(2n−1), then

|�F(A
n)| � q and |�F(A

n)| � q.

2.2. Distance Sets and Product Sets over Finite Rings

Let q = pr (r ≥ 1), where p is a sufficiently large prime, and let Zq = Z/qZ

be the finite cyclic ring of q elements. The finite Euclidean space Zd
q consists of

column vectors x with j th entry xj ∈ Zq . Similarly, define the distance between
x, y ∈ Zd

q by

‖x − y‖ =
d∑
j=1

(xj − yj )
2.

Given a subset E ⊂ Zd
q , we define the distance set of E as

�Zq(E ) = {‖x − y‖ : x, y ∈ E}.
Similarly, we define the product set of E as

�Zq(E ) = {x · y : x, y ∈ E},
where x · y = x1y1 + · · · + xdyd is the usual dot product.

In [6], the following results were obtained using the Fourier analysis method
over finite rings.
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Theorem 2.5 [6, Thm. 1.3.1]. Let E ⊂ Zn
q , where q = pr, p ≥ 3 is a prime,

and r ≥ 2. Suppose that

|E | � r(r + 1)q(2r−1)n/2r+1/2r.

Then
Z×
q ⊂ �Zq(E ),

where Z×
q is the multiplicative group of units modulo q.

Theorem 2.6 [6, Thm. 1.3.2]. Let E ⊂ Zn
q , where q = pr, p ≥ 3 is a prime,

and r ≥ 2. Suppose that
|E | � rq(2r−1)n/2r+1/2r.

Then
Z×
q ⊂ �Zq(E ).

Under the additional assumption that the point set is the Cartesian product of sets,
we obtain the following stronger results on the distance and product sets in vector
spaces over finite fields.

Theorem 2.7. Let A ⊂ Zq be of cardinality |A| � q1−1/2r. Then

|�Zq(A
n)| � min

{
q,

|A|2n−1

(rq2−1/r )n−1

}
.

Theorem 2.8. Let A ⊂ Zq be of cardinality |A| � q1−1/2r. Then

|�Zq(A
n)| � min

{
q,

|A|2n−1

(rq2−1/r )n−1

}
.

In particular, Theorem 2.5 and Theorem 2.6 imply that if A ⊂ Zq is of cardinality

|A| � r 2/nq1+1/2rn−1/2r (2.1)

then
Z×
q ⊂ �Zq(A

n) and Z×
q ⊂ �Zq(A

n);
and Theorem 2.7 and Theorem 2.8 imply that if A ⊂ Zq is of cardinality

|A| � r(n−1)/(2n−1)q1+1/2r(2n−1)−1/2r

then
|�Zq(A

n)| � q and |�Zq(A
n)| � q.

Recall that, by [6], the bounds in Theorem 2.5 and Theorem 2.6 are best pos-
sible up to the factor of 1/2r. However, the sharpness examples in that paper do
not work in the case of product sets. Furthermore, we believe that the bound (4.2)
could be improved considerably when n is large.

3. Pseudo-Random Graphs

For a graph G, let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency ma-
trix. The quantity λ(G) = max{λ2, −λn} is called the second eigenvalue of G. A
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graph G = (V,E) is called an (n, d, λ)-graph if it is d-regular, G has n vertices,
and the second eigenvalue ofG is at most λ. It is well known (see [1, Chap. 9] for
more details) that if λ is much smaller than the degree d then G has certain ran-
domlike properties. For two (not necessarily) disjoint subsets of vertices U,W ⊂
V, let e(U,W) be the number of ordered pairs (u,w) such that u ∈U, w ∈W, and
(u,w) is an edge of G. For a vertex v of G, let N(v) denote the set of vertices
of G adjacent to v and let d(v) denote this set’s degree. Similarly, for a subset U
of the vertex set, let NU(v) = N(v) ∩ U and dU(v) = |NU(v)|. We will need the
following well-known fact.

Lemma 3.1 [1, Cor. 9.2.5]. Let G = (V,E) be an (n, d, λ)-graph. For any two
sets B,C ⊂ V, we have∣∣∣∣e(B,C)− d|B||C|

n

∣∣∣∣ ≤ λ
√|B||C|.

3.1. Sum-Square Graphs over Finite Fields

The sum-square graph FSq over finite field Fq is defined as follows. The vertex
set of the sum-square graph FSq is the set Fq ×Fq . Two vertices a = (a1, a2) and
b = (b1, b2) with a, b ∈ V(FSq) are connected by an edge, (a, b) ∈ E(FSq), if
and only if a1 + b1 = (a2 + b2)

2. We have the following pseudo-randomness of
the sum-square graph FSq .

Theorem 3.2. The graph FSq is a
(
q2, q,

√
2q

)
-graph.

Proof. It is clear that FSq is a regular graph of order q2 and valency q. We now es-
timate the eigenvalues of this multi-graph (i.e., graph with loops). For any (a, b)∈
V(FSq) with a �= b, we count the number of solutions of the following system:

a1 + x1 = (a2 + x2)
2, b1 + x1 = (b2 + x2)

2, x = (x1, x2)∈V(FSq).
This system has the unique solution

x1 =
(
a1 − b1

a2 − b2
+ (a2 − b2)

)2/
4 − a1,

x2 =
(
a1 − b1

a2 − b2
− (a2 + b2)

)/
2

if a2 �= b2 and has no solution otherwise. In other words, two distinct vertices a =
(a1, a2) and b = (b1, b2) have a unique common vertex if a2 �= b2 and otherwise
have no common vertex. Let M be the adjacency matrix of FSq . It follows that

M 2 = J + (q − 1)I − E. (3.1)

Here J is the all-1 matrix, I is the identity matrix, and E is the adjacency ma-
trix of the graph SE , where V(SE) = Fq × Fq and, for any two distinct vertices
a, b ∈V(SE), (a, b) is an edge of SE if and only if a2 = b2. It follows that SE is a
(q− 1)-regular graph. Because FSq is a q-regular graph, q is an eigenvalue ofM
with the all-1 eigenvector 1. The graph FSq is connected and so the eigenvalue q
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has multiplicity 1. It is clear that the graph FSq contains (many) triangles, which
implies that the graph is not bipartite. Hence, for any other eigenvalue θ of the
graph FSq , we have |θ | < q. Let vθ denote the corresponding eigenvector of θ.
Note that vθ ∈ 1⊥, so Jvθ = 0. It follows from (3.1) that (θ 2 − q+ 1)vθ = −Evθ .

Since SE is a (q − 1)-regular graph, absolute values of the eigenvalues of SE are
bounded by q − 1. This statement implies that θ 2 ≤ 2(q − 1), and the theorem
follows.

3.2. Sum-Product Graphs over Finite Fields

For any λ ∈ Fq , the sum-product graph FPq(λ) is defined as follows. The ver-
tex set of the sum-product graph FPq(λ) is the set Fq × Fq . Two vertices a =
(a1, a2) and b = (b1, b2)with a, b ∈V(FPq(λ)) are connected by an edge, (a, b)∈
E(FPq(λ)), if and only if a1+b1+a2b2 = λ. Our construction is similar to that of
Solymosi in [14]. We have the following pseudo-randomness of the sum-product
graph FPq(λ).

Theorem 3.3. The graph FPq(λ) is a
(
q2, q,

√
2q

)
-graph.

Proof. It is clear that FPq(λ) is a regular graph of order q2 and valency q. We
now estimate the eigenvalues of this multi-graph. For any (a, b) ∈ V(FPq(λ))
with a �= b, we count the number of solutions of the following system:

a1 + x1 + a2x2 = b1 + x1 + b2x2 = λ, x = (x1, x2)∈V(FPq(λ)).
This system has the unique solution

x1 = λ− a2b1 − a1b2

a2 − b2
,

x2 = b1 − a1

a2 − b2

if a2 �= b2 and has no solution otherwise. In other words, two distinct vertices a =
(a1, a2) and b = (b1, b2) have a unique common vertex if a2 �= b2 and otherwise
have no common vertex. LetM be the adjacency matrix of FPq(λ). It follows that

M 2 = J + (q − 1)I − E.

Here J is the all-1 matrix, I is the identity matrix, and E is the adjacency ma-
trix of the graph SE , where V(SE) = Fq × Fq and, for any two distinct vertices
a, b ∈ V(SE), (a, b) is an edge of SE if and only if a2 = b2. It follows that SE
is a (q − 1)-regular graph. Since the graph FPq(λ) is a q-regular graph, q is an
eigenvalue of M with the all-1 eigenvector 1. The graph FPq(λ) is connected, so
the eigenvalue q has multiplicity 1. Much as in the proof of Theorem 3.2, for any
other eigenvalue θ of FPq we have θ 2 < 2q − 1. The theorem follows.

3.3. Sum-Square Graphs over Finite Rings

Suppose that q = pr for a sufficiently large prime p. The sum-square graph SRq

is defined as follows. The vertex set of the sum-product graph SRq is the set
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V(SRq) = Zq × Zq . Two vertices (a, b) and (c, d) in V(SRq) are connected
by an edge in E(SRq) if and only if a + c = (b + d)2. We have the following
pseudo-randomness of the sum-square graph SRq .

Theorem 3.4. The sum-square graph SRq is a
(
p2r,pr,

√
2rp2r−1

)
-graph.

Proof. It is easy to see that SRq is a regular graph of order p2r and valency pr.
We now compute the eigenvalues of this multi-graph. For any (a, b), (c, d) ∈
Zpr × Zpr , we count the number of solutions of the following system:

a + u = (b + v)2, c + u = (d + v)2, u, v ∈ Zpr . (3.2)

For each solution v of

(b − d)(2v + b + d) = a − c, (3.3)

there exists a unique u satisfying the system (3.5). Therefore, we need only count
the number of solutions of (3.6).

Let 0 ≤ α ≤ r be the largest power such that b− d is divisible by pα. Suppose
that pα|(a − c). Let γ = (a − c)/pα and β = (b − d)/pα. Since β ∈ Z×

pr−α ,
there exists a unique solution v ∈ Zpr−α of βv = γ. Substituting back into (3.6)
yields pα solutions. Hence (3.5) has pα solutions if pα|(a − c) and has no solu-
tion otherwise.

So for any two vertices (a, b) and (c, d) in V(SRq), let pα = gcd(b − d,pr );
then (a, b) and (c, d) have pα common neighbors if pα|(c− a) and have no com-
mon neighbors otherwise. Let A be the adjacency matrix of SRq . It follows that

A2 = J + (pr − 1)I −
r−1∑
α=0

Eα +
r−1∑
α=1

(pα − 1)Fα. (3.4)

Here J is the all-1 matrix, I is the identity matrix, and Eα is the adjacency matrix
of the graph BE,α , where the vertex set of BE,α is Zq × Zq and, for any two ver-
tices U = (a, b) and V = (c, d) with U,V ∈V(BE,α), we have that (U,V ) is an
edge of BE,α if and only if pα = gcd(b− d,pr ) > gcd(a− c,pr ); also, Fα is the
adjacency matrix of the graph BF,α , where the vertex set of BF,α is Zq × Zq and,
for any two vertices U = (a, b) and V = (c, d)with U,V ∈V(BF,α), we have that
(U,V ) is an edge of BF,α if and only if pα = gcd(b − d,pr ) ≤ gcd(a − c,pr ).
Hence for any α > 0 it follows thatBE,α is a regular graph of order less than p2r−α
and that BF,α is a regular graph of order less than p2(r−α). Therefore, all eigen-
values ofEα are at most p2r−α and all eigenvalues of Fα are at most p2(r−α). Note
that E0 is a zero matrix.

Since SRq is a pr -regular graph, pr is an eigenvalue of A with the all-1 eigen-
vector 1. The graph SRq is connected, so the eigenvalue pr has multiplicity 1.
Since the graph SRq contains (many) triangles, it is not bipartite. As a result,
|θ | < pr for any other eigenvalue θ. Let vθ denote the corresponding eigenvector
of θ. Note that vθ ∈ 1⊥, so Jvθ = 0. It then follows from (3.7) that

(θ 2 − pr + 1)vθ =
(
−
r−1∑
α=1

Eα +
r−1∑
α=1

(pα − 1)Fα

)
vθ .
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Thus vθ is also an eigenvalue of
r−1∑
α=1

(pα − 1)Fα −
r−1∑
α=1

Eα.

Since eigenvalues of the sum of the matrices are bounded by the sum of the largest
eigenvalues of the summands, we have

θ 2 ≤ pr − 1 +
r−1∑
α=1

p2r−α +
r−1∑
α=1

(pα − 1)p2(r−α)

< 2rp2r−1.

The lemma follows.

3.4. Sum-Product Graphs over Finite Rings

Suppose that q = pr for some odd prime p and integer r ≥ 2. The sum-product
graph RPq is defined as follows. The vertex set of the sum-product graph RPq is
the set V(RPq) = Zq × Zq . Two vertices (a, b) and (c, d) in V(RPq) are con-
nected by an edge in E(RPq) if and only if a + c = bd. We have the following
pseudo-randomness of the sum-product graph RPq .
Theorem 3.5 [17, Thm. 2.3]. The sum-product graph RPq is a

(
p2r,pr,√

2rp2r−1
)
-graph.

Proof. It is easy to see that RPq is a regular graph of order p2r and valency pr.
We now compute the eigenvalues of this multi-graph. For any (a, b), (c, d) ∈
Zpr × Zpr , we count the number of solutions of the following system:

a + u = bv, c + u = dv, u, v ∈ Zpr . (3.5)

For each solution v of
(b − d)v = a − c, (3.6)

there exists a unique u satisfying the system (3.5). Therefore, we need only count
the number of solutions of (3.6).

Let 0 ≤ α ≤ r be the largest power such that b− d is divisible by pα. Suppose
that pα|(a − c). Let γ = (a − c)/pα and β = (b − d)/pα. Since β ∈ Z×

pr−α ,
there exists a unique solution v ∈ Zpr−α of βv = γ. Substituting back into (3.6)
yields pα solutions. Hence (3.5) has pα solutions if pα|(a − c) and has no solu-
tion otherwise.

So for any two vertices (a, b) and (c, d) in V(RPq), let pα = gcd(b − d,pr );
then (a, b) and (c, d) have pα common neighbors if pα|(c−a) and otherwise have
no common neighbors. Let A be the adjacency matrix of RPq . It follows that

A2 = J + (pr − 1)I −
r−1∑
α=0

Eα +
r−1∑
α=1

(pα − 1)Fα. (3.7)

Here J is the all-1 matrix, I is the identity matrix, and Eα is the adjacency matrix
of the graph BE,α , where the vertex set of BE,α is Zq × Zq and, for any two ver-
tices U = (a, b) and V = (c, d) with U,V ∈V(BE,α), we have that (U,V ) is an
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edge of BE,α if and only if pα = gcd(b− d,pr ) > gcd(a− c,pr ); also, Fα is the
adjacency matrix of the graph BF,α , where the vertex set of BF,α is Zq × Zq and,
for any two vertices U = (a, b) and V = (c, d) with U,V ∈V(BF,α), we have that
(U,V ) is an edge of BF,α if and only if pα = gcd(b − d,pr ) ≤ gcd(a − c,pr ).
Hence for any α > 0 it follows thatBE,α is a regular graph of order less than p2r−α
and that BF,α is a regular graph of order less than p2(r−α). Therefore, all eigen-
values ofEα are at most p2r−α and all eigenvalues of Fα are at most p2(r−α). Note
that E0 is a zero matrix.

Since RPq is a pr -regular graph, pr is an eigenvalue of A with the all-1 eigen-
vector 1. The graph RPq is connected, so the eigenvalue pr has multiplicity 1.
Since the graph RPq contains (many) triangles, it is not bipartite. As a result,
|θ | < pr for any other eigenvalue θ. Let vθ denote the corresponding eigenvector
of θ. Note that vθ ∈ 1⊥, so Jvθ = 0. It then follows from (3.7) that

(θ 2 − pr + 1)vθ =
(
−
r−1∑
α=1

Eα +
r−1∑
α=1

(pα − 1)Fα

)
vθ .

Thus vθ is also an eigenvalue of

r−1∑
α=1

(pα − 1)Fα −
r−1∑
α=1

Eα.

Since eigenvalues of the sum of the matrices are bounded by the sum of the largest
eigenvalues of the summands, we have

θ 2 ≤ pr − 1 +
r−1∑
α=1

p2r−α +
r−1∑
α=1

(pα − 1)p2(r−α)

< 2rp2r−1.

The lemma follows.

4. Distance Sets

4.1. Proof of Theorem 2.3

As a consequence of Theorem 3.2, we have the following lemma.

Lemma 4.1. For any A,B,C ⊆ Fq ,

|{a + (b − c)2 : a ∈A, b ∈B, c ∈C}| � min

{
q,

|A||B||C|
q

}
.

Proof. Let D = {a + (b − c)2 : a ∈ A, b ∈ B, c ∈ C} ⊂ Fq . Let N be the
number of solutions of the equation −d + a + (b − c)2 = 0, where (a, b, c, d) ∈
A × B × C × D. It is clear that N = |A||B||C|. Moreover, N is the number of
edges between (−D) × B and A × (−C) of the sum-square graph FSq . From
Lemma 3.1 and Theorem 3.2 it now follows that
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q

∣∣∣∣ ≤ √
2q|A||B||C||D|

or, equivalently,

|A||B||C| ≤ |A||B||C||D|
q

+ √
2q|A||B||C||D|.

Let t = √|D| ≥ 0. Then√|A||B||C|
q

t 2 + √
2qt − √|A||B||C| ≥ 0,

which implies that

√|D| ≥ −√
2q + √

2q + 4|A||B||C|/q
2
√|A||B||C|/q

= 2
√|A||B||C|√

2q + √
2q + 4|A||B||C|/q

� min

{
√
q,

√
|A||B||C|

q

}
.

This concludes the proof of the lemma.

We are now ready to prove Theorem 2.3. We proceed by induction on n. For the
base case n = 2, let X = {(a − b)2 : a, b ∈A} and let Y = Z = A. Since |X| ≥
|A|/2, it follows from Lemma 4.1 that

|�F(A
2)| = |{x + (y − z)2 : x ∈X, y ∈ Y, z∈Z}|

� min

{
q,

|X||Y ||Z|
q

}

� min

{
q,

|A|3

q

}
.

Suppose the statement holds for n; we show that it holds also for n+ 1. Let X =
�F(A

n) and Y = Z = A. By the induction hypothesis, we have

|X| � min

{
q,

|A|2n−1

qn−1

}
. (4.1)

From (4.2) and Lemma 4.1 it follows that

|�F(A
n+1)| = |{x + (y − z)2 : x ∈X, y ∈ Y, z∈Z}|

� min

{
q,

|X||Y ||Z|
q

}

� min

{
q,

|A|2n+1

qn

}
,

which concludes the proof of the theorem.
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4.2. Proof of Theorem 2.7

Lemma 4.2. Let q = pr for p an odd prime and r ≥ 2 an integer. For any
A,B,C ⊆ Zq ,

|{a + (b − c)2 : a ∈A, b ∈B, c ∈C}| � min

{
q,

|A||B||C|
rq2−1/r

}
.

Proof. Let D = {a + (b − c)2 : a ∈ A, b ∈ B, c ∈ C} ⊂ Zq . Let N be the
number of solutions of the equation −d + a + (b − c)2 = 0, where (a, b, c, d) ∈
A × B × C × D. It is clear that N = |A||B||C|. Moreover, N is the number of
edges between (−D) × B and A × (−C) of the sum-square graph SRq . From
Lemma 3.1 and Theorem 3.4 it now follows that∣∣∣∣|A||B||C| − |A||B||C||D|

q

∣∣∣∣ ≤
√

2rq2−1/r |A||B||C||D|

or, equivalently,

|A||B||C| ≤ |A||B||C||D|
q

+
√

2rq2−1/r |A||B||C||D|.

Let t = √|D| ≥ 0. Then√|A||B||C|
q

t 2 +
√

2rq2−1/r t − √|A||B||C| ≥ 0,

which implies that

√|D| ≥ −
√

2rq2−1/r +
√

2rq2−1/r + 4|A||B||C|/q
2
√|A||B||C|/q

= 2
√|A||B||C|√

2rq2−1/r +
√

2rq2−1/r + 4|A||B||C|/q

� min

{
√
q,

√
|A||B||C|
rq2−1/r

}
.

This concludes the proof of the lemma.

Next we prove Theorem 2.7; we proceed by induction on n. For the base case
n = 2, letX = {(a− b)2 : a, b ∈A},X ′ = X∩Z×

q , and Y = Z = A. Since a, b ∈
Z×
q we have a2 = b2. Then, for a = ±b,

|X| ≥ |X ′| ≥ |A− A| − |Z0
q |

2
≥ |A| − pr−1

2
� |A|.

It follows from Lemma 4.2 that
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|�Zq(A
2)| = |{x + (y − z)2 : x ∈X, y ∈ Y, z∈Z}|

� min

{
q,

|X||Y ||Z|
rq2−1/r

}

� min

{
q,

|A|3

rq2−1/r

}
.

Suppose the statement holds for n; we show that it holds also for n+ 1. Let X =
�Zn(A

n) and Y = Z = A. By the induction hypothesis, we have

|X| � min

{
q,

|A|2n−1

(rq2−1/r )n−1

}
. (4.2)

From (4.2) and Lemma 4.1 it follows that

|�Zq(A
n+1)| = |{x + (y − z)2 : x ∈X, y ∈ Y, z∈Z}|

� min

{
q,

|X||Y ||Z|
rq2−1/r

}

� min

{
q,

|A|2n+1

(rq2−1/r )n

}
,

which concludes the proof of the theorem.

5. Product Sets: Proof of Theorems 2.4 and 2.8

Similarly to the previous section, we obtain the following lemmas from Theo-
rem 3.3 and Theorem 3.5.

Lemma 5.1. For any A,B,C ⊆ Fq ,

|{a + bc : a ∈A, b ∈B, c ∈C}| � min

{
q,

|A||B||C|
q

}
.

Lemma 5.2. Let q = pr for p an odd prime and r ≥ 2 an integer. Then, for any
A,B,C ⊆ Zq ,

|{a + bc : a ∈A, b ∈B, c ∈C}| � min

{
q,

|A||B||C|
rq2−1/r

}
.

Theorem 2.4 and Theorem 2.8 follow from Lemma 5.1and Lemma 5.2, respectively.
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