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On the Representation of
Holomorphic Functions on Polyhedra

J im Agler, John E. McCarthy, & N. J. Young

1. Introduction

1.1. Oka’s Theorem

The following beautiful theorem of Oka, which gives a representation for holo-
morphic functions defined on p-polyhedra in C

d, has played a significant role in
the development of several complex variables.

Theorem 1.1 (Oka [26], as presented in [7]). Let δ1, . . . , δm be a collection of
polynomials in d variables normalized such that the p-polyhedron Kδ defined by

Kδ = {λ∈C
d | |δl(λ)| ≤ 1 for l = 1, . . . ,m}

lies in D
d. If φ is holomorphic on a neighborhood of Kδ , then there exists a func-

tion �, holomorphic on a neighborhood of (D−)d+m, such that

φ(λ) = �(λ, δ(λ))

for all λ∈Kδ.

Introduced originally in1936 to give an elegant new proof of the Oka–Weil approx-
imation theorem [26; 33], Oka’s theorem was a stem theorem for the development
of the theory of analytic sheaves—a powerful tool for applying function theory
to domains of holomorphy and, more generally, Stein spaces [19; 21]. Basic to
the understanding of polynomial convexity, Oka’s theorem played an important
role in the development of the theory of Banach algebras. Many operator theo-
rists first learn of this theorem in the context of one of its many basic implications:
the Arens–Calderon trick [10], which is fundamental to spectral theory and to the
corresponding functional calculus for commuting tuples of operators [18; 28; 29].

1.2. Oka Mappings

In this paper we show how ideas that are currently evolving within the operator
theory community can be adapted to obtain precise bounds for Oka’s theorem.
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These bounds are defined using operator theory, and the problem of computing
them—or, indeed, even estimating them in any meaningful fashion in terms of
function theory—remains in large part unexplored.

In addition to these new bounds that we will obtain, there is a second contribu-
tion presented in this paper to our understanding of Oka’s theorem. The idea is
to drop Oka’s normalization requirement and, more severely, to prevent the rep-
resenting function � from “seeing” the coordinates λ. Specifically, we introduce
the following definition.

Definition 1.2. Let δ be an m-tuple of polynomials in d variables. We say that δ
is an Oka mapping if, whenever φ is a function that is holomorphic on a neighbor-
hood of Kδ , there exists a function �, holomorphic on a neighborhood of (D−)m,
such that φ = � 	 δ on Kδ.

With this language, Oka’s theorem evidently becomes the assertion that if δ is an
m-tuple of polynomials in d variables and if Kδ ⊆ D

d, then (λ, δ) is an Oka map-
ping. Of course, this leaves open the question of whether or not the map δ itself is
an Oka map.

One approach to understanding Oka mappings is to use the Cartan extension
theorem [16], which provides a purely geometric characterization of Oka map-
pings. We let

Gδ = {λ∈C
d | |δl(λ)| < 1 for l = 1, . . . ,m}.

One always has Gδ equal to the interior of Kδ , which we shall denote by K	
δ (this is

proved in Lemma 2.1); however, it need not be the case that Kδ = G−
δ , the closure

of Gδ.

Theorem 1.3. If δ is an m-tuple of polynomials in d variables, then δ is an Oka
mapping if and only if there exists a t < 1 such that δ embeds Gtδ as an analytic
submanifold in 1

t
D

m
(
i.e., such that δ is an injective, proper, and unramified map-

ping from Gtδ into 1
t
D

m
)
.

The implication ⇐ follows from [27, Thm. 7.1.5], and the converse follows from
observing that, for some t and for each coordinate function λj, 1 ≤ j ≤ d, there
is a function �j holomorphic on 1

t
D

m such that �j(δ(λ)) = λj.

To return to operator theory, we consider an analogue of Kδ but with points in
C

d replaced by d-tuples of pairwise commuting operators, T = (T 1, T 2, . . . , T d),
acting on a complex Hilbert space. Thus we define

Fδ = {T | ‖δl(T )‖ ≤ 1, l = 1, . . . ,m}. (1.4)

This one simple definition allows us to obtain a second condition for δ to be an
Oka map, one that is stated in operator-theoretic terms.

Proposition 1.5. If δ is an m-tuple of polynomials in d variables, then δ is an
Oka mapping if and only if there exists a t < 1 such that Ftδ is bounded.
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We remark that the classical Oka theorem (Theorem 1.1) is an immediate corol-
lary of both Theorem 1.3 and Proposition 1.5. This is because (i) for t < 1 but
sufficiently close to 1, Oka’s normalization condition Kδ ⊆ D

d implies that Gtδ ⊆
D

d and (ii) the map (tλ, tδ) is clearly an analytic embedding of Gtδ into 1
t
D

m+d.

Likewise, the family F(tλ,tδ) is bounded because (1.4) implies that, if T ∈F(tλ,tδ),
then ‖T r‖ ≤ 1

t
for each r = 1, . . . , d.

Not all δ are Oka mappings. For an m-tuple δ of polynomials in d variables that
is not necessarily an Oka mapping, it is natural to ask the following question.

Question 1.6. Given φ holomorphic on a neighborhood of Kδ , does there exist
a �, holomorphic on a neighborhood of (D−)m, such that φ = � 	 δ on Kδ?

The approach to this question via the Cartan extension theorem would go some-
thing like this. First, we would hope that for t < 1 but sufficiently close to 1,
δ(Gtδ) is an analytic variety in 1

t
D

m. Then the condition for representing φ as in
Oka’s theorem would be that the function δ∼, defined on δ(Gtδ) by the formula

δ∼(δ(λ)) = φ(λ),

be a well-defined analytic function on δ(Gtδ) that could be extended via the Cartan
theorem. Addressing the analyticity of δ∼ would require the full strength of ana-
lytic sheaf theory and would proceed with great difficulty. A fundamental problem
with this approach is that δ(Gtδ) need not be an analytic variety in 1

t
D

m for any
t ≤ 1. For example, if d = m = 2, δ1 = λ1, and δ2 = λ1λ2, then

δ(Gtδ) =
{
λ : |λ1| < 1

t
, |λ2| < 1

t

} ∖ [{0} × 1
t
(Dd \ {0})].

To answer Question 1.6 in terms of operator theory, we return to Fδ and note
that, as a simple consequence of the spectral mapping theorem, we have σ(T ) ⊆
Kδ whenever T ∈ Fδ. Thus, if φ is holomorphic on a neighborhood of Kδ then
φ(T ) can be defined by the Taylor functional calculus. Hence, for φ holomorphic
on a neighborhood of Kδ , we may define

‖φ‖+δ = sup
T ∈Fδ

‖φ(T )‖. (1.7)

Question 1.6 can be answered in terms of the quantity defined in (1.7).

Proposition 1.8. If δ is an m-tuple of polynomials in d variables and if φ is
holomorphic on a neighborhood of Kδ , then there exists a �, holomorphic on a
neighborhood of (D−)m, such that φ = � 	 δ on Kδ if and only if there exists a
t < 1 such that ‖φ‖+tδ < ∞.

1.3. Bounds for the Oka Representation

To describe our bounds for the Oka extension, we shall employ a norm on holo-
morphic functions essentially introduced by von Neumann in [32]. That paper,
which has had a profound influence on the development of operator theory, was
the first to demonstrate that norms defined with the aid of operators can be natural
from the point of view of function theory.
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Theorem 1.9 (von Neumann’s inequality [32]). If C is a contraction acting on
a complex Hilbert space and if � is a function holomorphic on a neighborhood
of D

−, then
‖�(C)‖ ≤ max

z∈D−|�(z)|. (1.10)

One can reformulate von Neumann’s inequality by stating that, if � is assumed to
be holomorphic on a neighborhood of D

−, then

sup
‖C‖≤1

‖�(C)‖ = max
z∈D−|�(z)|. (1.11)

Twelve years after von Neumann published his inequality, Andô [9] proved a
surprising and subtle generalization to two variables. If � is holomorphic on a
neighborhood of (D−)2 then, with F2 defined by

F2 = {C = (C1,C2) | ‖C1‖ ≤ 1, ‖C2‖ ≤ 1, C1C2 = C2C1}, (1.12)

the following analogue of (1.11) obtains:

sup
C∈F2

‖�(C)‖ = max
z∈(D− )2

|�(z)|. (1.13)

Unfortunately, when the operator theory community asked for the obvious ana-
logue of (1.13) to hold in dimension 3, they were surprised to learn [17; 31] about
examples of � being holomorphic on a neighborhood of (D−)3 for which

sup
C∈F3

‖�(C)‖ > max
z∈(D− )3

|�(z)|. (1.14)

Because it was the right side of (1.14)—defined as it is in terms of concrete func-
tion theory—that was thought to be the object of interest, the left side of (1.14)
remained unexplored by operator theorists until the appearance in [2] of the fol-
lowing enshrinement of von Neumann’s inequality as a definition. For m ≥ 1, let

Fm = {C | C is an m-tuple of pairwise commuting contractions}.
This is the collection defined by (1.4) for d = m and δ the identity map on C

m.

Definition 1.15. For m ≥ 1 and �∈Hol(Dm), define ‖�‖m by

‖�‖m = sup
C∈Fm

σ(C)⊆D
m

‖�(C)‖.

The norm ‖·‖m occurs in many areas of multivariable function theory and operator
theory—for example, in Nevanlinna–Pick interpolation [1; 3; 15], in realization
theory [13; 14], in the theory of matrix monotone functions [6], in Carathéodory–
Julia theorems on the polydisk [5], and so forth.

We can now describe how to derive bounds for the Oka representation. Observe
from (1.4) that if s < t then Ftδ ⊆ Fsδ. Equally obvious from (1.7) is that if Fδ ⊆
Fγ then ‖φ‖+δ ≤ ‖φ‖+γ . Together these implications show that ‖φ‖+tδ is a mono-
tone decreasing function of t. We may therefore define

ρ(φ) = lim
t→1−

‖φ‖+tδ.
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Theorem 1.8 can now be reformulated to assert that, if φ is holomorphic on a
neighborhood of Kδ , then there exists a � (holomorphic on a neighborhood of
(D−)m) such that φ = � 	 δ on Kδ if and only if ρ(φ) < ∞. The following theo-
rem describes the bounds we have for the classical Oka setting.

Theorem 1.16. Let δ be an m-tuple of polynomials in d variables and let φ be
holomorphic on a neighborhood of Kδ. If � is holomorphic on a neighborhood
of (D−)m and if φ = � 	 δ, then ρ(φ) ≤ ‖�‖m. Furthermore, if ε > 0 then
there exists a � holomorphic on a neighborhood of (D−)m such that φ = � 	 δ
and ‖�‖m < ρ(φ)+ ε.

Note that Propositions 1.8 and 1.5 are immediate corollaries of Theorem 1.16 pro-
vided that, as asserted in Lemma 4.1, every function � that is holomorphic on a
neighborhood of (D−)m has ‖�‖m finite.

1.4. H∞
δ and H∞

m

So far we have restricted ourselves to the classical Oka setting, in which one seeks
to represent functions φ that are holomorphic on a neighborhood of Kδ. Sharper
theorems are obtainable for functions defined only on Gδ. However, if φ is defined
only on Gδ then (1.7) makes no sense because φ(T ) need not be well-defined for
all T ∈Fδ. To accommodate this difficulty, we modify the definition (1.7) to sup
only over those T ∈Fδ such that σ(T ) ⊆ Gδ. Thus, for φ a holomorphic function
on Gδ , we define ‖φ‖δ by the formula

‖φ‖δ = sup
T ∈Fδ

σ(T )⊆Gδ

‖φ(T )‖. (1.17)

Tautologically, we have ‖φ‖δ ≤ ‖φ‖+δ ≤ ‖φ‖tδ when φ is holomorphic on a neigh-
borhood of Kδ and t < 1 is sufficiently close to 1.

Armed with this definition, we can define the space H∞
δ as consisting of all

functions φ that are holomorphic on Gδ and such that ‖φ‖δ is finite. Let m denote
the identity polynomial on C

m. Then the norm ‖�‖m from Definition 1.15 is the
same as the norm ‖�‖m, and we can define H∞

m as consisting of all functions �
that are holomorphic on D

m and such that ‖�‖m is finite.
It turns out that H∞

δ and H∞
m equipped with these norms are Banach spaces.

The following theorem makes it clear that these spaces are natural ones in which
to study Oka representations.

Theorem 1.18. Let δ be an m-tuple of polynomials in d variables, and assume
that φ is a holomorphic function on Gδ. Then the following statements hold.

(a) There exists a �∈H∞
m such that φ = � 	 δ if and only if φ ∈H∞

δ .

(b) If �∈H∞
m and φ = � 	 δ, then ‖φ‖δ ≤ ‖�‖m.

(c) If φ ∈ H∞
δ , then there exists a � ∈ H∞

m such that φ = � 	 δ and ‖φ‖δ =
‖�‖m.
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1.5. Realization Formula

Our proofs rely on the existence of realizations.

Definition 1.19. Let φ be a function on Gδ. We say that a 4-tuple (a,β, γ,D) is
a realization for φ if a ∈C and if there exists a decomposed Hilbert space, M =⊕m

l=1 Ml , such that: the 2 × 2 matrix

V =
[

a 1⊗ β

γ ⊗ 1 D

]

acts isometrically on C ⊕ M; δ(λ) acts on M via the formula

δ(λ)

( m⊕
l=1

xl

)
=

m⊕
l=1

δl(λ)xl;

and
φ(λ) = a + 〈δ(λ)(1 −Dδ(λ))−1γ,β〉

for all λ∈Gδ.

Ambrozie and Timotin [8] proved that a function φ on Gδ has a realization if and
only if ‖φ‖−δ ≤ 1, where

‖φ‖−δ = sup{‖φ(T )‖ : ‖δl(T )‖ < 1, 1 ≤ l ≤ m}.
In Section 3 we develop the machinery showing that

‖φ‖−δ = ‖φ‖δ ∀φ holomorphic on Gδ

(Theorem 4.5). In fact, both norms agree with sup{‖φ(T )‖} as T ranges over
commuting d-tuples of diagonalizable matrices in Fδ (Theorem 6.1).

2. H∞
δ

Let δ = (δ1, δ2, . . . , δm) be an m-tuple of nonconstant polynomials with complex
coefficients in d variables. We can view δ as a map from C

d into C
m and define

two sets in C
d by Gδ = δ−1(Dm) and Kδ = δ−1((D−)m).

Lemma 2.1. Gδ = K	
δ .

Proof. Since Gδ ⊆ Kδ and Gδ is open, it follows that Gδ ⊆ K	
δ . If λ ∈K	

δ \Gδ ,
then there exists an index l with |δl(λ)| = 1. Since δl is assumed to be noncon-
stant, there exists a sequence λn → λ such that |δl(λn)| > 1. In particular, λn /∈
Kδ and so λ∈ ∂Kδ , a contradiction. This shows that K	

δ \Gδ is empty. Therefore,
Gδ = K	

δ .

Note that, even when d = 1, G−
δ need not coincide with Kδ; and when d > 2, Kδ

need not be compact and Gδ need not be bounded.
In what follows, T will always denote a d-tuple of pairwise commuting bounded

operators acting on a Hilbert space. Let Fδ be as in (1.4).
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Lemma 2.2. If T ∈Fδ then σ(T ) ⊆ Kδ.

Proof. Let T ∈ Fδ , and fix l. Since ‖δl(T )‖ ≤ 1, it follows that σ(δl(T )) ⊆
D

−. Hence, by the spectral mapping theorem, δl(σ(T )) ⊆ D
−. Thus, σ(T ) ⊆

δ−1((D−)m) = Kδ.

We now define an algebra of holomorphic functions on Gδ. For f ∈Hol(Gδ) and
T with spectrum in Gδ , we can use the functional calculus to define f(T ). Let

‖f ‖δ = sup
T ∈Fδ

σ(T )⊆Gδ

‖f(T )‖, (2.3)

and define H∞
δ as consisting of all f ∈Hol(Gδ) such that ‖f ‖δ is finite.

Proposition 2.4. The space H∞
δ equipped with ‖f ‖δ is a Banach algebra. Fur-

thermore, if H∞(Gδ) denotes the space of bounded holomorphic functions on Gδ

equipped with the sup norm ‖f ‖∞, then H∞
δ ⊆ H∞(Gδ) and ‖f ‖∞ ≤ ‖f ‖δ for

all f ∈H∞
δ .

Proof. That H∞
δ is a normed algebra is immediate from (2.3). If λ ∈Gδ , then λ

can be viewed as an element of Fδ and, moreover, σ(λ) = {λ} ⊆ Gδ. Hence

‖f ‖δ = sup
T ∈Fδ

σ(T )⊆Gδ

‖f(T )‖ ≥ sup
λ∈Gδ

|f(λ)| = ‖f ‖∞. (2.5)

In particular, this implies that H∞
δ ⊆ H∞(Gδ).

Now suppose {fn} is a Cauchy sequence in H∞
δ . Since (2.5) implies that {fn}

is also Cauchy in H∞(Gδ), there exists an f ∈ H∞(Gδ) such that fn → f in
H∞(Gδ). Therefore, by the continuity of the functional calculus,

σ(T ) ⊆ Gδ �⇒ fn(T ) → f(T ). (2.6)

Now, since {fn} is Cauchy in H∞
δ , there exists an M such that ‖fn‖ ≤ M for all N.

So if T ∈Fδ and σ(T ) ⊆ G, then (2.6) implies that

‖f(T )‖ = lim
n→∞‖fn(T )‖ ≤ M.

Now, because ‖f(T )‖ ≤ M whenever T ∈ Fδ and σ(T ) ⊆ Gδ , equation (2.3)
implies that ‖f ‖δ ≤ M and we see that f ∈H∞

δ .

To see that fn → f in H∞
δ , fix ε > 0. Then choose N so that m, n ≥ N implies

‖fn − fm‖δ < ε. If T ∈Fδ and σ(T ) ⊆ Gδ , we have

‖fn(T )− fm(T )‖ < ε.

Thus, letting m → ∞, we see that if T ∈Fδ and σ(T ) ⊆ Gδ then

n ≥ N �⇒ ‖fn(T )− f(T )‖ ≤ ε.

But then it follows from (2.3) that

n ≥ N �⇒ ‖fn − f ‖δ ≤ ε,

so fn → f in H∞
δ .
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We close this section with the following proposition, which identifies (in terms of
operator theory) when the space H∞

δ contains the functions that are holomorphic
on a neighborhood of Kδ. Define

F 0
δ = {T ∈Fδ : σ(T ) ⊂ Gδ}.

Proposition 2.7. The following statements are equivalent :

(a) φ ∈H∞
δ whenever φ is holomorphic on a neighborhood of Kδ;

(b) λr ∈H∞
δ for r = 1, . . . , d;

(c) F 0
δ is bounded.

Proof. Since λr is holomorphic on a neighborhood of Kδ , (a) implies (b). That (b)
implies (c) follows immediately from (2.3). Suppose that (c) holds. If φ is holo-
morphic on a neighborhood of Kδ yet φ /∈H∞

δ , then there exist Tn ∈F 0
δ such that

‖φ(Tn)‖ → ∞. (2.8)

Since F 0
δ is bounded, we haveT = ⊕

Tn ∈Fδ. Therefore, by Lemma 2.2, σ(T ) ⊆
Kδ and φ(T ) is a well-defined operator. But then

‖φ(Tn)‖ ≤
∥∥⊕

φ(Tn)
∥∥ = ∥∥φ(⊕

Tn
)∥∥ = ‖φ(T )‖,

contradicting (2.8).

3. Hereditary Calculus

For G an open set in C
d, let H(G) denote the collection of functions h = h(λ,µ),

defined for (λ,µ) ∈G ×G, such that h is holomorphic in λ on G for each fixed
µ∈G and h is anti-holomorphic (i.e., h̄ is holomorphic) in µ on G for each fixed
λ ∈ G. If we equip H(G) with the topology of uniform convergence on com-
pact subsets of G × G, then H(G) is a locally convex topological vector space
with a topology induced by a complete translation-invariant metric. Furthermore
H(G) is isomorphic as a topological vector space with Hol(G) ⊗ Hol(G), the
completion of the projective tensor product, via the continuous linear extension to
Hol(G)⊗ Hol(G) of the bilinear map defined by

Hol(G)⊗ Hol(G)� g(µ)⊗ f(λ) �→ g(µ)f(λ)∈H(G);
see [30, Thm. 51.6].

In particular, if B is a Banach space and if u : Hol(G) × Hol(G) → B is a
jointly continuous B-valued bilinear map, then there exists a continuous linear
map , : H(G) → B such that

u(g(µ), f(λ)) = ,(g(µ)f(λ)) (3.1)

for all f , g ∈Hol(G) (see [22, p. 325]).
If H is a Hilbert space, we let L(H) denote the C∗-algebra of bounded oper-

ators on H. If T = (T 1, . . . , T d) is a d-tuple of pairwise commuting elements
of L(H) and if σ(T ) ⊆ G, then (by the continuity of the functional calculus) u
as defined by u(ḡ, f ) = g(T )∗f(T ) is a jointly continuous L(H)-valued bilinear
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map on Hol(G)×Hol(G). Hence, if , : H(G) → L(H) is defined by (3.1), then
we can define the hereditary calculus for T by setting h(T ) = ,(h) for all h∈H.

Observe that from this definition it follows that

[ g(µ)h(λ,µ)f(λ)](T ) = g(T )∗h(T )f(T ) (3.2)

for all f , g ∈Hol(G) and all h∈H(G).

For a ∈H(G) we define a∗ ∈H(G) by a∗(λ,µ) = a(µ, λ). Given this notation,
(3.2) takes on the more pleasing form

(g∗hf )(T ) = g(T )∗h(T )f(T ). (3.3)

Define R(G) = {a ∈H(G) | a = a∗} and note that R(G) is a real locally convex
space with the induced topology from H(G). Also, since h∗(T ) = h(T )∗ when-
ever σ(T ) ⊆ G and h∈H(G), we see that if σ(T ) ⊆ G and a ∈R(G) then a(T )

is self-adjoint. We say that a ∈H(G) is positive semidefinite, and write a ≥ 0, if
n∑

i,j=1

a(λj , λi)cj ci ≥ 0 (3.4)

whenever n is a positive integer, λ1, . . . , λn ∈G, and c1, . . . , cn ∈ C. Set P(G) =
{a ∈H(G) | a ≥ 0}. It then follows easily from (3.4) that P(G) is a closed cone
in R(G).

Proposition 3.5. If a ∈H(G), then a ∈P(G) if and only if there exist a Hilbert
space M and a holomorphic map u : G → M such that

a(λ,µ) = 〈u(λ), u(µ)〉M (3.6)

for all λ,µ∈G.

Proof. By Aronszajn’s construction [4; 11] there is a Hilbert space M of functions
on G, with reproducing kernel k, such that

a(λ,µ) = 〈kλ, kµ〉M, λ,µ∈G. (3.7)

Since a is anti-holomorphic in µ for each fixed λ ∈ G, (3.7) implies that if f ∈
span{kλ | λ ∈ G} then f is anti-holomorphic on G. Since span{kλ | λ ∈ G} is
dense in M and ‖kµ‖2 = a(µ,µ) is bounded on compact subsets of G, it follows
that f is actually anti-holomorphic onG for all f ∈M. So if we define u(λ) = kλ,
then 〈u(λ), f 〉 = f(λ) is holomorphic for all f ∈M and we see that u is weakly
holomorphic on G. And if u is weakly holomorphic, then u must be holomorphic.
Thus (3.6) follows from (3.7).

Lemma 3.8. If a ∈P(G), then there exists a countable sequence {fi} in Hol(G)

such that
a(λ,µ) =

∑
i

fi(µ)fi(λ).

Proof. By Proposition 3.5, there exist a Hilbert space M and a holomorphic map
u : G → M such that (2.8) holds. Since u is holomorphic it follows that M0, the



684 J im Agler, John E. McCarthy, & N. J. Young

closed linear span of {u(λ) | λ ∈ G} in M, is separable. Let {ei} be a countable
basis for M0, and define fi = 〈u(λ), ei〉M.

Lemma 3.9. Let h ∈ R(G) and a ∈ P(G), and assume that T is a d-tuple of
pairwise commuting operators with σ(T ) ⊆ G. If h(T ) ≥ 0, then (ha)(T ) ≥ 0.

Proof. By Lemma 3.8 there is a sequence {fi} in Hol(G) such that a = ∑
i f

∗
i fi .

Hence, if h(T ) ≥ 0, we have

(ha)(T ) =
∑
i

(f ∗
i hf )(T ) =

∑
i

fi(T )
∗h(T )f(T ) ≥ 0.

Definition 3.10. We say that C ⊆ R(G) is a hereditary cone on G if C is a cone
in R(G) with the property that ha ∈ C whenever h∈ C and a ∈P(G).

One way to construct hereditary cones is to let 1 be a subset of R(G) and then to
define 〈1〉 by

〈1〉 =
{ n∑

i=1

hiai

∣∣∣ n∈N, h1, . . . ,hn ∈1, a1, . . . , an ∈P(G)

}
.

Evidently, 〈1〉 is the hereditary cone generated by 1—in other words, the small-
est hereditary cone C ⊆ R(G) such that C ⊇ 1.

Definition 3.11. For F a collection of pairwise commuting operator d-tuples
and G an open set in C

d, define F⊥(G) ⊆ R(G) by

F⊥(G) = {h∈R(G) | h(T ) ≥ 0 whenever T ∈F and σ(T ) ⊆ G}.
Lemma 3.12. If F is a collection of operators and G is an open set in C

d, then
F⊥(G) is a hereditary cone on G.

Proof. Let h ∈ F⊥(G) and a ∈ P(G). If T ∈ F and σ(T ) ⊆ G, then h(T ) ≥ 0.
Hence, by Lemma 3.9, (ha)(T ) ≥ 0. Therefore, ha ∈F⊥(G).

4. The Realization Formula

We record the following two simple lemmas for future use. We choose to de-
duce them as corollaries of Proposition 2.7. Alternative direct and constructive
proofs of them can be obtained using either the theory of power series or iterated
Cauchy–Riesz–Dunford integrals.

Lemma 4.1. If � is holomorphic on a neighborhood of (D−)m, then �∈H∞
m .

Proof. The statement is an immediate consequence of (b) ⇒ (a) in Proposition 2.7.

Lemma 4.2. If s > 1, then H∞(sDm) ⊆ H∞
m . Furthermore, there exists a con-

stant c, depending only on s and m such that



On the Representation of Holomorphic Functions on Polyhedra 685

‖�‖m ≤ c sup
λ∈Dm

|�(λ)|
for all �∈H∞(sDm).

For B a Banach space, we let ball(B) denote the closed unit ball of B.
Definition 4.3. Let φ be a function on D

m. Then we say that a 4-tuple
(a,β, γ,D) is a realization for φ if a ∈C and if there exists a decomposed Hilbert
space, M = ⊕m

l=1 Ml , such that: the 2 × 2 matrix

V =
[

a 1⊗ β

γ ⊗ 1 D

]

acts isometrically on C ⊕ M; z acts on M via the formula

z

( m⊕
l=1

xl

)
=

m⊕
l=1

zl xl;

and
φ(z) = a + 〈z(1 −Dz)−1γ,β〉

for all z∈D
m.

The following result was proved in [2].

Theorem 4.4. Let φ be a function defined on D
m. Then the following statements

are equivalent :

(a) φ ∈ ball(H∞
m );

(b) 1− φ∗φ ∈F⊥
m ;

(c) φ has a realization.

Definition 4.3 and Theorem 4.4 can be extended to the H∞
δ setting. We recall the

following definition for the reader’s convenience.

Definition 1.19. Let φ be a function on Gδ. We say that a 4-tuple (a,β, γ,D) is
a realization for φ if a ∈C and if there exists a decomposed Hilbert space, M =⊕m

l=1 Ml , such that: the 2 × 2 matrix

V =
[

a 1⊗ β

γ ⊗ 1 D

]

acts isometrically on C ⊕ M; δ(λ) acts on M via the formula

δ(λ)

( m⊕
l=1

xl

)
=

m⊕
l=1

δl(λ)xl;

and
φ(λ) = a + 〈δ(λ)(1 −Dδ(λ))−1γ,β〉

for all λ∈Gδ.

We adopt the notation Cδ for the hereditary cone in R(Gδ) generated by the ele-
ments 1− δ∗1 δ1, . . . ,1− δ∗mδm.
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Theorem 4.5. Let φ be a function defined on Gδ. Then the following statements
are equivalent :

(a) φ ∈ ball(H∞
δ );

(b) ‖φ‖−δ ≤ 1;
(c) 1− φ∗φ ∈ Cδ;
(d) φ has a realization.

Proof. The equivalence of (b), (c), and (d) is a special case of [8, Thm. 3]; see
also [12].

By [8, Lemma 1], if
‖δl(T )‖ < 1, 1 ≤ l ≤ m, (4.6)

then σ(T ) ⊂ Gδ; hence tuples satisfying (4.6) lie in Fδ and so ‖φ‖−δ ≤ ‖φ‖δ. This
means that F⊥

δ (Gδ) ⊆ Cδ. The other inclusion follows from Lemma 3.12.

5. Oka Mappings

In this section we prove the theorems stated in the Introduction. Theorems 1.5,
1.8, and 1.16 will be deduced from Theorem 1.18.

5.1. Proof of Theorem 1.18

First suppose that φ ∈ ball(H∞
m ). By Theorem 4.5, φ has a realization (a,β, γ,D)

such that
φ(λ) = a + 〈δ(λ)(1 −Dδ(λ))−1γ,β〉M (5.1)

for all λ∈Gδ. Therefore, if we define � on D
m by

�(z) = a + 〈z(1 −Dz))−1γ,β〉M, (5.2)

then�∈ ball(H∞
m ) (Theorem 4.4) and φ(λ) = �(δ(λ)) for all λ∈Gδ. This proves

parts (a) and (c) of Theorem 1.18.
To prove part (b), assume that � ∈ H∞

m and ‖�‖m = 1. Define a function φ

on Gδ by the formula φ(λ) = �(δ(λ)). By Theorem 4.4, there exists a realization
(a,β, γ,D) for � such that (5.2) holds for all z ∈ D

m. Hence (5.1) holds for all
λ ∈Gδ and so, by Theorem 4.5, φ ∈H∞

δ and ‖φ‖δ ≤ 1. As a result, ‖φ‖δ ≤ 1 =
‖�‖m. This proves (b) and completes the proof of Theorem 1.18.

5.2. Proof of Theorem 1.16

Let δ be an m-tuple of polynomials in d variables, and assume that φ is holomor-
phic on a neighborhood of Kδ.

First assume that � is holomorphic on a neighborhood of (D−)m and that φ =
� 	 δ. Fix ε > 0. Using Lemma 4.2, choose t < 1 but sufficiently close to 1 such
that ‖�(z/t)‖m < ‖�‖m + ε. Define 2 by setting 2(z) = �(z/t). Evidently,
since 2 ∈H∞

m and φ(λ) = �(δ(λ)) = 2(tδ(λ)), it follows from Theorem 1.18(b)
that ‖φ‖tδ ≤ ‖2‖m. Therefore,
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ρ(φ) ≤ ‖φ‖tδ ≤ ‖2‖m ≤ ‖�‖m + ε.

Because ε is arbitrary, this proves the first assertion made in Theorem 1.16.
To prove the second assertion, fix ε > 0. Since

lim
t→1−

‖φ‖tδ = ρ(φ),

there exists a t < 1 such that ‖φ‖tδ < ρ(φ)+ ε. By Theorem 1.18(c), there exists
a 2 ∈ H∞

m such that φ(λ) = 2(tδ(λ)) and ‖2‖m = ‖φ‖tδ. Finally, note that if
� is defined by �(z) = 2(tz) then, since t < 1, we have ‖�‖m < ‖2‖m. These
constructions yield φ = � 	 δ and

‖�‖m ≤ ‖2‖m = ‖φ‖tδ < ρ(φ)+ ε.

This completes the proof of Theorem 1.16.

6. Remarks

It is worth noting that the norm ‖φ‖δ is always achieved by taking the supremum
of φ(T ) as T ranges over tuples of simultaneously diagonalizable matrices in Fδ.

Indeed, in [23] it was asked whether (1.14) could hold for some generic C (where
“generic” is understood to mean that all the eigenvalues are distinct); in [24] and
[25] it was shown that (1.14) could hold in that case. The existence of such a C fol-
lows also from the nongeneric examples in [17] or [31] and the following theorem.

Theorem 6.1. Let φ be a function defined on Gδ. Then

‖φ‖δ = sup{‖φ(T )‖ : T is a d-tuple of generic matrices in Fδ}. (6.2)

Proof. The inequality ≥ is obvious. Suppose the right-hand side of (6.2) is equal
to 1. Since commuting diagonalizable matrices can be perturbed to commuting
generic matrices (this need not be true for nondiagonizable matrices [20]), it fol-
lows that

sup{‖φ(T )‖ : T is a d-tuple of commuting diagonalizable matrices in Fδ}
is also equal to 1. If T is a commuting diagonizable d-tuple of n × n matrices,
then we can choose common eigenvectors v1, . . . , vn such that

T rvj = λrjvj , 1 ≤ r ≤ d, 1 ≤ j ≤ n.

Let K be the Gram matrix Kij = 〈vj , vi〉. Then the assertion ‖δl(T )‖ ≤ 1 is
equivalent to

[(1 − δl(λi)δl(λj ))Kij ] ≥ 0. (6.3)

Thus we have the following implication: if λ1, . . . , λn is a finite set in Gδ and if K
is a positive-definite matrix such that (6.3) holds for 1 ≤ l ≤ m, then

[(1 − φ(λi)φ(λj ))Kij ] ≥ 0.

By the usual Hahn–Banach argument (see [4, Sec. 11.1]), this statement proves
that 1− φ∗φ is in Cδ and hence that ‖φ‖δ ≤ 1.
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