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On Symplectic Automorphisms of
Hyper-Kähler Fourfolds of K3[2] Type

Giovanni Mongardi

1. Introduction

An automorphism ϕ of a hyper-Kähler manifold X is symplectic if

ϕ∗(σX) = σX,

where σX is a holomorphic symplectic 2-form on X. Finite abelian groups of sym-
plectic automorphisms of complex K3 surfaces have been classified by Nikulin
in [11]. In particular, we know that a symplectic automorphism of finite order on
a K3 surface over C has order at most 8.

This paper deals with symplectic automorphisms on hyper-Kähler fourfolds
that are deformation equivalent to the Hilbert scheme of two points of a K3 sur-
face; such fourfolds are known as manifolds of K3[2] type. Recall that manifolds
of K3[2] type have b2 = 23 and H 2

Z
∼= U 3 ⊕ E8(−1)2 ⊕ (−2); here U is the

hyperbolic plane, E8(−1) is the unique negative-definite even unimodular lattice
of rank 8, and (−2) is the rank-1 lattice of discriminant −2.

Let Co1 be Conway’s sporadic simple group. The main result of this paper is
the following theorem.

Theorem 1.1. Let X be a hyper-Kähler manifold of K3[2] type and let G be a fi-
nite group of symplectic automorphisms of X. Then G is isomorphic to a subgroup
of Co1.

We recall that Mukai [10] proved an analogous result for K3 surfaces (see also
the proof of Kondo [8]). Namely, a finite group of symplectic automorphisms is
a subgroup of Mathieu’s group M23.

A partial converse to Theorem 1.1 is provided by Proposition 2.12, which also
gives a computational method of determining possible finite automorphism groups.
We shall use Theorem 1.1 to prove the following result on symplectic automor-
phisms of order 11.

Proposition 1.2. Let X be a fourfold of K3[2] type and let ψ : X → X be a sym-
plectic automorphism of order 11. Then 21 ≥ h

1,1
Z (X) ≥ 20. Moreover, Bir(X)
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has a subgroup isomorphic to PSL2(Z/(11)). Furthermore, if X is projective then
h

1,1
Z (X) = 21.

Finally, we give an example of a fourfold of K3[2] type with a symplectic automor-
phism of order 11. Our example is given by the Fano scheme of lines on a cubic
fourfold (unique up to projectivities). Fano schemes of lines on cubic fourfolds
were first studied in [3], where it is proved that they are of K3[2] type.

The manifold XKl ⊂ P 5
C , which is given with respect to homogeneous coordi-

nates (x0 : · · · : x5) by

XKl = V(x3
0 + x 2

1 x5 + x 2
2 x4 + x 2

3 x2 + x 2
4 x1 + x 2

5 x3), (1)

is a 3 : 1 cover of P 4
C ramified along a cubic threefold (first studied by Klein [7]).

We denote the Fano scheme of lines in XKl by FKl.

Theorem 1.3. The Fano scheme FKl is a hyper-Kähler fourfold of K3[2] type. It
has a symplectic automorphism ϕ of order 11 that is induced by the element

(x0 : x1 : x2 : x3 : x4 : x5) → (x0 : ωx1 : ω3x2 : ω4x3 : ω5x4 : ω9x5) (2)

of PGL6(C), where ω = e2πi/11.

We will describe other automorphisms of XKl. They are taken from the same work
of Klein and were studied also by Adler [1].

The rest of the paper is organized as follows. In Section 2 we recall some re-
sults in lattice theory and then use them to prove Theorem 1.1 and Proposition 1.2.
Section 3 briefly analyzes deformations of manifolds of K3[2] type that have a
symplectic automorphism of order 11. In that section we also compute NS(X)

for one interesting polarization. In Section 4 we give the promised example of a
manifold with an order-11 symplectic automorphism, and in Section 5 we describe
more symplectic automorphisms of this example.

2. Lattice Theory

In this section we give a proof of Proposition 1.2 and a proof of Theorem 1.1 using
several results on general lattice theory and on lattices defined by symplectic auto-
morphisms. The interested reader can consult [12] for the main results concerning
discriminant forms, [5] for a broader treatment of Sections 2.1 and 2.2, and [9] for
proofs of the stated results on lattices defined by symplectic automorphisms.

Let L be a lattice—that is, a free Z-module equipped with an integer-valued
symmetric nondegenerate bilinear form (·, ·)L. We say that L is even if (a, a)L ∈
2Z for all a ∈L and that L is unimodular if L∨ = L.

Given an even lattice L, the group AL = L∨/L is called the discriminant group.
Let l(AL) be the minimal number of generators of AL. On AL there is a well-
defined quadratic form qAL

(induced by (·, ·)L) that takes values in Q/2Z and is
called the discriminant form. Let (l+ , l−) denote the signature of the quadratic
form induced by (·, ·)L on L ⊗ R.

We abuse notation and define the signature sign(q) of a discriminant form q as
l+ − l− (modulo 8), where L is a lattice with discriminant form q. This notion is
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well-defined because two lattices M, M ′ such that qAM
= qAM ′ are stably equiva-

lent; that is, there exist two unimodular lattices T, T ′ such that M ⊕T ∼= M ′ ⊕T ′.
Two lattices M and M ′ are said to have the same genus if M ⊗ Zp

∼= M ′ ⊗ Zp

for all primes p. We remark that there could be several isometry classes of the
same genus.

Let S be a nondegenerate sublattice of an unimodular lattice L, and let M = S⊥.
Then AM = AS and qAM

= −qAS
. If G is a finite group of isometries of a lat-

tice L, we let
TG(L) = LG

be the invariant lattice and let

SG(L) = TG(L)⊥

be the co-invariant lattice.
The following lemmas are simplified versions of fundamental results on the

existence of lattices and on the existence of primitive embeddings. Both general
results were proven by Nikulin [12, Thm. 1.10.1, Thm. 1.12.2].

Lemma 2.1. Let AT be a finite abelian group and let qT be a quadratic form on
AT with values in Q/2Z. Suppose the following conditions are satisfied :

• there exists a lattice T ′ of rank t+ + t− and discriminant form qT over the
group AT ;

• sign(qT ) ≡ t+ − t− modulo 8;
• t+ ≥ 0, t− ≥ 0, and t+ + t− ≥ l(AT ).

Then there exists an even lattice T of signature (t+ , t−), discriminant group AT ,
and form qAT

.

Lemma 2.2. Let S be an even lattice of signature (s+ , s−). There exists a prim-
itive embedding of S into some unimodular lattice L of signature (l+ , l−) if and
only if there exists a lattice M of signature (m+ , m−) and discriminant form qAM

such that :

• s+ + m+ = l+ and s− + m− = l−;
• AM

∼= AS and qAM
= −qAS

.

Lemma 2.3. Let L = U 3 ⊕ E8(−1)2 ⊕ (−2) and let G be a subgroup of O(L).

Then there exists a primitive embedding L → L′ ∼= U 4 ⊕ E8(−1)2 such that G

extends to a group of isometries of L′ and SG(L) = SG(L′).

Proof. Let x be a vector of square 2 and v ∈ L a vector of square −2 such that
(v, L) = 2Z. Let L′ be the overlattice of L ⊕ Zx generated by L and x+v

2 , and
extend the action of G to L′ by letting G act as the identity on x. A direct compu-
tation shows that SG(L) = SG(L′).

2.1. Niemeier Lattices and Leech Couples

In this section we recall Niemeier’s list of negative-definite even unimodular lat-
tices in dimension 24. We also introduce a class of lattices that will be of fun-
damental interest throughout Section 2. Detailed information about these lattices
can be found in [5, Chap. 16] and in [12, Sec. 1.14].
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Table 1 Niemeier Lattices

Dynkin Maximal Coxeter
Name diagram Leech-type group number Generating glue code

N1 D24 1 46 [1]
N2 D16E8 1 30 [10]
N3 E3

8 S3 30 [000]
N4 A24 2 25 [5]
N5 D2

12 2 22 [12], [21]
N6 A17E7 2 18 [31]
N7 D10E

2
7 2 18 [110], [301]

N8 A15D9 2 16 [21]
N9 D3

8 S3 14 [(122)]
N10 A2

12 4 13 [15]
N11 A11D7E6 2 12 [111]
N12 E 4

6 2.S4 12 [1(012)]
N13 A2

9D6 22 10 [240], [501], [053]
N14 D4

6 S4 10 [even perm. of {0,1, 2, 3}]
N15 A3

8 S3 × 2 9 [(114)]
N16 A2

7D
2
5 23 8 [1112], [1721]

N17 A4
6 2.A4 7 [1(216)]

N18 A4
5D4 2.S4 6 [2(024)0], [33001], [30302], [30033]

N19 D6
4 3 × S6 6 [111111], [0(02332)]

N20 A6
4 2.L2(5).2 5 [1(01441)]

N21 A8
3 23.L2(7).2 4 [3(2001011)]

N22 A12
2 2.M12 3 [2(11211122212)]

N23 A24
1 M24 2 [1(00000101001100110101111)]

& ∅ Co0 0 ∅

Definition 2.4. Let M be a lattice and let G ⊂ O(M). Then (M, G) is Leech
couple if the following conditions are satisfied:

• M is negative definite;
• M contains no vectors of square −2;
• G acts trivially on AM;
• SG(M) = M.

Observe that (&, Co0) as in Table 1 (last row) is a Leech couple.
Now we recall Niemeier’s list of negative-definite even unimodular lattices of

dimension 24. All of these lattices can be obtained by specifying a 0- or 24-
dimensional negative definite Dynkin lattice such that every semisimple compo-
nent has a fixed Coxeter number. In Table 1 we list the possible choices. We obtain
a Niemeier lattice N from its Dynkin lattice A by adding a certain set of glue vec-
tors that is a subset G(N) of A∨/A. The precise definition of glue vectors is given
in [5, Sec. 4], and we keep the notation from there. Note that the set of glue vec-
tors forms an additive subgroup of A∨/A.
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The maximal Leech-type group Leech(N ) is defined to be the maximal sub-
group G of O(N) such that (SG(N ), G) is a Leech couple. This group, first
computed in [6], is isomorphic to O(N)/W(N ), where W(N) is the Weyl group
generated by reflections in −2 vectors.

The data are summarized in Table 1, where we have used the notation of [4] for
groups and the notation of [5] for the glue code. In particular:

• n means a cyclic group of order n;
• pn means an elementary p-group of order pn;
• G.H means any group F with a normal subgroup G such that F/G = H ;
• Lm(n) means the group PSLm over the finite field with n elements;
• Sn and An denote (respectively) permutation and alternating groups on n ele-

ments; and
• Mn and Con denote (respectively) the Mathieu and Conway groups.

For the glue code:

• [abc] means a vector (x, y, z) with x, y, and z glue vectors of type a, b, and c,
respectively;

• [(abc)] means all glue vectors obtained from [a, b, c] by cyclic permutations—
thus, [abc], [bca], and [cab].

It is well known (see [5, Chap. 26]) that all the Niemeier lattices can be defined as
sublattices of ,1,25

∼= U ⊕ E8(−1)3 by specifying a primitive isotropic vector v

and setting N = (v⊥ ∩ ,1,25)/v.

Example 2.5. Let ,1,25 ⊂ R26 (where the first coordinate of R26 is the positive-
definite one) be as before. Let

v = (17,1,1,1,1,1,1,1,1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5)

and
w = (70, 0,1, 2, 3, 4, 5, . . . , 24)

be two isotropic vectors in the standard basis of R26. Then

& ∼= (w⊥ ∩ ,1,25)/w

and
N15

∼= (v⊥ ∩ ,1,25)/v.

2.2. The “Holy” Construction and Automorphisms of the Leech Lattice

In this section we sketch the so-called holy construction (see [5, Chap. 24] for
details) of the Leech lattice & from other Niemeier lattices. We shall use this con-
struction later in proving Proposition 1.2.

Let An(−1) be the negative definite Dynkin lattice defined by

An = {
(a1, . . . , an+1)∈ Zn+1,

∑
ai = 0

}
,

qAn(−1) = −qAn
.

Let f0 be the vector with −1 in the first coordinate and 1 in the second (and with 0
elsewhere). Let g0 = h−1

(− 1
2n, − 1

2n+1, . . . , 1
2n

)
, where h is the Coxeter number
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of An. Let fj and gj , j ∈ {1, . . . , n}, be the respective images of f0 and g0 under
cyclic permutations of coordinates. Notice that fj , j �= 0, are the simple roots
of An(−1).

Suppose now that nm = 24, so that An(−1)m is a 24-dimensional lattice con-
tained in a Niemeier lattice N. Let hk = (gj1, . . . , gjm), where [j1j2 . . . jm] is a
glue code obtained from Table 1 and k ∈ G(N). Let f r

j = (0, . . . , 0, fj , 0, . . . , 0),
where fj belongs to the rth copy of An(−1). Let mr

j and nk be integers.

Proposition 2.6 [5, Chap. 24]. With notation as just described,{ m∑
r=1

n∑
j=1

mr
j f

r
j +

∑
k∈G(N)

nkhk

∣∣∣ ∑
k

nk = 0

}
(3)

is isometric to the negative definite Niemeier lattice N. Also,{ m∑
r=1

n∑
j=1

mr
j f

r
j +

∑
k∈G(N)

nkhk

∣∣∣ ∑
k

nk +
∑
j,r

mr
j = 0

}
(4)

is isometric to the Leech lattice & and is known as the “holy” construction of &
with hole N.

The glue code also provides several automorphisms of the Leech lattice, where
the action of t ∈G(N) is given by sending hw to hw+t . The holy construction can
be used to exhibit the action of certain elements of Co1 on & explicitly, as in the
following examples.

Example 2.7. Let us apply this construction to the lattice A2
12, where G(N) =

Z/(13). Let χ be an automorphism of & of order 13 generated by a nontrivial ele-
ment g of G(N) via this holy construction. Then χ cyclically permutes the simple
roots of both copies of A12 and so has no fixed points in &.

Example 2.8. Consider the lattice A12
2 and the cyclic permutation χ of the last

11 copies. This defines automorphisms, also denoted χ, of both N22 and & via the
same action on glue vectors.

A direct computation shows that Tχ(N22) is spanned by

f 1
1 , f 2

1 ,
12∑
2

f i
1,

12∑
2

f i
2,

11∑
1

hj ;

here hj , j ∈ {1, . . . ,11}, are obtained from generators of the glue code as in Table 1.
Moreover, Sχ(N22) has rank 20 and is spanned by

(f k
1 − χf k

1 ), (f k
2 − χf k

2 ), (gj − χgj ), (5)

where k runs from 2 to 12 and j is as before. These vectors lie in the set defined
by (4), where gj plays the role of hk , k ∈G(N). Hence Sχ(N22) is contained in &

and, since both Sχ(N22) and Sχ(&) are primitive, it follows that Sχ(N22) = Sχ(&).
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Example 2.9. A similar computation can be performed for A24
1 . We index the

copies of A1 by the set

{∞, 0,1, . . . , 22} = P1(Z/(23)).

The isometry χ of order 11 is defined by the permutation

(0)(15 714 510 20171122 2119)(∞)(3 61212 4 816 91813). (6)

As before, this isometry preserves both N23 and &; the lattice Sχ(N23) is gener-
ated by the following vectors:

(f k
1 − χf k

1 ), (f l
1 − χf l

1 ), (gj − χgj ). (7)

Here k runs through the indexes contained in the first 11-cycle of (6), l runs through
the second one, and j runs through the generators of the glue code contained in
Table 1.

Once again, all of these generators also lie in & and so Sχ(N23) = Sχ(&). A
direct computation shows that the lattice S11 = Sχ(N23) is given by the following
quadratic form: (

A B
C D

)
,

where

A =

−4 1 −2 −2 −1 1 −1 1 −1 −1

1 −4 −1 −1 −1 −1 −1 1 −1 2

−2 −1 −4 −2 −1 −1 0 1 0 −1

−2 −1 −2 −4 0 0 −2 0 −1 0

−1 −1 −1 0 −4 1 −1 2 −2 −1

1 −1 −1 0 1 −4 0 −1 0 1

−1 −1 0 −2 −1 0 −4 1 −2 1

1 1 1 0 2 −1 1 −4 0 0

−1 −1 0 −1 −2 0 −2 0 −4 0

−1 2 −1 0 −1 1 1 0 0 −4

B =

2 1 −1 2 −1 −2 −2 2 1 −1

−1 −2 2 0 −1 0 0 −1 −2 1

1 0 −1 2 −2 −1 −1 0 0 1

2 1 0 1 0 0 −1 1 0 −1

1 0 −1 0 −2 −2 0 1 1 −1

−2 −1 0 −1 −1 0 −1 0 −1 1

1 1 0 −1 0 −1 0 2 0 −2

−1 1 1 0 2 1 0 −1 1 0

0 1 1 0 −1 −2 0 2 0 −2

1 1 −2 1 0 0 1 1 1 0
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C =

2 −1 1 2 1 −2 1 −1 0 1

1 −2 0 1 0 −1 1 1 1 1

−1 2 −1 0 −1 0 0 1 1 −2

2 0 2 1 0 −1 −1 0 0 1

−1 −1 −2 0 −2 −1 0 2 −1 0

−2 0 −1 0 −2 0 −1 1 −2 0

−2 0 −1 −1 0 −1 0 0 0 1

2 −1 0 1 1 0 2 −1 2 1

1 −2 0 0 1 −1 0 1 0 1

−1 1 1 −1 −1 1 −2 0 −2 0

D =

−4 −2 2 −1 0 0 0 −1 −2 1

−2 −4 1 0 −1 0 −1 −1 −2 2

2 1 −4 0 −1 0 0 1 2 0

−1 0 0 −4 1 1 1 0 0 −1

0 −1 −1 1 −4 −2 −1 1 0 0

0 0 0 1 −2 −4 −2 2 0 −1

0 −1 0 1 −1 −2 −4 1 0 0

−1 −1 1 0 1 2 1 −4 0 2

−2 −2 2 0 0 0 0 0 −4 1

1 2 0 −1 0 −1 0 2 1 −4

It is worth mentioning that S11 is in the same genus as E8(−1)2 ⊕ ( −2 1
1 −6

)2
and

D+
16(−1) ⊕ ( −2 1

1 −6

)2
, where D+

16 is a unimodular overlattice of the Dynkin lat-
tice D16.

2.3. Finite Symplectic Automorphism Groups

Let X be a hyper-Kähler manifold and let G ⊂ Aut(X). Then we put SG(X) =
SG(H 2(X, Z)) and TG(X) = TG(H 2(X, Z)). The next two lemmas are contained
in [9].

Lemma 2.10. If G is a finite group of symplectic automorphisms of a fourfold X

of K3[2] type, then the following statements hold :

(i) SG(X) is nondegenerate and negative definite;
(ii) SG(X) contains no elements with square −2;

(iii) SG(X) ⊂ Pic(X);
(iv) G acts trivially on ASG(X).

This lemma amounts to saying that (SG(X), G) is a Leech couple.

Lemma 2.11. Let L = U 3 ⊕ E8(−1)2 ⊕ (−2), and let G be a finite subgroup of
O(L). Suppose that :
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(i) SG(L) is nondegenerate and negative definite; and
(ii) SG(L) contains no element with square (−2).

Then there exists a hyper-Kähler manifold X of K3[2] type and a subgroup G′ ⊂
Bir(X) such that G′ ∼= G, SG(L) ∼= SG′(X), and G′|H 2,0(X) = Id.

Proposition 2.12. Let (S, G) be a Leech couple such that S is primitively con-
tained in some Niemeier lattice N, and suppose there exists a primitive embedding
S → L. Then G extends to a group of bimeromorphisms on some hyper-Kähler
manifold X of K3[2] type.

Proof. This is an immediate consequence of Lemma 2.11: G acts trivially on AS ,
so we can extend G to a group of isometries of L acting trivially on S⊥L. Thus we
have SG(L) ∼= S. Then the conditions of Lemma 2.11 are satisfied because (S, G)

is a Leech couple.

We are now ready to prove the main result of this section.

Proof of Theorem 1.1. Let b = rank(SG(X)); by Lemma 2.10, SG(X) has signa-
ture (0, b). By Remark 2.3 we have a lattice T ′ of signature (4, 20 − b) such that
AT ′ = ASG(X) and qT ′ = −qASG(X)

. We can therefore apply Lemma 2.1 to ob-
tain a lattice T of signature (0, 24 − b) and discriminant form −qASG(X)

. Hence by
Lemma 2.2 there exists a primitive embedding SG(X) → N, where N is one of
the lattices contained in Table 1. Again by Lemma 2.10 we see that (SG(X), G) is
a Leech couple, whence G lies inside Leech(N ). Using the holy construction now
yields Leech(N ) ⊂ Leech(&). A direct computation then shows that, for all G ⊂
Leech(N ) ⊂ Leech(&), we have rank(SG(N )) = rank(SG(&)) (after tensoring
with Q they are both generated by elements of the form v − g(v) with v ∈N and
g ∈G). The central involution of Co0 clearly has a co-invariant lattice of rank 24,
so we can restrict ourselves to Co1.

Corollary 2.13. Let φ be a symplectic automorphism of prime order p on a
hyper-Kähler fourfold X of K3[2] type. Then p ≤ 11.

Proof. By Theorem 1.1, the order of a symplectic automorphism must divide the
order of the group Co1. That criterion excludes all primes except for 2, 3, 5, 7, 11,
13, and 23. An automorphism of order 23 has a co-invariant lattice that is nega-
tive definite and of rank 22, so it cannot embed into H 2(X, Z). This result can be
computed explicitly using an order-23 element of M24 and letting it act on & or
on N23. The only Niemeier lattice with an automorphism of order 13 is &, where
all elements of order 13 are conjugate (see [4]). These automorphisms have no
fixed points on &, as in Example 2.7.

Proof of Proposition 1.2. By Theorem 1.1, Sψ(X) embeds in a Niemeier lattice N

and ψ extends to an element of Leech(N ). By Table 1, N can only be N22, N23,
or & and—up to conjugacy—there is only one possible choice for ψ ∈O(N23) or
ψ ∈O(&) and only two possible choices for ψ ∈O(N22).
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We computed Sψ(N ) in Examples 2.8 and 2.9, where we proved that it is iso-
metric to S11. We immediately have 20 ≤ h

1,1
Z (X) ≤ 21; hence clearly h

1,1
Z (X) =

21 if X is projective. Now we wish to give an action of L2(11) = PSL2(Z/(11))

on S11. We can suppose without loss of generality that N = N23, in which case
the action of L2(11) is given by the following permutations of the standard coor-
dinates of N23 (see [5, pp. 274, 280]):

α = (15 714 510 20171122 2119)(3 61212 4 816 91813);
β = (14171119 22)(2010 7 5 21)(18 4 2 6 1)(81613 912);
γ = (2 4)(510)(618)(812)(916)(1117)(1419)(20 21).

Now, by Proposition 2.12, this action of L2(11) on S11 is induced by a group of
birational transformations isomorphic to L2(11).

3. Deformation Behavior

In this section we analyze deformation classes of manifolds of K3[2] type with
a symplectic automorphism of order 11. We also look at their possible invariant
polarizations.

Definition 3.1. Let X be a hyper-Kähler manifold with Kähler class ω and sym-
plectic form σX. Then there exists a family

Twω(X) := X × P1

��

S 2 ∼= P1,

(8)

called the twistor family, such that Twω(X)(a,b,c) = X with complex structure
given by the Kähler class aω + b(σX + σ̄X) + c(σX − σ̄X).

Lemma 3.2. Let X be a hyper-Kähler manifold, and let G ⊂ Aut(X) be a finite
group of symplectic automorphisms. Let ω be a G-invariant Kähler class. Then
the action of G on X extends to a symplectic action of G on all the fibers of the
twistor space associated to ω.

Proof. Every fiber has a Kähler class that is a linear combination of σX, σ̄X, and ω.

Because G is symplectic on X, these classes are all G-invariant; therefore, G ⊂
Aut(Twω(X)t ) for all t.

Let X be a manifold of K3[2] type with a symplectic automorphism ψ of order 11,
and let ω be a ψ-invariant Kähler class.

It follows from Proposition 1.2 that a nontrivial deformation of (X, ψ) has di-
mension at most 1. Moreover, the twistor family Twω(X) is naturally endowed
with a symplectic automorphism of order 11 (as in Lemma 3.2). Hence Twω(X)

is already a family of the maximal dimension for such pairs (X, ψ). We also have
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that the twistor family Twω(X) is actually a family over the base (Tψ(X)⊗R)/C∗,
where the C∗ action is given by the identification Tψ(X) = 〈ω, σX, σ̄X〉 ∩H 2

Z(X).

Thus what we really need to analyze are the possible lattices Tψ(X) up to isom-
etry. We have already proved that there is only one isometry class of lattices
Sψ(X)—namely, that of S11. Yet there might be several isometry classes of lat-
tices Tψ(X). In fact, Theorem 1.1 and Proposition 2.12 can be used to compute the
genus of Tψ(X) only.

A direct computation shows that there are two such lattices:

T 1
11 =


 2 1 0

1 6 0
0 0 22


, (9)

T 2
11 =


 6 −2 −2

−2 8 −3
−2 −3 8


. (10)

Hence there are two distinct families of hyper-Kähler manifolds endowed with a
symplectic automorphism of order 11, whose existence follows from Lemma 2.11.
We call these families Tw(X1) and Tw(X2).

Invariant Polarizations

In this subsection we look at possible invariant polarizations of small degree of
Tw(X1) and Tw(X2)—that is, at primitive vectors in T 1

11 and T 2
11. We have com-

puted several polarizations of degree up to 24.

Proposition 3.3. The minimal degree of an invariant polarization inside Tw(X1)

is 2, and there are no polarizations of degree 4, 12, 14, 16, or 20. Moreover, the
least degree of a polarization f such that (f , L) = 2Z (i.e., f has divisor 2) is 22.

Proof. Let a, b, c be the basis of T 1
11 in (9). A minimal polarization is given by the

vector a, and a minimal polarization of degree 22 and divisor 2 is given by c. The
rest is just a direct computation.

Proposition 3.4. The minimal degree of an invariant polarization inside Tw(X2)

is 6, and there are no polarizations of degree 12, 14, 16, or 20. Moreover, the least
degree of a polarization f such that (f , L) = 2Z is 6.

Proof. Let a, b, c be the basis of T 2
11 in (10). A minimal polarization is given by

the vector a, which also has divisor 2. The rest is just a direct computation.

Corollary 3.5. Let X be a manifold of K3[2] type with a symplectic automor-
phism ψ of order 11 and with an invariant polarization of degree 6 and divisor 2.
Then

NS(X) ∼= (6) ⊕ E8(−1)2 ⊕
(−2 1

1 −6

)2

(11)

and
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T(X) = 〈σX, σ̄X〉 ∩ H 2(X, Z) ∼=
(

22 33
33 66

)
. (12)

Proof. We know that NS(X) is an overlattice of S11 ⊕ (6). Since there are no
nontrivial overlattices (its discriminant group has no nontrivial isotropic elements)
of S11 ⊕ (6), it follows that NS(X) = S11 ⊕ (6). A direct computation shows that
this lattice is isomorphic to (6) ⊕ E8(−1)2 ⊕ ( −2 1

1 −6

)2
. Finally, T(X) is the or-

thogonal complement of the polarization in Tψ(X). By Propositions 3.3 and 3.4
we have Tψ(X) = T 2

11, and a direct computation shows that T(X) = (
22 33
33 66

)
.

4. The Fano Scheme of Lines FKl

The main goal of this section is to prove Theorem 1.3. We start by giving some
results, about Fano schemes of lines on cubic fourfolds, that are due to Beauville
and Donagi [3].

Theorem 4.1. Let X ⊂ P 5 be a smooth cubic fourfold, and let F(X) be the
scheme parameterizing lines contained in X. Then the following statements hold :

• F(X) is a hyper-Kähler manifold ;
• F(X) is of K3[2] type;
• the Abel–Jacobi map

α : H 4(X, C) → H 2(F(X), C) (13)

is an isomorphism of Hodge structures.

Proof of Theorem 1.3. Let ψ be the element of PGL6(C) sending (x0 : x1 : x2 :
x3 : x4 : x5) to (x0 : ωx1 : ω3x2 : ω4x3 : ω5x4 : ω9x5), where ω = e2πi/11. A
cubic polynomial is ψ-invariant if and only if it is in the linear span of

B = {x3
0 , x 2

1 x5, x 2
2 x4, x 2

3 x2, x 2
4 x1, x 2

5 x3}.
An easy computation shows that the differential of f has nontrivial zeroes (so

that the cubic fourfold V(f ) is singular) if and only if f lies in the span of some
proper subset of B. Yet this is not the case for

h = x3
0 + x 2

1 x5 + x 2
2 x4 + x 2

3 x2 + x 2
4 x1 + x 2

5 x3;
hence XKl = V(h), as defined in (1), is smooth and so we can apply Theorem 4.1.
We obtain that FKl is a hyper-Kähler manifold that is deformation equivalent to
K3[2]. We also obtain the Hodge isomorphism α given in (13).

Let ϕ be the map induced on FKl by ψ. Using α, we have that ϕ is symplectic
if and only if ψ |H 3,1(XKl) = Id.

By the formula in [13, Thm. 18.1] we have

H 3,1(XKl) =
〈
Res

(
9

h2

)〉
, (14)

where 9 = ∑
i(−1)ixi dx0 ∧ . . . d̂xi . . . ∧ dx5. Since ψ acts trivially on both

9 and h, it follows that ϕ(σFKl) = σFKl for any symplectic 2-form σFKl on FKl.
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Finally, fixed points of ψ on XKl are the eigenvectors of ψ lying on XKl, which
are the points [e1], [e2 ], [e3], [e4], and [e5]; here e1 = (0,1, 0, 0, 0, 0) ∈ C6 and
so forth. A fixed line on XKl must contain two fixed points, so the fixed points on
FKl are those parameterizing lines through those points:

[e1][e2 ], [e1][e3], [e2 ][e5], [e3][e4], [e4][e5].

This proves that ϕ is not the identity and hence it indeed has order 11.

Remark 4.2. Proposition 3.3 and Proposition 3.4 imply that FKl ⊂ Tw(X2), and
Corollary 3.5 gives the Neron–Severi and transcendental lattices. Moreover, ϕ does
not lift to any small projective nontrivial deformation of FKl, since h

1,1
Z (FKl) =

h
1,1
C (FKl).

5. L2(11) Acting on FKl

In this section we give explicitly the automorphisms of XKl that generate the ac-
tion of L2(11) from Proposition 1.2.

We remark that XKl is a 3 : 1 Galois cover of P 4 ramified along the threefold

KA = V(x 2
1 x5 + x 2

2 x4 + x 2
3 x2 + x 2

4 x1 + x 2
5 x3), (15)

where the covering map is simply the projection

[x0, x1, x2, x3, x4, x5] → [x1, x2, x3, x4, x5]

and the covering automorphism group is generated by

[x0, x1, x2, x3, x4, x5]
α−→ [ηx0, x1, x2, x3, x4, x5], η = e2πi/3.

Note that α acts as multiplication by η on H 3,1(XKl).

Clearly, any automorphism of P 4 that preserves KA extends to an automorphism
of XKl. By the results in [1] and [7], these automorphisms generate precisely the
group L2(11) = PSL2(Z/(11)), which is a finite simple group of order 660. Hence
the automorphism group of XKl contains Z/(3) × L2(11). Now we need only find
generators of this group and then determine whether or not they act symplectically
on FKl.

Permuting the coordinates on P 4 by the cyclic permutation (1 4 2 3 5) preserves
KA and thus induces an automorphism β of order 5 on FKl. From (14) we can
check that β is a symplectic automorphism. Furthermore, a direct computation
on the Jacobian ring C[x0, x1, x2, x3, x4, x5]/(∂h/∂x0, . . . , ∂h/∂x5) of XKl shows
that rank(Sβ(FKl)) = 16.

Let H be the kernel of the action of L2(11) on H 2,0(FKl). This kernel H is
nontrivial because β ∈ H, so H = L2(11). Therefore, L2(11) acts symplectically
on FKl. By [4], L2(11) contains only elements of order 2, 3, 5, 6, and 11. A direct
computation shows that

rank(Sα(FKl)) =




8 if ord(α) = 2,

12 if ord(α) = 3,

16 if ord(α) = 5 or 6,

20 if ord(α) = 11.
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