Quermaßintegrals and Asymptotic Shape of Random Polytopes in an Isotropic Convex Body

N. Dafnis, A. Giannopoulos, \& A. Tsolomitis

1. Introduction

The aim of this work is to provide new information on the asymptotic shape of the random polytope

$$
\begin{equation*}
K_{N}=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\} \tag{1.1}
\end{equation*}
$$

spanned by N independent random points x_{1}, \ldots, x_{N} that are uniformly distributed in an isotropic convex body K in \mathbb{R}^{n}. We fix $N>n$ and further exploit the idea of [9] to compare K_{N} with the L_{q}-centroid body $Z_{q}(K)$ of K for $q \simeq \log N$. Recall that the L_{q}-centroid body $Z_{q}(K)$ of K has support function

$$
\begin{equation*}
h_{Z_{q}(K)}(x)=\|\langle\cdot, x\rangle\|_{q}:=\left(\int_{K}|\langle y, x\rangle|^{q} d y\right)^{1 / q} ; \tag{1.2}
\end{equation*}
$$

background information on isotropic convex bodies and their L_{q}-centroid bodies is given in Section 2.

This idea has its roots in previous work [11; 19; 22] on the behavior of symmetric random ± 1-polytopes, the absolute convex hulls of random subsets of the discrete cube $D_{2}^{n}=\{-1,1\}^{n}$. These articles demonstrated that the absolute convex hull $D_{N}=\operatorname{conv}\left(\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}\right)$ of N independent random points x_{1}, \ldots, x_{N} uniformly distributed over D_{2}^{n} has extremal behavior-with respect to several geometric parameters-among all ± 1-polytopes with N vertices at every scale of n, where $n<N \leq 2^{n}$. The main source of this information is the following estimate from [19] (which improves on an analogous result from [11]): for all $N \geq$ $(1+\delta) n$ (where $\delta>0$ can be as small as $1 / \log n$) and for every $0<\beta<1$,

$$
\begin{equation*}
D_{N} \supseteq c\left(\sqrt{\beta \log (N / n)} B_{2}^{n} \cap Q_{n}\right) \tag{1.3}
\end{equation*}
$$

with probability greater than $1-\exp \left(-c_{1} n^{\beta} N^{1-\beta}\right)-\exp \left(-c_{2} N\right)$. Here B_{2}^{n} is the Euclidean unit ball and $Q_{n}=[-1 / 2,1 / 2]^{n}$ is the unit cube in \mathbb{R}^{n}.

In a sense, the model of D_{N} corresponds to the study of the geometry of a random polytope spanned by random points that are uniformly distributed in Q_{n}. Starting from the observation that $Z_{q}\left(Q_{n}\right) \simeq \sqrt{q} B_{2}^{n} \cap Q_{n}$, whence (1.3) can be equivalently written in the form

$$
\begin{equation*}
D_{N} \supseteq c Z_{\beta \log (N / n)}\left(Q_{n}\right), \tag{1.4}
\end{equation*}
$$

Received September 27, 2011. Revision received October 7, 2012.
we proved in [9] that, in full generality, a precise analogue of (1.4) holds for the random polytope K_{N} spanned by N independent random points x_{1}, \ldots, x_{N} uniformly distributed in an isotropic convex body K. In particular, for every $N \geq c n$ (where $c>0$ is an absolute constant) and every isotropic convex body K in \mathbb{R}^{n},

$$
\begin{equation*}
K_{N} \supseteq c_{1} Z_{q}(K) \quad \text { for all } q \leq c_{2} \log (N / n) \tag{1.5}
\end{equation*}
$$

with probability tending exponentially fast to 1 as $n, N \rightarrow \infty$.
The precise statement is given in Section 3, and it will play a leading role in this paper. The inclusion is sharp; it is proved in [9] that K_{N} is "weakly sandwiched" between $Z_{q_{i}}(K)(i=1,2)$, where $q_{i} \simeq \log N$, in the following sense. It can be easily checked that for every $\alpha>1$ one has

$$
\begin{equation*}
\mathbb{E}\left[\sigma\left(\left\{\theta: h_{K_{N}}(\theta) \geq \alpha h_{Z_{q}(K)}(\theta)\right\}\right)\right] \leq N \alpha^{-q} \tag{1.6}
\end{equation*}
$$

and this implies that if $q \geq c_{3} \log (N / n)$ then, for $\operatorname{most} \theta \in S^{n-1}$, one has $h_{K_{N}}(\theta) \leq$ $c_{4} h_{Z_{q}(K)}(\theta)$. It follows that several geometric parameters of K_{N} are controlled by the corresponding parameters of $Z_{[\log (N / n)]}(K)$. For example, in [9] the volume radius of a random K_{N} was determined for the full range of values of N as follows. For every $c n \leq N \leq \exp (n)$,

$$
\begin{equation*}
\frac{c_{5} \sqrt{\log (N / n)}}{\sqrt{n}} \leq\left|K_{N}\right|^{1 / n} \leq \frac{c_{6} L_{K} \sqrt{\log (N / n)}}{\sqrt{n}} \tag{1.7}
\end{equation*}
$$

with probability greater than $1-1 / N$, where $c_{5}, c_{6}>0$ are absolute constants. Actually, combining this argument with a result of Klartag and Milman [15] shows that, in the range $N \in[c n, \exp (\sqrt{n})]$, the isotropic constant L_{K} of K may be inserted in the lower bound; this leads to the asymptotic formula

$$
\begin{equation*}
\left|K_{N}\right|^{1 / n} \simeq \frac{L_{K} \sqrt{\log (N / n)}}{\sqrt{n}} \tag{1.8}
\end{equation*}
$$

Our first result gives an extension of this formula to the full family of quermaßintegrals $W_{n-k}\left(K_{N}\right)$ of K_{N}. These are defined through Steiner's formula,

$$
\begin{equation*}
\left|K+t B_{2}^{n}\right|=\sum_{k=0}^{n}\binom{n}{k} W_{n-k}(K) t^{n-k} \tag{1.9}
\end{equation*}
$$

where $W_{n-k}(K)$ is the mixed volume $V\left(K, k ; B_{2}^{n}, n-k\right)$. We work with a normalized variant of $W_{n-k}(K)$: for every $1 \leq k \leq n$, we set

$$
\begin{equation*}
Q_{k}(K)=\left(\frac{W_{n-k}(K)}{\omega_{n}}\right)^{1 / k}=\left(\frac{1}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)\right)^{1 / k} \tag{1.10}
\end{equation*}
$$

here the last equality follows from Kubota's integral formula (see Section 2 for background information on mixed volumes). In Section 3 we determine the expectation of $Q_{k}\left(K_{N}\right)$ for all values of k by proving the following theorem.

Theorem 1.1. Let K be an isotropic convex body in \mathbb{R}^{n}. If $n^{2} \leq N \leq \exp (c n)$ then, for every $1 \leq k \leq n$,

$$
\begin{equation*}
\sqrt{\log N} \lesssim \mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \lesssim w\left(Z_{\log N}(K)\right) \tag{1.11}
\end{equation*}
$$

In the range $n^{2} \leq N \leq \exp (\sqrt{n})$ we have the following asymptotic formula: for every $1 \leq k \leq n$,

$$
\begin{equation*}
\mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \simeq L_{K} \sqrt{\log N} \tag{1.12}
\end{equation*}
$$

We remark that all our estimates remain valid for $n^{1+\delta} \leq N \leq n^{2}$, where $\delta \in(0,1)$ is fixed, if we allow the constants to depend on δ. Working in the range $N \simeq n$ would require more delicate arguments. We chose to simplify the exposition; in fact, Proposition 3.1 is proved for the range $c n \leq N \leq \exp (c n)$, and it is quite natural that similar extensions can be provided for most statements in this paper (the interested reader may also consult [29] and [3]). We note also that in saying a random K_{N} satisfies a certain asymptotic formula (F) we mean that this holds true with probability greater than $1-N^{-1}$, where all the constants appearing in (F) are absolute positive constants.

A more careful analysis is carried out in Section 4, where we obtain the equivalence $Q_{k}\left(K_{N}\right) \simeq L_{K} \sqrt{\log N}$ with high probability (for a random K_{N}) in the range $n^{2} \leq N \leq \exp (\sqrt{n})$.

Theorem 1.2. Let K be an isotropic convex body in \mathbb{R}^{n}. If $n^{2} \leq N \leq \exp (\sqrt{n})$ then, with probability greater than $1-N^{-1}$,

$$
\begin{equation*}
Q_{k}\left(K_{N}\right) \simeq L_{K} \sqrt{\log N} \tag{1.13}
\end{equation*}
$$

for all $1 \leq k \leq n$.
From Theorem 1.2 one can derive several geometric properties of a random K_{N}. In Section 4 we describe two such properties that concern the regularity of the covering numbers $N\left(K_{N}, \varepsilon B_{2}^{n}\right)$ and the size of random k-dimensional projections of K_{N}.

Theorem 1.3. Let K be an isotropic convex body in \mathbb{R}^{n} and let $n^{2} \leq N \leq$ $\exp (\sqrt{n})$.
(i) With probability greater than $1-N^{-1}$, a random K_{N} satisfies the entropy estimate

$$
\begin{equation*}
\log N\left(K_{N}, c_{1} \varepsilon L_{K} \sqrt{\log N} B_{2}^{n}\right) \leq c_{2} n \min \left\{\log \left(1+\frac{c_{3}}{\varepsilon}\right), \frac{1}{\varepsilon^{2}}\right\} \tag{1.14}
\end{equation*}
$$

for every $\varepsilon>0$, where $c_{1}, c_{2}, c_{3}>0$ are absolute constants.
(ii) Moreover, with probability greater than $1-N^{-1}$ a random K_{N} satisfies the following: for every $1 \leq k \leq n$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \simeq L_{K} \sqrt{\log N} \tag{1.15}
\end{equation*}
$$

with probability greater than $1-e^{-c k}$ with respect to the Haar measure $v_{n, k}$ on $G_{n, k}$.

Given $1 \leq k \leq n$, we can also establish upper bounds for the volume of the projection of a random K_{N} onto a fixed $F \in G_{n, k}$ and onto the k-dimensional coordinate subspaces of \mathbb{R}^{n}. These are valid provided that N is not too large, depending on k.

Theorem 1.4. Let K be an isotropic convex body in \mathbb{R}^{n} and let $1 \leq k \leq n$.
(i) For all $k<N \leq e^{k}$ and for every $F \in G_{n, k}$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c L_{K} \sqrt{\log N} \tag{1.16}
\end{equation*}
$$

with probability greater than $1-N^{-1}$.
(ii) For all $k<N \leq \exp \left(c_{1} \sqrt{k / \log k}\right)$, with probability greater than $1-\exp \left(-c_{2} \sqrt{k / \log k}\right)$ a random K_{N} satisfies the following: for every $\sigma \subseteq$ $\{1, \ldots, n\}$ with $|\sigma|=k$,

$$
\begin{equation*}
\left(\frac{\left|P_{\sigma}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c_{3} L_{K} \log (e n / k) \sqrt{\log N} \tag{1.17}
\end{equation*}
$$

where the $c_{i}>0$ are absolute constants.
In Section 5 we generalize a result of Mendelson, Pajor, and Rudelson [22] on the combinatorial dimension of the random polytope D_{N}. This is defined as follows. For a fixed orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n} and for every $\varepsilon>0$, the Vapnik-Chervonenkis combinatorial dimension $\operatorname{VC}(K, \varepsilon)$ of a symmetric convex body K in \mathbb{R}^{n} is the largest cardinality of a subset σ of $\{1, \ldots, n\}$ for which

$$
\begin{equation*}
\varepsilon Q_{\sigma} \subseteq P_{\sigma}(K) \tag{1.18}
\end{equation*}
$$

where Q_{σ} is the unit cube in $\mathbb{R}^{\sigma}=\operatorname{span}\left\{e_{i}: i \in \sigma\right\}$ and P_{σ} denotes the orthogonal projection onto \mathbb{R}^{σ}. It is proved in [22] that a random D_{N} satisfies

$$
\begin{equation*}
\mathrm{VC}\left(D_{N}, \varepsilon\right) \simeq \min \left\{\frac{c \log \left(c N \varepsilon^{2}\right)}{\varepsilon^{2}}, n\right\} . \tag{1.19}
\end{equation*}
$$

We extend this estimate to the more general class of random polytopes K_{N} in which K is an isotropic convex body in \mathbb{R}^{n} that is unconditional with respect to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$.

Theorem 1.5. Let K be an unconditional isotropic convex body in \mathbb{R}^{n}. If $c_{1} n \leq$ $N \leq \exp \left(c_{2} n\right)$, then a random K_{N} satisfies

$$
\begin{equation*}
\mathrm{VC}\left(K_{N}, \varepsilon\right) \geq \min \left\{\frac{c_{3} \log (N / n)}{\varepsilon^{2}}, n\right\} \tag{1.20}
\end{equation*}
$$

for every $\varepsilon \in(0,1)$.

2. Notation and Background Material

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm, and we write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write ω_{n} for the volume of B_{2}^{n} and σ for the rotationally invariant probability measure on S^{n-1}. The Grassmann manifold $G_{n, k}$ of k-dimensional subspaces of \mathbb{R}^{n} is equipped with the Haar probability measure $v_{n, k}$. Let $1 \leq k \leq n$ and $F \in G_{n, k}$. We will use P_{F} to
denote the orthogonal projection from \mathbb{R}^{n} onto F. We also define $B_{F}:=B_{2}^{n} \cap F$ and $S_{F}:=S^{n-1} \cap F$.

The letters $c, c^{\prime}, c_{1}, c_{2}, \ldots$ denote absolute positive constants whose value may change from line to line. Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leq b \leq c_{2} a$. Similarly, if $K, L \subseteq \mathbb{R}^{n}$ then we will write $K \simeq L$ provided there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} K \subseteq L \subseteq c_{2} K$. We also write \bar{A} for the homothetic image of volume 1 of a convex body $A \subseteq \mathbb{R}^{n}$; thus, $\bar{A}:=A /|A|^{1 / n}$.

A convex body is a compact convex subset C of \mathbb{R}^{n} with nonempty interior. We denote the class of convex bodies in \mathbb{R}^{n} by \mathcal{K}_{n}. We say that C is symmetric if $-x \in C$ whenever $x \in C$. We say that C is centered if it has center of mass at the origin-that is, if $\int_{C}\langle x, \theta\rangle d x=0$ for every $\theta \in S^{n-1}$. The support function $h_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of C is defined by $h_{C}(x)=\max \{\langle x, y\rangle: y \in C\}$. For each $-\infty<$ $q<\infty(q \neq 0)$, we define the q-mean width of C by

$$
\begin{equation*}
w_{q}(C):=\left(\int_{S^{n-1}} h_{C}^{q}(\theta) \sigma(d \theta)\right)^{1 / q} \tag{2.1}
\end{equation*}
$$

The mean width of C is the quantity $w(C)=w_{1}(C)$. The radius of C is defined as $R(C)=\max \left\{\|x\|_{2}: x \in C\right\}$, and if the origin is an interior point of C then the polar body of C is defined as

$$
\begin{equation*}
C^{\circ}:=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \text { for all } x \in C\right\} \tag{2.2}
\end{equation*}
$$

A centered convex body K in \mathbb{R}^{n} is called isotropic if it has volume $|K|=1$ and there exists a constant $L_{K}>0$ such that

$$
\begin{equation*}
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2} \tag{2.3}
\end{equation*}
$$

for every θ in the Euclidean unit sphere S^{n-1}. For every convex body K in \mathbb{R}^{n} there exists an affine transformation T of \mathbb{R}^{n} such that $T(K)$ is isotropic. Moreover, if we ignore orthogonal transformations, then this isotropic image is unique and so the isotropic constant L_{K} is an invariant of the affine class of K. The reader is referred to [23] and [10] for more information on isotropic convex bodies.

2.1. Quermaßintegrals

The relation between volume and the operations of addition and multiplication of convex bodies by nonnegative reals is described by Minkowski's fundamental theorem, which may be stated as follows. If $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}(m \in \mathbb{N})$ then the volume of $t_{1} K_{1}+\cdots+t_{m} K_{m}$ is a homogeneous polynomial of degree n in $t_{i} \geq 0$,

$$
\begin{equation*}
\left|t_{1} K_{1}+\cdots+t_{m} K_{m}\right|=\sum_{1 \leq i_{1}, \ldots, i_{n} \leq m} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} \cdots t_{i_{n}} \tag{2.4}
\end{equation*}
$$

where the coefficients $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ can be chosen to be invariant under permutations of their arguments. The coefficient $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of the n-tuple ($K_{i_{1}}, \ldots, K_{i_{n}}$).

Steiner's formula is a special case of Minkowski's theorem; the volume of $K+t B_{2}^{n}(t>0)$ can be expanded as a polynomial in t :

$$
\begin{equation*}
\left|K+t B_{2}^{n}\right|=\sum_{k=0}^{n}\binom{n}{k} W_{n-k}(K) t^{n-k} \tag{2.5}
\end{equation*}
$$

where $W_{n-k}(K):=V\left(K, k ; B_{2}^{n}, n-k\right)$ is the $(n-k)$ th quermaßintegral of K. It will be convenient for us to work with a normalized variant of $W_{n-k}(K)$, so for every $1 \leq k \leq n$ we set

$$
\begin{equation*}
Q_{k}(K)=\left(\frac{1}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)\right)^{1 / k} \tag{2.6}
\end{equation*}
$$

Note that $Q_{1}(K)=w(K)$. Kubota's integral formula

$$
\begin{equation*}
W_{n-k}(K)=\frac{\omega_{n}}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F) \tag{2.7}
\end{equation*}
$$

shows that

$$
\begin{equation*}
Q_{k}(K)=\left(\frac{W_{n-k}(K)}{\omega_{n}}\right)^{1 / k} \tag{2.8}
\end{equation*}
$$

The Aleksandrov-Fenchel inequality states that if $K, L, K_{3}, \ldots, K_{n} \in \mathcal{K}_{n}$ then

$$
\begin{equation*}
V\left(K, L, K_{3}, \ldots, K_{n}\right)^{2} \geq V\left(K, K, K_{3}, \ldots, K_{n}\right) V\left(L, L, K_{3}, \ldots, K_{n}\right) . \tag{2.9}
\end{equation*}
$$

This implies that the sequence $\left(W_{0}(K), \ldots, W_{n}(K)\right)$ is log-concave: we have

$$
\begin{equation*}
W_{j}^{k-i} \geq W_{i}^{k-j} W_{k}^{j-i} \tag{2.10}
\end{equation*}
$$

if $0 \leq i<j<k \leq n$. Taking into account (2.8), we conclude that $Q_{k}(K)$ is a decreasing function of k. For the theory of mixed volumes, see [30].

2.2. L_{q}-Centroid Bodies

Let K be a convex body of volume 1 in \mathbb{R}^{n}. For every $q \geq 1$ and every $y \in \mathbb{R}^{n}$, we set

$$
\begin{equation*}
h_{Z_{q}(K)}(y):=\left(\int_{K}|\langle x, y\rangle|^{q} d x\right)^{1 / q} . \tag{2.11}
\end{equation*}
$$

The L_{q}-centroid body $Z_{q}(K)$ of K is the centrally symmetric convex body with support function $h_{Z_{q}(K)}$. Note that K is isotropic if and only if it is centered and $Z_{2}(K)=L_{K} B_{2}^{n}$. Also, if $T \in S L(n)$ then $Z_{q}(T(K))=T\left(Z_{q}(K)\right)$ for all $q \geq 1$. From Hölder's inequality it follows that $Z_{1}(K) \subseteq Z_{p}(K) \subseteq Z_{q}(K) \subseteq Z_{\infty}(K)$ for all $1 \leq p \leq q \leq \infty$, where $Z_{\infty}(K)=\operatorname{conv}(K,-K)$. Using Borell's lemma (see [24, [Apx. III]), one can check that

$$
\begin{equation*}
Z_{q}(K) \subseteq c_{1} \frac{q}{p} Z_{p}(K) \tag{2.12}
\end{equation*}
$$

for all $1 \leq p<q$. In particular, if K is isotropic then $R\left(Z_{q}(K)\right) \leq c_{2} q L_{K}$. One can also check that if K is centered then $Z_{q}(K) \supseteq c_{3} K$ for all $q \geq n$ (see [25] for a proof). We will also use that if K is isotropic then

$$
\begin{equation*}
K \subseteq(n+1) L_{K} B_{2}^{n} \tag{2.13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
L_{K} B_{2}^{n}=Z_{2}(K) \subseteq Z_{q}(K) \subseteq Z_{\infty}(K) \subseteq(n+1) L_{K} B_{2}^{n} \tag{2.14}
\end{equation*}
$$

for all $q \geq 2$. A proof of the first assertion is given in [14]; the second assertion is clear from Hölder's inequality.

Let C be a symmetric convex body in \mathbb{R}^{n}, and let $\|\cdot\|_{C}$ denote the norm induced on \mathbb{R}^{n} by C. The parameter $k_{*}(C)$ is defined by

$$
\begin{equation*}
k_{*}(C)=n \frac{w(C)^{2}}{R(C)^{2}} . \tag{2.15}
\end{equation*}
$$

It is known that, up to an absolute constant, $k_{*}(C)$ is the largest positive integer $k \leq n$ with the property that $\frac{1}{2} w(C) B_{F} \subseteq P_{F}(C) \subseteq 2 w(C) B_{F}$ for most $F \in G_{n, k}$ (to be precise, with probability greater than $n /(n+k))$. The q-mean width $w_{q}(C)$ is equivalent to $w(C)$ provided $q \leq k_{*}(C)$: it is proved in [18] that, for every symmetric convex body C in \mathbb{R}^{n}, the following statements hold.
(i) If $1 \leq q \leq k_{*}(C)$, then $w(C) \leq w_{q}(C) \leq c_{4} w(C)$.
(ii) If $k_{*}(C) \leq q \leq n$, then $c_{5} \sqrt{q / n} R(C) \leq w_{q}(C) \leq c_{6} \sqrt{q / n} R(C)$.

Let K be a centered convex body of volume 1 in \mathbb{R}^{n}. For every $q \in(-n, \infty)$, $q \neq 0$, we define

$$
\begin{equation*}
I_{q}(K):=\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q} \tag{2.16}
\end{equation*}
$$

In [26] and [27] it is proved that, for every $1 \leq q \leq n / 2$,

$$
\begin{equation*}
I_{q}(K) \simeq \sqrt{n / q} w_{q}\left(Z_{q}(K)\right) \quad \text { and } \quad I_{-q}(K) \simeq \sqrt{n / q} w_{-q}\left(Z_{q}(K)\right) \tag{2.17}
\end{equation*}
$$

Paouris [26] introduced the parameter

$$
\begin{equation*}
q_{*}(K):=\max \left\{q \leq n: k_{*}\left(Z_{q}(K)\right) \geq q\right\} . \tag{2.18}
\end{equation*}
$$

Then the main result of [27] states that, for every centered convex body K of volume 1 in \mathbb{R}^{n}, one has $I_{-q}(K) \simeq I_{q}(K)$ for every $1 \leq q \leq q_{*}(K)$; in particular, for all $q \leq q_{*}(K)$ one has $I_{q}(K) \leq c_{7} I_{2}(K)$. If K is isotropic then one can check that $q_{*}(K) \geq c_{8} \sqrt{n}$, where $c_{8}>0$ is an absolute constant (for a proof, see [26]). Therefore,

$$
\begin{equation*}
I_{q}(K) \leq c_{9} \sqrt{n} L_{K} \quad \text { for } q \leq \sqrt{n} \tag{2.19}
\end{equation*}
$$

When $q \simeq q_{*}(K)$, the result of [18] shows that $w\left(Z_{q}(K)\right) \simeq w_{q}\left(Z_{q}(K)\right)$. Then the following useful estimate is a direct consequence of (2.19) and (2.17).

FACT 2.1. Let K be an isotropic convex body in \mathbb{R}^{n}. If $1 \leq q \leq q_{*}(K)$, then

$$
\begin{equation*}
w\left(Z_{q}(K)\right) \simeq w_{q}\left(Z_{q}(K)\right) \simeq \sqrt{q} L_{K} \tag{2.20}
\end{equation*}
$$

In particular, this holds for all $q \leq \sqrt{n}$.
Associated with any centered convex body $K \subset \mathbb{R}^{n}$ is a family of bodies that was introduced by Ball in [4] (see also [23]); to define these bodies, let us consider a
k-dimensional subspace F of \mathbb{R}^{n} and its orthogonal subspace E. For every $\phi \in$ $F \backslash\{0\}$ we set $E^{+}(\phi)=\{x \in \operatorname{span}\{E, \phi\}:\langle x, \phi\rangle \geq 0\}$. Ball proved that, for every $q \geq 0$, the function

$$
\begin{equation*}
\phi \mapsto\|\phi\|_{2}^{1+q /(q+1)}\left(\int_{K \cap E^{+}(\phi)}\langle x, \phi\rangle^{q} d x\right)^{-1 /(q+1)} \tag{2.21}
\end{equation*}
$$

is the gauge function of a convex body $B_{q}(K, F)$ on F. We shall need some facts about the relation of the bodies $B_{q}(K, F)$ to the L_{q}-centroid bodies $Z_{q}(K)$ and their projections. If K is a centered convex body of volume 1 in \mathbb{R}^{n} and if $1 \leq k \leq$ $n-1$ then, for every $F \in G_{n, k}$ and every $q \geq 1$, we have

$$
\begin{equation*}
P_{F}\left(Z_{q}(K)\right)=(k+q)^{1 / q}\left|B_{k+q-1}(K, F)\right|^{1 / k+1 / q} Z_{q}\left(\bar{B}_{k+q-1}(K, F)\right) \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{k+q-1}(K, F)\right|^{1 / k+1 / q} \leq \frac{e(k+q)}{k}\left(\frac{1}{k+q}\right)^{1 / q} \frac{1}{\left|K \cap F^{\perp}\right|^{1 / k}} \tag{2.23}
\end{equation*}
$$

Also, for every $F \in G_{n, k}$ and every $q \geq 1$,

$$
\begin{align*}
\frac{k}{e^{2}(k+q)} Z_{q}\left(\bar{B}_{k+1}(K, F)\right) & \subseteq Z_{q}\left(\bar{B}_{k+q-1}(K, F)\right) \\
& \subseteq e^{2} \frac{k+q}{k} Z_{q}\left(\bar{B}_{k+1}(K, F)\right) \tag{2.24}
\end{align*}
$$

If K is isotropic, then

$$
\begin{equation*}
L_{\bar{B}_{k+1}(K, F)} \simeq\left|K \cap F^{\perp}\right|^{1 / k} L_{K} \tag{2.25}
\end{equation*}
$$

For the proofs of these assertions we refer to [26] and [27].

3. Expectation of the Quermaßintegrals

In this section we give the proof of Theorem 1.1, which is a consequence of the following proposition.

Proposition 3.1. Let K be an isotropic convex body in \mathbb{R}^{n}. If cn $\leq N \leq \exp (c n)$ then, for every $1 \leq k \leq n$,

$$
\begin{equation*}
c_{1} \sqrt{n}\left|Z_{\log (N / n)}(K)\right|^{1 / n} \leq \mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \leq c_{2} w\left(Z_{\log N}(K)\right), \tag{3.1}
\end{equation*}
$$

where $c_{1}, c_{2}>0$ are absolute constants.
Proof. We first recall the precise statements of the main results from [9] on the asymptotic shape of a random polytope with N vertices chosen independently and uniformly from an isotropic convex body.

Fact 3.2. Let $\beta \in(0,1 / 2]$ and $\gamma>1$. If $N \geq N(\gamma, n)=c \gamma n$, where $c>0$ is an absolute constant, then for every isotropic convex body K in \mathbb{R}^{n} we have

$$
\begin{equation*}
K_{N} \supseteq c_{1} Z_{q}(K) \text { for all } q \leq c_{2} \beta \log (N / n) \tag{3.2}
\end{equation*}
$$

with probability greater than $1-f(\beta, N, n)$, where $f(\beta, N, n) \rightarrow 0$ exponentially fast as n and N increase.

The upper bound obtained in [9] for $f(\beta, N, n)$ is

$$
\begin{equation*}
f(\beta, N, n) \leq \exp \left(-c_{3} N^{1-\beta} n^{\beta}\right)+\mathbb{P}\left(\left\|\Gamma: \ell_{2}^{n} \rightarrow \ell_{2}^{N}\right\| \geq \gamma L_{K} \sqrt{N}\right) \tag{3.3}
\end{equation*}
$$

where $\Gamma: \ell_{2}^{n} \rightarrow \ell_{2}^{N}$ is the random operator $\Gamma(y)=\left(\left\langle x_{1}, y\right\rangle, \ldots,\left\langle x_{N}, y\right\rangle\right)$ defined by the vertices x_{1}, \ldots, x_{N} of K_{N}. There are several known bounds for this last probability (see e.g. [13;21]). The best-known estimate can be extracted from [2, Thm. 3.13]: one has $\mathbb{P}\left(\left\|\Gamma: \ell_{2}^{n} \rightarrow \ell_{2}^{N}\right\| \geq \gamma L_{K} \sqrt{N}\right) \leq \exp \left(-c_{0} \gamma \sqrt{N}\right)$ for all $N \geq c \gamma n$. If we assume that $\beta \leq 1 / 2$, then

$$
\begin{equation*}
f(\beta, N, n) \leq \exp \left(-c_{4} \sqrt{n}\right) \tag{3.4}
\end{equation*}
$$

Since $Q_{k}(\cdot)$ is decreasing in k, we immediately obtain

$$
\begin{equation*}
\mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \geq \mathbb{E}\left[Q_{n}\left(K_{N}\right)\right]=\mathbb{E}\left(\frac{\left|K_{N}\right|}{\omega_{n}}\right)^{1 / n} \tag{3.5}
\end{equation*}
$$

Then Fact 3.2 shows that

$$
\begin{equation*}
\mathbb{E}\left(\frac{\left|K_{N}\right|}{\omega_{n}}\right)^{1 / n} \geq c_{5}\left(\frac{\left|Z_{\log (N / n)}(K)\right|}{\omega_{n}}\right)^{1 / n} \tag{3.6}
\end{equation*}
$$

where $c_{5}>0$ is an absolute constant. Combining (3.5) and (3.6) yields the first inequality in (3.1).

We now turn our attention to the opposite direction. Let $N \geq n$. Observe that, for every $\alpha>0$ and $\theta \in S^{n-1}$, by Markov's inequality we have

$$
\begin{equation*}
\mathbb{P}(\alpha, \theta):=\mathbb{P}\left(\left\{x \in K:|\langle x, \theta\rangle| \geq \alpha\|\langle\cdot, \theta\rangle\|_{q}\right\}\right) \leq \alpha^{-q} ; \tag{3.7}
\end{equation*}
$$

therefore,

$$
\begin{align*}
\mathbb{P}\left(h_{K_{N}}(\theta) \geq \alpha h_{Z_{q}(K)}(\theta)\right) & =\mathbb{P}\left(\max _{j \leq N}\left|\left\langle x_{j}, \theta\right\rangle\right| \geq \alpha\|\langle\cdot, \theta\rangle\|_{q}\right) \\
& \leq N \mathbb{P}(\alpha, \theta) \leq N \alpha^{-q} . \tag{3.8}
\end{align*}
$$

Then a standard application of Fubini's theorem shows that, for every $\alpha>1$,

$$
\begin{equation*}
\mathbb{E}\left[\sigma\left(\theta: h_{K_{N}}(\theta) \geq \alpha h_{Z_{q}(K)}(\theta)\right)\right] \leq N \alpha^{-q} \tag{3.9}
\end{equation*}
$$

Using that $h_{K_{N}}(\theta) \leq h_{Z_{\infty}(K)}(\theta) \leq c_{6} n L_{K}$, which follows from (2.14), we write

$$
\begin{equation*}
w\left(K_{N}\right) \leq \int_{A_{N}} h_{K_{N}}(\theta) d \sigma(\theta)+c_{6} \sigma\left(A_{N}^{c}\right) n L_{K} \tag{3.10}
\end{equation*}
$$

where $A_{N}=\left\{\theta: h_{K_{N}}(\theta) \leq \alpha h_{Z_{q}(K)}(\theta)\right\}$. Then

$$
\begin{equation*}
w\left(K_{N}\right) \leq \alpha \int_{A_{N}} h_{Z_{q}(K)}(\theta) d \sigma(\theta)+c_{6} \sigma\left(A_{N}^{c}\right) n L_{K} \tag{3.11}
\end{equation*}
$$

and so, by (3.9),

$$
\begin{equation*}
\mathbb{E}\left[w\left(K_{N}\right)\right] \leq \alpha w\left(Z_{q}(K)\right)+c_{6} N n \alpha^{-q} L_{K} . \tag{3.12}
\end{equation*}
$$

Since $w\left(Z_{q}(K)\right) \geq w\left(Z_{2}(K)\right)=L_{K}$, we obtain

$$
\begin{equation*}
\mathbb{E}\left[w\left(K_{N}\right)\right] \leq\left(\alpha+c_{6} N n \alpha^{-q}\right) w\left(Z_{q}(K)\right) . \tag{3.13}
\end{equation*}
$$

Choosing $\alpha=e$ and $q=2 \log N$, we see that

$$
\begin{equation*}
\mathbb{E}\left[Q_{1}\left(K_{N}\right)\right]=\mathbb{E}\left[w\left(K_{N}\right)\right] \leq c_{7} w\left(Z_{2 \log N}(K)\right) \leq c_{8} w\left(Z_{\log N}(K)\right) \tag{3.14}
\end{equation*}
$$

here we have taken into account that $Z_{2 \log N}(K) \subseteq c Z_{\log N}(K)$, a consequence of (2.12). Since $Q_{k}(K)$ is decreasing in k, it follows that

$$
\begin{equation*}
\mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \leq \mathbb{E}\left[Q_{1}\left(K_{N}\right)\right] \leq c_{9} w\left(Z_{\log N}(K)\right) \tag{3.15}
\end{equation*}
$$

for all $1 \leq k \leq n$, where $c_{9}>0$ is an absolute constant. This completes the proof of the proposition.

For the proof of Theorem 1.1 we combine Proposition 3.1 with the following known bounds for $\left|Z_{q}(K)\right|$. The first bound, expressed by (3.16), follows from the results of [26] and [15]; the second bound, expressed by (3.17), was obtained in [20].

Fact 3.3. Let K be an isotropic convex body in \mathbb{R}^{n}. If $1 \leq q \leq \sqrt{n}$ then

$$
\begin{equation*}
\left|Z_{q}(K)\right|^{1 / n} \simeq \sqrt{q / n} L_{K} \tag{3.16}
\end{equation*}
$$

but if $\sqrt{n} \leq q \leq n$ then

$$
\begin{equation*}
c_{9} \sqrt{q / n} \leq\left|Z_{q}(K)\right|^{1 / n} \leq c_{10} \sqrt{q / n} L_{K} . \tag{3.17}
\end{equation*}
$$

Proof of Theorem 1.1. We first assume that $n^{2} \leq N \leq \exp (\sqrt{n})$. From (3.16) we have

$$
\begin{equation*}
\left|Z_{\log N}(K)\right|^{1 / n} \geq c_{11} \sqrt{\log N / n} L_{K} \tag{3.18}
\end{equation*}
$$

and from Fact 2.1 we have

$$
\begin{equation*}
w\left(Z_{\log N}(K)\right) \leq c_{12} \sqrt{\log N} L_{K} \tag{3.19}
\end{equation*}
$$

Therefore, (3.1) takes the form

$$
\begin{equation*}
\mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \simeq \sqrt{\log N} L_{K} \tag{3.20}
\end{equation*}
$$

as claimed. If $\exp (\sqrt{n}) \leq N \leq \exp (c n)$ then we use (3.1) and the first inequality in (3.17). It follows that

$$
\begin{equation*}
c_{13} \sqrt{\log N} \leq \mathbb{E}\left[Q_{k}\left(K_{N}\right)\right] \leq c_{2} w\left(Z_{\log N}(K)\right) \tag{3.21}
\end{equation*}
$$

for every $1 \leq k \leq n$, and the proof is complete.

4. The Range $n^{2} \leq N \leq \exp (\sqrt{n})$

Next we prove Theorem 1.2 on the quermaßintegrals of a random K_{N} in the range $n^{2} \leq N \leq \exp (\sqrt{n})$. The precise statement is as follows.

THEOREM 4.1. Let K be an isotropic convex body in \mathbb{R}^{n}. If $n^{2} \leq N \leq \exp (\sqrt{n})$ then, with probability greater than $1-N^{-1}$, a random K_{N} satisfies

$$
\begin{equation*}
Q_{k}\left(K_{N}\right) \leq c_{1} L_{K} \sqrt{\log N} \tag{4.1}
\end{equation*}
$$

for all $1 \leq k \leq n$ and with probability greater than $1-\exp (-\sqrt{n})$ it satisfies

$$
\begin{equation*}
Q_{k}\left(K_{N}\right) \geq c_{2} L_{K} \sqrt{\log N} \tag{4.2}
\end{equation*}
$$

for all $1 \leq k \leq n$, where $c_{1}, c_{2}>0$ are absolute constants.
Proof. Let $n^{2} \leq N \leq \exp (\sqrt{n})$. For the proof of (4.2) recall that, with probability greater than $1-\exp (-\sqrt{n})$, a random K_{N} contains $c_{3} Z_{\log N}(K)$. Then we can use (3.5), (3.6), and the volume estimate from Fact 3.3 to show that any such K_{N} satisfies

$$
\begin{equation*}
Q_{k}\left(K_{N}\right) \geq Q_{n}\left(K_{N}\right) \geq c_{3} \sqrt{n}\left|Z_{\log N}(K)\right|^{1 / n} \geq c_{4} L_{K} \sqrt{\log N} \tag{4.3}
\end{equation*}
$$

for all $1 \leq k \leq n$.
For the proof of (4.1) we need two lemmas.
Lemma 4.2. Let K be an isotropic convex body in \mathbb{R}^{n}. For every $n^{2} \leq N \leq$ $\exp (c n)$ and for every $q \geq \log N$ and $r \geq 1$, we have

$$
\begin{equation*}
\int_{S^{n-1}} \frac{h_{K_{N}}^{q}(\theta)}{h_{Z_{q}(K)}^{q}(\theta)} d \sigma(\theta) \leq\left(c_{1} r\right)^{q} \tag{4.4}
\end{equation*}
$$

with probability greater than $1-r^{-q}$, where $c_{1}>0$ is an absolute constant.
Proof. We have assumed that K is isotropic and so, by (2.13) and (2.4), $K_{N} \subseteq$ $\operatorname{conv}(K,-K) \subseteq(n+1) L_{K} B_{2}^{n}$ and $Z_{q}(K) \supseteq Z_{2}(K)=L_{K} B_{2}^{n}$. This implies that $h_{K_{N}}(\theta) \leq(n+1) h_{Z_{q}(K)}(\theta)$ for all $\theta \in S^{n-1}$. We write

$$
\begin{equation*}
\int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta)=\int_{0}^{n+1} q t^{q-1} \sigma\left(\theta: h_{K_{N}}(\theta) \geq t h_{Z_{q}(K)}(\theta)\right) d t \tag{4.5}
\end{equation*}
$$

We fix $\alpha>1$ (to be chosen) and estimate the expectation over K^{N} : using (3.9), we obtain

$$
\begin{align*}
\mathbb{E}\left(\int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta)\right) & \leq \alpha^{q}+\int_{\alpha}^{n+1} q t^{q-1} N t^{-q} d t \\
& \leq \alpha^{q}+q N \log \left(\frac{n+1}{\alpha}\right) \tag{4.6}
\end{align*}
$$

We now choose $\alpha=e$. If $q \geq \log N$, then

$$
\begin{equation*}
\mathbb{E}\left(\int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta)\right) \leq c_{1}^{q} \tag{4.7}
\end{equation*}
$$

for some absolute constant $c_{1}>0$. Markov's inequality shows that, for every $r \geq 1$,

$$
\begin{equation*}
\int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta) \leq\left(c_{1} r\right)^{q} \tag{4.8}
\end{equation*}
$$

with probability greater than $1-r^{-q}$.

Lemma 4.3. Let K be an isotropic convex body in \mathbb{R}^{n}. For every $n^{2} \leq N \leq$ $\exp (c n)$ and for every $q \geq \log N$ and $r \geq 1$, we have

$$
\begin{equation*}
w\left(K_{N}\right) \leq c_{1} r w_{q}\left(Z_{q}(K)\right) \tag{4.9}
\end{equation*}
$$

with probability greater than $1-r^{-q}$.
Proof. Using Hölder's inequality and the Cauchy-Schwarz inequality, we write

$$
\begin{align*}
{\left[w\left(K_{N}\right)\right]^{q} } & \leq\left(\int_{S^{n-1}} h_{K_{N}}(\theta)^{q / 2} d \sigma(\theta)\right)^{2} \\
& \leq\left[w_{q}\left(Z_{q}(K)\right)\right]^{q} \int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta) \tag{4.10}
\end{align*}
$$

Lemma 4.2 shows that if $q \geq \log N$ and $r \geq 1$, then

$$
\begin{equation*}
\int_{S^{n-1}} \frac{h_{K_{N}}(\theta)^{q}}{h_{Z_{q}(K)}(\theta)^{q}} d \sigma(\theta) \leq\left(c_{1} r\right)^{q} \tag{4.11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
w\left(K_{N}\right) \leq c_{1} r w_{q}\left(Z_{q}(K)\right) \tag{4.12}
\end{equation*}
$$

with probability greater than $1-r^{-q}$.
We can now prove (4.1). We have assumed that $\log N \lesssim \sqrt{n}$, and we choose $q=$ $\log N$ and $r=e$. Hence, by Lemma 4.3 and Fact 2.1,

$$
\begin{equation*}
w\left(K_{N}\right) \leq c w_{\log N}\left(Z_{\log N}(K)\right) \simeq w\left(Z_{\log N}(K)\right) \leq c_{1} L_{K} \sqrt{\log N} \tag{4.13}
\end{equation*}
$$

with probability greater than $1-N^{-1}$. Since $Q_{k}\left(K_{N}\right) \leq w\left(K_{N}\right)$ for all $1 \leq k \leq$ n, the proof of the theorem is now complete.

Note. Theorem 1.2 and Fact 3.2 show that if $n^{2} \leq N \leq \exp (\sqrt{n})$ then, with probability greater than $1-N^{-1}$, a random K_{N} has the two properties
(P1) $K_{N} \supseteq c_{1} Z_{\log N}(K)$ and
(P2) $Q_{k}\left(K_{N}\right) \simeq L_{K} \sqrt{\log N}$ for all $1 \leq k \leq n$.
In Sections 4.1 and 4.2 we derive the two claims of Theorem 1.3 from (P1) and (P2).

4.1. Regularity of the Covering Numbers

Recall that if K and L are nonempty sets in \mathbb{R}^{n}, then the covering number $N(K, L)$ of K by L is defined to be the smallest number of translates of L whose union covers K. If K is a convex body and L is a symmetric convex body in \mathbb{R}^{n}, then a standard volume argument shows that

$$
\begin{equation*}
2^{-n} \frac{|K+L|}{|L|} \leq N(K, L) \leq 2^{n} \frac{|K+L|}{|L|} \tag{4.14}
\end{equation*}
$$

The next proposition concerns the covering numbers of a random K_{N} by multiples of the Euclidean unit ball; in particular, it provides a proof for Theorem 1.3(i).

Proposition 4.4. Let K be an isotropic convex body in \mathbb{R}^{n}, and let $n^{2} \leq N \leq$ $\exp (\sqrt{n})$. Then a random K_{N} satisfies the entropy estimate

$$
\begin{equation*}
\log N\left(K_{N}, c_{1} \varepsilon L_{K} \sqrt{\log N} B_{2}^{n}\right) \leq c_{2} n \min \left\{\log \left(1+\frac{c_{3}}{\varepsilon}\right), \frac{1}{\varepsilon^{2}}\right\} \tag{4.15}
\end{equation*}
$$

for every $\varepsilon>0$, where $c_{1}, c_{2}, c_{3}>0$ are absolute constants. Moreover, if $0<$ $\varepsilon \leq 1$ then

$$
\begin{equation*}
c_{4} n \log \frac{c_{5}}{\varepsilon} \leq \log N\left(K_{N}, c_{6} \varepsilon L_{K} \sqrt{\log N} B_{2}^{n}\right) \leq c_{7} n \log \frac{c_{8}}{\varepsilon} \tag{4.16}
\end{equation*}
$$

for suitable absolute constants $c_{i}, i=4, \ldots, 8$.
Proof. We will give estimates for the covering numbers $N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right)$, where K_{N} satisfies (P1) and (P2) and where

$$
\begin{equation*}
r_{n, N}:=\left(\frac{\left|K_{N}\right|}{\omega_{n}}\right)^{1 / n} \simeq L_{K} \sqrt{\log N} \tag{4.17}
\end{equation*}
$$

is the volume radius of K_{N}. Using the second inequality in (4.14), we write

$$
\begin{equation*}
N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right) \leq 2^{n} \frac{\left|\frac{1}{\varepsilon r_{n, N}} K_{N}+B_{2}^{n}\right|}{\omega_{n}} \tag{4.18}
\end{equation*}
$$

By Steiner's formula,

$$
\begin{equation*}
\frac{\left|\frac{1}{\varepsilon r_{n, N}} K_{N}+B_{2}^{n}\right|}{\omega_{n}}=\sum_{k=0}^{n}\binom{n}{k} Q_{k}^{k}\left(K_{N}\right) \frac{1}{\varepsilon^{k} r_{n, N}^{k}} \tag{4.19}
\end{equation*}
$$

now, since $Q_{k}\left(K_{N}\right) \simeq r_{n, N}$ by (P2), we have

$$
\begin{equation*}
\frac{\left|\frac{1}{\varepsilon r_{n, N}} K_{N}+B_{2}^{n}\right|}{\omega_{n}} \leq \sum_{k=0}^{n}\binom{n}{k}\left(\frac{c}{\varepsilon}\right)^{k}=\left(1+\frac{c}{\varepsilon}\right)^{n} \tag{4.20}
\end{equation*}
$$

Returning to (4.18), we see that

$$
\begin{equation*}
\log N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right) \leq c_{1} n \log \left(1+\frac{c_{2}}{\varepsilon}\right) \tag{4.21}
\end{equation*}
$$

for suitable absolute constants $c_{1}, c_{2}>0$. A second upper bound can be given by Sudakov's inequality $\log N\left(K, t B_{2}^{n}\right) \leq c n w^{2}(K) / t^{2}$ (see e.g. [28]). Since $w\left(K_{N}\right) \simeq r_{n, N}$, it follows immediately that

$$
\begin{equation*}
\log N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right) \leq \frac{c n}{\varepsilon^{2}} \tag{4.22}
\end{equation*}
$$

for all $\varepsilon>0$. This proves (4.15).
A lower bound on the covering numbers can also be obtained for the case where $0<\varepsilon \leq 1$. For this we can use the lower bound on the volume of K_{N} from equation (1.7) or (1.8) depending on whether or not (respectively) $\log N \leq \sqrt{n}$. For example, if the inequality holds then

$$
\begin{equation*}
N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right)^{1 / n} \geq\left(\frac{\left|K_{N}\right|}{\left|\varepsilon r_{n, N} B_{2}^{n}\right|}\right)^{1 / n}=\frac{1}{\varepsilon} \tag{4.23}
\end{equation*}
$$

Hence $\log N\left(K_{N}, \varepsilon r_{n, N} B_{2}^{n}\right) \geq n \log (1 / \varepsilon)$.

4.2. Random Projections of K_{N}

Next we show that, if K_{N} has properties (P1) and (P2), then the volume radius of a random projection $P_{F}\left(K_{N}\right)$ onto $F \in G_{n, k}$ is completely determined by n, k, and N; this is the content of Theorem 1.3(ii).

Proposition 4.5. Let K be an isotropic convex body in \mathbb{R}^{n}, and let $n^{2} \leq N \leq$ $\exp (\sqrt{n})$. Then, with probability greater than $1-N^{-1}$, a random K_{N} satisfies the following: for every $1 \leq k \leq n$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \simeq L_{K} \sqrt{\log N} \tag{4.24}
\end{equation*}
$$

with probability greater than $1-e^{-c k}$ with respect to the Haar measure $v_{n, k}$ on $G_{n, k}$.

Proof. The upper bound is a corollary of Theorem 1.2. We know that if $\log N \leq$ \sqrt{n} then K_{N} satisfies (P 2) with probability greater than $1-N^{-1}$; in particular,

$$
\begin{equation*}
Q_{k}\left(K_{N}\right)=\left(\frac{1}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}\left(K_{N}\right)\right| d v_{n, k}(F)\right)^{1 / k} \lesssim L_{K} \sqrt{\log N} \tag{4.25}
\end{equation*}
$$

for all $1 \leq k \leq n$. Applying Markov's inequality then yields the following fact.
FACT 4.6. If $n^{2} \leq N \leq \exp (\sqrt{n})$ then, with probability greater than $1-N^{-1}$, K_{N} satisfies the following: for every $1 \leq k \leq n$ and every $t \geq 1$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c_{1} t \sqrt{\log N} L_{K} \tag{4.26}
\end{equation*}
$$

with probability greater than $1-t^{-k}$ with respect to $v_{n, k}$.
For the lower bound we use (P1). Integrating in polar coordinates, we have

$$
\begin{align*}
\int_{G_{n, k}} \frac{\left|P_{F}^{\circ}\left(K_{N}\right)\right|}{\omega_{k}} d v_{n, k}(F) & =\int_{G_{n, k}} \int_{S_{F}} \frac{1}{h_{P_{F}\left(K_{N}\right)}^{k}(\theta)} d \sigma_{F}(\theta) d v_{n, k}(F) \\
& =\int_{G_{n, k}} \int_{S_{F}} \frac{1}{h_{K_{N}}^{k}(\theta)} d \sigma_{F}(\theta) d v_{n, k}(F) \\
& \leq\left(\int_{G_{n, k}} \int_{S_{F}} \frac{1}{h_{K_{N}}^{n}(\theta)} d \sigma_{F}(\theta) d v_{n, k}(F)\right)^{k / n} \\
& =\left(\int_{S^{n-1}} \frac{1}{h_{K_{N}}^{n}(\theta)} d \sigma(\theta)\right)^{k / n} \\
& =\left(\frac{\left|K_{N}^{\circ}\right|}{\omega_{n}}\right)^{k / n} \tag{4.27}
\end{align*}
$$

By the Blaschke-Santaló inequality and the inclusion $K_{N} \supseteq Z_{c_{2} \log N}(K)$, we get

$$
\begin{equation*}
\left(\frac{\left|K_{N}^{\circ}\right|}{\omega_{n}}\right)^{k / n} \leq\left(\frac{\omega_{n}}{\left|K_{N}\right|}\right)^{k / n} \leq\left(\frac{\omega_{n}}{\left|Z_{c_{2} \log N}(K)\right|}\right)^{k / n} \tag{4.28}
\end{equation*}
$$

Recall that if $q \leq \sqrt{n}$ then $\left(\frac{\left|Z_{q}(K)\right|}{\omega_{n}}\right)^{1 / n} \geq c_{3} \sqrt{q} L_{K}$, from which we conclude that

$$
\begin{equation*}
\int_{G_{n, k}} \frac{\left|P_{F}^{\circ}\left(K_{N}\right)\right|}{\omega_{k}} d v_{n, k}(F) \leq\left(\frac{c_{4}}{\sqrt{\log N} L_{K}}\right)^{k} \tag{4.29}
\end{equation*}
$$

From Markov's inequality we obtain an upper bound for the volume radius of a random $P_{F}^{\circ}\left(K_{N}\right)$, and the reverse Santaló inequality proves the following.

FACT 4.7. If $n^{2} \leq N \leq \exp (\sqrt{n})$ then, with probability greater than $1-N^{-1}$, K_{N} satisfies the following: for every $1 \leq k \leq n$ and every $t \geq 1$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \geq \frac{c_{5} L_{K} \sqrt{\log N}}{t} \tag{4.30}
\end{equation*}
$$

with probability greater than $1-t^{-k}$ with respect to $v_{n, k}$.
Together, Fact 4.6 and Fact 4.7 prove Proposition 4.5.
Remark 4.8. Using [16, Prop. 3.1], one can actually prove that if $k \leq n / 4$ (or, more generally, if $k \leq \lambda n$ for some $\lambda \in(0,1)$) then most k-dimensional projections of K_{N} contain a ball of radius $L_{K} \sqrt{\log N}$:

$$
\begin{equation*}
P_{F}\left(K_{N}\right) \supseteq \frac{c_{6}}{t} L_{K} \sqrt{\log N} B_{F} \tag{4.31}
\end{equation*}
$$

with probability greater than $1-t^{-k}$ with respect to $v_{n, k}$. This, in turn, shows that (4.30) is satisfied by $P_{F}\left(K_{N}\right)$. We omit the details.

4.3. Coordinate Projections of K_{N}

Here we prove Theorem 1.4. Part (i) is proved by our next proposition, which estimates the size of the projection of a random K_{N} onto a fixed subspace F in $G_{n, k}$.

Proposition 4.9. Let K be an isotropic convex body in \mathbb{R}^{n} and let $1 \leq k \leq n$. For all $k<N \leq e^{k}$ and for every $F \in G_{n, k}$,

$$
\begin{equation*}
\left(\frac{\left|P_{F}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c L_{K} \sqrt{\log N} \tag{4.32}
\end{equation*}
$$

with probability greater than $1-N^{-1}$.
Proof. Fix $F \in G_{n, k}$. For all $\theta \in S_{F}$ and all $x \in K$, we have $h_{P_{F}\left(Z_{q}(K)\right)}(\theta)=$ $h_{Z_{q}(K)}(\theta)$ and $\left\langle P_{F}(x), \theta\right\rangle=\langle x, \theta\rangle$. Hence we can argue as in Lemma 4.2 to show that if $q \geq \log N$ then a random K_{N} satisfies

$$
\begin{equation*}
\int_{S_{F}} \frac{h_{P_{F}\left(K_{N}\right)}^{q}(\theta)}{h_{P_{F}\left(Z_{q}(K)\right)}^{q}(\theta)} d \sigma_{F}(\theta) \leq c_{1}^{q} \tag{4.33}
\end{equation*}
$$

Applying the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
{\left[w_{-q / 2}\left(P_{F}\left(Z_{q}(K)\right)\right)\right]^{-q} } & =\left(\int_{S_{F}} \frac{1}{h_{P_{F}\left(Z_{q}(K)\right)}^{q / 2}(\theta)} d \sigma_{F}(\theta)\right)^{2} \\
& \leq\left(\int_{S_{F}} \frac{1}{h_{P_{F}\left(K_{N}\right)}^{q}(\theta)} d \sigma_{F}(\theta)\right)\left(\int_{S_{F}} \frac{h_{P_{F}\left(K_{N}\right)}^{q}(\theta)}{h_{P_{F}\left(Z_{q}(K)\right)}^{q}} d \sigma_{F}(\theta)\right) \\
& \leq w_{-q}\left(P_{F}\left(K_{N}\right)\right)^{-q} c_{1}^{q} ;
\end{aligned}
$$

therefore, if $q \geq \log N$ then

$$
\begin{equation*}
w_{-q}\left(P_{F}\left(K_{N}\right)\right) \leq c_{1} s w_{-q / 2}\left(P_{F}\left(Z_{q}(K)\right)\right) \tag{4.34}
\end{equation*}
$$

with probability greater than $1-s^{-q}$.
Assume that $q \leq k$. Using Hölder's inequality and taking polars in the subspace F yields

$$
\begin{align*}
\left(\frac{\left|\left(P_{F}\left(K_{N}\right)\right)^{\circ}\right|}{\left|B_{2}^{k}\right|}\right)^{1 / k} & =\left(\int_{S_{F}} \frac{1}{h_{P_{F}\left(K_{N}\right)}^{k}(\theta)} d \sigma_{F}(\theta)\right)^{1 / k} \\
& \geq\left(\int_{S_{F}} \frac{1}{h_{P_{F}\left(K_{N}\right)}^{q}(\theta)} d \sigma_{F}(\theta)\right)^{1 / q} \\
& =w_{-q}\left(P_{F}\left(K_{N}\right)\right)^{-1} \tag{4.35}
\end{align*}
$$

Applying the Blaschke-Santaló inequality on F, we see that

$$
\begin{equation*}
\left|P_{F}\left(K_{N}\right)\right|^{1 / k} \leq \frac{c_{2}}{\sqrt{k}} w_{-q}\left(P_{F}\left(K_{N}\right)\right) \tag{4.36}
\end{equation*}
$$

for a suitable absolute constant $c_{2}>0$. Then (4.34) shows that

$$
\begin{equation*}
\left|P_{F}\left(K_{N}\right)\right|^{1 / k} \leq \frac{c_{3} s}{\sqrt{k}} w_{-q / 2}\left(P_{F}\left(Z_{q}(K)\right)\right) \tag{4.37}
\end{equation*}
$$

with probability greater than $1-s^{-q}$ for $\log N \leq q \leq k$. From (2.22) we know that

$$
\begin{equation*}
P_{F}\left(Z_{q}(K)\right)=(k+q)^{1 / q}\left|B_{k+q-1}(K, F)\right|^{1 / k+1 / q} Z_{q}\left(\bar{B}_{k+q-1}(K, F)\right), \tag{4.38}
\end{equation*}
$$

and from (2.24) we obtain $Z_{q}\left(\bar{B}_{k+q-1}(K, F)\right) \subseteq c_{4} Z_{q / 2}\left(\bar{B}_{k+1}(K, F)\right)$ for a new absolute constant $c_{4}>0$. Hence, with probability greater than $1-s^{-q}$, if $\log N \leq$ $q \leq k$ then

$$
\begin{align*}
& \left|P_{F}\left(K_{N}\right)\right|^{1 / k} \\
& \quad \leq \frac{c_{5} S}{\sqrt{k}}(k+q)^{1 / q}\left|B_{k+q-1}(K, F)\right|^{1 / k+1 / q} w_{-q / 2}\left(Z_{q / 2}\left(\bar{B}_{k+1}(K, F)\right)\right) \tag{4.39}
\end{align*}
$$

But $\bar{B}_{k+1}(K, F)$ is easily checked to be isotropic, and from (2.17) and (2.19) it then follows that

$$
\begin{align*}
w_{-q / 2}\left(Z_{q / 2}\left(\bar{B}_{k+1}(K, F)\right)\right) & \leq c_{6} \frac{\sqrt{q}}{\sqrt{k}} I_{-q / 2}\left(\bar{B}_{k+1}(K, F)\right) \\
& \leq c_{7} \sqrt{q} L_{\bar{B}_{k+1}(K, F)} \tag{4.40}
\end{align*}
$$

From (2.23) and (2.25) we have

$$
\begin{equation*}
L_{\bar{B}_{k+1}(K, F)} \leq c_{8}\left|K \cap F^{\perp}\right|^{1 / k} L_{K} \tag{4.41}
\end{equation*}
$$

and

$$
\begin{equation*}
(k+q)^{1 / q}\left|B_{k+q-1}(K, F)\right|^{1 / k+1 / k}\left|K \cap F^{\perp}\right| \leq e \frac{k+q}{k} \leq 2 e \tag{4.42}
\end{equation*}
$$

for $q \leq k$. We can now use (4.39) to conclude that

$$
\begin{equation*}
\left|P_{F}\left(K_{N}\right)\right|^{1 / k} \leq c L_{K} \frac{\sqrt{q}}{\sqrt{k}} \tag{4.43}
\end{equation*}
$$

with probability greater than $1-s^{-q}$ for all q satisfying $\log N \leq q \leq k$. The proposition follows if we choose $q=\log N$ for $N \leq e^{k}$.

In Proposition 4.9, F may be one of the k-dimensional coordinate subspaces of \mathbb{R}^{n}. Using a result from [1] gives us a uniform estimate of the same order on the size of all projections of a random K_{N} onto k-dimensional coordinate subspaces of \mathbb{R}^{n}. This is part (ii) of Theorem 1.4.

Proposition 4.10. Let K be an isotropic convex body in \mathbb{R}^{n} and let $1 \leq$ $k \leq n$. For all $k<N \leq \exp \left(c_{1} \sqrt{k / \log k}\right)$, with probability greater than $1-$ $\exp \left(-c_{2} \sqrt{k / \log k}\right)$ a random K_{N} satisfies the following: for every $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma|=k$,

$$
\begin{equation*}
\left(\frac{\left|P_{\sigma}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c_{3} L_{K} \log (e n / k) \sqrt{\log N} \tag{4.44}
\end{equation*}
$$

where $c_{i}>0$ are absolute constants.
Proof. Let $1 \leq k \leq n$. It is proved in [1, Thm. 1.1] that, for every $t \geq 1$,

$$
\begin{equation*}
\mathbb{P}\left(\max _{|\sigma|=k}\left\|P_{\sigma}(x)\right\|_{2} \geq c_{1} t L_{K} \sqrt{k} \log \left(\frac{e n}{k}\right)\right) \leq \exp \left(-\frac{t \sqrt{k} \log \left(\frac{e n}{k}\right)}{\sqrt{\log (e k)}}\right) \tag{4.45}
\end{equation*}
$$

Assume that $N \leq \exp \left(c_{2} \sqrt{k / \log k}\right)$. Then, with probability greater than $1-$ $\exp \left(-c_{3} \sqrt{k / \log k}\right)$, we have that N random points x_{1}, \ldots, x_{N} from K satisfy the following: for every $\sigma \subseteq\{1, \ldots, n\}$ and for every $1 \leq i \leq N$,

$$
\begin{equation*}
\left\|P_{\sigma}\left(x_{i}\right)\right\|_{2} \leq c_{4} L_{K} \sqrt{k} \log \left(\frac{e n}{k}\right) \tag{4.46}
\end{equation*}
$$

Now we recall a well-known volume bound that was obtained independently in [5], [8], and [12]: if $z_{1}, \ldots, z_{N} \in \mathbb{R}^{k}$ and $\max \left\|z_{i}\right\|_{2} \leq \alpha$, then

$$
\begin{equation*}
\left|\operatorname{conv}\left(\left\{z_{1}, \ldots, z_{N}\right\}\right)\right|^{1 / k} \leq \frac{c_{5} \alpha \sqrt{\log N}}{k} \tag{4.47}
\end{equation*}
$$

In our case inequality this implies that, for every σ with $|\sigma|=k$,

$$
\begin{equation*}
\left(\frac{\left|P_{\sigma}\left(K_{N}\right)\right|}{\omega_{k}}\right)^{1 / k} \leq c_{6} L_{K} \log (e n / k) \sqrt{\log N} \tag{4.48}
\end{equation*}
$$

as claimed.

5. Combinatorial Dimension in the Unconditional Case

In this section we assume that K is an unconditional isotropic convex body in \mathbb{R}^{n}. Thus K is symmetric, and the standard orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n} is a 1 -unconditional basis for $\|\cdot\|_{K}$: for every choice of real numbers t_{1}, \ldots, t_{n} and every choice of signs $\varepsilon_{j}= \pm 1$,

$$
\begin{equation*}
\left\|\varepsilon_{1} t_{1} e_{1}+\cdots+\varepsilon_{n} t_{n} e_{n}\right\|_{K}=\left\|t_{1} e_{1}+\cdots+t_{n} e_{n}\right\|_{K} \tag{5.1}
\end{equation*}
$$

It is known that the isotropic constant of K satisfies $L_{K} \simeq 1$. Moreover, Bobkov and Nazarov [7] have proved that $K \supseteq c_{2} Q_{n}$ for $Q_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$.

We will use that, for this class of convex bodies, the family of L_{q}-centroid bodies of the cube Q_{n} is extremal (the argument is due to R. Łatała).

Lemma 5.1. Let K be an isotropic unconditional convex body in \mathbb{R}^{n}. Then

$$
\begin{equation*}
Z_{q}(K) \supseteq c Z_{q}\left(Q_{n}\right) \tag{5.2}
\end{equation*}
$$

for all $q \geq 1$, where $c>0$ is an absolute constant.
Proof. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ be independent and identically distributed ± 1 random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and with distribution $\mathbb{P}\left(\varepsilon_{i}=1\right)=\mathbb{P}\left(\varepsilon_{i}=-1\right)=\frac{1}{2}$. For every $\theta \in S^{n-1}$, the following expressions are a consequence of the unconditionality of K, Jensen's inequality, and the contraction principle:

$$
\begin{align*}
\|\langle\cdot, \theta\rangle\|_{L^{q}(K)} & =\left(\int_{K}\left|\sum_{i=1}^{n} \theta_{i} x_{i}\right|^{q} d x\right)^{1 / q} \\
& =\left(\int_{\Omega} \int_{K}\left|\sum_{i=1}^{n} \theta_{i} \varepsilon_{i}\right| x_{i}| |^{q} d x d \mathbb{P}(\varepsilon)\right)^{1 / q} \\
& \geq\left(\int_{\Omega}\left|\sum_{i=1}^{n} \theta_{i} \varepsilon_{i} \int_{K}\right| x_{i}|d x|^{q} d \mathbb{P}(\varepsilon)\right)^{1 / q} \\
& \geq\left(\int_{\Omega}\left|\sum_{i=1}^{n} t_{i} \theta_{i} \varepsilon_{i}\right|^{q} d \mathbb{P}(\varepsilon)\right)^{1 / q} \\
& \geq\left(\int_{Q_{n}}\left|\sum_{i=1}^{n} t_{i} \theta_{i} y_{i}\right|^{q} d y\right)^{1 / q}=\|\langle\cdot,(t \theta)\rangle\|_{L^{q}\left(Q_{n}\right)} \tag{5.3}
\end{align*}
$$

here $t_{i}=\int_{K}\left|x_{i}\right| d x \simeq L_{K} \simeq 1$ and $t \theta=\left(t_{1} \theta_{1}, \ldots, t_{n} \theta_{n}\right)$. Recall that

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L^{q}\left(Q_{n}\right)} \simeq \sum_{j \leq q} \theta_{j}^{*}+\sqrt{q}\left(\sum_{q<j \leq n}\left(\theta_{j}^{*}\right)^{2}\right)^{1 / 2} \tag{5.4}
\end{equation*}
$$

(see [6]). Since $t_{i} \simeq 1$ for all $i=1, \ldots, n$, it follows that

$$
\begin{equation*}
\|\langle\cdot, \theta\rangle\|_{L^{q}(K)} \geq\|\langle\cdot,(t \theta)\rangle\|_{L^{q}\left(Q_{n}\right)} \geq c\|\langle\cdot, \theta\rangle\|_{L^{q}\left(Q_{n}\right)} \tag{5.5}
\end{equation*}
$$

and this proves the lemma.
Since $Z_{q}\left(Q_{n}\right) \simeq \sqrt{q} B_{2}^{n} \cap Q_{n}$, from Fact 3.1 we immediately get the following.
Proposition 5.2. Let K be an isotropic unconditional convex body in \mathbb{R}^{n}. If $c_{1} n \leq N \leq \exp \left(c_{2} n\right)$ and if $K_{N}=\operatorname{conv}\left\{x_{1}, \ldots, x_{N}\right\}$ is a random polytope spanned by N independent random points x_{1}, \ldots, x_{N} uniformly distributed in K, then for every $\sigma \subseteq\{1, \ldots, n\}$ we have

$$
\begin{equation*}
P_{\sigma}\left(K_{N}\right) \supseteq c_{1}\left(\sqrt{\log (N / n)} B_{\sigma} \cap Q_{\sigma}\right) \tag{5.6}
\end{equation*}
$$

with probability $1-o_{n}(1)$.
Proof of Theorem 1.5. Let $\varepsilon \in(0,1)$. For every $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma|=k$, we have $Q_{\sigma} \subseteq \sqrt{k} B_{\sigma}$ and hence

$$
\begin{equation*}
P_{\sigma}\left(K_{N}\right) \supseteq c_{1} \min \left\{\frac{\sqrt{\log (N / n)}}{\sqrt{k}}, 1\right\} Q_{\sigma} \supseteq \varepsilon Q_{\sigma} \tag{5.7}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\varepsilon \leq \frac{c_{2} \sqrt{\log (N / n)}}{\sqrt{k}} \tag{5.8}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
\mathrm{VC}\left(K_{N}, \varepsilon\right) \geq \min \left\{\frac{c_{3} \log (N / n)}{\varepsilon^{2}}, n\right\}, \tag{5.9}
\end{equation*}
$$

which is the lower bound in Theorem 1.5.
Acknowledgment. We would like to thank the referee for useful comments regarding the presentation of this paper.

References

[1] R. Adamczak, R. Łatała, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Tail estimates for norms of sums of log-concave random vectors, preprint.
[2] R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Amer. Math. Soc. 23 (2010), 535-561.
[3] D. Alonso-Gutiérrez and J. Prochno, On the Gaussian behavior of marginals and the mean width of random polytopes, preprint, 2012, arXiv:1205.6174v1.
[4] K. M. Ball, Logarithmically concave functions and sections of convex sets in \mathbb{R}^{n}, Studia Math. 88 (1988), 69-84.
[5] I. Bárány and Z. Füredi, Approximation of the sphere by polytopes having few vertices, Proc. Amer. Math. Soc. 102 (1988), 651-659.
[6] F. Barthe, O. Guédon, S. Mendelson, and A. Naor, A probabilistic approach to the geometry of the ℓ_{p}^{n}-ball, Ann. Probab. 33 (2005), 480-513.
[7] S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, Geometric aspects of functional analysis (V. D. Milman, G. Schechtman, eds.), Lecture Notes in Math., 1807, pp. 53-69, Springer-Verlag, Berlin, 2003.
[8] B. Carl and A. Pajor, Gelfand numbers of operators with values in a Hilbert space, Invent. Math. 94 (1988), 479-504.
[9] N. Dafnis, A. Giannopoulos, and A. Tsolomitis, Asymptotic shape of a random polytope in a convex body, J. Funct. Anal. 257 (2009), 2820-2839.
[10] A. Giannopoulos, Notes on isotropic convex bodies, Warsaw University, 2003.
[11] A. Giannopoulos and M. Hartzoulaki, Random spaces generated by vertices of the cube, Discrete Comput. Geom. 28 (2002), 255-273.
[12] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces, Mat. Sb. (N.S.) 136 (1988), 85-96.
[13] O. Guédon and M. Rudelson, L_{p}-moments of random vectors via majorizing measures, Adv. Math. 208 (2007), 798-823.
[14] R. Kannan, L. Lovasz, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541-559.
[15] B. Klartag and E. Milman, Centroid bodies and the logarithmic Laplace transformA unified approach, J. Funct. Anal. 262 (2012), 10-34.
[16] B. Klartag and R. Vershynin, Small ball probability and Dvoretzky theorem, Israel J. Math. 157 (2007), 193-207.
[17] R. Łatała, Order statistics and concentration of ℓ_{r}-norms for log-concave vectors, J. Funct. Anal. 261 (2011), 681-696.
[18] A. E. Litvak, V. D. Milman, and G. Schechtman, Averages of norms and quasi-norms, Math. Ann. 312 (1998), 95-124.
[19] A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005), 491-523.
[20] E. Lutwak, D. Yang, and G. Zhang, L^{p} affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111-132.
[21] S. Mendelson and A. Pajor, On singular values of matrices with independent rows, Bernoulli 12 (2006), 761-773.
[22] S. Mendelson, A. Pajor, and M. Rudelson, The geometry of random $\{-1,1\}$-polytopes, Discrete Comput. Geom. 34 (2005), 365-379.
[23] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geometric aspects of functional analysis (J. Lindenstrauss, V. D. Milman, eds.), Lecture Notes in Math., 1376, pp. 64-104, Springer-Verlag, Berlin, 1989.
[24] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986.
[25] G. Paouris, ψ_{2}-estimates for linear functionals on zonoids, Geometric aspects of functional analysis (V. D. Milman, G. Schechtman, eds.), Lecture Notes in Math., 1807, pp. 211-222, Springer-Verlag, Berlin, 2003.
[26] -, Concentration of mass in convex bodies, Geom. Funct. Anal. 16 (2006), 1021-1049.
[27] ——, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012), 287-308.
[28] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989.
[29] P. Pivovarov, On determinants and the volume of random polytopes in isotropic convex bodies, Geom. Dedicata 149 (2010), 45-58.
[30] R. Schneider, Convex bodies: The Brunn-Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993.

N. Dafnis
Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta T6G 2G1
Canada
nikdafnis@googlemail.com

A. Giannopoulos

Department of Mathematics
University of Athens
Panepistimioupolis 15784
Athens
Greece
apgiannop@math.uoa.gr
A. Tsolomitis

Department of Mathematics
University of the Aegean
Karlovassi 83200
Samos
Greece
atsol@aegean.gr

