
Michigan Math. J. 61 (2012), 555–573

A New Existence Proof of the Monster
by VOA Theory

Robert L. Griess Jr . & Ching Hung Lam

1. Introduction

We define a finite group G to be of Monster type if it has an involution z whose
centralizer CG(z) has the form 21+24 Co1 and is 2-constrained (i.e., satisfies 〈z〉 =
CG(O2(CG(z))) and if z is conjugate to an element in CG(z) \ {z}. A short argu-
ment proves that such a G must be simple (e.g., see [21; 46]). We use the abbre-
viation VOA for vertex operator algebra [17].

This paper gives a new and relatively direct existence proof of a group of Monster
type. Our methods depend on vertex operator algebra representation theory and are
free of many special calculations that traditionally occur in theory of the Monster.
Most of this article is dedicated to explaining how existing VOA theory applies.

In fact, a group of Monster type is unique up to isomorphism [23], so the group
we construct here can be called “the” Monster, the group constructed in [21]. To
avoid specialized finite group theory in this article, we work with a group of Mon-
ster type and refer to [23] for uniqueness.

Our basic strategy is described briefly in the next paragraph. It was inspired by
the article of Miyamoto [35], which showed how to make effective use of simple
current modules and extensions. Later in this Introduction, we sketch these impor-
tant concepts. In a sense, our existence proof is quite short. The hard group theory
and case-by-case analysis of earlier proofs have essentially been eliminated.

In [41], Shimakura gives a variation of Miyamoto’s construction. He takes
(V +
EE8
)3 and builds a candidateV for the Moonshine VOA using the theory of sim-

ple current extensions (a short account is given in Section 2.1). His treatment is
more direct and shorter than Miyamoto’s. Moreover, his method furnishes a large
subgroup of Aut(V ). From this subgroup, we take a certain involution and ana-
lyze V +,V −, its fixed point VOA and its negated space on V, respectively. We
can recognize V + as a Leech lattice-type VOA. The group Aut(V +) and its ex-
tension (by projective representations) to irreducibles of the fixed point VOA are
understood. One of these irreducibles is V −. We thereby get a new subgroup of
Aut(V ), which has the shape 21+24 Co1 and is moreover isomorphic to the cen-
tralizer of a 2-central involution in the Monster. These two subgroups of Aut(V )
generate the larger group Aut(V ), which we then prove is a finite group of Mon-
ster type.
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We refer to the overVOA of (V +
EE8
)3 described in Theorem 2.18 as a VOA of

Moonshine type, meaning a holomorphic VOA V = ⊕∞
n=0Vn of central charge

24, so that V0 is 1-dimensional, V1 = 0, and the Monster acts as a group of auto-
morphisms with faithful action onV2. We mention that such a VOA is isomorphic
to the standard Moonshine VOA constructed in [17], by [10; 27]. For the purpose
of this paper, it is not necessary to quote such characterizations.

The theory of simple current modules originated in the papers [18] and [38]. In
[11; 29], certain simple current modules of a VOA are constructed using weight-1
semi-primary elements, and extensions of a VOA by its simple current modules
are also studied. The notion of simple current extension turns out to be a power-
ful tool for constructing new VOAs from a known one [9; 28; 29; 31; 35]. Let V
be a simple VOA and let M = {Mi | i ∈ I } be a finite set of irreducible modules
of V with integral weights. If V ∈ M and

⊕
M∈MM is closed under the fusion

rules, then it is possible that
⊕

M∈MM carries the structure of a simple VOA for
which V is a subVOA. In general, it is extremely difficult to determine whether⊕

M∈MM has a structure of a simple VOA (see the following Remark). There
may be no such VOA structures, or there could be many. When the simple current
property holds (Definition 2.3), there is a simple VOA structure on

⊕
M∈MM ex-

tending the given action of V and the VOA structure is unique if the underlying
field is algebraically closed [14, Prop. 5.3] (see also [15; 31]). This “rigidity” of
simple current extensions is useful in structure analysis and leads to certain tran-
sitivity results that reduce the need for calculations.

As described in [21], existence of the Monster implies existence of several other
sporadic groups that had originally been constructed with special methods, includ-
ing computer work. We hope that the present article may suggest useful viewpoints
for other sporadic groups.

Remark. If the simplicity is not imposed then it is not difficult to give
⊕

M∈MM

a VOA structure, where M is a finite set of irreducible modules of V with inte-
gral weights and V ∈M. For example, one may give V ⊕M a VOA structure by
defining Y(a, z)v using the skew symmetry for a ∈M, v ∈V and Y(a, z)b = 0 for
any a, b ∈M.

Existence Proofs. The first existence proof of the Monster was made in 1980
and published in [21]; see also [20]. A group C ∼= 21+24 Co1 and a representa-
tion of degree 196883 was described. The hard part was to choose a C-invariant
algebra structure, give an automorphism σ of it that did not come from C, then
identify the group 〈C, σ 〉 by proving finiteness and proving that C is an involution
centralizer in it.

During the decade that followed the publication of [21], there were analyses,
improvements, and alternate viewpoints by Tits [43; 44; 45; 46] and Conway [1].
In the mid-1980s, the theory of vertex algebras was developed. The Frenkel–
Lepowsky–Meurman text [17] established the important construction of a Moon-
shine VOA and became a basic reference for VOA theory. The construction of the
Monster done in [17] followed the lines of [21] but in a broader VOA setting. The
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articles [4; 5] constructed a VOA and gave a physics field theory interpretation to
aspects of [17; 21].

In 2004, Miyamoto [35] made significant use of simple current extensions to
give a new construction of a Moonshine VOA and the Monster acting as automor-
phisms. An existence proof of the Monster was recently announced in [25], which
uses theories of finite geometries and group amalgams.

Uniqueness was first proved in [23]. A different uniqueness proof is indicated
in [25].

Notation. Table 1 summarizes the notation used in this paper.

Acknowledgments. The first author thanks the United States National Sci-
ence Foundation (NSF DMS-0600854) and the National Security Agency (NSA
H98230-10-1-0201) for financial support as well as the Academia Sinica for hospi-
tality during a visit in August 2010. The second author thanks the National Science
Council (NSC 97-2115-M-006-015-MY3) and the National Center for Theoretical
Sciences (Taiwan) for financial support.

2. Simple Current Extensions

In this section, we shall recall the notion of simple current extensions and their
basic properties [11; 41].

Let V be a VOA and let M1,M2,M3 be V -modules. We denote the space of
all V -intertwining operators of type

(
M3

M1 M2

)
by IV

(
M3

M1 M2

)
and its dimension by

N
M3
M1 M2

[16, Chap. 5].

Definition 2.1 [11]. Let V be a rational C2-cofinite VOA. An irreducible V -
moduleM is called a simple current module if the fusion productM×V N is again
irreducible for any irreducible V -module N, that is,

∑
W irredN

W
M N = 1.

Definition 2.2. A full subVOA is a subVOA that contains the principal Vira-
soro element of the larger VOA.

Now letV 0 be a simple rational C2-cofinite VOA of CFT type (see [27, Def. 3.1])
and letD be a finite abelian group. Let {V α | α ∈D} be a set of inequivalent irre-
ducible V 0-modules indexed by D. Assume that the weights of V α, α ∈ D, are
integral and that V α ×V 0 V β = V α+β for all α,β ∈D.
Definition 2.3 [11]. A simple VOA V = ⊕

α∈DV α is called a (D-graded )
simple current extension of V 0 if V 0 is a full subVOA of V and all V α, α ∈D, are
simple current V 0-modules.

Next we shall recall the notion of g-conjugate modules [13; 41].

Definition 2.4. Let (M,YM) be aV -module and g ∈Aut(V ) an automorphism.
The g-conjugate module ofM is defined to be theV -module (g �M,Yg�M), where
g �M = M is a vector space and Yg�M(v, z) = YM(g−1v, z) for all v ∈V.
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Table 1

Notation Explanation Examples in the Text

A.B, A:B, group extension of normal subgroup A by quotient B, Prop. 2.22, Thm. 3.8
A·B split extension, nonsplit extension (respectively)

C centralizer of an involution in Aut(V ) Not. 3.9

cvcc 1
2 simple conformal vector of central charge 1

2 Sec. 3.1

Co1 first Conway group O(�)/{±1} p. 555

EE8 lattice isometric to
√

2 times the famous E8 lattice p. 555, Sec. 2.1

F{L} twisted group algebra of a lattice L over a field F Cor. 3.7

g �M g-conjugate module of a V -moduleM Def. 2.4

H� subgroup of Aut(V +
� ) generated by Miyamoto Not. 3.13

involutions of AA1-type

H̃� subgroup of Aut(V�) generated by Miyamoto Rem. 3.18
involutions of AA1-type

� Leech lattice, the unique even unimodular lattice of Sec. 3, Cor. 3.7
rank 24 with no roots

M(1) unique irreducible ĥ-module such that α ⊗ t n1 = 0 Cor. 3.7
for all α ∈ h and n > 0 and K = 1, where
h = C ⊗Z L and ĥ = ⊕

n∈Z
(h ⊗ t n)⊕ CK

M ×V N fusion product of V -modulesM,N Def. 2.1

Op(G) maximal normal p-subgroup of G p. 570

Op ′(G) maximal normal subgroup of G of order prime to p p. 570

R(U) set of all inequivalent irreducible modules of U Sec. 2.1

StabG(X) subgroup of the group G that stabilizes the set X Not. 4.10

t(e) Miyamoto involution associated to a cvcc 1
2 e Not. 3.15

U the VOA V +
EE8

Not. 2.13

21+2n extra-special 2-group of order 21+2n p. 555, p. 565

21+24 Co1 an extension of Co1 by 21+24 p. 555, Sec. 3

V a VOA that is a simple current extension of U Not. 2.20

VL lattice VOA for positive definite even lattice L Lemma 3.6, Cor. 3.7

VL,R lattice VOA over R for positive definite even lattice L Lemma 3.6, Cor. 3.7

ṼL,R real form of the lattice VOA VL whose invariant form Prop. 4.18
is positive definite

V +
L the fixed point subVOA of VL by a lift of the Sec. 2.1, Cor. 3.7

(−1)-isometry of L

Remark 2.5. By definition, there exists a linear isomorphism ν : g �M → M

such that νYg�M(v, z) = YM(g
−1v, z)ν for any v ∈ V. In fact, one can assume

ν = idM by identifying g �M withM as vector spaces.

The following theorem follows easily by the fusion rules V α × V β = V α+β.
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Theorem 2.6. Let V 0 be a rational C2-cofinite VOA of CFT type and let V =⊕
α∈DV α be a (D-graded ) simple current extension of V 0. Let D∗ be the group

of all irreducible characters of D. Then, for any χ ∈D∗, the linear map

τχ(v) = χ(α)v for any v ∈V α, α ∈D,

defines an automorphism of V. In particular, {τχ | χ ∈D∗} ∼= D∗ is an abelian
subgroup of Aut(V ).

Notation 2.7. By abuse of notation, we often denote the group {τχ | χ ∈D∗} <
Aut(V ) defined in Theorem 2.6 by D∗.

Notation 2.8. LetW be an irreducible V -module. We shall use [W ] to denote
the isomorphism class containingW.

The next theorem gives a criterion for lifting an automorphism of V 0 toV and can
be proved using the general arguments for simple current extensions [37; 39].

Theorem 2.9 (cf. [39]). Let V 0 be a rational C2-cofinite VOA of CFT type and
V = ⊕

α∈DV α a (D-graded ) simple current extension of V 0. Let g ∈Aut(V 0).

Then there exists an automorphism g̃ ∈Aut(V ) such that g̃|V 0 = g if and only if
{[g � V α] | α ∈D} = {[V α] | α ∈D}.
Remark 2.10. Recall that g �W ∼= g �W ′ if and only if W ∼= W ′ [41]. Thus
the isomorphism class [g �W ] is independent of the choice of the representative
W ∈ [W ].

Theorem 2.11 [40, Cor. 2.2]. Let V = ⊕
α∈DV α be a (D-graded ) simple cur-

rent extension of V 0. Denote

ND = {
g ∈Aut(V 0) | {[g �V α] | α ∈D} = {[V α] | α ∈D}}.

Then there exists an exact sequence

1 −→ D∗ −→ NAut(V 0 )(D
∗)

η−→ ND −→ 1,

whereη is the restriction map toV 0 andD∗ is identified with the group {τχ | χ ∈D∗}.

2.1. Simple Current Extension of (V +
EE8
)3

In this section, we shall recall a description of the Moonshine VOA by Shima-
kura [41]. First we shall review some basic properties of the lattice-type VOA
V +
EE8

[22; 39].

Notation 2.12. Let R(U) be the set of all inequivalent irreducible modules of
a VOA U. If U = V +

EE8
, then it is known [39] (see also [27]) that all irreducible

modules of V +
EE8

are simple current modules and R(V +
EE8
) forms a 10-dimensional

quadratic space over Z2 with respect to the fusion rules and the quadratic form

q([M ]) =
{

0 if the weights of M are in Z ,

1 if the weights of M are in 1
2 + Z.

(1)

We shall denote the corresponding bilinear form by 〈·, ·〉.
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Recall that Aut(V +
EE8
) ∼= O+(10, 2) and Aut(V +

EE8
) acts on R(V +

EE8
) as a group of

isometries [22; 39].

Notation 2.13. From now on, we use U to denote the VOA V +
EE8

and U n to
denote the tensor product of n copies of U.

The proof of the following proposition can be found in [39].

Proposition 2.14. The group Aut(U) ∼= O+(10, 2) acts transitively on nonzero
singular elements and nonsingular elements of R(U), respectively.

(i) If [W ] is a nonzero singular element in R(U), then the minimal weight of the
irreducible moduleW is 1 and dim(W1) = 8.

(ii) If [W ] is a nonsingular element, then the minimal weight of W is 1/2 and
dim(W1/2) = 1.

Notation 2.15. Since R(U 3) ∼= R(U)3, we shall view R(U 3) as a direct sum of
quadratic spaces (cf. Notation 2.12). The quadratic form and the associated bilin-
ear form are given by q(a, b, c) = q(a)+q(b)+q(c) and 〈(a, b, c), (a ′, b ′, c ′)〉 =
〈a, a ′ 〉 + 〈b, b ′ 〉 + 〈c, c ′ 〉 for (a, b, c)∈R(U)3.

Following the analysis of [41], let . and / be maximal totally singular sub-
spaces of R(U) such that . ∩/ = 0. Then the space

S := spanZ2{(a, a, 0), (0, a, a), (b, b, b) | a ∈., b ∈/} (2)

is a maximal totally singular subspace of R(U)3 ∼= R(U 3).

Definition 2.16. LetW be an irreducible module. We define the minimal weight
of [W ] to be the minimal weight ofW.

Lemma 2.17 [41, Prop. 2.4, Lemma 2.6]. Let [W ]∈ S. Then the minimal weight
of [W ] is ≥ 2. If the minimal weight of [W ] is 2 then, up to a permutation of the
three coordinates, [W ] has the form:

(i) (a, a, 0), where a ∈. \ {0}; or
(ii) (a + b + c, a + c, b + c), where a, b ∈ . \ {0}, c ∈ /, a + c and b + c are

nonsingular, and a + b + c is nonzero singular.

By Lemma 2.17, we have the following theorem.

Theorem 2.18 [41,Thm. 4.10]. LetV := V(S ) = ⊕
[W ]∈S W. ThenV is a holo-

morphic framed VOA of central charge 24 and V1 = 0.

Remark 2.19. It was also shown in [41] that the singular space S defined in (2)
is the unique (up to Aut(U 3)) maximal totally singular subspace of R(U 3) such
that V(S ) = ⊕

[W ]∈S W has trivial weight-1 subspace.

Notation 2.20. For the rest of this paper,V shall denote the VOA V := V(S ) =⊕
[W ]∈S W of Theorem 2.18.
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Theorem 2.21 [41]. The automorphism group Aut(V ) acts transitively on the
set of all subVOAs of V that are isomorphic to U 3.

Proposition 2.22 [41, Cor. 4.18]. Let S be defined as in (2). We identify S ∗
with the subgroup {τχ | χ ∈ S ∗} of Aut(V ) that was defined in Theorem 2.6. Then
NAut(V )(S ∗) = StabAut(V )(U ⊗ U ⊗ U) ∼= 215(220:(L5(2)× Sym3)).

3. Centralizer of an Involution

In this section, we shall show that the automorphism group of V = V(S ) (see No-
tation 2.20) has an involution z such that V z ∼= V +

� and CAut(V )(z) ∼= 21+24 Co1,
where � denotes the Leech lattice.

Notation 3.1. Let ., /, and S be defined as in Notation 2.15. Let x ∈. be a
nonzero element. We denote

S 0 = {(a, b, c)∈ S | 〈(a, b, c), (x, 0, 0)〉 = 0},
S1 = {(a, b, c)∈ S | 〈(a, b, c), (x, 0, 0)〉 = 1}.

Definition 3.2. Let V = V(S ) = ⊕
[W ]∈S W be the VOA defined in Theo-

rem 2.18. Define a linear map z : V → V by

z =
{

1 on W for [W ]∈ S 0,

−1 on W for [W ]∈ S1.
(3)

Then z is an automorphism of order 2 of V.

The following lemma can be found in [41].

Lemma 3.3. Let B be the weight-2 subspace of V. Then dim(B) = 196884.

Lemma 3.4. The trace of z on B is 276.

Proof. Since x ∈ . \ {0}, (x, 0, 0) is orthogonal to all elements of the shape
(a, a, 0), (0, a, a), (a, a, 0) in S.

Moreover, (a + b + c, a + c, b + c) is orthogonal to (x, 0, 0) if and only if
〈x, c〉 = 0. Therefore, there are (24 − 1) × 24 × 24 × 3 vectors of the form
(a+b+c, a+c, b+c) in S 0 and 24 ×24 ×24 ×3 vectors in S1 that have minimal
weights 2. Thus, the trace of z on B is

(156 × 3 + (25 − 1)× 3 × 82 + (24 − 1)× 24 × 24 × 3 × 8)

− (24 × 24 × 24 × 3 × 8) = 276,

as desired.

Notation 3.5. Let x ∈. \{0} be as in Notation 3.1. Let A be an irreducible U -
module such that [A] = x ∈R(U) andM = A⊗U ⊗U. Then [M ] = (x, 0, 0)∈
R(U)3. Let V and z be as in Definition 3.2. Denote
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Ṽ = V z ⊕ (V z ×U3 M).

Then Ṽ is also a holomorphic framed VOA of central charge 24 [28].
Note also that

V z ×U3 M =
( ⊕

[W ]∈S 0

W

)
×U3 M =

⊕
[W ]∈S 0

(W ×U3 M) =
⊕

[W ]∈(x,0,0)+S 0

W.

Thus, we also have Ṽ = ⊕
[W ]∈S̃ W, where S̃ = S 0 ∪ ((x, 0, 0)+ S 0).

Lemma 3.6. Let Ṽ be defined as in Notation 3.5.

(i) dim(Ṽ1) = 24.
(ii) Ṽ contains a subVOA isomorphic to (VEE8)

3.

Proof. Let x ∈ . \ {0} be as in Notation 3.1. Since V1 = 0, we have (V z)1 = 0
and thus Ṽ1 < V

z ×U3 M = ⊕
[W ]∈(x,0,0)+S 0W.

By the definition of S (Notation 2.15), we know that (0, 0, 0), (x, x, 0),
(x, 0, x) ∈ S 0. Thus, we have (x, 0, 0), (0, x, 0), and (0, 0, x) in (x, 0, 0) + S 0

and they have minimal weight 1.
Now let (a + c, b + c, a + b + c), a, b ∈., c ∈/, be an element of S 0. If s =

(x, 0, 0)+ (a + c, b+ c, a + b+ c) = (x + a + c, b+ c, a + b+ c) has minimal
weight 1, then at least one of the coordinates must be zero; otherwise, the minimal
weight ≥ 3

2 . Since.∩/ = 0, we have c = 0 and s = (x + a, b, a+ b) for some
a, b ∈.. Since x + a, a, and a + b are singular and s has minimal weight 1, only
one coordinate is nonzero. Hence, (x, 0, 0), (0, x, 0), and (0, 0, x) are the only ele-
ments in (x, 0, 0)+S 0 that have minimal weight 1. Moreover, by Proposition 2.14,
dim(A⊗ U ⊗ U)1 = dim(U ⊗ A⊗ U)1 = dim(U ⊗ U ⊗ A)1 = 8. Hence, we
have dim Ṽ1 = 8 + 8 + 8 = 24.

Since Aut(V +
EE8
) acts transitively on nonzero singular vectors (by Proposi-

tion 2.14; see also [41]), we have V +
EE8

⊕ A ∼= V +
EE8

⊕V −
EE8

= VEE8 .

Now let S̃ ′ = span{(x, 0, 0), (0, x, 0), (0, 0, x)} < S̃. Then
⊕

[W ]∈S̃ ′ W is iso-
morphic to (VEE8)

3 and thus Ṽ contains (VEE8)
3 as a subVOA.

As a direct consequence, we have the following result.

Corollary 3.7. Ṽ ∼= V� and V z ∼= V +
� (see Definition 3.2 and Notation 3.5 ).

Proof. SinceVEE3
8

∼= (VEE8)
3 is a full subVOA of Ṽ, Ṽ is a direct sum of irreducible

VEE3
8
-modules. Thus, by [6], there exists an even lattice EE3

8 < L < (EE3
8)

∗

such that
Ṽ =

⊕
α+EE3

8∈L/(EE3
8 )

Vα+EE3
8
= M(1)⊗ C{L}.

Hence Ṽ is isomorphic to the latticeVOAVL [29]. Note thatVα+EE3
8
,α ∈L/(EE3

8),

are irreducible VEE3
8
-modules and that Ṽ is a direct sum of simple current mod-

ules of VEE3
8

[6]. Therefore, Ṽ ∼= VL also follows from the uniqueness of simple

current extensions [14].
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Recall that dim(VL)1 = rankL + |L(2)|, where L(2) = {α ∈ L | 〈α,α〉 = 2}
[17]. Thus L(2) = ∅ because rankL = 24 and dim(Ṽ1) = 24. Moreover, L is
unimodular since Ṽ is holomorphic [6]. Since the Leech lattice is the only even
unimodular lattice with no roots, L ∼= � and Ṽ ∼= V�.

Recall that Ṽ = V z ⊕ (V z ×U3 M) (Notation 3.5). We define an automor-
phism g on Ṽ by

g =
{

1 on V z,

−1 on V z ×U3 M.

Since V1 = 0, we have V z1 = 0 and Ṽ1 ⊂ V z ×U3 M. Therefore, g acts as −1 on
Ṽ1 and thus it is conjugate to the automorphism θ, a lift of the (−1)-isometry of�
by [9]. Hence, we have V z = Ṽ g ∼= V +

� as desired.

Let V − be the (−1)-eigenspace of z in V. Then V − = ⊕
[W ]∈S1W is a direct sum

of simple current modules of U 3. Since z acts trivially on U 3, U 3 ⊂ V z. Hence,
by [32, Thm. 5.4], for any irreducible V z-module X we have∑

W

NWV− X ≤ 1,

whereW runs through all isomorphism types of irreducible V z-modules. More-
over,V −×V z X  = 0 sinceV z is rational. ThusV − is also a simple current module
of V z.

Thus, by Theorem 2.11, we have the following.

Theorem 3.8. Let z be defined as in Definition 3.2. Then we have an exact
sequence

1 −→ 〈z〉 −→ CAut(V )(z)
η−→ Aut(V z) −→ 1

and CAut(V )(z) has the shape 2 · 224 Co1.

Proof. Let N be an irreducible V z-module. Since V is a framed VOA, it follows
from [28, Thm. 1] that the V z-module V ×V z N has a structure of an irreducible
V -module or an irreducible z-twisted V -module.

Thus, every irreducible module of V z can be embedded into V or the unique
irreducible z-twisted module of V. Note that V is holomorphic. Therefore, it has
only one irreducible module, namelyV and a unique z-twisted module, up to iso-
morphisms [12].

Note that V = V z ⊕V − and V ×U3 M = (V z ×U3 M)⊕ (V − ×U3 M) is the
unique z-twisted module [28], where M is defined as in Notation 3.5. Thus, V z

has exactly four inequivalent irreducible modules—namely, V z, V −, V z ×U3 M,
and V − ×U3 M. Since V1 = 0, it is clear that the minimal weight of V z and V −
are 0 and 2, respectively. On the other hand, the minimal weight of V z ×U3 M

is 1 and the weights of V − ×U3 M are in 1
2 + Z. Thus, g � V − ∼= V − for all g ∈

Aut(V z) since g � V − and V − have the same characters. The theorem now fol-
lows from Theorem 2.11 and the fact that Aut(V +

� )
∼= 224 Co1 [39].
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Notation 3.9. The group C is the group that is in the middle of the short exact
sequence of Theorem 3.8. It has the shape 21+24 Co1. (There are two 2-constrained
groups of the shape 21+24 Co1 [19].)

Remark 3.10. Recall from [7] that V +
� has exactly four inequivalent irreducible

modules—namely, V +
� , V −

� , V T,+� and V T,−� —and that their minimal weights are
0, 1, 2, and 3

2 , respectively. Since V z ∼= V +
� and V1 = 0, it is easy to see that V =

V z ⊕V − ∼= V +
� ⊕V T,+� as a V +

� -module.
We can furthermore say that V is isomorphic to the Frenkel–Lepowsky–Meur-

man Moonshine VOAV 5, by the uniqueness of simple current extensions [14; 24]
or by use of [27] or [10] since V is framed. If we wish to avoid quoting these re-
sults, then after we prove Theorem 4.25, we can claim the more modest result that
V has Moonshine type.

3.1. Conformal Vectors of Central Charge 1
2

Notation 3.11. We shall use cvcc 1
2 to mean simple conformal vectors of central

charge 1
2 .

Definition 3.12. For any α ∈�(4), define

ω±(α) = 1

16
α(−1)2 · 1 ± 1

4
(eα + e−α).

Then ω±(α) are cvcc 1
2 and we call them cvcc 1

2 of AA1-type.

Since V z ∼= V +
� , all cvcc 1

2 in the VOA V z are classified in [26]. There are exactly
two classes of cvcc 1

2 , AA1-type and EE8-type, up to the conjugacy of Aut(V +
� ).

Since � is generated by norm-4 vectors, it can be shown by [26, Prop. 3.2] that
Miyamoto involutions associated to AA1-type cvcc 1

2 generate a normal subgroup
H� ∼= Hom(�/2�, Z2) ∼= 224 in V +

� .

Notation 3.13. Let H� be the normal subgroup generated by AA1-type Miya-
moto involution in V +

� .

Next we shall show that η−1(H�) is an extra-special group of order 225. The fol-
lowing lemma can be proved easily by direct calculation.

Lemma 3.14. Let ωε1(α) and ωε2(β) be AA1-type cvcc 1
2 in V +

� , where α,β ∈
�(4). Then

〈ωε1(α),ωε2(β)〉 =
{ 1

27 (〈α,β〉)2 if α  = ±β,

1
4δε1,ε2 if α = ±β.

Notation 3.15. For a cvcc 1
2 e, we denote by t(e) the associated Miyamoto

involution [30].

By Lemma 3.14 and Sakuma’s theorem [36], we know that t(ωε1(α)) commutes
with t(ωε2(β)) unless 〈α,β〉 = ±1.
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Lemma 3.16. Let ωε1(α) and ωε2(β) be AA1-type cvcc 1
2 in V +

� , where α,β ∈
�(4). Then, as automorphisms of V,

(t(ωε1(α))t(ωε2(β)))2 =
{

1 if 〈α,β〉 is even,

z if 〈α,β〉 = ±1.

Note that 〈α,β〉  = ±3 since � has no roots.

Proof. Since t(ωε1(α))t(ωε2(β))t(ωε1(α)) = t(t(ωε1(α))ωε2(β)
)
, we have

t(ωε1(α))t(ωε2(β))t(ωε1(α)) =
{
t(ω−ε2(β)) if 〈α,β〉 = ±1,

t(ωε2(β)) if 〈α,β〉 is even.

Thus, we have (t(ωε1(α))t(ωε2(β)))2 = t(ω−ε2(β))t(ωε2(β)) = z by [26, Lem-
ma 5.14] if 〈α,β〉 = ±1 and (t(ωε1(α))t(ωε2(β)))2 = 1 if 〈α,β〉 is even.

As a corollary, we have the following statement.

Theorem 3.17. The Miyamoto involutions {t(ω±(α)) | α ∈ �(4)} generate a
subgroup isomorphic to 21+24 in Aut(V ) and thus CAut(V )(z) ∼= 21+24 Co1.

Proof. First we note that � is generated by norm-4 vectors. Moreover, �/2�
forms a nondegenerate quadratic space over Z2 that has the quadratic form
q(α + 2�) = 1

2 〈α,α〉 mod 2.
Let T be the subgroup of Aut(V ) generated by AA1-type Miyamoto involu-

tions. Then the restriction map η induces a group homomorphism η : T → H�
(3.13) and we have an exact sequence

1 −→ 〈z〉 −→ T
η−→ H� ∼= Hom(�/2�, Z2) −→ 1.

Recall that H� is generated by AA1-type Miyamoto involutions in Aut(V +
� ) (see

Notation 3.13). Moreover, by Lemma 3.16, we have

[t(ωε1(α)), t(ωε2(β))] = z〈α,β〉
and thus T = η−1(H�) ∼= 21+24. Note that z = t(ω+(α))t(ω−(α))∈ T.
Remark 3.18. Let ωε(α) be an AA1-type cvcc 1

2 inV +
� < V�. Then we may also

consider t(ωε(α)) as an automorphism of V�. In this case, t(ωε(α)) acts trivially
on the Heisenberg partM(1) and thus acts trivially on (V�)1 [26].

Recall Notation 3.13 and Theorem 3.17. Let H̃� < Aut(V�) be the group gen-
erated by {t(ω±(α)) | α ∈�(4)}. Then H̃� ∼= Hom(�, Z2) ∼= 224 and the restric-
tion map

g ∈ H̃� → g|V +
�
∈H� < Aut(V +

� )

is an isomorphism from H̃� to H� [26]. By the foregoing discussion, H̃� acts
trivially on (V�)1.

4. Analysis of the Finite Group Aut(V )

In Section 4.1 we prove that Aut(V ) is finite. This involves a discussion of framed
VOAs over both the real and complex field. Our approach is essentially the same as
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Miyamoto [35] but with simplifications and generalizations. In particular, Propo-
sition 4.14 is new. Then, in Section 4.2, we use finite group theory to complete
our analysis of Aut(V ).

4.1. Framed VOA over R

First, we recall some facts about framed VOA over R from [34; 35].

Notation 4.1. Let VirR = ⊕
n∈Z

RLn⊕Rc be the Virasoro algebra over R. For
c,h∈R, let L(c,h)R be the irreducible highest-weight module of VirR of highest
weight h and central charge c over R.

The following results can be found in [35].

Proposition 4.2 [35, Cor. 2.2, Cor. 2.3, Thm. 2.4]. L
(

1
2 , 0

)
R

is a rational VOA;
that is, all L

(
1
2 , 0

)
R

-modules are completely reducible. Moreover, L
(

1
2 , 0

)
R

has
only three inequivalent irreducible modules

(
namely, L

(
1
2 , 0

)
R

, L
(

1
2 , 1

2

)
R

, and
L

(
1
2 , 1

16

)
R

)
and L

(
1
2 ,h

) ∼= C ⊗ L(
1
2 ,h

)
R

for all h = 0, 1/2, or 1/16.

Lemma 4.3 [35, Lemma 2.5]. Let W be a VOA over R and let M1,M 2,M 3 be
W-modules. Then

dim

(
IW

(
M 3

M1 M 2

))
≤ dim

(
IC⊗W

(
C ⊗M 3

C ⊗M1
C ⊗M 2

))
.

Proposition 4.4 (cf. [35, (2.5), (2.6)]). For h1,h2,h3 ∈ {0,1/2,1/16}, we have

dim

(
IL( 1

2,0)
R

(
L

(
1
2 ,h3

)
R

L
(

1
2 ,h1

)
R
L

(
1
2 ,h2

)
R

))

= dim

(
I
L( 1

2,0)

(
L

(
1
2 ,h3

)
L

(
1
2 ,h1

)
L

(
1
2 ,h2

)))
.

In particular, the fusion rules for L
(

1
2 , 0

)
R

over R are exactly the same as the
fusion rules for L

(
1
2 , 0

)
over C.

Definition 4.5. A simple VOAW over R is framed if it contains a full subVOA

T isomorphic to L
(

1
2 , 0

)n
R
.

Notation 4.6. For any α = (α1, . . . ,αn)∈ {0,1}n and an even binary linear code
E, we defineMα

R
= ⊗n

i=1L
(

1
2 , αi2

)
R

andME,R = ⊕
α∈E M

α
R
.

Unlike the complex case, a simple current extension over R is no longer unique
and there is more than one VOA structure on ME,R (see e.g. [35]). Nevertheless,
the following propositions hold.

Proposition 4.7 [35, Prop. 3.5]. Let E be an even linear binary code. Then
ME,R has a unique VOA structure over R such that the invariant form onME,R is
positive definite.

Proposition 4.8. LetW be a framed VOA over R such that its invariant form is
positive definite. Then there exist two binary codesE andD such thatD < E⊥ and
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W =
⊕
β∈D

Wβ,

where W 0 ∼= ME,R and, for each β ∈D, Wβ is an irreducible ME-module with
the 1/16-word β. The 1/16-word for an irreducibleME,R-module is defined as in
the complex case [33].

Corollary 4.9. LetW be a framed VOA over R such that its invariant form is
positive definite. ThenW is finitely generated as a VOA.

Proof. By Proposition 4.8,W contains a subVOAW 0 ∼= ME,R and W is a direct
sum of finitely many irreducibleW 0-modules.

It is clear that M 0 = ⊗n
i=1L

(
1
2 , 0

)
R

is generated by n cvcc 1
2 . Since W 0 ∼=

ME,R is direct sum of finitely many irreducible M 0-modules,W 0 is finitely gen-
erated. Moreover, W is a direct sum of finitely many W 0-irreducible modules.
HenceW is finitely generated.

Notation 4.10. LetW be a framed VOA with a positive definite invariant form
over R and let T ∼= L(

1
2 , 0

)n
R

be a Virasoro frame. Denote

StabAut(W )(T ) = {g ∈Aut(W ) | g(T ) = T },
Stabpt

Aut(W )(T ) = {g ∈Aut(W ) | g(v) = v for all v ∈ T }.

SinceL
(

1
2 , 0

)
andL

(
1
2 , 0

)
R

have the same fusion rules, the following can be proved
by the same argument as in the complex case.

Proposition 4.11 [9; 28]. Let W be a framed VOA with a positive definite in-
variant form over R. Then:

(i) Stabpt
Aut(W )(T ) is a finite 2-group;

(ii) Stabpt
Aut(W )(T ) is normal in StabAut(W )(T ), and StabAut(W )(T )/Stabpt

Aut(W )(T )

is isomorphic to a subgroup of Aut(D).

In particular, StabAut(W )(T ) is a finite group.

Lemma 4.12 [33, Thm. 5.1]. LetW be a CFT-type VOA over R. SupposeW1 =
0 and the invariant form on W is positive definite. Then, for any pair of distinct
cvcc 1

2 e and f inW, we have

0 ≤ 〈e, f 〉 ≤ 1

12
.

In particular,W has only finitely many cvcc 1
2 .

Proposition 4.13 (cf. [35]). Let W be a framed VOA over R. Suppose the in-
variant form onW is positive definite and W1 = 0. Then Aut(W ) is a finite group.

Proof. By Lemma 4.12, W has only finitely many cvcc 1
2 and thus W has only

finitely many Virasoro frames. By Proposition 4.11 (see also [9]), the stabilizer of
a Virasoro frame is a finite group. Hence Aut(W ) is finite.
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Proposition 4.14. Let W be a finitely generated VOA over R. Suppose that
Aut(W ) is finite. Then Aut(C ⊗RW) is a finite group.

Proof. In this proof, ⊗ means ⊗R. There is a semilinear automorphism, denoted
γ, on C ⊗W that fixes R ⊗W and is −1 on R

√−1⊗W.
From [8], Aut(C ⊗W) is a finite-dimensional algebraic group, and the fixed

point subgroup for the action of γ on it is finite by Proposition 4.13. Its correspond-
ing action on DerC(C ⊗W), the complex Lie algebra of derivations, is therefore
fixed point free and so the action is −1. In fact, we note that the (−1)-eigenspace
of γ on EndC(C⊗W)may be identified with the real subspace R

√−1⊗End(W )
of C⊗End(W ) ∼= EndC(C⊗W). Since this real subspace contains no nontrivial
complex subspaces, we conclude that DerC(C⊗W) = 0. It follows that the alge-
braic group Aut(C ⊗W) is 0-dimensional and therefore is finite.

Corollary 4.15. Suppose that W is a framed VOA over R, W1 = 0, and the
invariant form onW is positive definite. Then Aut(C ⊗R W) is a finite group.

Proof. This follows from Propositions 4.13 and 4.14.

Definition 4.16. A real form of a complex VOA V is a real subspaceW that is
closed under the VOA operations and such that a real basis for W is a complex
basis for V. Given a real formW of V, a real form of a V -moduleM is a real sub-
space N that is closed under action by W and such that a real basis for N is a
complex basis for M. We say that N is a real form of M with respect to the real
formW of V.

Next we shall show that the VOA V constructed in Theorem 2.18 has a real form
with a positive definite invariant form.

First we recall that the lattice VOA constructed in [17] can be defined over R.

LetVL,R = S(Ĥ −
R
)⊗R{L} be the real-lattice VOA associated to an even positive

definite lattice, where H = R ⊗Z L and Ĥ − = ⊕
n∈Z+ H ⊗ Rt−n. As usual, we

use x(−n) to denote x ⊗ t−n for x ∈H and n∈Z
+.

Notation 4.17. Let θ : VL,R → VL,R be defined by

θ(x(−n1) · · · x(−nk)⊗ eα) = (−1)kx(−n1) · · · x(−nk)⊗ e−α.
Then θ is an automorphism of VL,R, which is a lift of the (−1)-isometry of L [17].
We shall denote the (±1)-eigenspaces of θ on VL,R by V ±

L,R
.

The following result is well known [17; 35].

Proposition 4.18 (cf. [35, Prop. 2.7]). Let L be an even positive definite lat-
tice. Then the real subspace ṼL,R = V +

L,R
⊕ √−1V −

L,R
is a real form of VL.

Furthermore, the invariant form on ṼL,R is positive definite.

Notation 4.19. Let UR = V +
EE8,R

be a real form of U. Since all cvcc 1
2 in U are

contained in V +
EE8,R

[15; 22], UR is a real framed VOA. In fact, UR
∼= MRM(2,4),R

(see Notation 4.6) since V +
EE8

∼= MRM(2,4), where RM(2, 4) is the second-order
Reed–Muller code of degree 4.
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Lemma 4.20 [35, Lemma 3.10]. Let E be an even binary code. Let X be an
irreducibleME,R-module. Then C ⊗X is an irreducibleME-module.

Lemma 4.21. LetM be an irreducible module ofU over C. Suppose [M ]∈R(U)
is a nonzero singular element. ThenM has a positive definite real form.

Proof. Since Aut(V +
EE8
) acts transitively on nonzero singular vectors (Proposi-

tion 2.14; see also [41]), there is a g ∈ Aut(U) such that M ∼= g � V −
EE8
. Recall

from [22] that Aut(U) is generated by σ -involutions associated to cvcc 1
2 and that

all cvcc 1
2 ∈ U are contained in UR. Therefore, g keeps UR invariant and also de-

fines an automorphism on UR.

By Proposition 4.18, the invariant form on ṼEE8,R = UR ⊕ (
R
√−1⊗V −

EE8,R

)
is

positive definite. SetW = R
√−1 ⊗ V −

EE8,R
. Then UR ⊕ (g �W) ∼= ṼEE8,R also

has a positive definite invariant form. Moreover, C ⊗ (g �W) ∼= g �V −
EE8

∼= M.
Thus, g �W is a positive definite real form ofM.

Notation 4.22. Let ., /, and S be as in Notation 2.15. Then

V(.) =
⊕

[M ]∈.
M ∼= VE8 .

By Proposition 4.18, V(.) has a positive definite real formW ∼= ṼE8,R. ThenW is
a direct sum of irreducible UR-modules. Let X be an irreducible UR-submodule
ofW. Then, C ⊗X is an irreducible U -module by Lemma 4.20. Since C ⊗W =
V(.), [C⊗X] = a for some a ∈.. Hence, for each a ∈., there exists a realUR-
moduleMa such that a = [C ⊗Ma] and

⊕
a∈.Ma ∼= ṼE8,R. Similarly, for each

b ∈/, there exists a real submoduleNb such that b = [C⊗Wb] and
⊕

a∈/ N b ∼=
ṼE8,R.

Recall that a general element in S has the form (a + b + c, a + c, b + c) for
some a, b ∈ . and c ∈ / (cf. Notation 2.15 and Lemma 2.17). For any s =
(a + b + c, a + c, b + c)∈ S, we define

Ws := (Ma+b ×UR
Nc)⊗ (Ma ×UR

Nc)⊗ (Mb ×UR
Nc)

as a (UR)
3-module. Note thatW 0 ∼= (UR)

3.

Theorem 4.23. Let V be the framed VOA constructed in Theorem 2.18. Then V
has a real formW such that the invariant form onW is positive definite and W is
framed. Thus, Aut(V ) is finite by Corollary 4.15.

Proof. LetWs, s ∈ S, be defined as in Notation 4.22. We shall show thatW =⊕
s∈S W

s has a real VOA structure such that the invariant form onW is positive
definite.

By Lemma 4.3, we know that allWs, s ∈ S, are simple current modules of (UR)
3.

Thus, by [35, Thm. 5.25], it suffices to show
⊕

s∈T W
s has a real VOA structure

with a positive definite invariant form for any 2-dimensional subspace T of S.
Let (a + b+ c, a + c, b+ c) and (a ′ + b ′ + c ′, a ′ + c ′, b ′ + c ′) be a basis of T ,

where a, b, a ′, b ′ ∈. and c, c ′ ∈/. Take 0  = x ∈. such that x is orthogonal to
c, c ′. Then as in Definition 3.2, we define z ′ onW by
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z ′ =
{

1 on Ws if 〈s, (x, 0, 0)〉 = 0,

−1 on Ws if 〈s, (x, 0, 0)〉 = 1.
Then, by the same argument as in Corollary 3.7, one can show that the fixed point
subspaceWz can be embedded into V +

�,R
, which has a real VOA structure with a

positive definite invariant form.
Since T is orthogonal to (x, 0, 0), we have

⊕
s∈T W

s <Wz and
⊕

s∈T W
s has

a real VOA structure with a positive definite invariant form.

4.2. Aut(V ) Is of Monster Type

Proposition 4.24. Let H be a finite group containing an involution z such that
CH(z) ∼= C, the group of Notation 3.9. Then:

(i) H = O2′(H )C; or
(ii) H is a simple group of order 246320597611213317·19·23·39·31·41·47·59·71.

Proof [46]. A similar conclusion was obtained in [42] under the additional as-
sumption that z is conjugate in H to an element of O2(C) \ {z}. That fusion
assumption was verified in the situation of [21]. For completeness, we give a ver-
ification of this fusion result for H = Aut(V ) in the Appendix.

Theorem 4.25. (i) Aut(V ) is a finite simple group.
(ii) |Aut(V )| = 246320597611213317 ·19 · 23 · 39 · 31 · 41 · 47 · 59 · 71.

Proof. By Theorem 4.23, Aut(V ) is a finite group. By Theorem 3.8, CAut(V )(z) =
C. By Proposition 2.22, C is a proper subgroup of Aut(V ).

To prove (i), we quote Proposition 4.24 or [46]. Observe that the structure of the
group in Proposition 2.22 shows that 31 divides the order of Aut(V )/O2′(Aut(V ),
whence the alternative (i) of Proposition 4.24 does not apply here.

For (ii), use Proposition 4.24 or [23].

Remark 4.26. (i) So far, determinations of the group order still depend on [42]
or [23].

(ii) Our VOA construction of the Monster has an easy proof of finiteness (see
Lemma 4.12), whereas proof of finiteness in [21] was more troublesome. A short
proof of finiteness, using the theory of algebraic groups, is given in [46].

Corollary 4.27. The VOA V (Notation 2.20), defined by Shimakura [41], is of
Moonshine type (see the Introduction for the definition).

Appendix: A Fusion Result

The following is relevant to the alternate argument for Proposition 4.24 and in fact
proves more about fusion. It could be of some independent interest.

Lemma A.1. The involution z is conjugate in Aut(V ) to elements of O2(C)\ 〈z〉
and to elements of C \O2(C).

Proof. We see this by examination of the group in Proposition 2.22.
Let x ∈ ., S 0, S1, and z ∈ Aut(V ) be defined as in Notation 3.1 and Defini-

tion 3.2. Without loss of generality, we may assume x = [V −
EE8

].
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Recall the bilinear form on R(U) from [39] for which

〈[V ±
α/2+EE8

], [V ±
β/2+EE8

]〉 =
〈
α,
β

2

〉
mod 2,

〈[V −
EE8

], [(V
Tχ
EE8
)±]〉 = 1,

(4)

where α,β ∈EE8 and V
Tχ
EE8

is an irreducible twisted module VEE8 for some char-
acter χ of EE∗

8/EE8.

Let p1 : R(U)3 → R(U) be the natural projection to the first component. Then,
for any s ∈ S 0, 〈p1(s), x〉 = 0 and by (4) we have p1(s) = [V εβ/2+EE8

] for some
β ∈EE8.

Let x ′ ∈. with x ′  = x. Then, as in (3.2), we can define an automorphism z ′ by

z ′ =
{

1 on W if [W ]∈ S, 〈[W ], (x ′, 0, 0)〉 = 0,

−1 on W if [W ]∈ S, 〈[W ], (x ′, 0, 0)〉 = 1.

Again we may assume x ′ = [V εα/2+EE8
] for some α ∈ EE8 and ε = + or −.

Then z ′ acts on V z = ⊕
[W ]∈S 0W, and by (4) we have

z ′|V z = (−1)〈α,β/2〉 on W with p1([W ]) = [V ±
β/2+EE8

].

Thus, z ′|V z ∈H� and z ′ ∈O2(C), where H� is defined as in Notation 3.13.
By the same argument as in Lemma 3.6 and Corollary 3.7, we also have V z

′ ∼=
V +
� . Thus, by the uniqueness of simple current extensions, there exists an auto-

morphism g that maps V z to V z
′
and hence z ′ = gzg−1.

Next we shall show that z is conjugate to an element in C \O2(C). Let y ∈/
such that 〈x, y〉 = 1. Define zy by

zy =
{

1 on W if [W ]∈ S, 〈[W ], (y, 0, 0)〉 = 0,

−1 on W if [W ]∈ S, 〈[W ], (y, 0, 0)〉 = 1.

Then we again have V zy ∼= V +
� and zy is conjugate to z in Aut(V ). Note that zy

also acts on Ṽ = V z ⊕ (V z ×U3 M) ∼= V� (see Notation 3.5).
Since 〈x, y〉 = 1, it follows that zy acts as −1 on M and thus acts nontrivially

on Ṽ1. By Remark 3.18, zy /∈ H̃� and thus zy |V z /∈H�. Therefore, zy ∈C \O2(C)

as desired.
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