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Discrepancies of Non-Q-Gorenstein Varieties

Stefano Urbinati

1. Introduction

The aim of this paper is to investigate some surprising features of singularities
of normal varieties in the non-Q-Gorenstein case as defined by de Fernex and
Hacon [dFH]. In that paper the authors focus on the difficulties of extending some
invariants of singularities when the canonical divisor is not Q-Cartier. Instead
of the classical approach—-in which we modify the canonical divisor by adding
a boundary, an effective Q-divisor � such that KX + � is Q-Cartier—they in-
troduce a notion of pullback of (Weil) Q-divisors that agrees with the usual one
for Q-Cartier Q-divisors. In this way, for any birational morphism of normal
varieties f : Y → X, they are able to define relative canonical divisors KY/X =
KY + f ∗(−KX) and K−Y/X = KY − f ∗(KX). The two definitions coincide when
KX is Q-Cartier; using KY/X and K−Y/X, de Fernex and Hacon extended the defi-
nitions of canonical singularities, klt singularities, and multiplier ideal sheaves to
this more general context.

In this setting, some of the properties characterizing the usual notions of singu-
larity (see [KoMo, Sec. 2.3]) seem to fail owing to the asymptotic nature of the
definitions of the canonical divisors.

We focus on three properties that for Q-Gorenstein varieties are straightforward.

• The relative canonical divisor always has rational valuations (cf. [Ko2,Thm. 92]).
• A canonical variety is always kawamata log terminal (klt; cf. [KoMo, Def. 2.34]).
• The jumping numbers are a set of rational numbers that have no accumulation

points (cf. [L2, Lemma 9.3.21]).

In this paper we investigate these properties for non-Q-Gorenstein varieties. Sec-
tion 2 is devoted to recalling the necessary definitions.

In Section 3, we show that if X is klt in the sense of [dFH] then the relative
canonical divisor has rational valuations. We also give an example of a (non-klt)
variety X with an irrational valuation and then use it to find an irrational jumping
number (Theorem 3.6).

In Section 4 we give an example of a variety with canonical but not klt singulari-
ties (Theorem 4.1), and we prove that the finite generation of the canonical ring im-
plies that the relative canonical model has canonical singularities (Proposition 4.4).
Finally, in Section 5 we use one of the main results in [dFH]—namely, that every
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effective pair (X,Z) admits m-compatible boundaries for m ≥ 2 (see Theo-
rem 2.10)—we show that, for a normal variety whose singularities are either klt or
isolated, it is never possible to have accumulation points for the jumping numbers
(Theorem 5.2).
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2. Basic Definitions

The following notation and definitions are taken from [dFH].

Notation 2.1. Throughout this paper, X will be a normal variety over the com-
plex numbers.

Let us denote by v = valF a divisorial valuation on X with respect to the prime
divisor F over X. Given a proper closed subscheme Z ⊂ X, we define v(Z) as

v(Z) = v(IZ) := min{v(φ) | φ ∈ IZ(U), U ∩ cX(v) �= ∅};
here IZ ⊂ OZ is the ideal sheaf of Z. The definition extends to R-linear combi-
nations of proper closed subschemes. The same definition works in a natural way
for linear combinations of fractional ideal sheaves.

To any fractional ideal sheaf I on X we associate the divisor

div(I ) :=
∑
E⊂X

valE(I ) · E,

where the sum is over all prime divisors E on X and where valE denotes the divi-
sorial valuation with respect to E.

Definition 2.2. Let X be as in Notation 2.1. The �-valuation (or natural valua-
tion) along a valuation v of a divisor F on X is

v�(F ) := v(OX(−F)).
Let D be a Q-divisor on X. Then the valuation along v of D is

v(D) := lim
k→∞

v�(k!D)

k!
= inf

k≥1

v�(kD)

k
∈R.

Notation 2.3. Let X be as in Notation 2.1. Let us consider a projective bira-
tional morphism f : Y → X from a normal variety Y.

We have the following definitions.

Definition 2.4. Using Notation 2.3, for any divisor D on X we define the
�-pullback of D to Y to be
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f �D = div(OX(−D) ·OY ).

This is the natural choice for obtaining a reflexive sheaf,

OY (−f �D) = (OX(−D) ·OY )
∨∨.

We also need a good definition of pullback of D to Y that coincides with the
classical one when we restrict to nonsingular varieties. We have

f ∗D :=
∑

valE(D) · E,

where the sum is taken over all the prime divisors E on Y.

We now give the main definitions that characterize multiplier ideal sheaves.

Definition 2.5. Let f : Y → X be as in Notation 2.3. Then, for every m ≥ 1,
the mth limiting relative canonical Q-divisor Km,Y/X of Y over X is

Km,Y/X := KY − 1

m
· f �(mKX).

The relative canonical R-divisor KY/X of Y over X is

KY/X := KY + f ∗(−KX).

In particular, Km,Y/X ≤ Kmq,Y/X ≤ KY/X. Also, taking the limsup of the coef-
ficients of the components of the Q-divisor Km,Y/X, one obtains the R-divisor
K−Y/X := KY − f ∗KX, which satisfies K−Y/X ≤ KY/X (the two divisors coincide if
X is Q-Gorenstein—i.e., if KX is Q-Cartier).

Recall that an effective Q-divisor� is a boundary onX ifKX+� is a Q-Cartier
Q-divisor.

Definition 2.6. Let f : Y → X as in Notation 2.3, let � be a boundary on X

such that KX+� is Q-Cartier, and let �Y be the proper transform of � on Y. The
log relative canonical Q-divisor of (Y,�Y ) over (X,�) is then given by

K�
Y/X := KY +�Y − f ∗(KX +�) = KY +�Y + f ∗(−KX −�).

In particular, for every boundary � on X and every m ≥ 1 such that m(KX +�)

is Cartier, we have

Km,Y/X = K�
Y/X −

1

m
· f �(−m�)−�Y and KY/X = K�

Y/X + f ∗�−�Y .

Observe that K�
Y/X ≤ Km,Y/X ≤ K−Y/X.

Definition 2.7. Consider a pair (X, I ), where X is a normal quasi-projective
variety and I = ∑

ak Ik is a formal R-linear combination of nonzero fractional
ideal sheaves on X. Let us denote by Z = ∑

akZk the associated subscheme,
where Zk is the subscheme generated by Ik.

We define a log resolution of this pair as a proper birational morphismf : Y →X,
where Y is a smooth variety, such that for every k the following statements hold.
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• The sheaf Ik ·OY is an invertible sheaf corresponding to a divisor Ek on Y.
• The exceptional locus Ex(f ) is a divisor.
• The union of the supports of Ek and Ex(f ) has simple normal crossing.

If � is a boundary on X, then a log resolution for ((X,�); I ) is given by a res-
olution of (X, I ) such that Ex(f ), E, and Supp f ∗(KX+�) are divisors and their
union Ex(f ) ∪ E ∪ Supp f ∗(KX +�) has simple normal crossings.

Definition 2.8. Let (X,Z) be as in Definition 2.7. Let f : Y → X be a log
resolution with Y normal, and let F denote a prime divisor on Y. For any integer
m ≥ 1, we define the mth limiting log discrepancy of (X,Z) along F to be

am,F (X;Z) := ordF (Km,Y/X)+ 1− valF (Z).

Definition 2.9. With notation as before, the pair (X,Z) is said to be log termi-
nal if there is an integer m0 such that am0,F (X,Z) > 0 for every prime divisor F
over X.

We say that an effective pair is klt if and only if there exists a boundary � such
that ((X,�);Z) is kawamata log terminal in the usual sense.

In particular, the notions of log terminal and klt are equivalent because of the fol-
lowing theorem (cf. [dFH, Thm. 5.4]).

Theorem 2.10. Every effective pair (X,Z) admitsm-compatible boundaries for
m ≥ 2, where a boundary � is said to be m-compatible if :

(i) m� is integral and ��� = 0;
(ii) no component of � is contained in the support of Z;

(iii) f is a log resolution for the log pair ((X,�);Z +OX(−mKX)); and
(iv) K�

Y/X = Km,Y/X.

Notation 2.11. Given this theorem and the notation generally used in the liter-
ature, from now on we will abuse that notation and say that a normal variety X is
klt whenever it is log terminal according to Definition 2.9. A pair (X,�) will be
klt in the usual sense.

Remark 2.12. Since K�
Y/X ≤ K−Y/X, by Theorem 2.10 and Definition 2.2 we have

valF (K
−
Y/X) = sup{ordF (K

�
Y/X) | (X,�) is a log pair}.

Note that, because we are considering a limit, there may be irrational valuations.

Definition 2.13. Let X be as in Notation 2.1. Let X ′ → X be a proper bira-
tional morphism with X ′ normal, and let F be a prime divisor on X ′. The log
discrepancy of a prime divisor F over X with respect to (X,Z) is

aF (X,Z) := ordF (KX ′/X)+ 1− valF (Z).

Using the notation in Definition 2.7, the pair (X,Z) is said to be canonical (resp.
terminal ) if aF (X,Z) ≥ 1 (resp. > 1) for every exceptional prime divisor F
over X.
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Recall that, by [dFH, Prop. 8.2], a normal variety X is canonical if and only
if, for sufficiently divisible m ≥ 1 and for every sufficiently high log resolution
f : Y →X of (X, OX(mKX)), there is an inclusion

OY ·OX(mKX) ↪→ OY (mKY ).

We have the following useful lemma.

Lemma 2.14. Using Notation 2.1, let f : Y → X be a proper birational mor-
phism such that Y is canonical. If OY ·OX(mKX) ↪→ OY (mKY ) for sufficiently
divisible m ≥ 1, then X is canonical.

Proof. Let g : Y ′ → X be a log resolution of (X, OX(mKX)). Without loss of gen-
erality, we can assume that g factors through f so that we have h : Y ′ → Y with
g = f � h. In particular,

OY ′ ·OX(mKX) ↪→ OY ′ ·OY (mKY ) ↪→ OY ′(mK
′
Y ),

where the first inclusion is given by assumption and the second by Y being
canonical.

3. Irrational Valuations

Given a Weil R-divisor D on a normal variety X, we define the corresponding di-
visorial ring as

RX(D) :=
⊕
m≥0

OX(mD).

Remark 3.1. IfX is klt as in Notation 2.11, then there exists a� such that (X,�)
is klt in the usual sense (cf. Theorem 2.10). By [Ko2, Thm. 92], RX(D) is finitely
generated if and only if D is a Q-divisor.

Proposition 3.2. If a normal variety X is klt then, for any prime divisor F over
X, the valuation valF (K

−
Y/X) is rational; here f : Y → X is a projective birational

morphism such that F is a divisor on Y.

Proof. By Remark 4.4 and [G, Lemma 2.1.6] we know that RX(m0KX) is gener-
ated by OX(m0KX) over OX for somem0 > 0. It follows thatK−Y/X = Km0,Y/X and
hence valF (K

−
Y/X) = valF (Km0,Y/X), which is a rational number (Remark 2.12).

Next we will construct an example of a threefold whose relative canonical divisor
K−Y/X has an irrational valuation. The example is given by the resolution of a cone
singularity over an abelian surface.

Let us consider the abelian surface X = E × E, where E is an elliptic curve.
For this surface we have that NE(X) = Nef(X) ⊂ N1(X), where N1(X) is gen-
erated by the classes

f1 = [{P } × E ], f2 = [E × {P }], δ = [�].

The intersection numbers are given by
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((f1)
2) = ((f2)

2) = (δ2) = 0 and (f1.f2) = (f1.δ) = (f2.δ) = 1.

Let the class α = xf1 + yf2 + zδ; then α is numerically effective (nef ) if and
only if

xy + xz+ yz ≥ 0 and x + y + z ≥ 0,

so we obtain that Nef(X) is a circular cone (cf. [Ko1, Chap. II, Exm. 4.16]).
Next, we consider a double covering of this surface ramified over a general very

ample divisor H ∈ |2L |, where L is an ample line bundle. This cover is given
byW = SpecX(OX ⊕L ∨) with projection p : W → X induced by the inclusion
i : OX ↪→ OX ⊕L ∨. In particular,

ωW = p∗(ωX ⊗L ).

There is an induced involution σ : W → W. For any Cartier divisor D on W,
D + σ ∗(D) is the pullback of a Cartier divisor on X. Since H ∈ |2L | is general,
the pullbacks of the generators p∗fi and p∗δ are irreducible curves on W. Since
the map is finite, the pullback of an ample divisor (resp. nef, effective) on X is
ample (resp. nef, effective) onW.

It is easy to see that the map induced at the level of conesp∗ : NE(X)→ NE(W )

is well-defined and injective and that

p∗ NE(X) = NE(W ) ∩ p∗ N1(X).

Let us now consider any ample divisor L on X such that p∗L defines an embed-
dingW ⊂ P n. LetC ⊂ P n+1 be the projective cone overW. We want to investigate
the properties of the relative canonical divisor.

Theorem 3.3. Given the construction just described, if H ∼ 6(f1 + f2),
L ∼ (3f1 + 6f2 + 6δ), and f : Y → C is the blowup of the cone at the vertex,
then the relative canonical divisor K−Y/X has an irrational valuation.

Proof. We know that p∗L defines an embedding; in fact,

p∗p∗L ∼= L⊗ (OX ⊕L ∨) = L⊕ (L⊗L ∨) ∼ (3f1+ 6f2 + 6δ)⊕ (3f2 + 6δ)

is a sum of very ample divisors. Since f : Y → C is the blowup at the vertex, it fol-
lows that Y is isomorphic to the projective space bundle P(OW ⊕OW(p

∗L)) with
the natural projection π : Y → W. If we denote by W0 the negative section, then
OW0(W0) ∼= OW(−p∗L). Let us also denote byW∞ ∼W0+π∗p∗L the section at
infinity. The canonical divisor KY is given by KY ∼ π∗KW − 2W0 + π∗(−p∗L).
Remark 3.3.1. Recall that we have an isomorphism ClW ∼= ClC defined by the
map that associates to a divisor D ⊂W the cone over D, CD ⊂ C. A divisor CD
is R-Cartier if and only if D ∼R kp∗L for k ∈R.

We have that KC = f∗KY = CKW
−C(p∗L) and Ck(p∗L) is an R-Cartier divisor on

C such that f ∗(Ck(p∗L)) = π∗(k(p∗L))+ kW0. Let . be a boundary on C. Then
. ≡ C� and, sinceKC+. is Q-Cartier, we haveKC+C� = CKW

−C(p∗L)+C� ≡
Ck(p∗L) for some k ∈Q. In particular, given s = k + 1, we have s(p∗L)−KW ≡
� ≥ 0. Therefore,
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� ≡ s(p∗L)−KW ≡ s(p∗L)− 1

2
p∗H

≡ p∗
(
s(3f1+ 6f2 + 6δ)− 1

2
(6f1+ 6f2)

)
.

By Remark 2.12, we have

valW0(K
−
Y/C) = sup{ordW0(K

.
Y/C) | (C,.) is a log pair}

≥ sup{ordW0(K
C�
Y/C) | (C,C�) is a log pair}.

Note that

K.
Y/C ≡ KY + f −1

∗ . − f ∗(KC + .)

≡ KY + f −1
∗ . − f ∗(CKW

− C(p∗L) + .)

≡ π∗KW − 2W0 + π∗(−p∗L)+ f −1
∗ .

− π∗(KW − p∗L+�)− (s − 1)W0

≡ −(s + 1)W0 + f −1
∗ . − π∗�.

In particular, KC�
Y/C = −(s + 1)W0. So if we let

t = inf{s ∈R | ∃� ≥ 0, KW +� ≡ s(p∗L)},
then

valW0(K
−
Y/C) ≥ −(1+ t).

Remark 3.3.2. Note that � is ample if s > t; in particular, it is always possible
to choose � = A/m for A a smooth and very ample Cartier divisor.

Claim 3.3.3. valW0(K
−
Y/C) = −(1+ t).

Proof. Let us consider any effective boundary . ≥ 0. It suffices to show that,
in the previous construction, it is always possible to choose a boundary � ≡
s(p∗L) − KW ⊆ W such that ordW0 K

.
Y/C = ordW0 K

C�
Y/C. If f ∗(KC + .) =

KY + f −1∗ . + kW0, let � = f −1∗ .|W0 ≥ 0. Note that

� = f −1
∗ .|W0 ≡ −(KY + kW0)|W0 ≡ −KW + (k − 1)p∗L.

By what we have already seen (with s = k − 1), KC�
Y/C = −kW0. Hence

ordW0 K
.
Y/C = ordW0 K

C�
Y/C.

We now return to the proof of Theorem 3.3.
Since p∗ NE(X) = NE(W ) ∩ p∗ N1(X) and � ≥ 0, it follows that the sum of

the coefficients of p∗(f1), p∗(f2), and p∗δ must be positive and so s ≥ 2
5 . Again,

because of the isomorphism of cones just described, we have that � is effective if
and only if it is nef:

�2

4
= 9(8s2 − 7s + 1) ≥ 0 ⇐⇒ s ≥ 7+√17

16

(
>

2

5

)
.
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Thus we obtain the following irrational valuation of the relative canonical divisor:

valW0(K
−
Y/C) = −

23+√17

16
.

Using the result of Theorem 3.3, we now give an example of an irrational jump-
ing number. The definitions of multiplier ideal sheaf and jumping numbers given
here follow those in [dFH].

Definition 3.4. As in Definition 2.7, let (X,Z) be an effective pair. The mul-
tiplier ideal sheaf of (X,Z), denoted by I(X,Z), is the unique maximal element
of {Im(X,Z)}m≥1, where

Im(X,Z) := fm∗OYm(#Km,Ym/X − f −1
m (Z)$)

for fm : Ym→ X a log resolution of the pair (X,Z +OX(−mKX)).

Definition 3.5. A number µ ∈ R>0 is a jumping number of an effective pair
(X,Z) if I(X, λ · Z) �= I(X,µ · Z) for all 0 ≤ λ < µ.

A relevant feature of the jumping numbers in the Q-Gorenstein case is that they
are always rational.

Theorem 3.6. With the same construction as in Theorem 3.3, there exist irra-
tional jumping numbers for the pair (C,P), where P is the vertex of the projective
cone.

Proof. We are considering Z = P ⊂ C the vertex of the projective cone. Let
us denote by BlP C := f : Y → C the blowup of the vertex; then we have that
f −1(k · Z) = k ·W0. By Theorem 2.10, for every m ≥ 1 there exists an m-
compatible boundary .m such that Km,Y/X = K

.m
Y/X and, in particular, Im(X,Z) =

I((X,.m);Z); hence

I(X, k · Z) =
⋃
m

Im(X, k · Z) =
⋃
.m

I((X,.m); k · Z).

Also, by Remark 3.3.2, the blowup is a log resolution of ((X,.m);Z) for every
m ≥ 1 and so

I((X,.m); k · Z) = f∗OY (#K.m
Y/X − k ·W0$).

We can therefore compute the jumping numbers simply by considering the log
resolution given by the blowup Y → C, and thus we have

I(X, k · Z) =
⋃
.m

f∗OY (#K.m
Y/X − k ·W0$).

Since valW0(K
−
Y/X) = − 23+√17

16 , the jumping numbers are of the form k =
t − 23+√17

16 for t any integer ≥ 1.
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4. Canonical Singularities

We begin by giving an example of a canonical singularity that is not klt.
Let us consider a construction similar to the one in the previous section. Let

S = P1× E , where E is an elliptic curve. The canonical sheaf is then

ωS ∼ OP1(−2)� OE .

Let A be an ample line bundle on E , and consider the embedding S ⊆ P n given
by the very ample divisor L = OP1(2) � A ⊗2. Let C ⊆ P n+1 be the projective
cone over S.

Theorem 4.1. With the construction just described, the singularity of C at its
vertex is canonical but not klt.

Proof. Using the same computation as in Theorem 3.3, let f : Y → C be the
blowup of the cone at the origin P, let π : Y → S be the natural projection, and
denote by S0 the negative section. The canonical divisor KY is given by KY ∼
π∗(KS)−2S0+π∗(−L). Let us compute s in this case. We have� ≡ sL−KS ∼
OP1(2s + 2) � A ⊗2s. In particular, � is effective if and only if s > 0. Hence
we have

valS0(K
−
Y/C) = −1.

In particular, C is not klt.
We will use a similar computation to show that C has canonical singularities.

The relative canonical divisor used to characterize such singularities is KY/X =
KY + f ∗(−KX); by the notion of pullback given in Definition 2.4, this divisor is
given by an approximation of the form

K+m,Y/X = KY + 1

m
f �(−mKX).

In this new definition we have K+m,Y/X ≥ K+mq,Y/X ≥ KY/X. In particular, the proof
of the existence of an m-compatible boundary given in [dFH] works also in this
case with small modifications.

We now introduce the following corollary of Lemma 2.14.

Proposition 4.2. Let f : Y → X be a proper birational morphism such that Y
is canonical. If valF (KY/X) ≥ 0 for all divisors F on Y, then X is canonical.

Proof. For all sufficiently divisiblem ≥ 1we have valF (K
+
m,Y/X) ≥ 0 (i.e.,mKY ≥

−f �(−mKX)) and so

OY ·OX(mKX) ↪→ (OY ·OX(mKX))
∨∨ = OY (−f �(−mKX)) ↪→ OY (mKY ).

Lemma 2.14 now implies the claim.

Since KY + f ∗(−KC + . ′) ≥ KY/C , it follows (as in Remark 2.12) that if we de-
note by S0 the negative section then
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valS0(KY/C)

= inf{ordS0(KY + f ∗(−KC + . ′)) | (−KC + . ′) is R-Cartier, . ′ ≥ 0}
for . ′ ≡ C�′ , where �′ ≡ rL+KS. Therefore, if

t = inf{r ∈R | ∃�′ ≥ 0, −KS +�′ ≡ rL}
then

valS0(KY/C) = t − 1.

As before, we want to control the values of r for which �′ is numerically equiv-
alent to an effective class. In this case, �′ ≡ rL + KS ∼ OP1(2r − 2) � A ⊗2r;
hence

�′ ≥ 0 ⇐⇒ r ≥ 1.

In particular, valS0(KY/C) = 0 and so C is canonical.

Next we will show that, if X is canonical and RX(KX) is finitely generated, then
X has a canonical model with canonical singularities. To begin, we introduce the
following useful lemma.

Lemma 4.3. Let Y be a normal algebraic variety andB a Weil divisor on Y. Then
the following statements are equivalent.

(1) RY (B) is a finitely generated sheaf of OY -algebras.
(2) There exists a projective birational morphism π : Y+ → Y such that Y+ is nor-

mal, Ex(π) has codimension ≥ 2, and B ′ = π−1∗ B is Q-Cartier and π -ample
over Y for Y+ := ProjY

∑
m≥0 OY (mB).

The mapping π : Y+ → Y is the unique morphism with the properties listed in (2).

Proposition 4.4. LetX be a normal quasi-projective variety with canonical sin-
gularities whose canonical ring RX(KX) is a finitely generated OX-algebra. Then
the relative canonical model Xcan := ProjX(RX(KX)) exists and has canonical
singularities.

Proof. Since X is canonical, it follows from [dFH, Prop. 8.2] that, for any suffi-
ciently high log resolution f : Y → X, we have KY − 1

m
f �(−mKX) ≥ 0.

By Lemma 4.3, there exists a small birational morphism π : X+ → X such that
KX+ is a relatively ample Q-Cartier divisor. Also, for this morphism we have that
π�(−mKX) = −mKX+ . Let us now consider f : Y → X and g : Y → X+, which
are the common log resolutions of X and X+, respectively.

We consider the map OX+ · OX(mKX) → OX+(mKX+). Because π−1∗ (KX) =
KX+ is π -ample, OX+(mKX+) is globally generated over X for m sufficiently di-
visible; hence we have an isomorphism of sheaves. Thus

KY − g∗(KX+) = KY + 1

m
g∗(−mKX+) = KY + 1

m
f �(−mKX) ≥ 0,

where the last equality holds by [dFH, Lemma 2.7]. Therefore, the canonical
model X+ has canonical singularities.
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5. Accumulation Points for Jumping Numbers

In this final section we shall use definitions and results from [dFH].
Given an effective pair (X,Z), we want to consider a family of ideal sheaves in

the form
Ik = {I(X, tk · Z)}k

for k ∈N, tk > 0.
If tk is a decreasing sequence then Ik ⊂ Ik+1 and, by the Noetherian property,

the sequence stabilizes.
If we consider an increasing sequence tk , then Ik ⊃ Ik+1 and the ascending

chain condition does not apply. We will show (under appropriate hypotheses) that
the set of ideals stabilizes even in this case. Thus there are no accumulation points
for the jumping numbers of the pair (X,Z). We will use the following lemma.

Lemma 5.1. Let X be a projective variety and let I = {Ik}k be the family of
ideals defined previously. If there exists a line bundle L on X such that L ⊗ Ik

is globally generated for all k, then it is not possible to have an infinite sequence
of ideal sheaves Ir ⊆ I such that

OX ⊇ · · · ⊇ Ir � Ir+1 � Ir+2 � · · · .
Proof. Tensoring by L and considering cohomology yields

0 ≤ · · · � h0(L ⊗ Ir+1) � h0(L ⊗ Ir ) ≤ h0(L ) = n,

which is impossible.

The following theorem is the main result of this section.

Theorem 5.2. Let (X,Z) be an effective pair, where X is a projective normal
variety such that X has either log-terminal or isolated singularities. Then the
set of jumping numbers has no accumulation points; that is, given any sequence
{ti}i∈N such that ti > 0 and limi→∞ ti = t, we have⋂

i

I(X, ti · Z) = I(X, ti0 · Z)

for some i0 > 0.

We will need the following three results.

Theorem 5.3 [dFH, Cor. 5.8]. Let (X,Z) be an effective pair, where X is a
projective normal variety and Z =∑

ak · Zk. Let m ≥ 2 be an integer such that
I(X,Z) = Im(X,Z), and let � be an m-compatible boundary for (X,Z). For
each k, let Bk be a Cartier divisor such that OX(Bk)⊗ IZk

is globally generated,
where IZk

is the ideal sheaf of Zk , and suppose that L is a Cartier divisor such
that L− (KX +�+∑

akBk) is nef and big. Then

H i(OX(L)⊗ I(X,Z)) = 0 for i > 0.
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Corollary 5.4 [dFH, Cor. 5.9]. With the same notation and assumptions as
in Theorem 5.3, let A be a very ample Cartier divisor on X. Then the sheaf
OX(L+ kA)⊗ I(X,Z) is globally generated for every integer k ≥ dimX + 1.

Proposition 5.5. Let X be a projective normal variety that has either log-
terminal or isolated singularities. Then, for any divisor D ∈WDivQ(X), there
exists a very ample divisor A such that OX(mD) ⊗ OX(A)

⊗m is globally gener-
ated for every m ≥ 1.

Proof. IfX has log-terminal singularities then, by Remark 4.4, RX(D) is a finitely
generated OX-algebra. It is then easy to see that the proposition holds.

So let us assume that X has isolated singularities. We may assume D ∈
WDiv(X). Let us fix a log resolution f : Y → X of (X,D), where OY ·OX(D) =
OY (D̃+F ) for D̃ = f −1∗ D and F an exceptional divisor. Let B be a general very
ample divisor onX such that OX(D+B) and OX(−KX+B) are globally generated,
where OY ·OX(−KX+B) = OY (G). Then B̃ = f ∗B and OY (B̃+mD̃+mF ) is
globally generated, hence nef and big, for every m > 0. By Kawamata–Viehweg
vanishing, if G = OY (KY + mB̃ + mD̃ + mF + G) then Rif∗(G ) = 0 for all
i > 0; hence H i(Y, G ) ∼= H i(X, f∗G ) = 0 for all i > 0. Then, by Mumford regu-
larity, we may assume that F := f∗OY (KY +m((nB̃ + D̃+F )+G)) is globally
generated for all m > 0. Since (f∗F )∨∨ ∼= OX(KX +mD +mnB + B −KX) ∼=
OX(mD + (mn+ 1)B), we have the induced short exact sequence

0→ f∗F → OX(mD + (mn+ 1)B)→ Q→ 0,

where the quotient Q is supported on points and hence globally generated, so
mD+ (mn+1)B is globally generated for all m. In particular, mD+m(n+1)B
is globally generated for every m.

Remark 5.6. It is apparently unknown whether Proposition 5.5 holds for any
divisor D ∈WDivQ(X) on any projective normal variety (regardless of the sin-
gularity). We conjecture that this is the case. Note that, by Proposition 5.5, this
conjecture holds for surfaces.

We can now prove Theorem 5.2.

Proof of Theorem 5.2. We follow the proof of [dFH, Thm. 5.4]. Let us consider
an effective divisor D such that KX −D is Cartier. By Proposition 5.5 we know
that there exists an ample line bundle A such that

A ⊗m ⊗OX(−mD)
is globally generated for all m ≥ 0.

For a general element G in the linear system |A ⊗m −mD|, let G = M +mD;
we can then choose �m := 1

m
M as our boundary. Let Bk be Cartier divisors such

that OX(Bk) ⊗ IZk
is globally generated. As in Corollary 5.3, let H be an am-

ple Cartier divisor such that H − (
KX −D +∑

ak · Bk

)
is nef and big. Then the

Cartier divisor (A +H ) is such that

(A +H )−
(
KX +�m +

∑
akBk

)
is nef and big for all m.
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Let B be a very ample Cartier divisor on X. Then, for L := OX(A +H + sB)
with s > dimX, we have that L⊗ Ik(X,Z) is globally generated for all k. Now,
by Lemma 5.1, ⋂

i

I(X, ti · Z) = I(X, ti0 · Z)

for some i0 > 0 and the theorem is proved.
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