A Relation between Height, Area, and Volume for Compact Constant Mean Curvature Surfaces in $\mathbb{M}^{2} \times \mathbb{R}$
 Claudemir Leandro \& Harold Rosenberg

1. Introduction

Let Σ be a compact CMC- H surface in $\mathbb{M}^{2} \times \mathbb{R}$ with $\Gamma=\partial \Sigma \subset \mathbb{M}^{2} \times\{0\}$, where \mathbb{M}^{2} is a Hadamard surface with curvature $K_{\mathbb{M}^{2}} \leq-\kappa \leq 0$. Let Σ_{1} be the connected component of the part of Σ above the plane $Q=\mathbb{M}^{2} \times\{0\}$, and let h be the height of Σ_{1} above Q. We will determine a volume V_{1} bounded by Σ_{1} and prove that

$$
h \leq \frac{H\left|\Sigma_{1}\right|}{2 \pi}-\frac{\kappa V_{1}}{4 \pi} ;
$$

here $\left|\Sigma_{1}\right|$ is the area of Σ_{1}. We also state conditions under which equality occurs.
We then let $\mathbb{M}^{2}=\mathbb{H}^{2}$ be the hyperbolic plane of curvature - 1 , with $\Sigma \subset \mathbb{H}^{2} \times \mathbb{R}$ a compact CMC- H surface as just described. Finally, we give a condition that guarantees Σ lies in a half-space determined by Q.

We introduce some definitions and notation as follows. Let $\gamma \subset Q$ be a complete geodesic. We call $P=\gamma \times \mathbb{R}$ a vertical plane of $\mathbb{M}^{2} \times \mathbb{R}$. Let $\beta(t)$ be a complete geodesic of Q, with $\beta(0)$ in the vertical plane P and $\beta^{\prime}(0)$ orthogonal to P. Let $P_{\beta}(t)$ be the vertical plane of $\mathbb{M}^{2} \times \mathbb{R}$ that passes through $\beta(t)$ and is orthogonal to β at $\beta(t)$. We call $P_{\beta}(t)$ the vertical plane foliation determined by P and β.

2. The Main Result

Let $\Sigma \subset \mathbb{M}^{2} \times \mathbb{R}$ be a CMC- H surface as before and suppose that Σ meets Q transversally along $\Gamma=\partial \Sigma \subset Q$. We put $\Sigma^{+}=\Sigma \cap\left(\mathbb{M}^{2} \times \mathbb{R}_{+}\right)$and $\Sigma^{-}=$ $\Sigma \cap\left(\mathbb{M}^{2} \times \mathbb{R}_{-}\right)$. There is a connected component of Σ^{+}or Σ^{-}that contains Γ. We can assume, without loss of generality, that $\Gamma \subset \partial \Sigma^{+}$. We use Σ_{1} to denote the connected component of Σ^{+}that contains Γ.

Let $\hat{\Sigma}_{1}$ be the symmetry of Σ_{1} through the plane Q. Then $\hat{\Sigma}_{1} \cup \Sigma_{1}$ is a compact embedded surface with no boundary, and with corners along $\partial \Sigma_{1}$, that bounds a domain U in $\mathbb{M}^{2} \times \mathbb{R}$. Let U_{1} be the intersection of U with the half-space above Q. Thus U_{1} is a bounded domain in $\mathbb{M}^{2} \times \mathbb{R}$ whose boundary, ∂U_{1}, consists of the smooth connected surface Σ_{1} and the union Ω of finitely smooth, compact and connected surfaces in Q. We define A^{+}to be the area of Σ_{1}.

Theorem 2.1. Let \mathbb{M}^{2} be a Hadamard surface with Gaussian curvature $K_{\mathbb{M}} \leq$ $-\kappa \leq 0$. Let Σ be a compact H-surface embedded in $\mathbb{M}^{2} \times \mathbb{R}$, with boundary belonging to $Q=\mathbb{M}^{2} \times\{0\}$ and transverse to Q. If h denotes the height of Σ with respect to Q, then

$$
\begin{equation*}
h \leq \frac{H A^{+}}{2 \pi}-\frac{\kappa \operatorname{Vol}\left(U_{1}\right)}{4 \pi} \tag{1}
\end{equation*}
$$

for A^{+}and U_{1} defined as before. There is equality if and only if $K \equiv-\kappa$ inside U_{1} and Σ is a rotational spherical cap.

Proof. From the surface Σ we obtain the surface Σ_{1}, the bounded domain $U_{1} \subset$ $\mathbb{M}^{2} \times \mathbb{R}$, and the union Ω of finitely smooth, compact and connected surfaces in Q as just described. Let \vec{H} denote the mean curvature vector of Σ_{1}, and take the unit normal N of Σ_{1} to point inside U_{1}. Let $\pi_{1}: \mathbb{M}^{2} \times \mathbb{R} \rightarrow \mathbb{M}^{2}$ and $\pi_{2}: \mathbb{M}^{2} \times \mathbb{R} \rightarrow$ \mathbb{R} be the usual projections. If we denote by $h_{1}: \Sigma_{1} \rightarrow \mathbb{R}$ the height function of Σ_{1}-that is, $h_{1}(p)=\pi_{2}(p)$ and $v=\left\langle N, \frac{\partial}{\partial t}\right\rangle$-then we can write

$$
\begin{equation*}
\frac{\partial}{\partial t}=T+v N \tag{2}
\end{equation*}
$$

where T is a tangent vector field on Σ_{1}. Since $\frac{\partial}{\partial t}$ is the gradient in $\mathbb{M}^{2} \times \mathbb{R}$ of the function t, it follows that T is the gradient of h_{1} on Σ_{1}.

If $H=0$ then h (the height of Σ) is a harmonic function and therefore, by the maximum principle, $\Sigma \subset \mathbb{M}^{2} \times\{0\}$. So we suppose that $H>0$.

Let $A(t)$ be the area of $\Sigma_{t}=\left\{p \in \Sigma_{1} ; h_{1}(p) \geq t\right\}$ and let $\Gamma(t)=\left\{p \in \Sigma_{1} ;\right.$ $\left.h_{1}(p)=t\right\}$. By [6, Thm. 5.8] we have

$$
A^{\prime}(t)=-\int_{\Gamma(t)} \frac{1}{\left\|\nabla h_{1}\right\|} d s_{t}, \quad t \in \mathcal{O}
$$

where \mathcal{O} is the set of all regular values of h_{1}.
If $L(t)$ denotes the length of the planar curve $\Gamma(t)$, then the Schwartz inequality yields
$L^{2}(t) \leq \int_{\Gamma(t)}\left\|\nabla h_{1}\right\| d s_{t} \int_{\Gamma(t)} \frac{1}{\left\|\nabla h_{1}\right\|} d s_{t}=-A^{\prime}(t) \int_{\Gamma(t)}\left\|\nabla h_{1}\right\| d s_{t}, \quad t \in \mathcal{O}$.
But from (2) we have that, along the curve $\Gamma(t)$,

$$
\left\|\nabla h_{1}\right\|^{2}=1-v^{2}=\left\langle\eta^{t}, \frac{\partial}{\partial t}\right\rangle^{2}
$$

here η^{t} is the inner conormal of Σ_{t} along $\partial \Sigma_{t}$. Since Σ_{t} is above the plane $Q(t)$, we know that $\left\langle\eta^{t}, \frac{\partial}{\partial t}\right\rangle \geq 0$. Hence

$$
\left\|\nabla h_{1}\right\|=\left\langle\eta^{t}, \frac{\partial}{\partial t}\right\rangle
$$

Therefore, (3) may be rewritten as

$$
\begin{equation*}
L^{2}(t) \leq-A^{\prime}(t) \int_{\Gamma(t)}\left\langle\eta^{t}, \frac{\partial}{\partial t}\right\rangle d s_{t} \tag{4}
\end{equation*}
$$

Now we recall the flux formula. Let Σ_{t} and $\Omega(t)$ be two compact, smooth, and embedded but not necessarily connected surfaces in $\mathbb{M}^{2} \times \mathbb{R}$ such that their boundaries coincide. Assume that there exists a compact domain $U(t)$ in $\mathbb{M}^{2} \times \mathbb{R}$ such that the boundary of $U(t)$ is $\partial U(t)=\Sigma_{t} \cup \Omega(t)$ and is orientable. Notice that the boundary of $U(t)$ is smooth except perhaps along $\partial \Sigma_{t}=\partial \Omega(t)$.

Let $N_{\Sigma_{t}}$ and $N_{\Omega(t)}$ be the unit normal fields to Σ_{t} and $\Omega(t)$, respectively, that point inside $U(t)$. Finally, assume that Σ_{t} is a compact surface with constant mean curvature $H=\left\langle\vec{H}, N_{\Sigma_{t}}\right\rangle>0$. Let Y be a Killing vector field in $\mathbb{M}^{2} \times \mathbb{R}$. Then the flux formula (i.e., [4, Prop. 3]) yields

$$
\begin{equation*}
\int_{\partial \Sigma_{t}}\left\langle Y, \eta^{t}\right\rangle=2 H \int_{\Omega(t)}\left\langle Y, N_{Q(t)}\right\rangle . \tag{5}
\end{equation*}
$$

Using (5), we can take $Y=\frac{\partial}{\partial t}$ to obtain

$$
\int_{\Gamma(t)}\left\langle\frac{\partial}{\partial t}, \eta^{t}\right\rangle=2 H\|\Omega(t)\|,
$$

where $\|\Omega(t)\|$ is the area of the planar region $\Omega(t)$. Hence substituting into (4) results in

$$
\begin{equation*}
L^{2}(t) \leq-2 H A^{\prime}(t)\|\Omega(t)\| \quad \text { for almost every } t \geq 0, t \in \mathcal{O} \tag{6}
\end{equation*}
$$

Next we will show that

$$
\begin{equation*}
L^{2}(t) \geq 4 \pi\|\Omega(t)\|+\kappa\|\Omega(t)\|^{2} \tag{7}
\end{equation*}
$$

We put $\Omega(t)=\bigcup_{i=1}^{n_{t}} \Omega_{i}(t)$, where $\Omega_{1}(t), \ldots, \Omega_{n_{t}}(t)$ are bounded domains determined in the plane $Q(t)$ by the closed curve $\Gamma(t)$ and where $\left\|\Omega_{i}(t)\right\|$ (with $i=$ $\left.0, \ldots, n_{t}\right)$ is the area of the corresponding $\Omega_{i}(t)$. Then $\|\Omega(t)\|=\sum_{i=1}^{n_{t}}\left\|\Omega_{i}(t)\right\|$. We know by [2] that equation (7) holds if $n_{t}=1$. Supposing the result is true for $n_{t}=m$, we will prove it to be true also for $m+1$.

Let $\tilde{L}(t)$ be the length of $\tilde{\Omega}(t)=\bigcup_{i=1}^{m} \Omega_{i}(t)$. We know that

$$
\begin{align*}
\tilde{L}^{2}(t) & \geq 4 \pi\|\tilde{\Omega}(t)\|+\kappa\|\tilde{\Omega}(t)\|^{2} \quad(\text { by hypothesis of induction), } \tag{8}\\
L_{m+1}^{2}(t) & \geq 4 \pi\left\|\Omega_{m+1}(t)\right\|+\kappa\left\|\Omega_{m+1}(t)\right\|^{2} \quad(\text { by }[2]) \tag{9}
\end{align*}
$$

Inequalities (8) and (9) imply, respectively,

$$
\begin{aligned}
\tilde{L}(t) & \geq \sqrt{\kappa}\|\tilde{\Omega}(t)\|, \\
L_{m+1}(t) & \geq \sqrt{\kappa}\left\|\Omega_{m+1}(t)\right\| .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\tilde{L}(t) L_{m+1}(t) \geq \kappa\|\tilde{\Omega}(t)\| \| & \Omega_{m+1}(t) \| \\
& \Longrightarrow 2 \tilde{L}(t) L_{m+1}(t) \geq 2 \kappa\|\tilde{\Omega}(t)\|\left\|\Omega_{m+1}(t)\right\| \tag{10}
\end{align*}
$$

Combining (8), (9), and (10) yields

$$
\left(\tilde{L}(t)+L_{m+1}(t)\right)^{2} \geq 4 \pi\left(\|\tilde{\Omega}(t)\|+\left\|\Omega_{m+1}(t)\right\|\right)+\kappa\left(\|\tilde{\Omega}(t)\|+\left\|\Omega_{m+1}(t)\right\|\right)^{2}
$$

and this proves (7).

From (6) and (7) it follows that

$$
\begin{gathered}
4 \pi\|\Omega(t)\|+\kappa\|\Omega(t)\|^{2} \leq-2 H A^{\prime}(t)\|\Omega(t)\|, \\
4 \pi\|\Omega(t)\|+\kappa\|\Omega(t)\|^{2}+2 H A^{\prime}(t)\|\Omega(t)\| \leq 0, \\
\left(4 \pi+2 H A^{\prime}(t)+\kappa\|\Omega(t)\|\right)\|\Omega(t)\| \leq 0, \\
4 \pi+2 H A^{\prime}(t)+\kappa\left\|\Omega_{i}(t)\right\| \leq 0 .
\end{gathered}
$$

After integrating the last inequality from 0 to $h=\max _{p \in \Sigma} h_{1}(p) \geq 0$, we have

$$
4 \pi h+2 H(A(h)-A(0))+\kappa \operatorname{Vol}\left(U_{1}\right) \leq 0 ;
$$

then

$$
A^{+}=A(0) \geq \frac{2 \pi h}{H}+\frac{\kappa \operatorname{Vol}\left(U_{1}\right)}{2 H},
$$

which is the inequality that we were seeking.
If equality holds, then all the preceding inequalities become equalities. In particular, by [2] it will follow that $\Gamma(t)$ is the boundary of a geodesic disk in $\mathbb{M}^{2} \times\{t\}$ for every $t \geq 0$ and that $K_{\mathbb{M}^{2}}(p) \equiv-\kappa$ for all $p \in U$.

Let $D \subset \mathbb{M}^{2} \times\{0\}$ be the geodesic disk such that $\partial D=\partial \Sigma$, and let $p \in D$ be the center of D. Let γ be a horizontal, complete, oriented geodesic passing through the point p with $\gamma(0)=p$, and let $P_{\gamma}(t)$ be the oriented foliation of vertical planes along the γ. Let $P_{\gamma}\left(t_{1}\right)$ be a vertical plane in this horizontal foliation that does not touch Σ. Now, performing Alexandrov reflection with the planes $P_{\gamma}(t)$, starting at $t=t_{1}$ and then decreasing t, we obtain-by the symmetries of ∂D-that Σ is symmetric with respect to $P_{\gamma}(0)$. Since γ is an arbitrary horizontal complete geodesic passing through the point p, it follows that Σ is a rotational spherical cap.

Corollary 2.1. Let \mathbb{M}^{2} be a Hadamard surface with Gaussian curvature $K_{\mathbb{M}} \leq$ $-\kappa \leq 0$. Let Σ be a compact H-surface embedded in $\mathbb{M}^{2} \times \mathbb{R}$ without boundary but with area A, and let U be the compact domain bounded by Σ. Then

$$
2 H A \geq \kappa \operatorname{Vol}(U)+4 \pi h .
$$

Equality holds if and only if Σ is a sphere of revolution.
Corollary 2.2. Let \mathbb{M}^{2} be a Hadamard surface with Gaussian curvature $K_{\mathbb{M}} \leq$ $-\kappa \leq 0$. If Σ is a compact H-surface embedded in $\mathbb{M}^{2} \times \mathbb{R}$ with boundary in a plane Q and transverse to Q, then

$$
\kappa \operatorname{Vol}\left(U_{1}\right)<2 \pi H A^{+}
$$

for A^{+}and U_{1} defined as before Theorem 2.1.

3. Horizontal \boldsymbol{H}-cylinders in $\mathbb{H}^{2} \times \mathbb{R}$

Now we use a translation-invariant H-hypersurface given by P. Bérard and R. Sa Earp in [3] to give some conditions implying that Σ lies above $Q=\mathbb{H}^{2} \times\{0\}$ when $\partial \Sigma \subset Q$. We recall some ideas here.

Let γ_{1} be a geodesic passing through $0 \in \mathbb{H}^{2} \times\{0\}$ in $Q=\mathbb{H}^{2} \times\{0\}$ and let $P_{1}=\gamma_{1} \times \mathbb{R}=\left\{\left(\gamma_{1}(s), t\right) ;(s, t) \in \mathbb{R}^{2}\right\}$ be the vertical plane, where s is the signed hyperbolic distance to 0 on γ_{1}.

Take a geodesic γ_{2} such that $\gamma_{2}(0)=\gamma_{1}(0)$ and $\gamma_{2}^{\prime}(0) \perp \gamma_{1}^{\prime}(0)$. We consider the hyperbolic translation with respect to the geodesic γ_{2}. In the vertical plane P_{1} we take the curve $\alpha(s)=(s, f(s))$, where f is a real function.

In $\mathbb{H}^{2} \times\{f(s)\}$ we translate the point $\alpha(s)$ by the translations with respect to $\gamma_{2} \times\{f(s)\}$, which yields the equidistant curves $\left(\gamma_{2}\right)_{\alpha(s)}$ passing through $\alpha(s)$ at a distance s from $\gamma_{2} \times\{f(s)\}$. The curve α then generates a translation surface $C=\bigcup_{s}\left(\gamma_{2}\right)_{\alpha(s)}$ in $\mathbb{H}^{2} \times \mathbb{R}$.

Principal Curvatures. The principal directions of curvature of C are tangent to the curve α in P_{1} and the directions tangent to $\left(\gamma_{2}\right)_{\alpha(s)}$. The corresponding principal curvatures with respect to the unit normal pointing downward are given by

$$
\begin{aligned}
k_{P_{1}} & =-f^{\prime \prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-3 / 2} \quad \text { and } \\
k_{\left(\gamma_{2}\right)_{\alpha(s)}} & =-f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} \tanh (s)
\end{aligned}
$$

The first equality holds because P_{1} is totally geodesic and flat. The second equality follows because $\left(\gamma_{2}\right)_{\alpha(s)}$ is at a distance s from $\gamma_{2} \times\{f(s)\}$ in $\mathbb{H}^{2} \times\{f(s)\}$.

Mean Curvature. The mean curvature of the translation surface C associated with f is given by

$$
\begin{aligned}
2 H(s)= & -f^{\prime \prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-3 / 2}-f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} \tanh (s), \\
2 H(s) \cosh (s)= & -f^{\prime \prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-3 / 2} \cosh (s) \\
& -f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} \sinh (s) \\
2 H(s) \cosh (s)= & -\frac{d}{d s}\left(f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} \cosh (s)\right) .
\end{aligned}
$$

We assume that $H=$ constant. Observe that in our case $H>0$. The generating curves of translation surfaces with mean curvature H are given by the differential equation

$$
-f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} \cosh (s)=2 H \sinh (s)+d_{1}
$$

where d_{1} is a constant.
We want that $f^{\prime}(0)=0$, so we take $d_{1}=0$. Therefore,

$$
\begin{aligned}
-f^{\prime}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{-1 / 2} & =2 H \tanh (s) \\
-f^{\prime}(s) & =2 H \tanh (s)\left(1+\left(f^{\prime}(s)\right)^{2}\right)^{1 / 2} \\
\left(f^{\prime}(s)\right)^{2} & =4 H^{2} \tanh ^{2}(s)\left(1+\left(f^{\prime}(s)\right)^{2}\right) \\
& =4 H^{2} \tanh ^{2}(s)+\left(f^{\prime}(s)\right)^{2} 4 H^{2} \tanh ^{2}(s) \\
& =\frac{4 H^{2} \tanh ^{2}(s)}{1-4 H^{2} \tanh ^{2}(s)}
\end{aligned}
$$

We have two first-order, linear ordinary differential equations given by

$$
f_{+}^{\prime}(s)=-\frac{2 H \tanh (s)}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}} \quad \text { and } \quad f_{-}^{\prime}(s)=\frac{2 H \tanh (s)}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}}
$$

with $s \in\left(-s_{H}, s_{H}\right)$, where $s_{H}=\operatorname{arctanh}(1 / 2 H)$.
We assume that $H>1 / 2$. After resolving the previous equations, we get

$$
f_{+}(s)=-\frac{2 H}{\sqrt{4 H^{2}-1}} \arctan \left(\frac{\sqrt{4 H^{2}-1}}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}}\right)+d_{2}
$$

and

$$
f_{-}(s)=\frac{2 H}{\sqrt{4 H^{2}-1}} \arctan \left(\frac{\sqrt{4 H^{2}-1}}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}}\right)+d_{3}
$$

respectively, where d_{2} and d_{3} are constant.
We want that $\lim _{s \rightarrow \pm s_{H}} f_{+}(s)=\lim _{s \rightarrow \pm s_{H}} f_{-}(s)=0$, so we take $d_{2}=-d_{3}=$ $H \pi / \sqrt{4 H^{2}-1}$. Hence

$$
f_{+}(s)=-\frac{2 H}{\sqrt{4 H^{2}-1}}\left(\arctan \left(\frac{\sqrt{4 H^{2}-1}}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}}\right)-\frac{\pi}{2}\right)
$$

and

$$
f_{-}(s)=\frac{2 H}{\sqrt{4 H^{2}-1}}\left(\arctan \left(\frac{\sqrt{4 H^{2}-1}}{\sqrt{1-4 H^{2} \tanh ^{2}(s)}}\right)-\frac{\pi}{2}\right) .
$$

We have two curves, $\alpha_{+}(s)=\left(s, f_{+}(s)\right)$ and $\alpha_{-}(s)=\left(s, f_{-}(s)\right)$. The curve $\alpha=\alpha_{+} \cup \alpha_{-}$generates a complete embedded translation invariant H-surface, C_{H}, which we call an H-cylinder.

Observe that the height of C_{H} is given by

$$
h_{C_{H}}=-\frac{4 H}{\sqrt{4 H^{2}-1}}\left(\arctan \left(\sqrt{4 H^{2}-1}\right)-\frac{\pi}{2}\right)
$$

Since $\arctan (1 / x)=\pi / 2-\arctan x$ for $x>0$, it follows that

$$
h_{C_{H}}=\frac{4 H}{\sqrt{4 H^{2}-1}} \arctan \left(\frac{1}{\sqrt{4 H^{2}-1}}\right) .
$$

But $\arctan x=\arcsin \left(x / \sqrt{1+x^{2}}\right)$, so

$$
h_{C_{H}}=\frac{4 H}{\sqrt{4 H^{2}-1}} \arcsin \left(\frac{1}{2 H}\right) .
$$

By Aledo, Espinar, and Gálvez [1] we have that the height of the rotational H sphere, S_{H}, is equal to

$$
\frac{8 H}{\sqrt{4 H^{2}-1}} \arcsin \left(\frac{1}{2 H}\right)
$$

therefore,

$$
h_{C_{H}}=\frac{h_{S_{H}}}{2} .
$$

We can use these C_{H}-cylinders to prove the theorem that follows.

Remark. In the rest of this paper, the height of a compact H-surface Σ embedded into $\mathbb{H}^{2} \times \mathbb{R}$ is the height difference between its upper point and lower point.

Theorem 3.1. Let Σ be a compact H-surface $(H>1 / 2)$, embedded into $\mathbb{H}^{2} \times \mathbb{R}$, whose boundary is a convex planar curve contained in the plane $Q=\mathbb{H}^{2} \times\{0\}$. Assume that $2 h_{\Sigma}<h_{S_{H}}$, where h_{Σ} and $h_{S_{H}}$ denote (respectively) the height of the surface Σ and that of the H-sphere. Then Σ stays in a half-space determined by Q and is transverse to Q along the boundary. Moreover, Σ inherits the symmetries of its boundary.

To prove this, we need the following lemma.

Figure 1

Lemma 3.1. Let Σ be a compact H-surface $(H>1 / 2)$ embedded in $\mathbb{H}^{2} \times \mathbb{R}$ and with planar boundary. If $2 h_{\Sigma}<h_{S_{H}}$ (where h denotes height as before), then the surface Σ lies inside the right vertical cylinder determined by the convex hull of its boundary.

Proof (see Figure 1). Suppose there is a point of Σ projecting on a point $q_{1} \in Q$ outside the convex hull V of the boundary of Σ, and choose $q_{2} \in V$ to minimize the distance to q_{1}. Denote by γ_{1} the geodesic of Q passing through q_{1} and q_{2}; we have $\gamma_{1}(0)=q_{2}$ and $\gamma_{1}(a)=q_{1}$ for $a>0$. Let $\gamma_{2} \subset \mathbb{H}^{2} \times\{0\}$ be a complete geodesic with $\gamma_{2}(0)=\gamma_{1}(0)$ and $\gamma_{2}^{\prime}(0) \perp \gamma_{1}^{\prime}(0)$.

Consider the horizontal CMC cylinder C_{H} generated by $\alpha \subset P_{1}=\gamma_{1} \times \mathbb{R}$, as described previously, with curvature H. We consider a half-cylinder $C_{\gamma_{1}}$ generated by $\alpha(s)$, where $s \in\left[0, s_{H}\right]$ or $s \in\left[-s_{H}, 0\right]$. We move $C_{\gamma_{1}}$ (by horizontal translation along γ_{1}) far enough so that it does not touch the surface Σ, and we place its concave side in front of Σ.

The surface Σ is inside a slab B parallel to Q with height less than $h_{S_{H}} / 2$. This slab is not necessarily symmetric with respect to Q. However, we may utilize half-cylinders with axes in the central plane of B; then, making a vertical translation if necessary, we can suppose that B is symmetric with respect to Q. See Figure 2.

Figure 2

Now we proceed to approach the half-cylinder $C_{\gamma_{1}}$ to Σ via the horizontal translation along γ_{1}, thereby obtaining a first (and so tangential) contact point between the two surfaces.

Since γ_{2} lies inside Q and since there is a point of Σ projecting on the point q_{1} outside the convex hull of the boundary, it follows that the contact point so obtained is a nonboundary point of the surface Σ. It is also an interior point of the half-cylinder $C_{\gamma_{1}}$ because Σ is inside the slab $B \subset \mathbb{H}^{2} \times\left(-h_{S_{H}} / 2, h_{S_{H}} / 2\right)$. On the other hand, this half-cylinder has constant mean curvature H with respect to the normal field pointing to its concave part. We already know that Σ is in that concave part, so by elementary comparison we have that the same choice of normal at the contact point gives the mean curvature H for Σ. Yet because this contradicts the maximum principle, all the points of the surface Σ must project on the convex hull of its boundary.

Proof of Theorem 3.1. By the lemma just proved, if Ω is a compact convex domain in Q with $\partial \Omega=\partial \Sigma$ then $\Sigma \cap \operatorname{ext}(\Omega)=\emptyset$. Hence we can consider a hemisphere S under the plane Q whose boundary disc D is contained in Q and is large enough that $\Omega \subset \operatorname{int}(D)$ and $S \cap \Sigma=\emptyset$. Therefore, $\Sigma \cup(D-\Omega) \cup(S-D)$ is a compact embedded surface in $\mathbb{H}^{2} \times \mathbb{R}$ and so determines an interior domain, which we call U. Choose a unit normal N for Σ in such a way that N points into U at each point. If there are points of the surface Σ in both half-spaces determined by Q, then N takes the same value at the points where the height function attains its respective maximum and minimum. Reversing N if necessary, we conclude that the normal of Σ (for which $H>0$) takes the same value at the highest and the lowest points of the surface.

Lowering a sphere S_{H}^{2} to the highest point or pushing it up to the lowest one, we obtain a contradiction via the interior maximum principle. Thus the surface lies in one of the half-spaces determined by the plane Q and rises in it by less than $h_{S_{H}} / 2$. Again using half-cylinders C_{H} with axes in a plane parallel to Q and height $h_{S_{H}} / 2$, we see that the boundary maximum principle implies that the surface is transversal along its boundary.

Let γ be a horizontal, complete, oriented geodesic passing through the origin $O \in \mathbb{H}^{2} \times \mathbb{R}$, and let $P_{\gamma}\left(t_{1}\right)$ be a vertical plane such that $P_{\gamma}\left(t_{1}\right) \cap \Sigma=\emptyset$. We take the oriented foliation of vertical planes along γ with $P=P_{\gamma}(0)$. Finally, we apply Alexandrov reflection with these planes-starting at $t=t_{1}$ and then decreasing t-to obtain that Σ has all the symmetries of its boundary.

Corollary 3.1. Let Σ be a compact H-surface $(H>1 / 2)$ embedded in $\mathbb{H}^{2} \times \mathbb{R}$ and with convex planar boundary. Then Σ is a graph if and only if $h_{\Sigma}<h_{S_{H}} / 2$, where again h_{Σ} and $h_{S_{H}}$ are the height of the surface Σ and of the H-sphere, respectively.

Proof. If Σ is a graph then the proof follows by [1, Thm. 2.1]. Suppose now that $h_{\Sigma}<h_{S_{H}} / 2$. By Theorem 3.1 we have that Σ must be contained in one of the half-spaces determined by the boundary plane; and by Lemma 3.1, Σ is inside the right vertical cylinder determined by the convex hull of its boundary. Using Alexandrov reflection with horizontal planes, we deduce that Σ is a graph.

References

[1] J. A. Aledo, J. Espinar, and J. Gálvez, Height estimates for surfaces with positive constant mean curvature in $M^{2} \times \mathbb{R}$, Illinois J. Math. 52 (2008), 203-211.
[2] L. Barbosa and M. do Carmo, A proof of a general isoperimetric inequality for surfaces, Math. Z. 162 (1978), 245-261.
[3] P. Bérard and R. Sa Earp, Examples of H-hypersufaces in $\mathbb{H}^{n} \times \mathbb{R}$ and geometric applications, Mat. Contemp. 34 (2008), 19-51.
[4] D. Hoffman, J. de Lira, and H. Rosenberg, Constant mean curvature surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Trans. Amer. Math. Soc. 358 (2006), 491-507.
[5] R. López and S. Montiel, Constant mean curvature with planar boundary, Duke Math. J. 85 (1996), 583-604.
[6] T. Sakai, Riemannian geometry, Transl. Math. Monogr., 149, Amer. Math. Soc., Providence, RI, 1992.
[7] J. Serrin, On surfaces of constant mean curvature which span a given space curve, Math. Z. 112 (1969), 77-88.
C. Leandro

Instituto Nacional de Matemática
Pura e Aplicada
Rio de Janeiro 22460-320
Brazil
claudemi@impa.br
H. Rosenberg

Instituto Nacional de Matemática
Pura e Aplicada
Rio de Janeiro 22460-320
Brazil
rosen@impa.br

