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A Property of Quasi-diagonal Forms

A. SCHINZEL

The aim of this paper is to prove the following result.

THEOREM. Let k be a positive integer and let F; € Z[X;] be a form of degree k,
where X; (i =1,2,...) are disjoint vectors of variables. Assume that

(%) either not all forms are semidefinite of the same sign, or all forms are non-
singular.

Then there exists a positive integer s such that, for all s, every integer represented
by ¥ i_, Fi(x;) over Z is represented by Y ;" | Fi(x;) over Z.

If k = 2, then the condition (x) can be omitted. J. Szejko has conjectured that the
condition (%) is superfluous.

COROLLARY. Let k; be a bounded infinite sequence of positive integers, and let
F;[x;] be an infinite sequence of nonsingular forms of degree k; with the X; dis-
joint. Then there exists a positive integer so such that, for all s, every integer
represented by >_:_, Fi(x;) over Z is also represented by > ;" | Fi(x;) over Z.

REMARK 1. The assertion is false when k; = 2/ and F; = x,-k" (i=12,..). 1t

may be enough to assume that ), ki = 00.
NorATiON. For a given field K and a form F € K[xy,...,x,], we use D(F) to
denote the Netto discriminant of F—that is, the resultant of g (i=12,...,r);

note that D (F) differs from the true discriminant of F by a constant factor (see [0,
p- 434]). Also, h(F, K) is the least & such that F = ZLI G;H;, where G;, H; €
K[xy,...,x,] are forms of positive degree and h(F) = h(F,Q).

For a € Z \ {0} and p a prime, ord,a is the highest exponent e such that
pla (ie., p¢lla); ord, 0 = oo. For x = [xi,...,x,] € Z", we have ord, x =
min; <<, ord, x;. Finally, e(x) = exp{2mix}.

Our proof of the theorem is based on the following series of seventeen lemmas.

LEmMMA 1. Let p be a prime, F € Z[X] a form of degree k = p*ky, and k¢ €
Z\PpZ.Lety =1t+2ifp=2and v > 0andlet y = v + 1 otherwise. If
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a € Z, \{0}, p'lla, and the congruence F(x) = a (mod pYtV) is solvable, then
the equation F(X) = a is solvable in Z,,.

Proof. If F(xo) = a (mod p¥*"), then p'|F(Xxo) and F(x¢)p™" = ap™"
(mod p?). Then, by [4, Lemma 9] (or its proof for the case p = 2, 7 = 0),
the congruence h*F(xo)p~" = ap~" (mod p") is solvable for every n. Thus, by
compactness of Z,, the equation h*F(xo)p~" = ap™" is solvable in Z,, and it suf-
fices to take x = hxy. O

LEMMA 2. Let F € Z[x1, ..., x,] be a form of degree k, and let c € Z \ {0}. For
p a prime, if a congruence F(x) = ¢ (mod p2°4 *1) is solvable then, for all n,
the number L(F,c, p™) of solutions of the congruence

F(x) = ¢ (mod p") e

satisfies
L(F, C,p") > p(n72ordpkcfl)(r71)_ )

Proof. By Euler’s theorem (see [8, Satz 27]),

oF
Sk = kF. 3)
i 8x,~
For a certain & € Z" we have
F(g) >~ (mOdPZOI‘dka-'rl)’ (4)

so it follows from (3) that, for a certain & < r,

oF

8 =ord, —(&§) < ord, kc;

Xh

now, by (4), we have
F(&) = ¢ (mod p?**1h).
It follows from the proof of Theorem 3 in [ I, Chap. I, Sec. 5] that, if
x; = & (mod p?®*Y  for i # h,
then there exists an x;, such that
F(x) = ¢ (mod p").

Clearly, (2) holds. O

LEMMA 3. Let F € Z[xy, ..., x,] be a form of degree k with D(F) # 0, and let
p be a prime. If a congruence F(x) = ¢ (mod p2° 4 PUI+IHky g solvable with
ord, X = v then, for all n, the number L(F,c, p") of solutions of the congru-
ence (1) satisfies

L(F, C,pn) > p(n—20rd,, D(F)—l—u)(r—])‘ (5)

Proof. Consider first the case v = 0. Since D(F) is the resultant of 0F/dx; (i =
1,2,...,r), we have (see [, Satz 124]) that
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—~ OF B .
; g B3 = DF) (©)
for all j <r, where ¢;; € Z[xy, ..., x,]. Since
F(x) = ¢ (mod p2d P+ )

has a solution & with ord, & = 0, we obtain from (6) that, for a certain 2 < r,

oF
8 =ord, — (&) <ord, D(F);

3xh

then, by (7),
F(§) = ¢ (mod p>**).
It follows, as in the proof of Lemma 2, that
L(F, c, pn) > p(n720rd,, D(F)fl)(rfl)-
Consider now the general case. Since
F(£) = ¢ (mod p?°% PETHYY and  ord, (&) = v,
we have
F(pfvs) = Cpka (mOdPZOrdp D(F)+1).
By the already proved case of the lemma, we have
L(F, Cpka’ pl’l7V) > p(n720rdp D(F)flfv)(rfl).
Every solution of the congruence
F(y) = cp™" (mod p"~")

gives rise to a solution of the congruence (1) by the substitution x = p"y, and solu-
tions that are distinct (mod p"~") give rise to solutions that are distinct (mod p").
Thus (5) holds. U

LEMMA 4. Letl = 2k*(k,2)> — k(k,2),s > 1 + 1, p be a prime, and d; (1 <
i < 5) be p-adic units. Then, for every integer ¢ and all positive integers n, the
congruence

c= Z d,-x!‘ (mod p")
i=1
is solvable with at least one x; # 0 (mod p), and the relevant equation is solvable

int,.

Proof. For n = y the assertion is proved in [4, pp. 53-54]. Assume without loss
of generality that

c=Y di&f (modp”) and & # 0 (mod p).

i=1

Applying Lemma 1 with F(x) = dyx* anda = ¢ — Y3_| d;£¥ allows us to infer
the existence of an n € Z such that
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s—1

c=)  dif +dn* (mod p");
i=1

clearly, n* = & f (mod p™) and so n # 0 (mod p). Solvability of the relevant equa-
tion in Z, follows from compactness of Z,. O

LEMMAS. Let F;(X;) be anonsingular form of degree k inr; variables (1 <i <),
let p be a prime, and let p®» be the highest power of p dividing Fi(y;) for all
n, €Z"i. If s > kl + 1 and if the equation

F(x):=) Fi(x)=N @®)
i=l

is solvable in 7, then for all n we have

L(F,N, p") = p" =R, 9)
where
vp =2o0rd, D(F)+1,

8, = max é,;, and
1<i<s

R = Zri.
i=1
Proof. We note first that, by assumption, D(F;) # 0 (1 <i <s); hence D(F) #
0 by the Laplace formula (see [7, 5.10]). Let
N = p’d for d a p-adic unit,

and assume first that § < §,,. Then equation (8) gives

)
ord, x < {%J <8y

and so, by Lemma 3, (9) holds.

Assume now that § > 4, (or N = d = 0) and that F;(x;) = p‘sﬂfdi ford; =
a p-adic unit. Because s > kl + 1, there is a residue » (modk) such that § =
{i <5 :6, =r (modk)} satisfies |S| > [ + 1. Let §,,, = max;csd,;. Then by
Lemma 4 we have

p’imd =y digf (mod p7rtin),
ieS

where not all the &; are divisible by p. Suppose &; # 0 (mod p). Now putx; =0
(mod p"»*%) fori ¢ S and

x; = pCr =2l (mod p” o) for i € S\ {j}.

Since y, > 2ord, D(F;) + 1 by the Laplace formula, it follows that
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5
F(xj) =N — Z F;(x;) (mod p?°rde DENFI+3py
—
i%)

5pm -

. . . 5
has a solution pCrm=%/ky, — n; with ord, y; = "~ . Hence, by Lemma 3,

L(F, N,p”) > pZ > p(nfyl,fér,)(Rfl)’

where
: 8
Y = Z(n —Vp —8p)ri + (n —Vp— LfJ)(rj —1).
i=1
i#j
Therefore, (9) holds again. O

LEMMA 6. Let ¢ € Z[x1, ..., x,] be a polynomial of degree k > 1, F the leading
form of ¢, € R, and B a certain product of fixed intervals of length < 1. Let:

Sy= Y el@pXx);
xe PBNZ’
k=1
o =1 ok+D= Zz<“ _ z)aw) (k= 2).
Then, for every positive A < k — 1 and ¢ > 0 and for all sufficiently large P,

either
h(F)

NS ST
or there exists a positive integer q satisfying
g <cP® and |lag| < P74, (10
where ¢ > 1 depends only on ¢ — ¢ (0) and B.

Proof. The lemma follows from statements 4A and 7A of [9, Chap. III] and
h(F
(k—])Z(k*)l(r(k)
and n = ﬁ. The o (k) that we have defined recursively coincides with the o (k)
defined in [9, p. 117]. Indeed, it is easily proved by induction that (k) as de-
fined in this paper satisfies o(k) > 2¥~2 — 1. Moreover, for every k > 1, we have
(k —2)! (log D2 > o(k) > %(k —2)!(log 2)2k. Note also that |S(c)] depends
only on « and ¢ — ¢(0). OJ

roughly as in [9, p. 89], where we putd = k,s = r, t = — 8,

LEMMA 7. Forintegers a and q with q > 0 and (a,q) = 1, let

Saq) =3 e(f;mz)).

zmod g
Then, fork > 2 and ¢ > 0,

h(F)
l—g)— 20
(1-#) (k—l)Z"*la(k)—’—s.

S(a,q) <q
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Proof. In Lemma 6 we take « = a/q, A =1—¢, P = g,and B = [0,1]". We
obtain that either .
(k=1)2k=1o (k)

—(I-¢)
IS@a)l <4
or there exists a positive integer ¢’ < cq'~¢ with [|ag’|| < g **!~¢. However, for
g° > cwehave |lag’|| > 1/q and so g ~*+2~¢ > 1, which is impossible for k > 2.
For (a,q) =1, let M, , be the set of a € (0, 1) satisfying

g<cP® and |a— 2| <Pt
q
and let m be the complement of the union of all 9, , where g < cP? and
(a,q) =1. O

LEMMA 8. Ifh(F) > (k — 1)2Xa (k) + 1, then

/|S((¥)|da « prke /=12 o,
m

Proof (following [5, Sec. 4]). Let £(A) be the set of those « € [0, 1) for which
there exists a positive integer ¢ satisfying (10). Plainly £(A) increases with A.
Since every o has a rational approximation satisfying 1 < g < P¥2 and ||qa| <
P %2 and since these inequalities imply (10) with A = k/2, the whole interval
[0, 1) is contained in £(k/2). On the other hand, for P > Py(¢), the set m is
contained in the complement of £(A — ¢). We choose numbers Ag, Ay, ..., A,
such that
A—e=Ay< A< - <Ag=k/2.
Then m is contained in the union of the sets

E(Ap) —EN), f=1,....8 (11)
By Lemma 6 with A = A;_;, we have

_ h(F)
1S@)] < P’ wnaiiai A1

for all « in the set (11). Furthermore, the set (11) is a part of £(Ay) and so, by
(10), the measure of £(Ay) is

q
< Z Zq—lp—k-mf <« Pk,

g=cp®f a=l
Therefore,
__mp _
/ 1S(@)|da <« P~ tmnzitom M1 krady
m
<P T a2k e THAST f—1)+8.
Provided the numbers Ay, ..., A, are chosen sufficiently close together (but inde-

pendent of P), the last exponent is less than
A

2 <r—k— .
e k — D2 To(k) + 1

r —

k= (k — D)2k 15 (k)



A Property of Quasi-diagonal Forms 113

LEMMA 9. For a in M, , we have
S(@) =q7"S(a,q)I(B) + O(P™~+2%), (12)

where B =« —a/q and

16) = fp e(po®)ds. (13)
Proof (following [5, Sec. 4]). In the sum
S)= Y e@p(xi,....x,)) (14)
xe PBNZ"

putx; = qy; + z; for0 < z; < q. Then

S@ =Y elpgy+z) = e<§¢<z)) > e(Blay +2)).
z y z

y
The inner sum is over all y such that gy 4+ z is in the box PB. Thus the variables
¥1,-.., Y, run over independent intervals whose lengths are much less than P/gq,
since ¢ is small compared with P. For any integer point y and any differentiable
function f(7n), we have
o ) (1s)

ad
f(Y)=/ f(ﬂ)dr]+0(max 3
In—yl<1/2

nj

where the maximum is taken over j and over 7 in the cube of integration.
When f(n) = exp{27ifp(gn + §)}, we have

max < qlBllgn +¢I" ' < q1BIP*

J
Now applying (15) to each integer point y in the foregoing inner sum, we obtain an
integral extended over a union of unit cubes that differs from the box of summation
by at most 1 in each dimension. The discrepancy in the volume is < (P/q)" .
Hence

S etpstay+o) = [ epotan+ ean

y
+ 0(qIBIP*" ' (P/q)") + O((P/q)" "),

where the integration is over those 5 for which g5 + ¢ lies in PB.
In this equation, if we change from the variable n to § = gn + ¢ then the right-
hand side becomes

q” f e(Bp(§)dE + 0P 1g" "B + 0P ¢ ™).
PB
Substituting in the double sum, we obtain

q"S(a,)I(B) + O(P™ " q|B]) + O(P" )
and now (13) follows from the definition of 9, ,. O

LeEmMA 10.  Suppose that h(F) > (k — 1)2ko (k) + 1. Then the number N (P) of
solutions of F(x) = N withx in PB NZ" satisfies
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N(P) = P"5J(P)(& + O(P~ /(=02 lo0sly 4 g(prok=tesa)

where o 4
&=) > 4¢'Saq
= pn
and R
J(P) =f; dy/Be(yP’k(F(Px)—N))dx. (16)

Proof. The number of integer points x in PB with F(x) = N is equal to

1
f S(a) da
0

by the definition of S(«) in (15) with ¢ (x) = F(x) — N. We split the interval of
integration into the various intervals 9, , and the set m. By Lemma 8, the con-
tribution of m is O(P’—k=A/k=12""le()+1) By | emma 9, the contribution of the
intervals 9, , is

> Z/ S@da= )" Z q7"S(a,q) 1(B) dpB

k+A
q<LPA u ] q<LPA(a )11 |Bl< Pkt
+ 0( E qPr_1+2AP_k+A).
gecPA

The error term here is O(P"~*~*34) Once we put B = P ¥y, the integral with
respect to 8 becomes

P‘k/ I(P*y)dy
lyl<P

and, by (14),
I(P*y) = fP Be(P”‘wb(E))dE =P’ fB e(P~*y(F(x) — N))dx.

Thus the integral with respect to 8 becomes P"~*J(P).
It remains to consider

q
Yo Y a7Sq).

g<cP® a=l
(a,q)=1

When continued to infinity, this series is absolutely convergent by Lemma 7 (since
h(F) > (k—1)2*c (k) +1) and has sum &. The preceding finite sum differs from
& by an amount

& Z q-q7" .qr—h(m/(k—l)zk*'a(kws &« P~ANG=12 oo+
q>cP®

This proves Lemma 10. U
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LeEmmMmA 11.  If s > 3 and not all forms F;(X;) (i < s) are semidefinite and of
the same sign, then there exists a real nonsingular solution (&f,...,&5) of F(X) =
Yo Fi(xi) = 0.

Proof. Since not all forms F;(x;) are semidefinite and of the same sign, there exist
i,j < s and n;,&; such that F;(y;) > 0 and F;(§;) < 0 (i = j is not excluded).
Because s > 3, there exists an & < s with 2 # i, j. We may assume without loss
of generality that % # 0, and we let ag(xp2, .. .,xh,h)x,‘f1 be the leading term of
F, with respect to x;. There exists a §, = [£p2, ..., &y, ] such that ag(§)) # 0.
In view of the symmetry between i and j, we may assume that a¢(§,) > O.

Let Dy, be the discriminant with respect to xj; of F(x). Note that D, contains

the term (—1)4“@=D/2g4q4(x) )47 F (X1, ..., Xp—1,0, X}, Xp 41, - - -, X5) 41, which is
the leading term of D), with respect to F(Xi,...,X;_1,0,X),Xp+1,...,X,). Thus,
in particular, for fixed &;,...,&,_1,&,41,...,&; and sufficiently large ¢ we have

Dy(&i, ..., 61,8, Enprs .. 81,085,811, ..., &) # 0. For sufficiently large ¢
we have F(&1,...,&,-1,0,&,,...,&;-1,¢&;,&;41,...,&) < Oand

im F&, ... .81, xn. & 8. &1, 08 €41, . &) = 00,

Xp1—> 00

and there is a &, such that F(&,...,&;_1,¢&,,€;11,...,&) = 0. But then

oF
a—(§1,~~.,§j—1, C&;,841,...,8) #0,
Xn1
proving the lemma. U
REMARK 2. In [5]itis stipulated that, in a real nonsingular solution of F(x) = 0,

all coordinates must be nonzero. In [4], however, the only coordinate that must be
nonzero is the one with respect to which the partial derivative is nonzero.

LeEmMA 12.  If B is a cube
|%_j - é:j*l <0,

where 3;'7 is a nonsingular solution of the equation F(x) = 0 and o is sufficiently

small, then
lim J(P)=Jy > 0.
P—o0

Proof (following [3, Sec. 6]). For x in a fixed cube B, we have
e(yP ™ (F(Px) — N)) = e(yF(x)) + O(P7*%)
if |y| < P2. Hence, by (16),

PA
J(P) =/ dy/e(yF(x))dx+0(P*k+2A).
_PA B
Put © = P%. Then

w in2au
Jo() = f ( /B e(yF(&))ds) dy = fB Sin 27 )

—u wF (&)
@ @ sin2muF(E*+ 1)

dn. 17
B /@ aFE -+ a7

where § = &* + 5.
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For any 5, we have

N Fi k
FE+m =YY cimy+ ) P, (18)
i=1 j=1 k=2
where the P,(n) are forms of degree « in 5. We have
oF _,
Cij = M(E ),
and we may suppose without loss of generality that c¢j; = 1.

For |n| < o we have
|[FE"+ ) <o,

where o = o(@) is small when o is small. Put F(§* + 5) = ¢. Now, if g is suf-
ficiently small, then we can invert the relation (18) and express 7;; in terms of ¢
and n;; (j > 1fori = 1) by means of power series. This expression will be of

the form
r 5 ri
n =& - chjmj - Z Zcijﬁij + P&, mij),
=2

i=2 j=I
where P is a multiple power series beginning with terms of degree > 2. Hence

o
R N X
3§' + l({ ’7])

and, by taking o sufficiently small, we can ensure that |P|| < % for |n;l < o
(j >1fori =1)and|¢| < 0.
A change of variables from 7y to ¢ in (17) yields

(o2 . 2
To(p) = / SINZTHE 1) de, (19)
s 14

where
V() = /(1 + P1(&,nij)) dniz - - - dngr;
B/

here B’ denotes the part of the (R — 1)-dimensional box

2l <0, -5 Insr | <0

in which || < o—that is, in which

s ri

'f - chjnlj — Z Zcijnij + P(¢,nij)
=

i=2 j=I

<.

It is clear that V() is a continuous function of ¢ for |¢| sufficiently small. It can
also be easily seen that V(¢) is a function of bounded variation, since it has left and
right derivatives at every value of ¢ and these are bounded. Hence, by Fourier’s
integral theorem (see [10, Sec. 9.4]) applied to (19), we have

lim Jo(u) = V(0).
JL—> 00
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Finally, V(0) is a positive number because the cube B’ contains a sufficiently
small (R — 1)-dimensional cube centered at the origin and in such a cube we have
1+ P > % This proves the lemma. UJ

LemmMmA 13.  Ifs > 2 and nonsingular F;(X;) (i < s) are semidefinite forms of
the same sign and if N is also of the same sign for B the unit cube, then

lim J(N|Y% = Jy > 0.

|N|—o00

Proof. The forms F; are nonsingular. Hence if they are semidefinite then they are
definite, for otherwise the real points & # 0 such that F;(§) = 0 would be singu-
lar points. Assume without loss of generality that the F; are positive definite and
that N > 0. Put P = NV, By Lemma 10, we have

so=[ay [ etvr@ - nas.
—00 B
By [9, Chap. I, Lemma 7D],

Jo = lim L/(l — L|F(x) — 1)) dx,
L—o0 B

1
Fx)—1 < —.
[FOO =1l = £

Hereafter, the inclusions written below the integrals define the domain of inte-
gration.

Let x; = (xj1,...,%;,) and perform the change of variables x;; = x,.y;
(1<j<rs)and

Fi(x) + - 4 Foa(xo) +xg By, 1) =1+ L7'E.

We obtain
Jo= lim —
L—o0

xiel0,117 Jyeo, 1 J -1 (14 L1 =32 Fox)) Ry, 1)k

i -
~ [ -iena jim x(5).

where

dxy---dxg_1dy
K(m) = . s—1 1—rg/k ek’
xiel01 Jyelo. (147 — 317 Fi(x))) Fy(y, D"
s—1
I4+n—F(y,D) <) F(x)<1+n

i=1

Next we perform the change of variables x; = (1 + )"/ k y; and obtain
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K@) = 1+t

/ / dyi---dys—1dy
welo.aen 1 yeonet (1= 021 Fiyn) ' Ry, 1)/
s—1

1
- —F((y,D<Y F(y) <L
e S) > Fi(y)

i=l

When 7 tends to 0, the foregoing multiple integral tends to

/ / dyy---dys_1dy
w0 Jyeror= (1= Y10 F(yn) ™ Fo(y,
s—1

- F(y.1) <Y F(y) <1
i=1

The integrand is positive in the interior of the domain of integration, so the integral

is positive provided the interior is nonempty. However, if a = Fi(1,0,...,0) then
1/(1 + F,(0, 1)) \'*
1= EO.1) < Fl((w) ,0> -1,
a
which proves the lemma. U

LEMMA 14. If F(x) = Y_;_, Fi(x;), where F; € C[x;] \ {0} are of degree k > 1
and the x; are disjoint (1 <i <), then h(F,C) > [s/2].

Proof. Since F; # 0 there exist & € C'" such that F;(§;x;) = xi". Therefore, it

suffices to prove that
2h = 2/1(2 xk, (C) > 5. (20)

i=1

If 2h < s and
K h
= i,
i=1 i=1

where G; and H; are forms of positive degree, then there exists an n € C* \ {0}
such that

Gim)=Hi(m) =0 (1=<i=<h).
Taking partial derivatives at the point , we obtain

k
_ aG; 0H;
ki~ = [§:1 <_8xj W H, )+ Gim 5= (n)) =0;

hence n = 0, a contradiction. O

REMARK 3. This lemma for s = 3 easily implies the Ehrenfeucht—Petczyriski
theorem about irreducibility over C of f(x) 4 g(y) + h(z), where f, g, h are non-
constant polynomials over C.
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LeEMMA 15. Ifk > 2ands > (k+ 12 o (k) +1and if F(x) = N # 0 is solv-
able in 7, for all primes p, then & > 0. Moreover, if all F; are nonsingular then
G > G > 0, where S is independent of N.

Proof. If h(F) > (k — 1)2%a (k) + 1 then w(F) > 2 by [9, Chap. I1I, Thm. 6A].
Therefore, by [9, Chap. I, Lemma 6D] we have

&= [] v, @
p prime

where
n

p

vp) =1+ > (") S p")

n=1 a=lI
(a,p)=1
and
L(F,N,p")

vip) = im = @2)

It follows from Lemma 7 that

h(F)
1S(a, pM)| < (pM)~ T m

and from this we deduce (since #(F) > (k — 1)2%c (k) + 1) that

=12k Lo (k)1 _ k=12K o ()42
— k=1 — k—1
|v(p) — 1| <p (k—1)2k=1g (k) <p (k=D2k=lo(k)+1 |

Hence there exists a p such that

[Tv =5

P>po
yet from Lemma 2 and (22) it follows that v(p) > 0 and so, by (21), we have & >
0. Moreover, if k > Sthens > (k + )25 lo(k) +1 > (k+ D2M1 . 13 +1 >
8k3 +1 > kil + 1; for k < 4 we check the relevant inequality directly. Hence, by
Lemma 5 and (22),

v(p) > vo(p) > 0 for all primes p,

where vo(p) is independent of N. The second part of the lemma now follows
from (21). O

LEmMMA 16. Under each set of assumptions in the Theorem there exists a posi-
tive integer s, such that, for s > s, all but finitely many integers represented by
F(x) = Y i_, F(x;) over R and over Z, for all primes p are represented by F
over Z.

Proof. For k = 1 the choice s, = 1 is obvious. For k = 2 the choice s, = 5
follows from classical theorems of the theory of quadratic forms (see [2, pp. 131,
235]). For k = 3 the choice s, = 33 follows from Davenport and Lewis’s theorem
[5] and from Lemma 14 (h(F) > 17). So assume that k > 4. If the F; are non-
singular then we take s, = (k + D2k (k) 4+ 1; if not all F; are semidefinite and
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of the same sign and if j is the least index such that Y_/_, F; is indefinite, then we
take s, = max{(k + 1)2*o (k) + 1, j}. Indeed, by Lemma 14 we have h(F) >
(k — 120 (k) + 1, and Lemmas 10, 12, 13, and 15 show that every integer suffi-
ciently large in absolute value that is represented by F(x) over R and over Z,, for
all primes p is also represented by F over Z. O

LeEmMA 17.  With notation as in Lemma 4, let s > 2kl + 1, let p be a prime, and
let x; be disjoint vectors of variables of lengthr; (i =1,2,...,5). Let F; € Z[X;]
be a form of degree k such that the greatest common divisor of F;(y;) for all ; €
Z'i is divisible exactly by p%, and let 8, < 8, < --- < 8. If the congruence
s—1
c=)  Fi(x;) (mod p*) (23)
i=1

is solvable, then the equation
c=Y Fi(x) (24)
i=1

is solvable in Z,,.
REMARK 4.  For k = 2, the number 2kl + 1 = 113 can be replaced by 4.

Proof of Lemma 17. Equation (24) is solvable for ¢ = 0, so let ¢ = p’d for d
a p-adic unit. We shall prove by induction on nonnegative k < y that if s >
kl 4+ Kkl +1and § > §; — k then solvability of (23) implies solvability of (24). For
k = 0 there is a residue r such that the set S = {i < s : §; = r (mod k)} satisfies
|S] > 1+ 1. Let m = maX;cgi. By the definition of §; there exist y; € Z" such
that F;(y;) = p’d;, where d; is a p-adic unit (i € S). By Lemma 3 there exist
& €Z, (i €§) such that

p'ind =) dikf
ieS
therefore,
c=Y  F(p“ " gm,).
ieS

Assume now that the implication holds for s > kI + (¢« — 1)/ 4 1 and for the
left-hand side of (23) and (24) divisible by p»—**! (k > 1). Let § = §; — k and
s >kl +«l+ 1. If § > 8;_; — « then the implication holds by the inductive as-
sumption with s replaced by s —[. If § = 8,_; — k,then §; =8, (s —1 <i < ).
From the solvability of (23) we infer that, for certain ¢; € Z'",

s—I—1
c— Z Fi(&) = p‘S‘t, tE€Z,.
i=1
By the definition of §; there exist y; € Z'' such that F;(y;) = p¥id;, where d; is a
p-adic unit (s —/ <i < ). Now, by Lemma 3 there exist§; € Z, (s —[ <i < s)
such that
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> aiEf =t

i=s—I
It follows that (&1, ..., &s—1—1,&s—1Ns—1, . .., Esy) 1S a solution of (24). The induc-
tive proof shows that the implication holds provided § > 8, — (y — 1) and s >
lk+1(y — 1)+ 1. For § < §; — y the implication holds, by Lemma 1, for every s.
Since y —1 < t + 1 < k it follows that the implication holds for s > 2kl + 1,
which was to be proved. ]

Proof of Theorem. For each prime p let the greatest common divisor of F;(y;) for
n; € 7' be divisible exactly by p%. Put

mp = min Z Spi
|S|=2ki+1 i€S
and let S, be a unique set S such that [S| =2kl +1, Y, 8y =mp,and ), i
is minimal. For all p such that §,; = 0 for all i < 2kl + 1 (and thus for all but
finitely many p) we have S, = {1,...,2kl + 1}. Now take

S = US,

p prime
s] = max[sz, maxi].
ieS)

By Lemma 16 for s > 51 > s, only finitely many integers N exist that are repre-
sented by Y ;_, Fi(x;) over R and over Z,, for all primes p yet are not represented
by Zf:l F;(x;) over Z. Let s¢ be the least integer s > s; for which the number
of exceptions is minimal. We show that sy has the property asserted in the the-
orem. Suppose N is an integer represented by Y }_, F;(x;) over R and over Z,
for all primes p. By the choice of 55, N is represented by Y %, F;(x;) over R.
Since for i ¢ S, we have §,; > maxjes, 8pj> it follows from Lemma 17 that N is
represented by Y %, Fi(x;) over Z, for every prime p. If N is represented over
Zby Y i_, Fi(x;) butnot by > ;% Fi(x;), then the number of exceptions for s is
smaller than the number of exceptions for s, contrary to the choice of s. O

Proof of Corollary. Let I, = {i € N : k; = k}. Because the sequence k; is
bounded, almost all the /; are empty. For each k such that /; is infinite, the The-

orem implies there are s, such that every integer represented by > ;_; .. 1, Fi(xi)
over Z is represented by Zf"zl ier, Fi(xi) over Z. For each k such that 0 < || <
00, put sy = max;ey, i and take
§o = max si.
[ #0

Now s¢ has the asserted property because if N = Y }_, F;(y;) then, for each k,
Zle, ier, Fi(y) = ¥ F;(x;); after summation over k, we have

=l,iel}
S0
N =) Fx).
i=1
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Added in proof. Suitable modifications in the proofs of Lemmas 5, 13, and 16
show that the condition (x) can be replaced by a weaker one: either not all forms
are semidefinite of the same sign, or at least k! + 1 forms are nonsingular.
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