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Projective Manifolds Containing a
Large Linear Subspace with Nef Normal Bundle

Carla Novelli & Gianluca Occhetta

1. Introduction

Let X ⊂ PN be a smooth complex projective variety of dimension n containing
a linear subspace � of dimension s; denote by N�/X its normal bundle and by c
the degree of the first Chern class of N�/X. If N�/X is numerically effective (nef ),
then X is covered by lines; if furthermore s is sufficiently large, the restrictions
imposed on X become stronger.

By [8,Thm. 2.5], if s+c > n
2 then, for largem and denoting byH the restriction

to X of the hyperplane bundle, the linear system |m(KX + (s +1+ c)H )| defines
an extremal ray contraction of X that contracts �. If s is greater than n

2 then this
contraction is a projective bundle, as shown in [28] (see also [6, Thm. 2.5]). By
[14, Thm. 1.7; 31, Thm. 2.4], the same result holds if s = n

2 and N�/X is trivial.
The complete study of the case s = n

2 is the subject of [28]; the setup of the
quoted paper is different—what is assumed is not the existence of a linear space
of dimension n

2 with nef normal bundle but rather the existence of a linear space of
dimension n

2 through every point ofX—yet the assumptions are in fact equivalent.
The most difficult cases in [28] are manifolds of Picard number 1, which turn

out to be (besides linear spaces) hyperquadrics and Grassmannians of lines. In this
paper we study the next case (i.e., n = 2s + 1) and prove the following theorem.

Theorem 1.1. Let X ⊂ PN be a smooth variety of dimension 2s + 1 and con-
taining a linear subspace � of dimension s such that its normal bundle N�/X is
numerically effective. If the Picard number ofX is1, thenX is one of the following:

(1) a linear space P2s+1;
(2) a smooth hyperquadric Q2s+1;
(3) a cubic threefold in P 4;
(4) a complete intersection of two hyperquadrics in P 5;
(5) the intersection of the Grassmannian of lines G(1, 4) ⊂ P9 with three general

hyperplanes; or
(6) a hyperplane section of the Grassmannian of lines G(1, s + 2) in its Plücker

embedding.

If the Picard number of X is greater than 1, then there is an elementary contrac-
tion ϕ : X → Y that contracts � and one of the following occurs:
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(7) ϕ : X → Y is a scroll; or
(8) Y is a smooth curve and the general fiber of ϕ is

(8a) the Grassmannian of lines G(1, s + 1),
(8b) a smooth hyperquadric Q2s, or
(8c) a product of projective spaces P s × P s.

The outline of the paper is as follows. First of all, we use the theory of uniform vec-
tor bundles on the projective space, together with some standard exact sequences,
to classify all possible normal bundlesN�/X. Then we consider separately the case
of Picard number greater than 1 and the case of Picard number 1; in fact, the ideas
and the proofs are very different.

If the Picard number is greater than 1, we combine the ideas and techniques of
[8] with those of [9] to show that a dominating family of lines onX of anticanonical
degree ≥ n+1

2 is extremal; that is, the numerical class of a line spans a Mori ex-
tremal ray of NE(X). The contraction of this ray is the morphism ϕ : X → Y

appearing in the second part of the statement of Theorem 1.1. The general fiber F
of ϕ is then a manifold covered by linear spaces of dimension ≥ dimF

2 , and this
leads to its classification.

If the Picard number is 1, the main idea is to study the manifold X̃ obtained by
blowing up X along �; we prove that X̃ is a Fano manifold, and then we study its
“other” extremal contraction. As a first application of this construction, in Sec-
tion 5 we show how to use it to complete [28, Main Thm.].

In the setup of Theorem 1.1, the hardest case corresponds to the normal bundle
N�/X 
 T�(−1) ⊕ O�, which gives rise to case (6). In this case we need to use
the blow-up construction twice: first we blow up X along � and show that there
is a special one-parameter family � of linear spaces to which � belongs; then we
blow up X along � and, after studying this blow-up, are able to describe com-
pletely the variety.

2. Background Material

A smooth complex projective variety X is called Fano if its anticanonical bun-
dle −KX is ample; the index rX of X is the largest natural number such that
−KX = mH for some (ample) divisor H on X. Since X is smooth, Pic(X) is tor-
sion free; therefore the divisor L satisfying −KX = rXL is uniquely determined
and is called the fundamental divisor of X. Fano manifolds with rX = dimX − 1
are called del Pezzo manifolds.

2.1. Extremal Contractions

LetX be a smooth projective variety of dimension n defined over the field of com-
plex numbers. A contraction ϕ : X → Z is a proper surjective map with connected
fibers onto a normal variety Z.

If the canonical bundle KX is not nef, then the negative part of the cone NE(X)
of effective 1-cycles is locally polyhedral by the Cone Theorem. By the Contrac-
tion Theorem, to every face in this part of the cone is associated a contraction,
called extremal contraction or Fano–Mori contraction.
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An extremal contraction associated to a face of dimension 1 (i.e., to an extremal
ray) is called an elementary contraction. A Cartier divisor H such that H = ϕ∗A
for an ample divisor A on Z is called a supporting divisor of the contraction ϕ.

Definition 2.1.1. An elementary fiber type extremal contraction ϕ : X → Z is
called a scroll (resp. a quadric fibration) if there exists a ϕ-ample line bundle L∈
Pic(X) such that KX + (dimX − dimZ + 1)L (resp. KX + (dimX − dimZ)L)

is a supporting divisor of ϕ.
An elementary fiber type extremal contraction ϕ : X → Z onto a smooth vari-

ety Z is called a P-bundle (resp. quadric bundle) if there exists a vector bundle E
of rank dimX − dimZ + 1 (resp. of rank dimX − dimZ + 2) on Z such that
X 
 PZ(E ) (resp. there exists an embedding of X over Z as a divisor of PZ(E ) of
relative degree 2).

Some special scroll contractions arise from projectivization of Bǎnicǎ sheaves
(cf. [5]). In particular, if ϕ : X → Z is a scroll such that every fiber has dimen-
sion ≤ dimX − dimZ + 1, then Z is smooth and X is the projectivization of
a Bǎnicǎ sheaf on Z (cf. [5, Prop. 2.5]). We will call these contractions special
Bǎnicǎ scrolls.

2.2. Families of Rational Curves

LetX be a smooth projective variety of dimension n defined over the field of com-
plex numbers.

Definition 2.2.1. A family of rational curves is an irreducible component V ⊂
Ratcurvesn(X) (see [23, Def. 2.11]). Given a rational curve, we will call a family
of deformations of that curve any irreducible component of Ratcurvesn(X) that
contains the point parameterizing that curve.

We will say thatV is unsplit if it is proper. We define Locus(V ) to be the set of
points of X through which there is a curve among those parameterized by V, and
we say thatV is a dominating family if Locus(V ) = X. We denote byVx the sub-
scheme of V parameterizing rational curves passing through x ∈ Locus(V ) and
by Locus(Vx) the set of points of X through which there is a curve among those
parameterized by Vx.

By abuse of notation, given a line bundle L∈ Pic(X), we will denote by L ·V
the intersection number L · CV , with CV any curve among those parameterized
by V.

Definition 2.2.2. An unsplit dominating familyV defines a relation of rational
connectedness with respect to V, which we shall call rc(V )-relation for short, in
the following way: x and y are in rc(V )-relation if there exists a chain of rational
curves, among those parameterized by V, that joins x and y.

To the rc(V )-relation we can associate a fibration, at least on an open subset [10;
23, IV.4.16]; we will call it the rc(V )-fibration.

Proposition 2.2.3 [23, IV.2.6]. Let V be an unsplit family of rational curves on
X. Then
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(a) dimX −KX ·V ≤ dim Locus(V )+ dim Locus(Vx)+ 1; and
(b) −KX ·V ≤ dim Locus(Vx)+ 1.

When V is the unsplit family of deformations of a minimal extremal rational
curve—that is, of a rational curve of minimal anticanonical degree in an extremal
face of NE(X)—Proposition 2.2.3 gives the fiber locus inequality.

Proposition 2.2.4 [20, Thm. 0.4; 30, Thm. 1.1]. Let ϕ be a Fano–Mori con-
traction of X. Denote by E the exceptional locus of ϕ and by F an irreducible
component of a nontrivial fiber of ϕ. Then

dimE + dimF ≥ dimX + l − 1,

where l := min{−KX · C | C is a rational curve in F }. If ϕ is the contraction of
an extremal ray R, then l(R) := l is called the length of the ray.

Definition 2.2.5. Let V be an unsplit family of rational curves on X and let
Z ⊂ X. We denote by Locus(V )Z the set of points x ∈X such that there exists a
curve C in V with C ∩ Z �= ∅ and x ∈C.
We will use some properties of Locus(V )Z , which are summarized in the follow-
ing lemma.

Lemma 2.2.6 [11, Sec. 2; 8, Proof of Lemma 1.4.5]. Let Z ⊂ X be a closed sub-
set and V an unsplit family. Assume that curves contained in Z are numerically
independent from curves in V and that Z ∩ Locus(V ) �= ∅. Then

dim Locus(V )Z ≥ dimZ −KX ·V − 1.

If σ is an extremal face of NE(X), if F is a fiber of the contraction associated to
σ, and if V is an unsplit family that is numerically independent from curves and
whose numerical class is in σ, then

NE(Locus(V )F ,X) = 〈σ, [V ]〉.
In other words, the numerical class inX of a curve in Locus(V )F is in the subcone
of NE(X) generated by σ and [V ].

2.3. Some Extremal Contractions Related to Grassmannians

We will now present some examples of Fano manifolds admitting a projective bun-
dle structure and another extremal contraction ϕ whose target is a Grassmannian
of lines. We will use these descriptions later in our proofs.

Example 2.3.1. Let G(1, s) be the Grassmannian of lines in P s and denote by I
the incidence variety. Consider the incidence diagram

I
ϕ

����
��

��
��

�
p

����
��

��
��

P s G(1, s).
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Then p and ϕ are projective bundles; more precisely, I = PP s (p∗ϕ∗OG(1,s)(1)) =
PP s (!P s (2)) and I = PG(1,s)(ϕ∗p∗OP s (1)) = PG(1,s)(Q), where Q is the univer-
sal quotient bundle on G(1, s).

Example 2.3.2. As in the previous example, let G(1, s) be the Grassmannian of
lines in P s and let I denote the incidence variety. Consider the following diagram,
which is obtained by the preceding incidence diagram:

I × P1

q

����
��

��
��

�
p

����
��

��
��

ϕ

��

P s × P1 G(1, s)× P1
g

�� G(1, s).

The composition ϕ = g � q gives a morphism ϕ : I × P1 → G(1, s) whose fibers
are smooth two-dimensional quadrics. Let H be p∗OP s×P1(1, 1) and put E :=
ϕ∗H. We have

E = ϕ∗H = g∗(q∗H) = g∗(OG(1,s)×P1(1, 0)⊗ g∗Q) = Q⊕2.

The product I ×P1 = PP s×P1(p∗
1!P s (2)), where p1 denotes the projection onto

P s, embeds in PG(1,s)(E ) as a divisor of relative degree 2; that is, it belongs to a
linear system |2H − ϕ∗L| for some line bundle L in Pic(G(1, s)). The discrimi-
nant divisor of the quadric bundle is in the linear system |2 det E − 4L| and it is
trivial, since every fiber of ϕ is smooth. It follows that L = OG(1,s)(1).

Example 2.3.3. Let G(1, s + 1) be the Grassmannian of lines in P s+1 and let
G(1,H ) ⊂ G(1, s+ 1) be a sub-Grassmannian corresponding to the lines of P s+1

contained in a fixed hyperplane H.
Consider the rational map ψ : G(1, s + 1) ��� H, which associates to a line l

the point of intersection of l with H. This map is not defined precisely along the
points of G(1, s + 1) representing the lines contained in H (i.e., along the sub-
Grassmannian G(1,H )).

Consider the resolution ofψ obtained by blowing up G(1, s+1) along G(1,H ):

G̃(1, s + 1)

p

��

ϕ
�� G(1, s + 1)

ψ

��� � � � � � � � �

H .

The contraction p is a P s-bundle over H whose fibers are the strict transforms of
linear subspaces P s ⊂ G(1, s + 1) corresponding to stars of lines with center in
H ; namely, G̃(1, s + 1) = PH (p∗ϕ∗OG(1,s+1)(1)) = PH (!P s (2)⊕ OP s (1)).

3. Manifolds with Picard Number Greater Than 1

In this section we are going to show that, if the Picard number of X is greater
than 1 and if X is covered by linear spaces of dimension s ≥ [n/2], then either



446 Carla Novelli & Gianluca Occhetta

Pic(X) 
 Z or there is an elementary Mori contraction to a positive-dimensional
variety whose general fiber is covered by linear spaces; in this last case we will
then get the description of the general fiber by Corollary 5.3.

Let X be a smooth complex projective variety, let V be an unsplit dominating
family of rational curves for X, and let q : X ��� Y be the rc(V )-fibration. Let B
be the indeterminacy locus of q; notice that dimB ≤ dimX− 2, as X is smooth.
Moreover, by [9, Prop. 1], B is the union of all rc(V )-equivalence classes of di-
mension greater than dimX − dimY.

Lemma 3.1. LetV be an unsplit dominating family of rational curves on a smooth
projective variety X. Let B be the indeterminacy locus of the rc(V )-fibration
q : X ��� Y, let D be very ample on q(X \ B), and let D̂ := q−1D. Then:

(a) D̂ ·V = 0;
(b) if C �⊂ B is a curve whose numerical class is not proportional to [V ], then

D̂ · C > 0;
(c) if [V ] does not span an extremal ray of NE(X), then there exists a curve

C ⊂ B whose class is not proportional to [V ] and such that D̂ · C ≤ 0.

Proof. A general cycle of V is contained in a fiber of q disjoint from D̂, so D̂ ·V =
0. If C is as in (b), then q(C) is a curve in Y and the result follows from the pro-
jection formula.

Finally, if [V ] does not span an extremal ray, then either D̂ is not nef or D̂ is nef
but D̂⊥ ∩ NE(X) � [V ]. In both cases there exists a curve C ⊂ X whose class
is not proportional to [V ] such that D̂ ·C ≤ 0. Such a curve must be contained in
B by [9, Proof of Prop. 1].

Lemma 3.2. Let X be a manifold that admits an unsplit dominating family of ra-
tional curves V. Assume there exists an extremal face � ⊆ NE(X)KX<0 such that
[V ] ⊂ �. Then either [V ] spans an extremal ray or there exists an extremal ray
in � whose exceptional locus is contained in the indeterminacy locus B of the
rc(V )-fibration. In particular, this ray is associated with a small contraction.

Proof. Let τ be a minimal subface of � containing [V ]. If dim τ = 1, then [V ]
spans an extremal ray.

Assume that dim τ ≥ 2. Let D̂ be as in Lemma 3.1. Since D̂ ·V = 0, it follows
that either D̂ is zero on every extremal ray of σ or is negative on at least one ray.
In both cases, by Lemma 3.1(b) there is at least one ray whose exceptional locus
is contained in B, and the assertion follows because dimB ≤ dimX − 2.

The following is a slight improvement of [8, Thm. 2.5] (cf. [6, Thm. 2.4], where
the case −KX ·V ≥ n+3

2 is treated).

Theorem 3.3. Let (X,H ) be a polarized n-fold with a dominating family of ra-
tional curves V such thatH ·V = 1. If −KX ·V ≥ n+1

2 , then [V ] spans an extremal
ray of NE(X).

Proof. Denote by m the positive integer −KX · V and by L the adjoint divisor
KX +mH.



Projective Manifolds Containing a Linear Subspace 447

Case 1: L is nef. Denote by q : X ��� Y the rc(V )-fibration and by B its inde-
terminacy locus. Assume that [V ] does not span an extremal ray in NE(X). This
implies that L defines an extremal face � of dimension ≥ 2 containing [V ].

By Lemma 3.2 there exists an extremal ray R ∈ � whose associated contrac-
tion ϕ is small; moreover, sinceL ·R = 0, the length of this extremal ray is greater
than or equal to m. If F is a nontrivial fiber of ϕ, then by Proposition 2.2.4 we
have dimF ≥ m+ 1.

Let x be a point in F ; Locus(Vx) meets F but, since [V ] is independent from
R, the intersection must be zero-dimensional. This implies that

dim Locus(Vx) ≤ n−m− 1 ≤ n− 3

2
,

contradicting part (b) of Proposition 2.2.3.

Case 2: L is not nef. This assumption yields the existence of an extremal rayR
such that L · R < 0. Notice that R has length ≥ m + 1, so every nontrivial fiber
of the associated contraction has dimension ≥ m by Proposition 2.2.4.

By Lemma 2.2.6 we have

dimX ≥ dim Locus(V )F ≥ −KX ·V + dimF − 1 ≥ m+m− 1 ≥ n;
hence Locus(V )F = X. We can apply the second part of Lemma 2.2.6 to get
NE(X) = 〈[V ],R〉 and we are done.

Remark 3.4. By combining the ideas and tecniques of [8] with those of [9], it is
actually possible to prove the statement of Theorem 3.3 under the weaker assump-
tion that −KX ·V ≥ n−1

2 . However, the proof becomes very long and complicated
and so, since it is not necessary for our main theorem, we will present it else-
where [24].

Theorem 3.5. Let X ⊂ PN be a smooth variety of dimension n covered by lin-
ear spaces of dimension s ≥ [n/2]; then there is an elementary Mori contraction
ϕ : X → Y that contracts lines in the corresponding covering family. Moreover,
either Pic(X) 
 Z and Y is a point, or, denoting by F a general fiber of ϕ, one
of the following occurs: Pic(F ) 
 Z or n = 2s + 1 and F 
 P s × P s.

Proof. Let l be a general line in a general linear space; by the assumptions
there is a dominating family of lines in X containing l. By adjunction we have
−KX · l ≥ s+1; hence, by Theorem 3.3, the numerical class of l spans an extremal
ray of X.

Let ϕ : X → Y be the contraction of this extremal ray and let F be a general
fiber of ϕ. Then F has dimension ≤ 2s and, by adjunction, is a Fano manifold of
index ≥ s + 1; hence either F 
 P s × P s or ρF = 1 by [29, Thm. B].

Example 3.6. We show with an example that the last case of Theorem 3.5 is
effective; the idea on which it is based was suggested by Wiśniewski for [25,
Exm. 7.2].

Let C ′ be a smooth curve with a free Z2-action, so that the action induces an
étale covering π : C ′ → C of degree 2. Let G be P s × P s and take, on G, the
Z2-action that exchanges the factors.
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LetX ′ := G×C ′ and denote byX the quotient ofX ′ by the product action of Z2;
the action is free and so X is smooth. By the universal property of group actions
there exists a morphism ϕ : X → C such that the following diagram commutes:

X ′ ��

π ′
��

C ′

π

��

X
ϕ

�� C .

The map ϕ : X → C is an extremal contraction, and every fiber is a product of
projective spaces P s × P s. We will now show that ϕ is elementary.

Let l be a line in G and consider the product l × C ′ ⊂ G× C ′ = X ′: it is a flat
family of rational curves. Let c be a point of C and let {c ′

1, c ′
2} be π−1(c). Finally,

set l ′i := l × {c ′
i} and consider the following restriction of the previous diagram:

G× {c ′
1, c ′

2} ��

π ′
��

{c ′
1, c ′

2}
π

��

ϕ−1(c) 
 P s × P s
ϕ

�� c .

Since the product action identifies G × {c ′
1} with G × {c ′

2} exchanging the fac-
tors, it follows that l1 = π ′(l ′1) is a line in a fiber of the projection of ϕ−1(c) onto
the first factor and that l2 = π ′(l ′2) is a line in a fiber of the projection of ϕ−1(c)

onto the second factor. Hence lines in the two factors are algebraically and thus
numerically equivalent.

Remark 3.7. In Example 3.6, X has an unsplit dominating family of rational
curves V such that Vx has dimension dimX−3

2 and is reducible for every x. This
should be compared with [21, Thm. 5.1], in which it is proved that if dimVx ≥
dimX−1

2 then Vx is irreducible.

4. A General Construction

In this section we will present a blow-up construction and show how to apply it
to manifolds of Picard number 1 containing a linear space with nef normal bun-
dle. The construction in the following proposition was inspired by the graduate
thesis [26] supervised by the second-named author.

Proposition 4.1. LetX ⊂ PN be a Fano manifold of dimension n, index rX, and
Picard number 1, covered by lines and containing a smooth subvariety � of di-
mension s, that is the intersection of its linear span with X; that is, � = X ∩ 〈�〉
with [n/2] ≤ s ≤ n−2. Let σ : X̃ → X be the blow-up ofX along� and letE =
P�(N

∗
�/X) be the exceptional divisor of σ. Then NE(X̃) = 〈[Cσ ], [-]〉, where Cσ

is a minimal curve contracted by σ and - is the strict transform of a line meeting
� at one point.

If rX ≥ [n/2] + 1 then X̃ is a Fano manifold, the length of the ray R+[-] is
rX − n + s + 1, and the extremal contraction ϕ : X̃ → Y associated to R+[-] is
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the morphism defined by the linear system |m(σ ∗OX(1)−E)| form � 0. If rX ≥
[(n + 1)/2] + 1, then also E is a Fano manifold ; moreover, for any positive m,
the restriction to E of the morphism given by |m(σ ∗OX(1)−E)| is the morphism
given by the linear system |mξN ∗

�/X
(1)|.

Proof. Since the Picard number of X is 1 and since X is covered by lines, it fol-
lows from [3, Prop. 1.1] thatX is rationally connected with respect to a dominating
family of lines.

Consider the rational map X ��� Ỹ defined by the linear system |OX(1)⊗ I�|
of hyperplanes containing �. Let ϕ̃ : X̃ → Ỹ be the resolution of this map. Then
the morphism ϕ̃ is defined by the linear system |H − E|, where H denotes the
pull-back σ ∗OX(1). Let l ⊂ X be a line meeting � but not contained in it; notice
that such a line exists because X is rationally connected with respect to a family
of lines.

Since� = X∩〈�〉, the intersection l∩� consists of one point; hence the mor-
phism ϕ̃ contracts -, the strict transform of l. Therefore, denoting by Cσ a rational
curve of minimal degree contracted by σ, we obtain NE(X̃) = 〈[Cσ ], [-]〉. The
contraction associated to the ray R = R+[-] is therefore given by the Stein fac-
torization of ϕ̃; that is, it is defined by the linear system |m(H − E)| for m � 0.

By the canonical bundle formula for blow-ups we have

−KX̃ = −σ ∗KX − (n− s − 1)E = rXH − (n− s − 1)E. (4.1.1)

Clearly, −KX̃ · Cσ > 0.
If rX ≥ [

n
2

] + 1, we get −KX̃ · - = rX − n+ s + 1 > 0. By the Kleiman crite-
rion it follows that −KX̃ is ample, so X̃ is a Fano manifold. We also get that the
length of the ray contracted by ϕ is rX − n+ s + 1.

Assume now that rX ≥ [
n+1

2

] + 1. From (4.1.1) it follows that the line bundle

−KX̃ − E = rXH − (n− s)E

is ample on X̃, since (−KX̃ −E) ·Cσ = n− s and (−KX̃ −E) · - = rX + s−n >

0. Therefore its restriction toE, which by adjunction is −KE , is ample, too; hence
E is a Fano manifold.

Letm be a positive integer and denote byDm the divisor −KX̃−E+m(H−E).

Then Dm, as the sum of an ample line bundle and a nef one, is ample on X̃ and so
h1(mH − (m+ 1)E) = h1(KX̃ +Dm) = 0 by the Kodaira Vanishing Theorem. It
follows that the morphism

H 0(X̃,m(H − E)) −→ H 0(E,m(H − E)|E) = H 0(E,mξN ∗
�/X

(1))

is surjective, proving the last claim.

Claim 4.2. In the setting of Proposition 4.1, assume that rX ≥ [(n+ 1)/2] + 1,
that |ξN ∗

�/X
(1)| gives a morphism ϕE : E → T onto a normal variety, and that ϕ is

of fiber type. Then we can assume that ϕ is defined by the linear system |H − E|.
Proof. Let ϕ̃ : X̃ → Ỹ be the morphism defined by the linear system |H−E|. The
fibers of ϕ̃ are connected and so, in the Stein factorization of ϕ̃, the finite mor-
phism g is the normalization
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X̃
ϕ̃

��

ϕ
		

��
��

��
� Ỹ

Y

g



�������

(cf. [13, 1.13]). The divisor E is ϕ̃-ample, so the restriction of ϕ̃ to E is onto Ỹ.
Since this restriction is ϕE by the last claim of Proposition 4.1, we have Ỹ = T.

Hence Ỹ is normal and g is an isomorphism.

The following lemma shows that we can apply our construction to manifolds of
Picard number 1 containing a large linear space whose normal bundle is numeri-
cally effective.

Lemma 4.3. Let X ⊂ PN be a smooth variety, of dimension n and Picard num-
ber 1, that contains a linear space � of dimension s. Assume that the normal
bundle N�/X of � in X is nef, and denote by c the nonnegative integer such that
detN�/X = O�(c). Then X is a Fano manifold of index rX = s + 1 + c that is
covered by lines.

Proof. By the adjunction formula we have

K� = (KX + detN�/X)|�.
Hence

(−KX)|� = O�(s + 1 + c),

from which we can derive

−KX = OX(s + 1 + c). (4.3.1)

Let l be a general line in �. From the nefness of N�/X and the exact sequence

0 −→ Nl/� = O�(1)
⊕(s−1) −→ Nl/X −→ (N�/X)|l −→ 0,

we have that Nl/X is nef. Therefore, l is a free rational curve in X (see [23,
Def. II.3.1]), which is thus covered by lines by [23, Prop. II.3.10].

5. Projective n-Folds Covered by Linear Subspaces
of Dimension ≥ n/2

In this section we will prove that, if a smooth complex projective variety X ⊂ PN

of Picard number 1 and dimension 2s contains a linear subspace � 
 P s whose
normal bundle is TP s (−1), then X is the Grassmannian of lines in P s+1. This re-
sult, as explained in Corollary 5.3, completes [28, Main Thm.], which classified
smooth projective varieties of dimension n covered by linear subspaces of dimen-
sion ≥ n

2 .

Lemma 5.1. Let X ⊂ PN be a smooth variety containing a linear subspace � 

P s whose normal bundle N�/X is globally generated and such that h1(N�/X) = 0.
Then X is covered by linear subspaces of dimension s.
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Proof. The Hilbert scheme of s-planes inX is smooth at the point λ corresponding
to�. Let T be the unique irreducible component of the Hilbert scheme containing
λ, and let Z be the universal family. Then we have the following diagram:

Z
q

����
��

��
�

p

		
��

��
��

�

T X .

Let z be a point in �′ := q−1(λ); we consider the differential of p at that point,

dzp : TzZ −→ Tp(z)X;
this map is the identity when restricted to Tz�′. Recalling that TλT 
 H 0(N�/X)

and considering the exact sequence of the normal bundle of � in X, we get the
commutative diagram

0 �� Tz�
′ ��

Id

��

TzZ ��

dzp

��

H 0(N�/X) ��

ev

��

0

0 �� Tp(z)� �� Tp(z)X �� (N�/X)p(z) �� 0,

which shows that dzp is surjective (since ev is surjective by the spannedness of
N�/X). Hence p is smooth at z.

Proposition 5.2. Let X ⊂ PN be a smooth variety of Picard number 1 and
dimension 2s containing a linear subspace � 
 P s whose normal bundle is
TP s (−1). Then X is the Grassmannian of lines G(1, s + 1).

Proof. Observe first that, by Lemma 4.3, X is a Fano manifold of index rX =
s + 1 + c = s + 2 that is covered by lines.

Let σ : X̃ → X be the blow-up of X along �. Denote by E = P(N ∗
�/X) the

exceptional divisor and by H the pull-back σ ∗OX(1). By Proposition 4.1, X̃ is a
Fano manifold with a contraction ϕ : X̃ → Y whose restriction to E is the map
associated on E to the linear system |mξN ∗

�/X
(1)| = |mξ!(2)|. This map is, up to

a Veronese embedding of the target, the P1-bundle over G(1, s) given by the pro-
jectivization of the universal quotient bundle Q over G(1, s), as shown in Exam-
ple 2.3.1.

Moreover, by Proposition 4.1, NE(X̃) = 〈[Cσ ], [-]〉; hereCσ is a rational curve
of minimal degree contracted by σ, - is the strict transform of a line meeting � at
one point, and the length of the extremal ray generated by [-] is rX − n+ s +1 =
3. By Proposition 2.2.4, every nontrivial fiber of the contraction ϕ has dimen-
sion ≥ 2. SinceE ·- = 1, we have thatE meets every nontrivial fiber ofϕ. Because
ϕ|E is equidimensional with one-dimensional fibers, it follows that ϕ cannot have
fibers of dimension > 2, for otherwise their intersection with E would be a fiber
of dimension ≥ 2 of ϕ|E.
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Therefore, every nontrivial fiber of ϕ has dimension 2 and so, by Proposi-
tion 2.2.4, ϕ is of fiber type. By Claim 4.2 we can assume that ϕ is defined by the
linear system |H − E|.

Let F be a general fiber of ϕ. By adjunction, we have

−KF = (−KX̃)|F = ((s + 2)H − (s − 1)E)|F = 3H|F ;
hence (F, H|F ) 
 (P2, OP2(1)). The line bundle 2H − E is ample and

(2H − E)|F 
 OP2(1);
thus we can apply [19, Lemma 2.12] to obtain that ϕ is a projective bundle
over G(1, s).

Let E := ϕ∗H. Then the inclusion E = PG(1,s)(Q) ↪→ X̃ = PG(1,s)(E ) gives
the following exact sequence of vector bundles over G(1, s):

0 −→ L −→ E −→ Q −→ 0.

We can use the canonical bundle formula for projective bundles to compute that
det E = OG(1,s)(2); so, recalling that det Q = OG(1,s)(1), we have L = OG(1,s)(1).
Since h1(Q∗(1))=h1(Q)= 0, the sequence splits and X̃= PG(1,s)(Q⊕OG(1,s)(1)).

We have thus proved that the existence inX of a linear subspace� 
 P s whose
normal bundle is TP s (−1) completely determines X. Since the Grassmannian of
lines G(1, s + 1) contains such a linear space (take a linear space corresponding
to the lines passing through a fixed point), the proposition is proved.

Corollary 5.3 (cf. [28, Main Thm.]). Let X ⊂ PN be a smooth complex va-
riety of dimension n ≥ 2 covered by linear subspaces of dimensions s ≥ n

2 . Then
X is one of the following:

(1) a P r -bundle over a smooth variety (r ≥ s);
(2) a smooth hyperquadric Q2s; or
(3) the Grassmannian of lines G(1, s + 1).

Proof. In [28], Sato first showed that the normal bundle of a general linear sub-
space is one of the following:

(i) O⊕a
P s ⊕ OP s (1)⊕(n−s−a);

(ii) !P s (2); or
(iii) TP s (−1).

Then he showed that X is a P r -bundle over a smooth variety (r ≥ s) in case (i)
and that X is a smooth hyperquadric in case (ii). As for case (iii), Sato showed
that X is the Grassmannian of lines in P s+1 if s is even or if one assumes that all
the linear subspaces of the covering family have normal bundle TP s (−1).

Thus to prove the statement of the corollary it is enough to show that, in case (iii),
X is the Grassmannian of lines in P s+1. This will follow from Proposition 5.2 once
we prove that, if X is as in case (iii), then its Picard number is 1. So assume that
this is not the case. By Theorem 3.5 there is an elementary contraction that con-
tracts a covering family of linear subspaces of dimension s. A general fiber F has
dimension at most 2s−1 and is covered by linear spaces of dimension s. Applying
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[32, Cor. I.2.20] as in [17, Thm. 2], we derive that F is a projective space; hence
the normal bundle of a general s-plane cannot be TP s (−1).

Corollary 5.4. Let X ⊂ PN be a smooth variety of dimension 2s containing a
linear subspace � 
 P s whose normal bundle is TP s (−1). Then X is the Grass-
mannian of lines G(1, s + 1).

Proof. By Lemma 5.1, through every point of X there is a linear subspace of di-
mension s. By Corollary 5.3, X is a P r -bundle over a smooth variety, a smooth
hyperquadric Q2s, or the Grassmannian of lines G(1, s + 1). However, the first
two cases are ruled out because the corresponding manifolds do not contain a lin-
ear subspace with normal bundle TP s (−1).

We can now prove the part of Theorem 1.1 regarding manifolds with Picard num-
ber greater than 1.

Corollary 5.5. LetX ⊂ PN be a smooth variety of dimension 2s+1and Picard
number greater than 1, containing a linear subspace� of dimension s, whose nor-
mal bundle N�/X is nef. Then there is an elementary contraction ϕ : X → Y that
contracts � and one of the following occurs:

(a) ϕ is a scroll; or
(b) Y is a smooth curve and the general fiber of ϕ is

• the Grassmannian of lines G(1, s + 1),
• a smooth hyperquadric Q2s, or
• a product of projective spaces P s × P s.

Proof. Combine Theorem 3.5 with Corollary 5.3.

Remark 5.6. If ϕ is a scroll and dimF ≥ s + 1, then X has a projective bundle
structure over Y by [14, Thm. 1.7]. By [7, Conj. 14.1.10], this should be the case
also if dimF = s.

6. Normal Bundles

Let X ⊂ PN be a smooth variety of dimension 2s+1 and containing a linear sub-
space � of dimension s whose normal bundle N�/X is numerically effective. In
this section we will start the proof of the first part of Theorem 1.1. We shall give
the list of all possible normal bundles of the linear subspace �, show that X is
covered by linear subspaces of dimension s, and settle the case of decomposable
normal bundles.

Proposition 6.1. Let X ⊂ PN be a smooth variety of dimension 2s + 1 and
containing a linear subspace � of dimension s whose normal bundle N�/X is nef.
Then N�/X is one of the following:

(1) !�(2)⊕ O�;
(2) !�(2)⊕ O�(1);
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(3) T�(−1)⊕ O�(1);
(4) T�(−1)⊕ O�; or
(5) O�(1)⊕c ⊕ O⊕(s+1−c)

� .

Moreover, through every point of X there is a linear subspace of dimension s.

Proof. From the exact sequence

0 −→ N�/X −→ N�/PN = O�(1)
⊕(N−s) −→ (NX/PN )|� −→ 0

and the nefness of N�/X, we get that the splitting of N�/X on lines in � is of type
(0, . . . , 0,1, . . . , 1) and hence uniform. By the classification of uniform vector bun-
dles of rank s +1 on P s given in [16] and [4] and taking into account the splitting
type, we have that N�/X is one of the bundles listed in the statement. Since all
these bundles are generated by global sections and have h1(N�/X) = 0, the last as-
sertion follows from Lemma 5.1.

Question 6.2. Let X ⊂ PN be a smooth variety of dimension 2s +1 such that,
through every point of X, there is a linear subspace of dimension s. It is possible
to prove, as in [28], that the general linear subspace has a normal bundle that is
spanned at the general point. Is it true that there exists a linear subspace � with
nef normal bundle?

We next recall a general construction (see [1, Proof of 0.7]).

Lemma 6.3. Let � ⊂ X ⊂ PN be a linear space contained in a smooth projec-
tive variety and such that N�/X 
 N ′ ⊕ O�(1) for some vector bundle N ′ over �.
Then there exists a smooth hyperplane section X ′ of X that contains � and such
that N�/X ′ 
 N ′.

Proof. The existence of the smooth hyperplane section follows from [7, Cor.1.7.5].
Notice that, to apply this result, since N ∗

�/X(1) 
 N ′∗(1) ⊕ O� we do not need
assumptions on dim�. Then, by the exact sequence

0 −→ N�/X ′ −→ N�/X 
 N ′ ⊕ O(1) −→ O�(1) −→ 0,

we obtain the statement on the normal bundle.

Proposition 6.4. LetX ⊂ PN be a smooth variety of dimension n ≥ 4 and con-
taining a linear space � of dimension s with

[
n
2

] ≤ s ≤ n − 2. Assume that the
normal bundle N�/X is trivial. Then the Picard number of X is at least 2.

Proof. Assume by contradiction that ρX = 1. Then, by Lemma 4.3, X is a Fano
manifold of index rX = s + 1 that is covered by lines. By the first part of
Proposition 4.1, the blow-up of X along �, which we will denote by X̃, is a Fano
manifold with ρX̃ = 2 and whose “other” contraction ϕ : X̃ → Y is given by the
linear system |m(H − E)|, where H := σ ∗OX(1). The restriction of m(H − E)

to E = � × P n−s−1 is mξN ∗
�/X

(1) = OE(m, 1). In particular, no curves of E are
contracted by ϕ.

The extremal ray associated with ϕ is generated by the class [-] of the strict
transform of a line meeting � at one point, so E · - = 1. Since E has positive
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intersection number with curves contracted by ϕ, it follows that every nontrivial
fiber of ϕ has dimension 1.

By [30, Thm. 1.2], ϕ is either a conic bundle or a blow-up of a smooth sub-
variety of codimension 2; in both cases, Y is smooth. Assume that ϕ is a conic
bundle. Then the finite morphism ϕ|E : E → Y is either birational (if ϕ has no re-
ducible fibers) or of degree 2; since ρY = 1, in both cases we should have ρE = 1.
This is clear in the first case, and in the second it follows from [12]. So we get a
contradiction.

If ϕ is a blow-up of a smooth codimension-2 subvariety, then the divisor D =
(m+s+1)(H−E) = ϕ∗OY (m+s+2) is nef and big on X̃ form > 0. Moreover,
the length of ϕ is 1 and so, by Proposition 4.1, we get rX = n − s; hence n =
2s+1. This implies that mH − (m+ 1)E = KX̃ +D, so h1(mH − (m+ 1)E) =
0 by the Kawamata–Viehveg Vanishing Theorem. It follows that the morphism

H 0(X̃,m(H − E)) −→ H 0(E,m(H − E)|E) = H 0(E,mξN ∗
�/X

(1))

is surjective, so the restriction to E of ϕ is the morphism given by the linear sys-
tem |mξN ∗

�/X
(1)| = |OE(m, 1)|. In particular, the image of E via ϕ is a smooth

divisor isomorphic to P s × P s. But this is impossible, by Lefschetz’s theorem on
hyperplane sections, because ρY = 1.

Remark 6.5. If n = 3 then, by Lemma 4.3, X is a Fano manifold of index 2 that
is covered by lines; hence X is a del Pezzo manifold. By the classification in [19,
Thm. 8.11], a del Pezzo threefold of Picard number 1 with very ample fundamen-
tal divisor is a cubic hypersurface in P 4, the complete intersection of two hyper-
quadrics in P 5, or a linear section of G(1, 4) ⊂ P9 with three general hyperplanes.

Proposition 6.4 allows us to prove that if the normal bundle of� is decomposable,
the Picard number of X is 1, and s ≥ 2, then X is a linear space.

Corollary 6.6. Let X ⊂ PN be a smooth variety of dimension n and Picard
number 1 that contains a linear space� of dimension s ≥ 2 with

[
n
2

] ≤ s ≤ n−2.

Assume that the normal bundle N�/X is O�(1)⊕c ⊕ O⊕(n−s−c)
� . Then c = n − s

and X is a linear space.

Proof. By Proposition 6.4 we can assume that c > 0 and so, by Lemma 6.3, we can
find a smooth hyperplane section X ′ of X containing �. Then, as in [17, Thm. 2],
we apply [32, Cor. I.2.20]; this yields that X ′ is a linear space, so we conclude
that X is a linear space, too.

7. Manifolds with Picard Number 1

In this section we will consider projective manifolds of dimension 2s + 1 and
Picard number 1 containing a linear subspace of dimension s with numerically ef-
fective normal bundle. We shall prove the following result.

Theorem 7.1. Let X ⊂ PN be a smooth variety of dimension 2s +1 and Picard
number 1 that contains a linear subspace � of dimension s such that its normal
bundle N�/X is nef. Then X is one of the following:
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• a linear space P2s+1;
• a smooth hyperquadric Q2s+1;
• a cubic threefold in P 4;
• a complete intersection of two hyperquadrics in P 5;
• the intersection of the Grassmannian of lines G(1, 4) ⊂ P9 with three general

hyperplanes; or
• a hyperplane section of the Grassmannian of lines G(1, s + 2) in its Plücker

embedding.

Proof. First of all notice that, by Lemma 4.3, X is a Fano manifold of index rX =
s + 1 + c. Moreover, all possible nef normal bundles N�/X are listed in Proposi-
tion 6.1.

When N�/X 
 !�(2)⊕ O�, X is a del Pezzo manifold with very ample funda-
mental divisor and hence, by the classification in [19, Thm. 8.11], is of degree ≥ 3.
Recalling that the Picard number of X is 1 and that X contains lines, by the same
classification we have that the degree of X is at most 5.

A del Pezzo manifold of degree 3 and Picard number 1 is a cubic hypersurface
in P n+1. On the other hand, by the exact sequence of normal bundles

0 −→ N�/X −→ O�(1)
⊕(s+2) −→ O�(3) −→ 0,

it follows that we cannot have N�/X 
 !�(2) ⊕ O� unless s = 1. Again by [19,
Thm. 8.11], a del Pezzo manifold of degree 4 is the complete intersection of two
quadric hypersurfaces.

Let us show also that this case is possible only if s = 1. We owe this remark
and its proof to Andrea Luigi Tironi.

Let Q and Q′ be hyperquadrics such that X = Q ∩ Q′, and let F be the pen-
cil generated by Q and Q′. By [27, Prop. 2.1], the general quadric in F is smooth;
hence we can assume that Q is smooth.

By [7, Cor. 1.7.5] there is a smooth hyperplane section QH of Q containing �.
By the exact sequence of normal bundles

0 −→ N�/QH
−→ N�/Q −→ O�(1) −→ 0

and recalling that N�/QH

 !�(2)⊕ O�(1), we have N�/Q 
 !�(2)⊕ O�(1)⊕2.

Therefore, the exact sequence

0 −→ N�/X −→ N�/Q −→ (NX/Q)|� −→ 0

becomes

0 −→ !�(2)⊕ O� −→ !�(2)⊕ O�(1)
⊕2 −→ O�(2) −→ 0.

A computation of the total Chern class shows that this is possible only if s = 1.
Again by [19, Thm. 8.11], a del Pezzo manifold of degree 5 is a linear section of
G(1, 4).

If N�/X 
 !�(2)⊕O�(1), then X is a smooth hyperquadric by the Kobayashi–
Ochiai theorem [22]. IfN�/X 
 T�(−1)⊕O�(1) then, by Lemma 6.3, there exists
a smooth hyperplane section X ′ of X containing �. Moreover, the normal bundle
of � in X ′ is T�(−1); hence, by Corollary 5.4, X ′ is the Grassmannian of lines
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G(1, s+1). But by [18, Cor. 1.3, Prop. 2.1], G(1, s+1) cannot be a hyperplane sec-
tion of another manifold unless s = 2. In this caseX ′ is a four-dimensional hyper-
quadric and so X is a five-dimensional hyperquadric. Note that, since TP2(−1) 

!P2(2), this was already part of the previous case.

As for the remaining possibility, if the normal bundle is decomposable then X
is a linear space by Corollary 6.6. The more difficult case, N�/X 
 T�(−1)⊕ O�,
is settled in the next subsection.

7.1. Normal Bundle Isomorphic to T�(−1)⊕ O�

We start by proving that � belongs to a special one-dimensional family of linear
subspaces of X.

Proposition 7.1.1. Let X ⊂ PN be a smooth variety of Picard number 1 and di-
mension 2s + 1 that contains a linear subspace � 
 P s whose normal bundle is
TP s (−1)⊕ OP s . Then there is a subvariety � ⊂ X such that (�, (OX(1))|�) 

(P1 × P s, OP1×P s (1, 1)) and such that � contains � as a fiber of the first projec-
tion. Moreover, � = 〈�〉 ∩X.

Proof. By Lemma 4.3, X is a Fano manifold of index s + 2 that is covered by
lines. Let σ : X̃ → X be the blow-up of X along �, and denote by E = P(N ∗

�/X)

the exceptional divisor. By Proposition 4.1, X̃ is a Fano manifold with a contrac-
tion ϕ : X̃ → Y whose restriction to E is the map associated on E to the linear
system |mξN ∗

�/X
(1)| = |mξ!(2)⊕O(1)|—that is, up to a Veronese embedding of the

target, the blow-up of G(1, s + 1) along a sub-Grassmannian G(1, s) as shown
in Example 2.3.3. By Proposition 4.1 we also have that the extremal ray associ-
ated with ϕ has length 2 and is generated by the class [-] of the strict transform
of a line l ⊂ X meeting � at one point. Let H be the pull-back σ ∗OX(1), and let
A ∈ Pic(Y ) be an ample line bundle. Then, for some t, KX̃ + 2(H + tϕ∗A) is a
supporting divisor for ϕ.

SinceE ·- = 1, we have thatE meets every nontrivial fiber of ϕ. Because ϕ|E is
equidimensional with one-dimensional fibers, it follows that ϕ cannot have fibers
of dimension > 2, for otherwise their intersection with E would be a fiber of ϕ|E
of dimension ≥ 2. Therefore, every nontrivial fiber of ϕ has dimension ≤ 2.

We claim that ϕ is of fiber type. Assume by contradiction that ϕ is birational;
then it is equidimensional by Proposition 2.2.4. We can apply [2, Thm. 4.1] to get
that Y is smooth and that ϕ is the blow-up of a smooth, codimension-3 center T.
Since E meets every nontrivial fiber of ϕ, we have T 
 G(1, s).

So Y contains ϕ(E) 
 G(1, s + 1) as an effective divisor. However, since
ρY = 1, this implies that G(1, s + 1) is ample in Y ; it then follows from [18,
Cor. 1.3, Prop. 2.1] that s = 2. Therefore, Y is a projective space or a smooth
hyperquadric and T 
 P2. Using the two different blow-up structures of X̃, we
can write

4H − 2E = −KX̃ = −ϕ∗KY − 2 Exc(ϕ).

Hence the index of Y is even, so Y 
 P 5. But the blow-up of P 5 along P2 has
one fiber type contraction and so this case cannot happen, either. It follows that
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ϕ is of fiber type. By Claim 4.2, we can assume that ϕ is defined by the linear
system |H − E|.

Since E meets every fiber of ϕ, we have Y = G(1, s + 1). The restriction of
ϕ to E is birational, so the general fiber of ϕ has dimension 1. As already noted,
any fiber of ϕ has dimension ≤ 2; hence ϕ is a special Bǎnicǎ scroll and so X̃ =
PG(1,s+1)(E ), where E := ϕ∗H.

Now combining the canonical bundle formula for X̃ as a blow-up with the canon-
ical bundle formula for X̃ as a Bǎnicǎ scroll, we get

−s(H − E) = KX̃ + 2H = ϕ∗(KG(1,s+1) + det E )
= ϕ∗OG(1,s+1)(−s − 2 + deg det E ).

Therefore, det E = OG(1,s+1)(2).
Denote by �0 the section of σ : E → � that corresponds to the surjection

!P s (1) ⊕ OP s → OP s . The restriction of ξN ∗
�/X

(1) to �0 is O�0(1), so �0 is
mapped to a linear subspace �1 of G(1, s + 1). Let l be any line in �1; the line
in �0 mapped to l is a section corresponding to a surjection E |l → Ol(1), so
E |l 
 Ol(1)⊕2. By [15, Thm.] the restriction of E to �1 is decomposable: E |�1 

O�1(1)

⊕2. As a result, (P�1(E |�1), H) 
 (P1 × P s, OP1×P s (1, 1)), and � :=
σ(P�1(E |�1)) is a subvariety such that (�, OX(1)) 
 (P1 × P s, OP1×P s (1, 1)) and
such that � contains � as a fiber of the first projection.

For the last assertion, observe that� is the base locus of the linear subsystem of
|OX(1)⊗I�| given by the pull-back of the linear system |OG(1,s+1)(1)⊗I�1 |.
Now we will determine the normal bundle in X of the subvariety � constructed in
Proposition 7.1.1.

Proposition 7.1.2. Let X ⊂ PN be a smooth variety of Picard number 1 and di-
mension 2s + 1 that contains a linear subspace � 
 P s whose normal bun-
dle is T�(−1) ⊕ O�. Let � ⊂ X be as in Proposition 7.1.1. Then N�/X 

p∗

1OP1(1)⊗p∗
2TP s (−1), where p1 and p2 denote the projections of � 
 P1 × P s

onto the factors.

Proof. By Lemma 4.3, X is a Fano manifold of index s + 2 covered by lines. Let
σ : X̃ → X be the blow-up of X along �, and denote by E = P�(N

∗
�/X) the ex-

ceptional divisor. By Proposition 4.1, E is a Fano manifold. By adjunction,

detN�/X = K� − (KX)|� = O�(s, 1).

Let p : E → P s be the composition of the bundle projection with p2; the fiber Fx
of p over a point x ∈ P s is Plx ((N

∗
�/X)|lx ), where lx is the fiber of p2 over x.

By adjunction, Fx is a Fano manifold; hence, recalling that c1((N
∗
�/X)|lx ) =

−s, we have that (N ∗
�/X)|lx 
 Olx (−1)⊕s. Thus N�/X ⊗ p∗

1OP1(−1) is trivial on
the fibers of p2, so N�/X ⊗p∗

1OP1(−1) = p∗
2(F ) for F a vector bundle on P s. In

particular,

(N�/X)|� 
 (N�/X ⊗ p∗
1OP1(−1))|� 
 (p∗

2(F ))|� = F.
From the exact sequence of normal bundles
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0 −→ O� −→ T�(−1)⊕ O� −→ (N�/X)|� −→ 0,

it follows that (N�/X)|� is nef. Recalling that c1((N�/X)|�) = 1, we have that
(N�/X)|� is uniform; hence either (N�/X)|� is decomposable or (N�/X)|� 

TP s (−1). The first case is not possible because the sequence would split. There-
fore, F = TP s (−1) and N�/X 
 p∗

1OP1(1)⊗ p∗
2TP s (−1).

Now we prove that the existence of a subvariety � as just described completely
determines the manifold X.

Proposition 7.1.3. Let X ⊂ PN be a smooth variety of Picard number 1 and
dimension 2s + 1 that contains a subvariety � such that � = 〈�〉 ∩ X and
(�, (OX(1))|�)) 
 (P1×P s, OP1×P s (1, 1))withN�/X 
 p∗

1OP1(1)⊗p∗
2TP s (−1).

Let σ : X̃ → X be the blow-up of X along �. Then X̃ is a divisor in the linear
system |2ξ −ϕ∗OG(1,s)(1)| in PG(1,s)(OG(1,s)(1)⊕ Q⊕2), where ξ denotes the tau-
tological line bundle and ϕ the bundle projection.

Proof. By Lemma 4.3, X is a Fano manifold of index s + 2 covered by lines.
Denote by E = P�(N

∗
�/X) the exceptional divisor; by Proposition 4.1, X̃ and E

are Fano manifolds. Moreover, the ray associated with the extremal contraction
ϕ : X̃ → Y that is different from σ has length 3, and its restriction to E is the map
associated on E to the linear system |mξN ∗

�/X
(1)| = |mξp∗

2!P s(2)|; up to a Veronese
immersion of the target, this is the map described in Example 2.3.2. Denote by H
the pull-back σ ∗OX(1); we can take KX̃ + 3H as a supporting divisor for ϕ.

Since E · - = 1 we have that E meets every nontrivial fiber of ϕ. Since ϕ|E is
equidimensional with two-dimensional fibers, it follows that ϕ cannot have fibers
of dimension > 3; otherwise, their intersection with E would be a fiber of ϕ|E of
dimension ≥ 3. Therefore, every nontrivial fiber of ϕ has dimension ≤ 3.

We claim that ϕ is of fiber type. Assume by contradiction that ϕ is birational;
then, by Proposition 2.2.4, it is equidimensional. We can apply [2, Thm. 4.1] to
get that Y is smooth and that ϕ is the blow-up of Y along a smooth center. Since
E · - = 1, the intersection of E with a fiber of ϕ is a P2; this contradicts the fact
that fibers of ϕ|E are isomorphic to P1 × P1.

It follows that ϕ is of fiber type. By Claim 4.2, we can assume that ϕ is de-
fined by the linear system |H −E|. Since E meets every fiber of ϕ, we have Y =
G(1, s). The contraction ϕ is supported by KX̃ + 3H; it is elementary and equi-
dimensional with three-dimensional fibers, so it is a quadric bundle.

Let E := ϕ∗H; then X̃ embeds in P := PG(1,s)(E ) as a divisor of relative de-
gree 2. Let E ′ := ϕ∗(H|E) and observe that, as shown in Example 2.3.2, E ′ 

Q⊕2. The vector bundle E has E ′ as a quotient. Indeed, if x ∈ G(1, s) is a point
and we denote by F and f (respectively) the fibers of ϕ and ϕ|E over x, then E ′

x =
H 0(H|f ) is a quotient of Ex = H 0(H|F ).

It follows that there exists an exact sequence on G(1, s):

0 −→ OG(1,s)(a) −→ E −→ Q ⊕ Q −→ 0.

Call P ′ the projectivization of E ′; since X̃|P ′ = E we have, by Example 2.3.2,
that
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X̃ = 2H − ϕ∗OG(1,s)(1).

Combining the canonical bundle formula for P,

KP + 5H = ϕ∗(KG(1,s) + det E ),
with the blow-up formula giving the canonical bundle of X̃,

KX̃ = −(s + 2)H + (s − 1)E,

and the adjunction formula,

KX̃ = (KP + X̃)|X̃,

we obtain

−(s + 2)H + (s − 1)E = −5H + ϕ∗(KG(1,s) + det E )+ 2H − ϕ∗OG(1,s)(1)

= −3H + ϕ∗OG(1,s)(−s − 2 + deg det E )
= −3H + (−s − 2 + deg det E )(H − E)

= (−s − 5 + deg det E )H + (s + 2 + deg det E )E.
It follows that deg det E = 3 and therefore a = 1. Since h1(Q∗(1)⊕2)= h1(Q⊕2)=
0, the above sequence splits and E = OG(1,s)(1)⊕ Q⊕2.

Corollary 7.1.4. Let X ⊂ PN be a smooth variety of Picard number 1 and di-
mension 2s + 1 that contains a linear subspace � 
 P s whose normal bundle
is TP s (−1)⊕ OP s . Then X is a hyperplane section of the Grassmannian of lines
G(1, s + 2).

Proof. By Propositions 7.1.1–7.1.3, there is only one manifold that contains a lin-
ear subspace as in the statement. A smooth hyperplane section G(1, s + 2) ∩ H

of the Grassmannian of lines G(1, s + 2) contains such a linear space—just take
the intersection of H with a linear space corresponding to lines passing through a
fixed point—and so the statement follows.
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[1] M. Andreatta, E. Ballico, and J. A. Wiśniewski, Projective manifolds containing large
linear subspaces, Classification of irregular varieties (Trento, 1990), Lecture Notes in
Math., 1515, pp. 1–11, Springer-Verlag, Berlin, 1992.
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