Minimal Anisotropic Groups of Higher Real Rank

ALEX ONDRUS

(with an Appendix by V. CHERNOUSOV & A. MERKURJEV)

1. Introduction

Throughout this paper, *G* will be a connected, simple algebraic group over an algebraic number field *F*. Let $V_{\infty,\mathbb{R}}^F$ be the set of all real places of *F* and let $F_v \simeq \mathbb{R}$ be the completion of *F* with respect to the place $v \in V_{\infty,\mathbb{R}}^F$.

In [CLM], Chernousov, Lifschitz, and Morris define S_G to be the elements of $V_{\infty,\mathbb{R}}^F$ such that rank_{*F_v*(*G*) \geq 2, and they introduce the following definition.}

DEFINITION [CLM, Def. 3.3]. Let *G* be isotropic. We say *G* is *minimal* if $S_G \neq \emptyset$ and there does not exist a proper, isotropic, almost simple *F*-subgroup *H* of *G* such that rank_{*Fv*}(*H*) \geq 2 for all $v \in S_G$.

Under this definition they classified minimal isotropic groups over number fields and found that they had absolute type A_2 , $A_2 \times A_2$, or A_1^n for some $n \ge 2$. Taking the particular case of $F = \mathbb{Q}$ and applying the Margulis arithmeticity theorem [Ma, Thm. IX.1.16 and Rem. IX.1.6(iii)] and the Margulis superrigidity theorem [Ma, Thm. IX.5.12(ii) and Rem. IX.1.6(iv)], they were able to translate this into the following result regarding lattices in Lie groups.

THEOREM 1.1 [CLM, Thm. 1.13]. Every nonuniform lattice of higher rank contains a subgroup that is isomorphic to a finite-index subgroup of a lattice contained in either $SL_3(\mathbb{R})$, $SL_3(\mathbb{C})$, or a direct product $SL_2(\mathbb{R})^m \times SL_2(\mathbb{C})^n$ with $m + n \ge 2$.

The theorem is very useful in examining properties of nonuniform lattices of higher rank that transfer to sublattices. For example, Ghys conjectured that no lattice of higher rank has a total order that is invariant under right translation [Gh]. Theorem 1.1 reduces the problem of proving Ghys's conjecture for nonuniform lattices to considering lattices of the form above, which was done by Lifschitz and Morris [LM].

For arithmetic lattices, the dichotomy between uniform and nonuniform lattices translates exactly into the dichotomy between anisotropic and isotropic algebraic

Received August 31, 2009. Revision received May 19, 2010.

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

groups over number fields [Ma, Rem. IX.1.6(vii)]; thus it is natural to attempt to classify minimal anisotropic groups with *appropriate real rank*.

DEFINITION 1.1 (Appropriate Real Rank). Let G be a group over a number field F. Let

 $S'_G = \{v \in V^F_{\infty,\mathbb{R}} \mid \operatorname{rank}_{F_v}(G) = 1\} \text{ and } S''_G = \{v \in V^F_{\infty,\mathbb{R}} \mid \operatorname{rank}_{F_v}(G) \ge 2\}.$

We say that a subgroup $H \leq G$ has appropriate real rank if $\operatorname{rank}_{F_v}(H) = 1$ for all $v \in S'_G$ and $\operatorname{rank}_{F_v}(H) \geq 2$ for all $v \in S''_G$. Define $S_G = S'_G \cup S''_G$.

Given this definition of appropriate real rank, the following is the natural generalization of minimality to anisotropic groups.

DEFINITION 1.2 (Minimal). A group *G* as before is said to be *minimal* if $S''_G \neq \emptyset$ and *G* contains no proper *F*-simple subgroups of appropriate real rank.

It is useful to break the classification into the absolutely simple and non-absolutely simple cases.

THEOREM 1.2. If G is an absolutely simple, minimal, anisotropic group over an algebraic number field F, then G is isomorphic to one of the following groups (up to isogeny):

- (1) $SU_3(L, f)$ for L/F quadratic and f anisotropic hermitian on L^3 with at least one $v \in V_{\infty,\mathbb{R}}^F$ such that $L \otimes F_v \simeq F_v \times F_v$; or
- (2) $SU(D, \tau)$ a central division algebra of prime degree $p \ge 3$ over L quadratic over F with involution of the second kind τ ; or
- (3) $SL_1(D)$ for a central division algebra D over F of prime degree p > 2.

It is well known that every simple group that is not absolutely simple is isogenous to the restriction of scalars of an absolutely simple group [BOI, (28.8)], and subgroups of such groups are closely related to the concept of descent.

DEFINITION 1.3 (Descent). Given an object A (an algebraic group, a central simple algebra, etc.) over a field K, we say that A *descends* to $P \subset K$ if there exists an object A' of the same kind defined over P such that, when we extend scalars, we have $A'_K \simeq A$.

THEOREM 1.3. If G is a minimal anisotropic group over an algebraic number field F that is not absolutely simple, then G is isomorphic to one of the following groups, up to isogeny (let $\varepsilon = \pm 1$).

(1) $R_{K/F}(SL_1(D))$ for a central division algebra D of odd prime degree over an extension K such that D does not descend to any P with $F \subset P \subset K$.

(2) $R_{K/F}(\mathrm{SU}(D, \tau))$, where *D* is a central division algebra of prime degree $p \geq 3$ over a quadratic extension K'/K with involution of the second kind τ such that, if (D, τ) descends to *P'* with $F \subset P \subset K$ and P'/P quadratic, then $P_{w_i} \simeq \mathbb{R}$ and $P_{w_i} \otimes P' \simeq \mathbb{C}$ for all $w_i \in V_{\infty,\mathbb{R}}^P$ lying over at least one $v_0 \in S_G$ and:

- (a) if $v_0 \in S'_G$ then $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \varepsilon(1, ..., 1))$ for all $w_i \in V^P_{\infty, \mathbb{R}}$ lying over v_0 ; or
- (b) if $v_0 \in S''_G$ then $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \varepsilon \langle 1, -1, 1, ..., 1 \rangle)$ for at most one *i* and $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \varepsilon \langle 1, ..., 1 \rangle)$ for all others.

(3) $R_{K/F}(SL_1(D))$ for D a quaternion algebra over K such that, for every $F \subset P \subset K$ such that D descends to P, there exists a $v_0 \in S_G$ satisfying:

- (a) if $v_0 \in S'_G$, then $P_{w_i} \simeq \mathbb{R}$ and $D' \otimes_P P_{w_i} \simeq \mathbb{H}$ for all $w_i \in V^P_{\infty,\mathbb{R}}$ lying over v_0 ; and
- (b) if $v_0 \in S''_G$, then there is at most one $w_i \in V^P_{\infty,\mathbb{R}}$ lying over v_0 such that either $P_{w_i} \simeq \mathbb{C}$ or $D' \otimes_P P_{w_i} \simeq M_2(\mathbb{R})$ but not both.

(4)
$$R_{K/F}(SU_3(K', f))$$
 for K'/K quadratic and f hermitian over K'^3 such that:

- (a) for any $F \subset P \subset K$ such that $SU_3(K', f)$ descends to P, there exists a $v_0 \in S_G$ such that $P_{w_i} \simeq \mathbb{R}$ for all $w_i \in V_{\infty,\mathbb{R}}^P$ lying over v_0 and such that
 - (i) if SU₃(K', f) descends to SU₃(P', f'), where f' = ⟨1, a₂, a₃⟩, then P_{w_i} ⊗ P' ≃ C for every i and
 (A) if v₀ ∈ S'_G then the image of a_j in P_{w_i} is positive for all i or
 - (B) if $v_0 \in S_G^n$ then the image of a_i in P_{w_i} is negative for at most one i or
 - (ii) if $SU_3(K', f)$ descends to $SU(D, \tau)$, where *D* is a central division algebra of degree 3 over *P'/P* quadratic with involution τ of the second kind, then $P' \otimes P_{w_i} \simeq \mathbb{C}$ for every $w_i \in V_{\infty,\mathbb{R}}^P$ lying over v_0 and (A) if $w_i \in S'$ then $(D \otimes P_{\infty,\mathbb{R}} \circ \Omega) = (M_i(\mathbb{C}), \sigma)$ where $\sigma(X) = \overline{X}^T$
 - (A) if $v_0 \in S'_G$ then $(D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma)$, where $\sigma(X) = \bar{X}^T$ for every $w_i \in V_{\infty,\mathbb{R}}^P$, or
 - (B) if $v_0 \in S''_G$ then $(D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma)$ for all but at most one $w_i \in V^P_{\infty,\mathbb{R}}$ and, for at most one $w_i, (D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma \circ \operatorname{Int}(\varepsilon \operatorname{diag}(1, -1, 1)));$ and
- (b) for any $F \subset P \subseteq K$ such that some subgroup $SL_1(D') \leq SU_3(K', f)$ descends to $SL_1(D)$ over P, there exists a $v_0 \in S_G$ such that
 - (i) if $v_0 \in S'_G$ then $P_{w_i} \simeq \mathbb{R}$ and $D \otimes P_{w_i} \simeq \mathbb{H}$ for all $w_i \in V^P_{\infty,\mathbb{R}}$ over v_0 , or
 - (ii) if $v_0 \in S''_{\omega}$ then either $P_{w_i} \simeq \mathbb{C}$ or $D \otimes P_{w_i} \simeq M_2(\mathbb{R})$ for at most one $w_i \in V^P_{\infty,\mathbb{R}}$ over v_0 .

Using the Margulis arithmeticity and superrigidity theorems, one can show that the next result gives a classification of the minimal semisimple real Lie groups with no compact factors containing uniform irreducible lattices of higher rank.

THEOREM 1.4. Every uniform lattice of higher rank contained in a semisimple Lie group with no compact factors contains a subgroup that is isomorphic to a finite-index subgroup of a lattice contained either in $SL_p(\mathbb{R})^{\ell} \times SL_p(\mathbb{C})^m \times$ $SU_p(\mathbb{C}, f_1) \times \cdots \times SU_p(\mathbb{C}, f_n)$, where the f_i are hermitian forms of index at least 1, or in $SL_2(\mathbb{R})^n \times SL_2(\mathbb{C})^m$ with $n + m \ge 2$.

This theorem has immediate applications to the theory of discrete subgroups of semisimple Lie groups. For example, to prove Ghys's conjecture for cocompact

lattices it suffices to examine lattices contained in Lie groups of the form just described.

The rest of this paper will provide a proof of Theorems 1.2 and 1.3.

2. Groups of Classical Type

2.1. Orthogonal Groups

Assume that G = SO(f), where f is a quadratic form of dimension at least 5.

PROPOSITION 2.1. The group G contains a F-simple subgroup H of type $A_1 \times A_1$ that has appropriate real rank.

Proof. By [PrR, Lemma 6.2] there exists a 4-dimensional subform f' of f that has Witt index 1 over F_v for every $v \in S'_G$ and Witt index at least 2 over F_v for every $v \in S''_G$. It remains to show that we can choose f' such that $disc(f') \neq 1$. Assume that disc(f') = 1 and let f have diagonalization $\langle a_1, \ldots, a_n \rangle$ chosen so that $f' = \langle a_1, \ldots, a_4 \rangle$. Let $\alpha = a_1 \cdot a_2 \cdot a_3$ and note that disc(f') = 1 implies that $\alpha \equiv a_4 \mod F^{\times^2}$. Using the weak approximation property and arguing as in [PrR, Lemma 6.2], we can choose a'_4 such that $\langle a_4, a_5 \rangle$ represents $a'_4, a'_4 \neq \alpha \mod F^{\times^2}$, and $\langle a_1, a_2, a_3, a'_4 \rangle$ has the same Witt index as f' over F_v for all $v \in S_G$. Replacing f' by $\langle a_1, a_2, a_3, a'_4 \rangle$ allows us to assume that $disc(f') \neq 1$. Let $H = SO(f') \leq$ SO(f); then H has appropriate real rank and H is F-simple because $disc(f') \neq 1$ [BOI, Thm. 15.7].

2.2. Type C_n

For this section, D is a nonsplit quaternion algebra over F, τ is a canonical involution on D, f is a τ -hermitian form on D^n , and $G = SU_n(D, f, \tau)$. Thus $f = \sum_{i=1}^n x_i^{\tau} a_i y_i$, where $a_i \in D^{\tau} = F$. If n = 2 then G has type $C_2 = B_2$, which was covered in the last section, so assume that $n \ge 3$. After normalizing, we can choose $a_1 = 1$. For each $v \in S_G$ such that $D \otimes_F F_v = D_v$ is nonsplit we have that at least one of $0 > a_i \in F_v$. Using the weak approximation property and a continuity argument, assume that a_2 has been chosen such that $0 > a_2 \in F_v$ for all $v \in S_G$. If n = 3, then $H = SU_2(D, \langle 1, a_2 \rangle, \tau) \le G$ has appropriate real rank. Therefore we can assume that $n \ge 4$.

If n > 4 then, applying the same reasoning as in [PrR, Lemma 6.2,], we can find a 4-dimensional subform of f (say f') such that $SU_4(D, f', \tau)$ has rank 1 over F_v for every $v \in S'_G$ and rank 2 over F_v for every $v \in S'_G$ and such that D_v is nonsplit. Then $H = SU_4(D, f', \tau)$ is absolutely simple and of appropriate real rank.

If n = 4 then consider $H = SO(f) \le G$. By multiplying a_1 by elements of Nrd (D^{\times}) if necessary, we may assume that disc $(f) \ne 1$ and so H is F-simple. By applying the weak approximation property to a_i we may also assume that H has appropriate real rank.

2.3. Type D_n

Because the case of orthogonal groups has already been treated, we may assume that $G \simeq SU_n(D, f, \tau)$ for D a nonsplit quaternion algebra over F, τ the canonical involution on D, and f a τ -skew-hermitian form on D^n . If n = 2 then G is of type $D_2 \simeq A_1 \times A_1$, which will be covered in a later section, so assume that $n \ge 3$.

Before I handle this case, I recall some basic facts about skew-hermitian forms. The following is a special case of Morita equivalence. It is actually a collection of results that can be best summarized in the following lemma.

LEMMA 2.1 [S, pp. 361–362]. Given a skew-hermitian h on D^n as before, if $F \subset K$ is a field extension splitting D then $h \otimes 1$: $(D \otimes_F K)^n \to (D \otimes_F K)$ corresponds to a unique bilinear form b_h on K^{2n} , up to isometry, and disc $(b_h) =$ disc(h). Also, h is isotropic over K if and only if b_h has Witt index ≥ 2 . This correspondence respects direct sums (i.e., $b_{h\oplus h'} = b_h \oplus b_{h'}$) and, on 1-dimensional forms $\langle d \rangle$, if we choose an isomorphism $D \otimes_F K \simeq M_2(K)$ and if, under this isomorphism, d corresponds to

$$\begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix},$$

then there exists a basis of K^2 such that $b_{\langle d \rangle}$ has matrix

$$\begin{pmatrix} \gamma & -\alpha \\ -\alpha & -\beta \end{pmatrix}.$$

We separate the examination of groups of type D_n into three cases: n = 3, n = 4, and $n \ge 5$.

PROPOSITION 2.2. With notation as before, if n = 3 then we can choose a diagonalization of $f = \langle c_1, c_2, c_3 \rangle$ such that $SU_2(D, \langle c_1, c_2 \rangle, \tau) \leq G$ has appropriate real rank and $disc(\langle c_1, c_2 \rangle) \not\equiv 1 \mod F^{\times^2}$.

Proof. For every $v \in V_{\infty,\mathbb{R}}^F$ such that D_v is nonsplit, [S, Thm. 3.7] gives that any two 2-dimensional skew hermitian forms over D_v are isometric; hence we ignore those valuations. Let $\{v_1, \ldots, v_m\}$ be the elements of S'_G for which D_{v_i} is split, and notice that D_v is split for every $v \in S''_G$ (by the same theorem). Let $S''_G = \{v_{m+1}, \ldots, v_\ell\}$.

Let $f_{v_i} = f \otimes 1$: $D_{v_i}^n \to D_{v_i}$. The fact that $G_{F_{v_i}}$ is isotropic gives that f_{v_i} represents some c_{v_i} such that the 1-dimensional skew-hermitian form $\langle c_{v_i} \rangle$ corresponds to a hyperbolic plane under Morita equivalence. Using weak approximation and the continuity of Morita equivalence, we see that there exists a $c_1 \in D$ such that f represents c_1 and $\langle c_1 \rangle_{v_i}$ corresponds to $\langle 1, -1 \rangle$ under Morita equivalence for all v_i . Choose d_2, d_3 so that $f = \langle c_1, d_2, d_3 \rangle$. Repeating the same arguments for $\langle d_2, d_3 \rangle$ yields c_2 such that $\langle d_2, d_3 \rangle$ represents c_2 and $\langle c_2 \rangle_{v_i}$ corresponds to an isotropic form over $F_{v_i}^2$ for all $v_i \in S''_G$. Choose c_3 such that $f = \langle c_1, c_2, c_3 \rangle$.

If *G* is of type ${}^{1}D_{3}$ and if disc $(\langle c_{1}, c_{2} \rangle) = 1$, then $c_{1}^{2}c_{2}^{2}c_{3}^{2} \equiv c_{3}^{2} \equiv 1 \mod F^{\times^{2}}$. This contradicts the assumption that *D* is a division algebra over *F*. Let *G* be of type ${}^{2}D_{3}$ and assume that $c_{1}^{2}c_{2}^{2} \equiv 1 \mod F^{\times^{2}}$. I claim that $\langle c_{2}, c_{3} \rangle$ then represents some $d \in D$ such that $\langle d \rangle_{v_{i}} \simeq \langle c_{2} \rangle_{v_{i}}$ for all v_{i} and there exists some place v_{0} such that $d^{2} \neq c_{1}^{2} \mod F^{\times^{2}}$. If this is true, then replacing c_{2} by *d* completes the proof.

It suffices to show that there exists some *p*-adic place v_0 on *F* such that $\langle c_2, c_3 \rangle_{v_0}$ represents $d_{v_0} \in D_{v_0}$ with $d_{v_0}^2 \not\equiv c_1^2 \mod F_{v_0}^{\times^2}$. Indeed, once this is shown we can replace c_2 by some *d* with disc $(\langle c_1, d \rangle) \neq 1$ without changing the behavior over F_v for all $v \in S_G$ by weak approximation. Choose any *p*-adic $(p \neq 2)$ place v_0 such that D_{v_0} is split. Suppose that $b_{\langle c_2, c_3 \rangle_{v_0}} = \langle \beta_1, \beta_2, \beta_3, \beta_4 \rangle$. We then have that $\langle \beta_1, \beta_2, \beta_3, \beta_4, -1 \rangle \simeq \langle 1, -1 \rangle \oplus \langle r, s, t \rangle$ because any 5-dimensional quadratic form over a *p*-adic field is isotropic. From [La] we have that $\langle r, s, t \rangle$ represents at least three square classes in $F_{v_0}^{\times}/F_{v_0}^{\times^2}$; thus we can choose $y \in F_{v_0}^{\times}$ such that $\langle r, s, t \rangle$ represents -y and $y \not\equiv c_1^2 \mod F_{v_0}^{\times^2}$. Then $\langle \beta_1, \beta_2, \beta_3, \beta_4 \rangle \oplus \langle -1, y \rangle$ has Witt index at least 2 and thus, by Lemma 2.1, h_{v_0} represents some d_{v_0} such that $\langle d_{v_0} \rangle$ corresponds to $\langle 1, -y \rangle$ under Morita equivalence. Then $d_{v_0}^2 \equiv y \not\equiv c_1^2 \mod F_{v_0}^{\times^2}$, as required.

The restriction that disc $(\langle c_1, c_2 \rangle) \neq 1 \mod F^{\times^2}$ implies that $H = \operatorname{SU}_2(D, \langle c_1, c_2 \rangle, \tau)$ is *F*-simple. Since *H* has appropriate real rank by construction, it follows that *G* is not minimal when n = 3.

Assume now that $n \ge 5$. I claim that there exists a diagonalization $\langle d_1, \ldots, d_n \rangle$ of f such that, if $h = \langle d_1, \ldots, d_4 \rangle$, then $H = SU_4(D, h, \tau) \le G$ is of appropriate real rank. Arguing as in the proof of Proposition 2.2, we can choose a diagonalization $\langle d_1, d_2, \ldots, d_n \rangle$ of f such that $b_{\langle d_1, d_2 \rangle_v}$ has appropriate Witt index over F_v for every $v \in S_G$ such that D_v is split. Then, by [S, Thm. 3.7], the subgroup H = $SU_4(D, \langle d_1, d_2, d_3, d_4 \rangle, \tau)$ has rank 2 over F_v for every $v \in V_{\infty,\mathbb{R}}^F$ such that D_v is nonsplit, so H has appropriate real rank by the choice of d_1, d_2 .

Finally, we must consider the case n = 4. In both the inner and outer cases, I require the following lemma due to Chernousov and Merkurjev (see the Appendix).

LEMMA 2.2. If K is a maximal subfield of D and if f is a skew-hermitian form such that b_f is isotropic over K, then there exists a $v \in D^n$ such that $F(f(v)) \simeq K$.

2.3.1. Type ${}^{2}D_{4}$

PROPOSITION 2.3. Up to isogeny, we have that G contains a subgroup of the form $R_{F(\sqrt{a})/F}(SO_4(f'))$ for some $a \neq 1 \mod F^{\times^2}$ that is of appropriate real rank.

The proof is broken into a series of lemmas as follows.

LEMMA 2.3. There exists an $\alpha \in F$ such that:

- (1) $\operatorname{Sign}_{v}(\alpha) = -1$ for all $v \in V_{\infty,\mathbb{R}}^{F}$;
- (2) $-\alpha \notin F^{\times^2}$; and
- (3) *G* is quasi-split over $F(\sqrt{\alpha})$.

Proof. Let $K = F(\sqrt{c})$ be the unique quadratic extension of F such that G becomes of type ${}^{1}D_{4}$ over K, $f_{q} = \langle 1, -\sqrt{c}, 1, 1, 1, -1, -1, -1 \rangle$, and consider the exact sequence

$$H^1(F, \operatorname{Spin}(f_q)) \to H^1(F, \operatorname{PSO}(f_q)) \to H^2(F, Z(\operatorname{Spin}(f_q))).$$

We have that $Z(\operatorname{Spin}(f_q)) = R_{K/F}(\mu_2)$ and so $H^2(F, Z(\operatorname{Spin}(f_q))) \simeq {}_2\operatorname{Br}(K)$ by Shapiro's lemma. Suppose that *G* corresponds to $[\xi] \in H^1(F, \operatorname{PSO}(f_q))$ and that $[\xi] \mapsto [T] \in \operatorname{Br}(K)$. Let s_1, \ldots, s_m be the elements of $V_{\infty,\mathbb{R}}^K$ such that $\operatorname{Res}_{K_{s_i}/K}([T]) \neq 1$, and let t_1, \ldots, t_ℓ be the set of non-Archimedean places of *K* such that $\operatorname{Res}_{K_t/K}([T]) \neq 1$. For every $v \in V_{\infty,\mathbb{R}}^F$, choose $0 > \alpha_v \in F_v$. Then we have that [T] splits over $K_{s_i}(\sqrt{\alpha_{v_i}})$, where v_i is the restriction of s_i to *F*. For the non-Archimedean valuations t_i , I claim that there exist $\alpha_{w_i} \in F_{w_i}$ (where w_i is the restriction of t_i to *F*) such that the image of α_{w_i} in K_{t_i} is nonsquare. If $F_{w_i} = K_{t_i}$ then this is trivial. If $F_{w_i} \neq K_{t_i}$, then $F_{w_i}^{\times}/F_{w_i}^{\times 2} \to K_{t_i}^{\times}/K_{t_i}^{\times 2}$ has kernel of order 2 and $|F_{w_i}^{\times}/F_{w_i}^{\times 2}| = 4$, so α_{w_i} exists. Once we have made such a choice of α_{w_i} , the fact that any nonsplit quaternion algebra over a *p*-adic field splits over any proper quadratic extension gives that $\operatorname{Res}_{K_{t_i}/K}([T])$ splits over $K_{t_i}(\sqrt{\alpha_{w_i}})$. Finally, choose some non-Archimedean valuation *r* on *K* such that $\operatorname{Res}_{K_r/K}([T])$ is split, and let $\alpha_r \in F_r$ be such that $-\alpha_r \notin F_r^{\times 2}$.

Applying the weak approximation property, we find $\alpha \in F$ such that $|\alpha_x - \alpha|_x < \varepsilon_x$ for all valuations *x* on *F* described previously, where ε_x is chosen such that $\alpha < 0$ is in F_v for all *v* Archimedean, α is not square in K_{t_i} for any t_i , and $-\alpha$ is not square in F_r^{\times} . Let $L = F(\sqrt{\alpha})$.

It remains to show that *G* is quasi-split over *L*. For s_i , $\operatorname{Res}_{K_{s_i}/K}([T])$ splits over $L \cdot K_{s_i}$ because $L \cdot K_{s_i} \simeq \mathbb{C}$. For t_i , because $L \cdot K_{t_i}$ is a quadratic field extension of K_{t_i} , $\operatorname{Res}_{K_{t_i}/K}([T])$ splits over $L \cdot K_{t_i}$ [PR, Thm. 1.7]. Since $\{s_i, t_i\}$ was the collection of all valuations on *K* such that $\operatorname{Res}_{K_{x_i}/K}([T]) \neq 1$, the Hasse principle yields that [T] splits over $L \cdot K$. This means that $[\xi]_L$ lies in the image of $H^1(L, \operatorname{Spin}(f_q))$; but $V_{\infty,\mathbb{R}}^L = \emptyset$ and so, by Kneser's theorem, $H^1(L, \operatorname{Spin}(f_q)) = \{1\}$. Thus $[\xi]_L$ is trivial.

Note that, because G_L is quasi-split, $\operatorname{Res}_{L/F}([D])$ is trivial and so L is a maximal subfield of D. Choose an embedding $L \hookrightarrow D$ and let i be the image of $\sqrt{\alpha}$ under this embedding. Applying Lemma 2.2, we see that h has a diagonalization $\langle \beta_1 i_1, \beta_2 i_2, \beta_3 i_3, d \rangle$ for some $d \in D^0$ and $i_j \in D^0$ such that $F(i_j) \simeq F(i) \subset D$ for each j. By the Skolem–Noether theorem [BOI, Thm. 1.4] we have that each of the i_j are conjugate to i, say $d_j^{-1}i_jd_j = i$. If $h(v_j) = i_j$ then $h(v_j \cdot d_j) = \operatorname{Nrd}(d_j) \cdot i$; hence replacing v_j with $v_j \cdot d_j$ gives that h has diagonalization $\langle \beta_1 i, \beta_2 i, \beta_3 i, d \rangle$, where $d \in D^0$. Note that the subspaces

$$V_1 = \{d' \in D^0 \mid id' = -d'i\}$$
 and $V_2 = \{d' \in D^0 \mid dd' = -d'd\}$

both have dimension at least 2 and D^0 has dimension 3, so $\{0\} \neq V_1 \cap V_2 \subset D^0$. Choose $0 \neq d' \in D^0$ such that id' = -d'i and dd' = -d'd, so that $i^{-1}d$ commutes with d' and thus $i^{-1}d \in F(d')$. LEMMA 2.4. At least one of the groups

 $R_{F(d')/F}(\mathrm{SO}(\langle \beta_1, \beta_2, \beta_3, i^{-1}d \rangle))$ and $R_{F(d')/F}(\mathrm{SO}(\langle -\alpha\beta_1, \beta_2, \beta_3, i^{-1}d \rangle))$ is *F*-simple.

Proof. It suffices to prove that SO($\langle \beta_1, \beta_2, \beta_3, i^{-1}d \rangle$) or SO($\langle -\alpha\beta_1, \beta_2, \beta_3, i^{-1}d \rangle$) is F(d')-simple. Assume that $\beta_1 \cdot \beta_2 \cdot \beta_3 \cdot i^{-1}d \equiv 1 \mod F(d')^{\times^2}$. Then $\beta_1 \cdot \beta_2 \cdot \beta_3 \cdot i^{-1}d \equiv -\alpha \mod F(d')^{\times^2}$. By Lemma 2.3(2) we have that $-\alpha \notin F^{\times^2}$, which yields $-\alpha \equiv (d')^2 \mod F^{\times^2}$. By the assumption that d' is purely imaginary and d'i = -id', we have that i, d' is a quaternion basis for D. Thus the norm form of D is given by $\langle 1, -\alpha, \alpha, \alpha^2 \rangle$; but then D is split over F, a contradiction.

Note that both groups sit inside *G*, since $\langle \beta_1 i, \beta_2 i, \beta_3 i, d \rangle$ and $\langle -\alpha \beta_1 i, \beta_2 i, \beta_3 i, d \rangle$ are both diagonalizations of *h*. Let $H \leq G$ be $R_{F(d')/F}(SO(\langle \beta_1, \beta_2, \beta_3, i^{-1}d \rangle))$ if $\beta_1 \cdot \beta_2 \cdot \beta_3 i^{-1}d \neq 1 \mod F(d')^{\times^2}$ and $R_{F(d')/F}(SO(\langle -\alpha \beta_1, \beta_2, \beta_3, i^{-1}d \rangle))$ if $\beta_1 \cdot \beta_2 \cdot \beta_3 i^{-1}d \equiv 1 \mod F(d')^{\times^2}$.

LEMMA 2.5. The subgroup H has appropriate real rank.

First, I need the following.

LEMMA 2.6. Suppose we are given $H = SO_4(f_1) \times SO_4(f_2) \le SO_8(f)$. Then $f \simeq \langle c_1 \rangle \cdot f_1 \oplus \langle c_2 \rangle \cdot f_2$.

Proof. Because *H* is standard of type A_1^4 in *G* of type D_4 , we have that, over \overline{F} , *H* is conjugate to SO $(f|_{V_1}) \times$ SO $(f|_{V_2})$ for $V_1 \perp V_2$ such that $V_1 \oplus V_2 = V$ (say $gHg^{-1} =$ SO $(f|_{V_1}) \times$ SO $(f|_{V_2})$). This means that, if we let $W_1 = \{v \in V \mid g_2 v = v \forall g_2 \in$ SO $(f_2)\}$ and $W_2 = \{v \in V \mid g_1 v = v \forall g_1 \in$ SO $(f_1)\}$, then over \overline{F} we have $g(W_i \otimes \overline{F}) = V_i \otimes \overline{F}$ and hence $W_1 \cap W_2 = \{0\}$ and $W_1 \perp W_2$. Now SO $(f_i) \leq$ SO $(f|_{V_i})$, each connected of equal dimension, gives that SO $(f_i) =$ SO $(f|_{V_i})$. It is well known that this yields $f_i = \langle c \rangle \cdot f|_{V_i}$, which completes the proof.

Consider a $v \in V_{\infty,\mathbb{R}}^F$ such that $D \otimes F_v = D_v$ is split. By Lemma 2.1 we then have that

$$G_{F_v} \simeq \mathrm{SO}(\langle \beta_1, \beta_1, \beta_2, \beta_2, \beta_3, \beta_3 \rangle \oplus \beta_4 \langle 1, -d^2 \rangle).$$

Because *i*, *d'* form a quaternion basis for *D* and we chose *i* such that i^2 is negative in every F_v for $v \in V_{\infty}^F$, we have that F(d') splits over F_v and

$$H_{F_v} \simeq \mathrm{SO}_4(\langle \beta_1, \beta_2, \beta_3, i^{-1}d \rangle) \times \mathrm{SO}_4(\langle \beta_1, \beta_2, \beta_3, \overline{i^{-1}d} \rangle),$$

where $\overline{\cdot}$ represents conjugation in F(d').

Proof of Lemma 2.5. Let $D = (\alpha, \gamma)$, and note first that $(d')^2 = \gamma \cdot N_{F(\sqrt{\alpha})/F}(x)$ for some *x*; hence $(d')^2 < 0$ is in F_v if and only if D_v is nonsplit. We break the valuations $v \in S_G$ into four cases as follows.

Case 1: D_v *is nonsplit.* Then $F(d') \otimes_F F_v$ is a subfield of $\mathbb{H} = (-1, -1)_{F_v}$; thus $F(d') \otimes_F F_v \simeq \mathbb{C}$ and $H_{F_v} \simeq R_{\mathbb{C}/\mathbb{R}}(\mathrm{SL}_2 \times \mathrm{SL}_2)$ has F_v -rank 2.

Case 2: $v \in S'_G$. In this case D_v is split, β_i all have the same sign, and $d^2 > 0$ is in F_v . Applying Lemma 2.6 and Witt cancellation then gives that $\langle 1, -d^2 \rangle \simeq \langle 1, -1 \rangle \simeq \langle i^{-1}d, i^{-1}d \rangle$. Thus one of $i^{-1}d, i^{-1}d$ is positive in F_v and the other negative, so rank $F_v(H) = 1$.

Case 3: rank_{*F_v*(*G*) \geq 3 and *D_v* is split. In this case, two of $\beta_1, \beta_2, \beta_3$ have different signs in *F_v* and so rank_{*F_v*(*H*) \geq 2.}}

Case 4: rank_{*F_v*(*G*) = 2 and *D_v* is split. Because disc($\langle \beta_1, \beta_1, \beta_2, \beta_2, \beta_3, \beta_3 \rangle \oplus \beta_4 \langle 1, -d^2 \rangle$) = $-d^2$ and disc($\langle 1, 1, 1, 1, 1, -1, -1 \rangle$) = 1 is in $F_v^{\times}/F_v^{\times^2}$, we have that $d^2 \equiv -1 \mod F_v^{\times^2}$ in this case. If two of $\beta_1, \beta_2, \beta_3$ have different signs then rank_{*F_v*(*H*) ≥ 2, so assume that $\beta_1, \beta_2, \beta_3$ are all positive in *F_v* (the case where $\beta_1, \beta_2, \beta_3$ are all negative is handled analogously). In this case, Lemma 2.6 gives}}

$$\langle 1, 1, 1, 1, 1, 1, \beta_4, \beta_4 \rangle \simeq c_1 \langle 1, 1, 1, i^{-1}d \rangle \oplus c_2 \langle 1, 1, 1, i^{-1}d \rangle$$

By inspection, the only possibility is that $c_1 = c_2 = 1$ and $\langle -1, -1 \rangle \simeq \langle \beta_4, \beta_4 \rangle \simeq \langle i^{-1}d, \overline{i^{-1}d} \rangle$ by Witt cancellation. Then $H_{F_v} \simeq SO(\langle 1, 1, 1, -1 \rangle) \times SO(\langle 1, 1, 1, -1 \rangle)$ has F_v -rank 2.

2.3.2. Type ${}^{1}D_{4}$

The proof that G is not minimal in this case is completely analogous to the case that G is of type ${}^{2}D_{4}$.

2.4. Type
$${}^{1,2}A_n$$

2.4.1. Type ${}^{1}A_{n}$

All groups of this form are isogenous to $SL_m(D)$ for some *m* and central division algebra *D* over *F*. By the restriction that *G* is anisotropic, m = 1.

PROPOSITION 2.4. The group G is minimal if and only if deg(D) = p for p prime, $p \ge 3$.

Proof. Assume that deg(D) = d is not prime. Let $d = p_1^{n_1} \cdots p_m^{n_m}$ be the degree of D, where p_i are listed in increasing order. Using a construction analogous to the one on page 127 in the proof of [PrR, Thm. 4.1], we can find a subgroup $H \leq G$ of the form $R_{K_0/F}(SL_1(T))$ for a field extension K_0 of F of degree p_1 and a central simple algebra of degree $p_1^{n_1-1} \cdots p_m^{n_m}$ over K_0 . We immediately have that H is F-simple, and after checking the small number of possibilities for $T \otimes K_{w_i}$ for w_i lying over $v_i \in S_G$ we see that H is automatically of appropriate real rank unless d = 4. In this case we have that G is of type $A_3 = D_3$, which was handled previously.

If deg(*D*) is prime, then *G* contains no semisimple subgroups [GGi, Prop. 4.1]. This means that $SL_1(D)$ is minimal for any central division algebra *D* of prime degree $p \ge 3$.

2.4.2. Type ${}^{2}A_{n}$

First we handle those groups of type ${}^{2}A_{n}$ that are minimal.

PROPOSITION 2.5. If G is of type ${}^{2}A_{p-1}$ for any prime $p \ge 3$ and if G corresponds to a division algebra of degree p, then G is minimal.

Proof. Let *L* be the unique quadratic extension of *F* over which *G* becomes inner type. Then G_L contains no semisimple subgroups [GGi, Prop. 4.1]; thus *G* contains no semisimple subgroups and therefore *G* is minimal.

I claim that these are all of the possible minimal groups of type ${}^{2}A_{n}$ for $n \neq 2$.

LEMMA 2.7. If $G \simeq SU_m(L, f)$ for a hermitian form f over L, then G is minimal if and only if m = 3 and $L \otimes F_v \simeq F_v \times F_v$ for some $v \in V_{\infty,\mathbb{R}}^F$.

NOTE. By the assumption that $S''_G \neq \emptyset$, we have $m \ge 3$.

Proof of Lemma 2.7. After normalizing, we may assume that $f = \langle 1, a_2, ..., a_m \rangle$. If $m \geq 5$, I claim that we can choose a diagonalization of f such that $\langle 1, a_2, a_3, a_4 \rangle$ corresponds to a subgroup of G that has appropriate real rank. To see this, we use the same arguments as in the skew-hermitian case—namely that, for any completions F_v such that $L \otimes F_v \simeq \mathbb{C}$, the form f_{F_v} is isotropic and so represents any $a \in F_v$. Hence we may use the weak approximation property to replace a_2, a_3, a_4 if necessary so that:

•
$$a_2 < 0$$
 in F_v for all $v \in S'_G$;

• $a_3 > 0$ and $a_4 < 0$ in F_v for all $v \in S''_G$ such that $L \otimes F_v \simeq \mathbb{C}$.

After this replacement, we have that $SU_4(L, \langle 1, a_2, a_3, a_4 \rangle)$ is a simple, proper subgroup of *G* that has appropriate real rank over every F_v ; hence *G* is not minimal. If $G \simeq SU_4(L, f)$, then *G* has type ${}^2A_3 = {}^2D_3$ and so *G* is isomorphic to a group handled in the skew-symmetric section.

Finally, assume m = 3. Recall that any subgroup of appropriate real rank must have absolute rank at least 2 (since $S''_G \neq \emptyset$). Assume that *G* contains a proper simple subgroup *H* of appropriate real rank. We would then have that *H* is standard, because the absolute rank of *G* is equal to that of *H* and so the root system of *H* corresponds to a subroot system of A_2 . Because all the roots of *G* have equal length, the only possibility is that *H* is of type $A_1 \times A_1$; but A_2 does not contain two orthogonal roots, a contradiction.

PROPOSITION 2.6. If (A, τ) is a central simple algebra with involution τ of the second type over a quadratic extension L/F such that $L^{\tau} = F$ and if deg $(A) = n \ge 5$ is not prime, then SU (A, τ) is not minimal.

Proof. Let $\{v_1, \ldots, v_\ell\} = V_{\infty,\mathbb{R}}^F$ and let w_1, \ldots, w_t be the non-Archimedean valuations on F such that G is not split or quasi-split over F_{w_i} . The first step will be to construct towers of algebras $J_{x_i} \subset K_{x_i}$ for maximal commutative étale F_{x_i} -subalgebras K_{x_i} of $(A \otimes_F F_{x_i})^{\tau \otimes 1}$ that are linearly disjoint from L_{x_i} for $x_i = w_i$ or v_i . We consider two cases.

364

Case I: n = 2m *is even.* For the Archimedean valuations, $A \otimes_F F_{v_i}$ is isomorphic to either $M_n(\mathbb{C}), M_n(\mathbb{R}) \times M_n(\mathbb{R})^{op}$ or $M_m(\mathbb{H}) \times M_m(\mathbb{H})^{op}$.

• If $A \otimes_F F_{v_i} \simeq M_{2m}(\mathbb{R}) \times M_{2m}(\mathbb{R})$ with exchange involution, let $J_{v_i} = \mathbb{R}^2 \subset \mathbb{R}^{2m} = K_{v_i}$. Let

$$F_{v_i} \hookrightarrow M_{2m}(\mathbb{R}) \stackrel{\Delta}{\hookrightarrow} M_{2m}(\mathbb{R}) \times M_{2m}(\mathbb{R}),$$

let K_{v_i} embed as diagonal matrices in $M_{2m}(\mathbb{R})$, and compose this embedding with the diagonal embedding of $M_{2m}(\mathbb{R})$ in $A \otimes_F F_v$. If e_1 is the matrix consisting of 1s along each first *m* diagonal entries in each component and 0s elsewhere and if $e_2 = (I_{2m \times 2m}, I_{2m \times 2m}) - e_1$, then J_{v_i} embeds in K_{v_i} via $\mathbb{R} \cdot e_1 + \mathbb{R} \cdot e_2$.

- If $A \otimes_F F_{v_i} \simeq M_{2m}(\mathbb{C})$ with involution $\tau(X) = f\bar{X}^T f$, which corresponds to the hermitian form $r \cdot \langle 1, -1 \rangle \oplus (2m - 2r) \langle 1 \rangle$, then let $K_{v_i} = \mathbb{R}^{2m}$ embed in $A \otimes_F F_{v_i}^{\tau \otimes 1}$ via diagonal matrices. Let e_1 be the diagonal matrix with first *m* entries equal to 1 and last *m* entries equal to 0, and let $e_2 = I_{2m \times 2m} - e_1$. Then $J_{v_i} = \mathbb{R}^2$ embeds in K_{v_i} via $\mathbb{R}e_1 + \mathbb{R}e_2$.
- If A ⊗_F F_{vi} ≃ M_m(ℍ) × M_m(ℍ)^{op}, then let K_{vi} = ℂ^m embed in A ⊗_F F_{vi} as diagonal matrices in each component and let J_{vi} = ℂ embed in K_{vi} as scalar matrices in each component.
- If L ⊗_F F_{wi} = L_{wi} is a field then by [T] we have that G_{Fwi} ≃ SU_{2m}(L_{wi}, f), where f is the sum of m-1 hyperbolic hermitian forms and one anisotropic form ⟨α, β⟩. By rank considerations, SU₂(L_{wi}, ⟨-1, 1⟩) ≃ SL₂ and SU₂(⟨α, β⟩) ≃ SL(Q) for some nonsplit quaternion algebra Q over F_{wi}. Choose any quadratic extension J_{wi} of F_{wi} disjoint from L_{wi}. By [La, Rem. 2.7] we have that Q is split over J_{wi}; thus we can embed R⁽¹⁾_{J_{wi}/F_{wi}}(G_m) in SL(Q) and SU₂(L_{wi}, ⟨-1, 1⟩). This is equivalent to finding embeddings of J_{wi} · L_{wi} in M₂(L_{wi}) such that the involutions corresponding to ⟨1, -1⟩ and ⟨α, β⟩ fix J_{wi}. Use the diagonal product of these embeddings to construct an embedding L_{wi} · J_{wi} → M_{2m}(L_{wi}) such that (L_{wi}, J_{wi})^{τ⊗1} = J_{wi}.

The double centralizer theorem gives that $C := C_{A \otimes F_{w_i}}(L_{w_i} \cdot J_{w_i})$ is a central simple algebra over $L_{w_i} \cdot J_{w_i}$ of degree *m*. The fact that $\tau \otimes 1$ fixes J_{w_i} means that $\tau \otimes 1|_C$ is an involution of the second kind on *C* fixing J_{w_i} . Consider an arbitrary subfield E_{w_i} of *C* such that $[L_{w_i} \cdot J_{w_i} : E_{w_i}] = m$; then $K_{w_i} = E_{w_i}^{\tau \otimes 1|_C}$ is a degree-*m* extension of J_{w_i} disjoint from L_{w_i} .

- If $L \otimes_F F_{w_i} \simeq F_{w_i} \times F_{w_i}$, then $A \otimes_F F_{w_i} \simeq A'_{w_i} \times A'^{op}_{w_i}$ with the exchange involution, so we can choose a maximal subfield K_{w_i} of A'_{w_i} and let $J_{w_i} \subset K_{w_i}$ be such that $[K_{w_i} : J_{w_i}] = m$. Then $E_{w_i} = K_{w_i} \times K^{op}_{w_i} \simeq K^2_{w_i} \subset A_{w_i}$ and $E^{\tau_{w_i}}_{w_i} = K_{w_i}$.
- Finally, if $L \otimes_F F_{w_i} \simeq F_{w_i} \times F_{w_i}$ for all *i* and $L \otimes_F F_{v_j} \simeq F_{v_j} \times F_{v_j}$ for all *j*, choose a (non-Archimedean) valuation *s* on *F* such that $L \otimes_F F_s = L_s$ is a field. Choose an arbitrary subfield $E_s \subset A \otimes_F F_s$ such that $\dim_{F_s}(E_s^{\tau_s}) = 2m$ and $E_s \simeq E_s^{\tau_s} \otimes_{F_s} L_s$, and let $K_s = E_s^{\tau_s}$ for $J_s \subset K_s$ an arbitrary subfield with $[K_s: J_s] = m$.

Case II: n is odd. In this case, let *p* be the smallest prime dividing *n* and let n = mp. For the Archimedean valuations, either $A \otimes_F F_{v_i} \simeq M_n(\mathbb{C})$ or $M_n(\mathbb{R}) \times M_n(\mathbb{R})^{op}$.

- If $A \otimes_F F_{v_i} \simeq M_{pm}(\mathbb{R}) \times M_{pm}(\mathbb{R})$ with exchange involution, let $J_{v_i} \simeq \mathbb{R}^p \subset \mathbb{R}^n = K_{v_i}$. Here K_{v_i} embeds as in the even case, but now let e_i be the matrix with 1s in the (i-1)m+1 to *im* diagonal entries and 0s elsewhere, and let J_{v_i} embed in K_{v_i} via $\sum \mathbb{R}e_i$.
- If $A \otimes_F F_{v_i} \simeq M_{2m}(\mathbb{C})$ with involution $\tau(X) = f\bar{X}^T f$, which corresponds to the hermitian form $r \cdot \langle 1, -1 \rangle \oplus (pm-2r) \langle 1 \rangle$, then let $K_{v_i} = \mathbb{R}^n$ embed in $A \otimes_F F_{v_i}^{\tau \otimes 1}$ via diagonal matrices. Let e_i be the matrix with 1s in the (i 1)m + 1 to *im* diagonal entries and 0s elsewhere. Then $J_{v_i} = \mathbb{R}^p$ embeds in K_{v_i} via $\sum \mathbb{R}e_i$.
- For the non-Archimedean valuations, choose K_{w_i} , J_{w_i} (and K_s , J_s , if necessary) as in the case for *n* even.

Choose a tower of field extensions $F \subset J \subset K$ having the local behavior just prescribed. For every valuation x for which G_{F_x} is not quasi-split or split, there is a local embedding $K_v \otimes L \hookrightarrow A_v$ that respects involution by construction. Hence there is an embedding

$$(K \otimes_F L, 1 \otimes \gamma) \stackrel{\iota}{\hookrightarrow} (A, \tau)$$

such that the tower of field extensions $F \subset J \subset K$ has the prescribed local behavior (see the proof of [PrR, Thm. 5.1] and [PrR, Apx. A, pp. 176–178]). I claim that the two algebras are conjugate by an element of G_{F_v} for every v Archimedean. Indeed, since $\iota(K \otimes L) \otimes F_v$ and E_v both correspond to unique maximal tori in G_{F_v} , it suffices to show that the corresponding tori are conjugate.

If $A \otimes_F F_v \simeq M_n(\mathbb{C})$, then $\iota(K \otimes L) \otimes F_v$ and E_v both correspond to maximal anisotropic tori in G_{F_v} and hence are conjugate in G_{F_v} . If $A \otimes_F F_v \simeq M_n(\mathbb{R}) \times M_n(\mathbb{R})^{op}$, then both $\iota(K \otimes L) \otimes F_v$ and E_v correspond to tori of maximal F_v -rank; hence they are also conjugate by an element of G_{F_v} . Finally, if $A \otimes_F F_v \simeq M_{n/2}(\mathbb{H}) \times M_{n/2}(\mathbb{H})$, then $\iota(K \otimes L) \otimes F_v$ and E_v both correspond to maximal tori of maximal rank over F_v in G_{F_v} ; hence they are conjugate as well. By considering eigenvalues with multiplicity, we must have that this conjugation takes $\iota(J \otimes L) \otimes F_v$ to J_v .

Let $P = J \otimes_F L$ and consider $H = R_{J/F}(\operatorname{SU}(C_A(P), \tau|_{C_A(P)})) \leq G$. Then H is a proper simple subgroup, and I claim that H has appropriate real rank. To see this, note that if $v \in V_{\infty,\mathbb{R}}^F$ is such that $J \otimes_F F_v \simeq \prod J_v^{(i)}$, where $J_v^{(i)}$ are field extensions of F_v , then

$$H_{F_v} \simeq \prod R_{J_v^{(i)}/F_v} (\operatorname{SU}(C_A(P), \tau|))_{J_v^{(i)}}$$

$$\simeq \prod R_{J_v^{(i)}/F_v} (\operatorname{SU}(C_A(P) \otimes_J J_v^{(i)}, \tau | \otimes 1)).$$

First, consider the case that $J \otimes_F F_v \simeq \mathbb{C}$. This implies that $A \otimes_F F_v \simeq M_{n/2}(\mathbb{H}) \times M_{n/2}(\mathbb{H})$, and because $J \otimes_F F_v$ is conjugate to J_v , we have that $C_{A \otimes_F F_v}(J_v \otimes L)$ consists of scalar matrices in each component. Thus

$$\mathrm{SU}(C_{A\otimes_F F_v}(J\otimes_F L\otimes F_v),\tau|\otimes 1)\simeq \mathrm{SL}_{n/2}(\mathbb{C})$$

and so $H_{F_v} \simeq R_{\mathbb{C}/\mathbb{R}}(\mathrm{SL}_{n/2}(\mathbb{C}))$ has rank $\frac{n}{2} - 1 \ge 2$, as required.

Next, assume that $J \otimes_F F_v$ is not a field. Then $J \otimes_F F_v \simeq \mathbb{R}^p$ if n = pm, where *p* is the smallest prime dividing *n* and where, up to conjugation (and possibly renumbering), $J_v^{(i)} = \mathbb{R}e_i$. To calculate SU($C_A(P) \otimes_J J_v^{(i)}, \tau | \otimes 1$), consider the following chain of isomorphisms:

$$\bigoplus C_A(P) \otimes_J J_v^{(i)} \simeq C_A(P) \otimes_J \left(\prod J_v^{(i)}\right) \simeq C_A(P) \otimes_J J \otimes_F F_v \\ \simeq C_A(P) \otimes_F F_v \simeq C_{A \otimes_F F_v}(P \otimes_F F_v) \\ \simeq C_{A \otimes_F F_v}(J_v) \simeq \prod_i C_{e_i \cdot A \otimes_F F_v e_i}(\mathbb{R}e_i \cdot L_v).$$

All of the isomorphisms respect components and involutions (because we conjugate by an element of G_{F_v}), so $H_{F_v} \simeq \prod \text{SU}(C_{e_i A \otimes_F F_v e_i}(\mathbb{R}e_i \cdot L_v))$.

If $A \otimes_F F_v \simeq M_n(\mathbb{R}) \times M_n(\mathbb{R})$ then this means that $H_{F_v} \simeq \prod_{i=1}^p \mathrm{SL}_m(\mathbb{R})$, which has higher rank. If $A \otimes_F F_v \simeq M_n(\mathbb{C})$ and if $\tau \otimes 1$ corresponds to the hermitian form with diagonalization $r \cdot \langle 1, -1 \rangle \oplus (pm - 2r) \langle 1 \rangle$, then $H_{F_v} \simeq$ $\mathrm{SU}_m(\mathbb{C}, f_1) \times \cdots \times \mathrm{SU}_m(\mathbb{C}, f_p)$, where $f = f_1 \oplus \cdots \oplus f_p$ and f_1 is taken from the first *m* coefficients of the diagonalization of *f*, f_2 from the second, and so on. If r = 1, then both G_{F_v} and $\mathrm{SU}_m(\mathbb{C}, f_1)$ have rank 1; therefore, H_{F_v} has rank 1. If $r \ge 2$ and m > 3, then $\mathrm{SU}_m(\mathbb{C}, f_1)$ has rank ≥ 2 and so H_{F_v} is of higher rank. If $r \ge 2$ and m = 3, then $\mathrm{SU}_m(\mathbb{C}, f_1)$ has rank 1, as does $\mathrm{SU}_m(\mathbb{C}, f_2)$; hence H_{F_v} is of higher rank as well.

Combining these cases shows that H has appropriate real rank and thus G is not minimal.

3. Exceptional Groups Splitting over Quadratic Extensions

The purpose of this section is to prove that absolutely simple groups of type E_7 , E_8 , F_4 , and G_2 are not minimal. Unless otherwise stated, G will be simply connected throughout this section. The approach for these four cases will rely on the following observation.

LEMMA 3.1. Any group of type E_7 , E_8 , or F_4 over F becomes split over a purely *imaginary quadratic extension* K.

This follows from Kneser's theorem, which states that $H^1(F_v, G) = \{0\}$ for v non-Archimedean and G simply connected, and the Hasse principle for simply connected groups.

REMARK 3.1. Note that if G has type G_2 then we can choose $K = F(\sqrt{a})$ with a positive in F_v for all $v \in S_G$ such that G splits over K. Recall from Tits's classification [T] that in this case $S_G = S''_G$ (i.e., G is split over F_v for all $v \in S_G$). By the weak approximation property, we may choose $a \in F$ such that the image of a

in F_v is positive for all $v \in S_G = S''_G$ and the image of a in F_v is negative for all $v \in V^F_{\infty,\mathbb{R}} \setminus S_G$. Let $K = F(\sqrt{a})$; now if $w \in V^K_{\infty,\mathbb{R}}$ lies over $v \in S_G$ then

$$\operatorname{Res}_{K_w/K} \circ \operatorname{Res}_{K/F}([\xi]) = \operatorname{Res}_{K_w/F_v} \circ \operatorname{Res}_{F_v/F}([\xi]) = \operatorname{Res}_{K_w/F_v}(1) = 1,$$

and if $w \in V_{\infty,\mathbb{R}}^K$ lies over $v \in V_{\infty,\mathbb{R}}^F \setminus S_G$ then K_w is algebraically closed, so

$$\operatorname{Res}_{K_w/K} \circ \operatorname{Res}_{K/F}([\xi]) = 1$$

automatically. Applying Lemma 3.1 gives that *G* splits over *K* and that $K \hookrightarrow F_v$ for all $v \in S_G$.

I introduce some notions developed by Weisfeiler in [W] relating to groups splitting over quadratic extensions. Let *G* be an *F*-defined group splitting over a quadratic extension K/F, let τ be the nontrivial element of Gal(K/F), let *B* be an *F*-defined Borel subgroup of *G* splitting over *K* such that $B \cap B^{\tau} = T$, and let G_{α} be the root subgroup of *G* corresponding to $\alpha \in \Sigma(G, T)$ (see [W, Lemma 3]).

LEMMA 3.2 [W, Lemma 5]. $G_{\alpha} \simeq SL_1(D_{\alpha})$, where $D_{\alpha} = (d, c_{\alpha})$.

The numbers $c_{\alpha} \in F^{\times}$ are called the *structure constants of G with respect to T*.

PROPOSITION 3.1. Every anisotropic group G of type G_2 over F contains an absolutely simple subgroup H of type A_2 of appropriate real rank.

Proof. Choose *a* as in Remark 3.1 and $T = B \cap B^{\tau}$ splitting over $K = F(\sqrt{a})$. Given a subroot system $\Sigma' \subset \Sigma(G, T)$, let $G_{\Sigma'}$ be the standard subgroup of *G* generated by G_{α} for $\alpha \in \Sigma'$. Let Σ' be the root subsystem of long roots in $\Sigma(G, T)$, and let $H = G_{\Sigma'}$. For any $v \in S_G$ we have that *T* is split over F_v , so *H* is split over F_v .

Assume again that *G* is any simple group splitting over quadratic extension and that τ and *T* are as before. The structure constants defined previously are very useful in determining the isotropy of *G* over F_v for $v \in V_{\infty,\mathbb{R}}^F$. The following statement is immediate from Lemma 3.2.

LEMMA 3.3. Given $v \in V_{\infty}^F \mathbb{R}$ such that $K \otimes_F F_v \simeq \mathbb{C}$:

- (1) *G* is anisotropic over F_v if and only if the c_α are negative in F_v for all $\alpha \in \Sigma(G, T)$;
- (2) if $\langle \alpha, \beta \rangle = 0$ and $c_{\alpha}, c_{\beta} > 0$ in F_v , then G has higher rank over F_v .

By [T], there are three possibilities for the rank of a group *G* of type F_4 over any field. Over a completion F_v for $v \in V_{\infty,\mathbb{R}}^F$, I claim that the sign of the structure constants completely determines the rank of *G* over F_v .

LEMMA 3.4. Suppose that G is anisotropic over F of type F_4 , that $T \leq G$ is a maximal F-defined torus splitting over K as in Lemma 3.1, and that $\{c_\alpha\}$ are the structure constants of G with respect to T. Then, for $v \in V_{\infty,\mathbb{R}}^F$:

- (1) $c_{\alpha} < 0$ in F_v for all α if and only if G_{F_v} is anisotropic;
- (2) over F_v , $c_{\alpha} < 0$ for all long roots α and $c_{\beta} > 0$ for some short root β if and only if G has F_v -rank 1;
- (3) at least one long root α has $c_{\alpha} > 0$ in F_v if and only if G is F_v -split.

Proof. The first statement is Lemma 3.3(1). Assume that for some $\alpha \in \Sigma(G, T)$ with length 2 we have $c_{\alpha} > 0$ in F_{v} . I claim that $G_{F_{v}}$ is then split.

Let $\Sigma' \leq \Sigma(G, T)$ be the subroot system generated by the long roots, so that Σ' has type D_4 , and let $H = G_{\Sigma'}$. Then, since $\operatorname{Gal}(K/F)$ stabilizes $\{\pm \alpha\}$ for each $\alpha \in \Sigma(G, T)$, it follows that H is of type 1D_4 . By the assumption that $c_{\alpha} > 0$ for some long root α , we also have that H is F_v -isotropic. From [T], we therefore have that $\operatorname{rank}_{F_v}(H) \geq 2$; thus $\operatorname{rank}_{F_v}(G) \geq 2$ and so G is split over F_v .

To complete the proof of the lemma, it suffices to prove that if *G* is split over F_v then $c_{\alpha} > 0$ for some long root $\alpha \in \Sigma(G, T)$. Assume that *G* is split over F_v and let *T'* be a maximal torus in *G* split over F_v . If $c_{\alpha} < 0$ in F_v for all $\alpha \in \Sigma'$, then *H* is anisotropic over F_v . Let *B* be a Borel subgroup of *G* containing *T'*. By dimension considerations, $(B \cap H)^0$ is nontrivial over F_v . If we choose an F_v -rational point *x* of $(B \cap H)^0$, then the closure of $\langle x \rangle$ is a connected diagonalizable subgroup of *H*—contradicting the fact that *H* is anisotropic.

3.1. Modification of Structure Constants

The structure constants are not unique, and [W, Prop. 8] tells us that we can choose another maximal torus T' to get a new set of structure constants c'_{α} related to c_{α} by $c'_{\alpha} = v^{\langle \alpha, \beta \rangle} c_{\alpha}$ for any $v \in \operatorname{Nrd}(D_{\alpha})$ and $\beta \in \Sigma(G, T)$.

Given that Lemma 3.3 is concerned with the sign of $c_{\alpha} \in F_{v}$ only for $v \in V_{\infty,\mathbb{R}}^{F}$ (which I denote by $\operatorname{Sign}_{v}(c_{\beta})$), this is all we seek to change when modifying structure constants. We can do this for each $v \in V_{\infty,\mathbb{R}}^{F}$ independently, as follows.

LEMMA 3.5. Given $\alpha \in \Sigma(G, T)$ and $v \in V_{\infty,\mathbb{R}}^F$ such that $\operatorname{Sign}_v(c_\alpha) = 1$, we can choose $g_\alpha \in G_\alpha(K)$ such that, if $\{c'_\beta\}$ are the structure constants of G with respect to $g_\alpha Tg_\alpha^{-1}$, then:

- (1) $\operatorname{Sign}_w(c_{\beta}) = \operatorname{Sign}_w(c_{\beta})$ for all $w \neq v \in V_{\infty,\mathbb{R}}^F$; and
- (2) $\operatorname{Sign}_{v}(c_{\beta}') = (-1)^{\langle \beta, \alpha \rangle} \operatorname{Sign}_{v}(c_{\beta})$ for all β .

Proof. By the weak approximation property, we can choose $y \in F$ such that $|y^2|_w < |c_\alpha|_w$ for all $w \neq v \in V_{\infty,\mathbb{R}}^F$ and $|c_\alpha|_v < |y^2|_v$. Define g_α as before. Replacing T by $T' = g_\alpha T g_\alpha^{-1}$, we get that $c'_\beta = \left(\frac{c_\alpha}{c_\alpha - y^2}\right)^{\langle \beta, \alpha \rangle} c_\beta$. Our choice of y gives that c'_β has the desired sign in F_v for all $v \in V_{\infty,\mathbb{R}}^F$.

We call a modification of the form just described a *modification of* T by α *with respect to* v.

PROPOSITION 3.2. Every anisotropic group G of type F_4 over F contains an absolutely simple subgroup H of type B_3 of appropriate real rank.

Proof. Let Σ' be the root subsystem of $\Sigma(G, T)$ generated by $\{\alpha_1, \alpha_2, \alpha_3\}$ and let $H = G_{\Sigma'}$. (Throughout the proof, I use Bourbaki's explicit realization of root systems [B, Plates I–IX] and the same notation.) Then *H* is a proper, absolutely simple subgroup of *G*, so it suffices to show that *H* has appropriate real rank.

Claim. We can choose T in such a way that $\operatorname{Sign}_{v}(c_{\alpha_{3}}) = 1$ for all $v \in S_{G}$ and $\operatorname{Sign}_{v}(c_{\alpha_{1}}) = 1$ for all $v \in S_{G}''$.

First I claim that we can modify *T* so that $\operatorname{Sign}_v(c_{\alpha_1}) = 1$ for all $v \in S''_G$. If $v \in S''_G$, then by Lemma 3.3 we have that $\operatorname{Sign}_v(c_{\alpha}) = 1$ for some long root $\alpha \in \Sigma(G, T)$. The possibilities for $\langle \alpha_1, \alpha \rangle$ are $0, \pm 1$, and ± 2 . If there exists a long root α such that $\operatorname{Sign}_v(c_{\alpha}) = 1$ and $\langle \alpha_1, \alpha \rangle = \pm 2$, then $\alpha = \pm \alpha_1$; so assume no such α exists. If there exists such an α such that $\langle \alpha_1, \alpha \rangle = \pm 1$, then modifying *T* by α with respect to *v* yields *T* as desired.

If there does not exist an α with $\operatorname{Sign}_v(c_\alpha) = 1$ and $\langle \alpha_1, \alpha \rangle = \pm 1$ but there does exist an α with $\operatorname{Sign}_v(c_\alpha) = 1$ and $\langle \alpha_1, \alpha \rangle = 0$, then α must be of the form $\pm(\varepsilon_1 + \varepsilon_2)$ or $\pm\varepsilon_3 \pm \varepsilon_4$. If $\alpha = \pm\varepsilon_3 \pm \varepsilon_4$ let $\alpha' = \varepsilon_2 + \varepsilon_4$, and if $\alpha = \pm(\varepsilon_1 + \varepsilon_2)$ let $\alpha' = \varepsilon_2 + \varepsilon_3$. In either case, we have that $\langle \alpha', \alpha \rangle = \pm 1$ and $\langle \alpha_1, \alpha' \rangle = \pm 1$, so modifying *T* by α' with respect to *v* returns us to the case that there exists a long root α with $\operatorname{Sign}_v(c_\alpha) = 1$ and $\langle \alpha_1, \alpha \rangle = \pm 1$.

Assume that $v \in S''_G$ and we have already made the preceding modifications, so that $\operatorname{Sign}_v(c_{\alpha_1}) = 1$. If $\operatorname{Sign}_v(c_{\alpha_3}) = 1$, then *T* is as required. If $\operatorname{Sign}_v(c_{\alpha_3}) = -1$ and there exists a short root β such that $\operatorname{Sign}_v(c_{\beta}) = 1$ and $\langle \alpha_3, \beta \rangle = \pm 1$, then modifying *T* by β with respect to *v* gives *T* as required. If no such β exists, let $\beta' = \frac{1}{2}(\varepsilon_1 + \varepsilon_2 - \varepsilon_3 + \varepsilon_4)$; then $\langle \beta', \alpha_1 \rangle = 1 = \langle \alpha_3, \beta' \rangle$ and $\langle \alpha_1, \beta' \rangle = 2$. Modifying *T* by α_1 with respect to *v* gives a new *T* such that $\operatorname{Sign}_v(c_{\beta'}) = 1$. Next, modifying *T* by β' with respect to *v* gives another *T* such that $\operatorname{Sign}_v(c_{\alpha_3}) = 1$ and $\operatorname{Sign}_v(c_{\alpha_1})$ is unchanged (because $\langle \alpha_1, \beta' \rangle = 2$). This new *T* is such that $\operatorname{Sign}_v(c_{\alpha_1}) = 1 =$ $\operatorname{Sign}_v(c_{\alpha_3})$ for all $v \in S''_G$.

Assume now that $v \in S'_G$. If $\operatorname{Sign}_v(c_\beta) = 1$ for $\beta = \pm \frac{1}{2}(\varepsilon_1 \pm \varepsilon_2 \pm \varepsilon_3 \pm \varepsilon_4)$, then $\langle \beta, \alpha_3 \rangle = \pm 1$; hence we can modify *T* by β with respect to *v* to obtain $\operatorname{Sign}_v(c'_{\alpha_3}) = 1$. If $\operatorname{Sign}_v(c_\beta) = -1$ for all β of the form above, then we must have that $\operatorname{Sign}_v(\varepsilon_i) = 1$ for some $i \neq 4$ by the assumption that some short root has positive associated structure constant. Fix $\beta = \frac{1}{2}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4)$. Then $\operatorname{Sign}_v(c_\beta) = -1$ by assumption, and for all *i* we have $\langle \varepsilon_i, \alpha_3 \rangle = 0$ and $\langle \beta, \varepsilon_i \rangle = 1$. This means that, if we modify *T* first by ε_i and then by β with respect to *v*, the result will be $\operatorname{Sign}_v(c'_{\alpha_3}) = 1$. This proves the claim.

Combining Lemma 3.3 with this claim yields that *H* has appropriate real rank, so *H* is not minimal. \Box

PROPOSITION 3.3. Any anisotropic group G of type E_7 over F contains an absolutely simple subgroup H of type A_3 of appropriate real rank.

NOTE. By [T], $S_G = S''_G$ for G of type E_7 .

Proof of Proposition 3.3. For a maximal *F*-defined torus *T* of *G*, define $\Sigma' \subset \Sigma(G, T)$ to be the subroot system generated by $\{\alpha_5, \alpha_6, \alpha_7\}$ and let $H = G_{\Sigma'}$.

Clearly, H is an absolutely simple proper subgroup of type A_3 , and it remains to show that H has appropriate real rank. By Lemma 3.3, it suffices to prove the following.

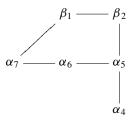
Claim. We can choose T so that $c_{\alpha_5}, c_{\alpha_7} > 0$ in F_v for all $v \in S_G$.

By Lemma 3.3, we may always choose some $\alpha \in \Sigma(G, T)$ such that $\operatorname{Sign}_v(c_\alpha) = 1$. After modification, we can say that $\operatorname{Sign}_v(c_{\alpha_7}) = 1$. Indeed, assume that $\operatorname{Sign}_v(c_{\alpha_7}) = -1$. If there exists an α with $\langle \alpha_7, \alpha \rangle = \pm 1$, then modification of *T* by α with respect to *v* reverses the sign of c_{α_7} . If $\langle \alpha_7, \alpha \rangle \in \{0, \pm 2\}$ for all $\alpha \in \Sigma(G, T)$ with $\operatorname{Sign}_v(c_\alpha) = 1$, then choose an α with $\operatorname{Sign}_v(c_\alpha) = 1$ and let

$$\alpha' = \begin{cases} \varepsilon_{j} + \varepsilon_{6} & \text{if } \alpha = \pm \varepsilon_{j} \pm \varepsilon_{k}, \ j < k \in \{1, 2, 3, 4\}, \\ \varepsilon_{4} + \varepsilon_{6} & \text{if } \alpha = \pm (\alpha_{5} + \alpha_{6}), \\ \frac{1}{2} (\varepsilon_{7} - \varepsilon_{8} + \varepsilon_{6} - \varepsilon_{5} + \sum_{i=1}^{4} \varepsilon_{i}) \\ & \text{if } \alpha = \pm (\varepsilon_{7} - \varepsilon_{8}), \\ \frac{1}{2} (\varepsilon_{7} - \varepsilon_{8} + \varepsilon_{6} - \varepsilon_{5} + (-1)^{\nu(4)} + \sum_{i=1}^{3} (-1)^{1 - \nu(i)} \varepsilon_{i}) \\ & \text{if } \alpha = \frac{1}{2} (\varepsilon_{7} - \varepsilon_{8} \pm (\varepsilon_{5} + \varepsilon_{6}) + \sum_{i=1}^{4} (-1)^{\nu(i)}). \end{cases}$$

Then modifying T by α with respect to v returns us to the case where there exists an α' with Sign_v($c_{\alpha'}$) = 1 and $\langle \alpha_7, \alpha' \rangle = \pm 1$; hence we can modify T again so that Sign_v(c_{α_7}) = 1.

Now, assuming that we have modified *T* so that $\operatorname{Sign}_v(c_{\alpha_7}) = 1$, I claim that we can modify *T* further so that $\operatorname{Sign}_v(c_{\alpha_5}) = 1$ as well. To see this, let $\beta_1 = \varepsilon_1 - \varepsilon_6$ and $\beta_2 = \frac{1}{2}(\varepsilon_8 - \varepsilon_7 + \varepsilon_6 + \varepsilon_5 + \varepsilon_4 - \varepsilon_3 - \varepsilon_2 - \varepsilon_1)$. Recall that if $\operatorname{Sign}_v(c_\alpha) = 1$, then modifying *T* by α with respect to *v* affects $\operatorname{Sign}_v(\beta)$ only for those β with $\langle \beta, \alpha \rangle$ odd. In the following graph, the nodes correspond to roots and the edges connect roots such that $\langle \alpha, \beta \rangle$ is odd:



If $\operatorname{Sign}_v(c_{\alpha_5}) = 1$, then no modification is necessary. If $\operatorname{Sign}_v(c_{\alpha_5}) = -1$ but $\operatorname{Sign}_v(c_{\beta_2})$ or $\operatorname{Sign}_v(c_{\alpha_4}) = 1$, then modify T by β_2 or α_4 with respect to v in order to change the sign of c_{α_5} in F_v . Assume then that $\operatorname{Sign}_v(c_{\alpha_5}) = \operatorname{Sign}_v(c_{\alpha_4}) = \operatorname{Sign}_v(c_{\beta_2}) = -1$. If $\operatorname{Sign}_v(c_{\alpha_6}) = \operatorname{Sign}_v(c_{\beta_1}) = 1$, then modifying T first by α_6 and then by β_1 with respect to v reverses $\operatorname{Sign}_v(c_{\alpha_7})$ twice and $\operatorname{Sign}_v(c_{\alpha_5}) = \operatorname{Sign}_v(c_{\alpha_6}) = -1$, then modifying by α_7 with respect to v returns us to the case where $\operatorname{Sign}_v(c_{\alpha_6}) = \operatorname{Sign}_v(c_{\beta_1}) = 1$.

If $\operatorname{Sign}_v(c_{\beta_1}) = 1$ and $\operatorname{Sign}_v(c_{\alpha_6}) = -1$, then modifying *T* by α_7 with respect to *v* gives $\operatorname{Sign}_v(c_{\beta_1}) = -1$ and $\operatorname{Sign}_v(c_{\alpha_6}) = 1$. Therefore the only case left to consider is the one where

$$\operatorname{Sign}_{v}(c_{\alpha_{7}}) = \operatorname{Sign}_{v}(c_{\alpha_{6}}) = 1,$$

$$\operatorname{Sign}_{v}(c_{\beta_{1}}) = \operatorname{Sign}_{v}(c_{\beta_{1}}) = \operatorname{Sign}_{v}(c_{\beta_{2}}) = \operatorname{Sign}_{v}(c_{\alpha_{5}}) = \operatorname{Sign}_{v}(c_{\alpha_{4}}) = -1.$$

In this case, if we modify *T* with respect to *v* by roots in the order $\alpha_6, \alpha_5, \beta_2, \beta_1, \alpha_4$, then $(\text{Sign}_v(c_{\alpha_7}), \text{Sign}_v(c_{\alpha_5}))$ changes as follows:

$$(1,-1) \xrightarrow{\alpha_6} (-1,1) \xrightarrow{\alpha_5} (1,-1) \xrightarrow{\beta_2} (-1,-1) \xrightarrow{\beta_1} (1,-1) \xrightarrow{\alpha_4} (1,1).$$

After modification, then, $\operatorname{Sign}_{v}(c_{\alpha_{7}}) = 1 = \operatorname{Sign}_{v}(c_{\alpha_{5}})$ as required.

PROPOSITION 3.4. Any anisotropic group G of type E_8 over F contains an absolutely simple subgroup H of type A_3 of appropriate real rank.

Proof. As in the previous case, define Σ' to be the subsystem of $\Sigma(G, T)$ generated by $\{\alpha_5, \alpha_6, \alpha_7\}$. Also as in the previous case, from [T] we have $S_G = S''_G$ for groups of type E_8 . It therefore suffices to prove that we can choose some maximal *F*-torus *T* of *G* so that $\operatorname{Sign}_v(c_{\alpha_5}) = \operatorname{Sign}_v(c_{\alpha_7}) = 1$ for all $v \in S_G$.

Let $\Sigma'' \subset \Sigma(G, T)$ be the subsystem of $\Sigma(G, T)$ of type E_7 generated by $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\}$. To reduce the proof to the previous case, it suffices to show that it is possible to choose a maximal *F*-torus *T* of *G* so that $\operatorname{Sign}_v(\alpha) = 1$ for some root $\alpha \in \Sigma''$. Indeed, if we can show that some $\alpha \in \Sigma''$ has $\operatorname{Sign}_v(c_\alpha) = 1$, then we can modify *T* with respect to each *v* by roots in Σ'' as described in the previous proof to obtain $\operatorname{Sign}_v(c_{\alpha_5}) = \operatorname{Sign}_v(c_{\alpha_7}) = 1$ for all $v \in S''_G$.

Let $\beta_1 = \varepsilon_6 + \varepsilon_8$ and $\beta_2 = \varepsilon_6 - \varepsilon_8$; then $\left\langle \sum_{i=1}^8 (-1)^{\nu(i)} \varepsilon_i, \beta_j \right\rangle \neq 0 \mod 2$ for j = 1 or 2. Next, if $\alpha = \pm \varepsilon_i \pm \varepsilon_j$ and $\langle \beta_j, \alpha \rangle \equiv 0 \mod 2$, then $\langle \alpha, \alpha_i \rangle \neq 0 \mod 2$ for some $1 \le i \le 7$. This means that, no matter what, for every $\alpha \in \Sigma(G, T)$ there exist a $\gamma \in \Sigma(G, T)$ and a $\delta \in \Sigma''$ such that $\langle \alpha, \gamma \rangle \equiv \langle \gamma, \delta \rangle \equiv 1 \mod 2$.

If $\operatorname{Sign}_v(c_{\delta}) = 1$ then we are done. If $\operatorname{Sign}_v(c_{\gamma}) = 1$, modify *T* by γ with respect to *v* to obtain that $\operatorname{Sign}_v(c'_{\delta}) = 1$. If $\operatorname{Sign}_v(c_{\gamma}) = -1$, modify *T* by α with respect to *v*. This either reverses the sign of c_{δ} with respect to *v* or returns us to the previous case. In any event, $\operatorname{Sign}_v(c_{\delta}) = 1$ with $\delta \in \Sigma''$.

4. Type ${}^{3,6}D_4$

The purpose of this section is to prove the following result.

PROPOSITION 4.1. No group of type ${}^{3,6}D_4$ is minimal.

4.1. Preliminaries

4.1.1. *Groups of Type* D_4 *over* \mathbb{R}

Because there exist no cubic field extensions of \mathbb{R} , any group *G* of type D_4 over \mathbb{R} is of type ${}^{1,2}D_4$. By Tits's classification, any simply connected group of type ${}^{1}D_4$ over \mathbb{R} is isomorphic to a group of the form $\text{Spin}(f_i)$, where f_i is one of

$$f_0 = \sum_{i=1}^8 x_i^2,$$

$$f_2 = \sum_{i=1}^6 x_i^2 - y_1^2 - y_2^2, \text{ or }$$

$$f_4 = \sum_{i=1}^4 x_i^2 - \sum_{i=1}^4 y_i^2$$

up to multiplication by ± 1 . Let G_0 be the split, simply connected group of type 1D_4 , so $G_0 \simeq \text{Spin}(f_4)$. Note that f_4 is a Pfister form over \mathbb{R} and recall that a Pfister form over \mathbb{R} is either split or anisotropic. This gives that $\text{Spin}(f_0)$ and G_0 are the two distinct strongly inner forms of G_0 and that $\text{Spin}(f_2)$ corresponds to a cocycle in $H^1(K, \tilde{G}_0)$ not contained in the image of $H^1(K, G_0)$.

If G has type ${}^{2}D_{4}$ then G is also isomorphic to a group of the form Spin (f_{i}) , except now f_{i} has discriminant -1; thus, f_{i} is either

$$f_1 = \sum_{i=1}^{7} x_i^2 - y_1^2 \text{ or}$$
$$f_3 = \sum_{i=1}^{5} x_i^2 - \sum_{i=1}^{3} y_i^2$$

up to multiplication by ± 1 .

4.1.2. Tori in SL_2 and Quaternion Algebras

Given an element $a \in F$, we can embed $T = R_{F(\sqrt{a})/F}^{(1)}(G_m)$ in SL₂ via the regular representation. Let \overline{T} be is its image in PSL₂. We have the exact sequence

$$1 \to \mu_2 \to T \to \bar{T} \to 1,$$

which gives a map $H^1(F, \overline{T}) \to H^2(F, \mu_2)$. The following is not difficult to prove.

LEMMA 4.1. If $[\delta] \in H^2(F, \mu_2)$ corresponds to $D \in {}_2\text{Br}(F)$ and if D is split by $F(\sqrt{a})$, then $[\delta]$ is in the image of $H^1(F, \overline{T}) \to H^2(F, \mu_2)$.

4.1.3. Modification of Cocycles

Let G_0 be a simple, simply connected algebraic group with adjoint \overline{G}_0 and let $T \leq G_0$ be a maximal torus. Given a $[\xi] \in H^1(F, \overline{G}_0)$ with $[\mu] \in H^1(F, \overline{T})$ such that $[\xi]$ and $[\mu]$ have the same image in $H^2(F, Z(G_0))$ under the commuting diagram

$$\begin{array}{cccc} H^{1}(F,G_{0}) & \stackrel{\pi_{1}}{\longrightarrow} & H^{1}(F,\bar{G}_{0}) & \stackrel{\delta_{1}}{\longrightarrow} & H^{2}(F,Z(G_{0})) \\ & & & \uparrow & & \uparrow \\ & & & & \uparrow & & \uparrow \\ H^{1}(F,T) & \stackrel{\pi_{2}}{\longrightarrow} & H^{1}(F,\bar{T}) & \stackrel{\sigma_{2}}{\longrightarrow} & H^{2}(F,Z(G_{0})) \end{array}$$

$$(*)$$

with exact rows, we wish to "modify" $[\mu] \in H^1(F, \overline{T})$ by an element $[\alpha] \in H^1(F, T)$ to get $[\mu] \cdot \pi_2([\alpha]) \in H^1(F, \overline{T})$ so that $\iota_2([\mu] \cdot \pi_2([\alpha])) = [\xi]$. More precisely, we have the following statement.

LEMMA 4.2 (Modification of Cocycles). Given $G_0, \overline{G}_0, T, \overline{T}, [\xi]$ as before, if there exist

(1) $[\mu] \in H^1(F, \overline{T})$ with $\delta_2([\mu]) = \delta_1([\xi])$ and

(2) $[v_v] \in H^1(F_v, \overline{T})$ with $\iota_2([v_v]) = [\xi_v]$ for each Archimedean place v then there exists a $[\gamma] \in H^1(F, \overline{T})$ such that $\iota_2([\gamma]) = [\xi]$.

Proof. We retain the notation of diagram (*). By the Hasse principle for $H^1(F, \bar{G}_0)$ [PR], it suffices to show that we can choose $[\gamma] \in H^1(F, \bar{T})$ such that $\iota_2([\gamma_v]) = [\xi_v]$ for any valuation v on F.

First, I claim that $\iota_2([\mu_v]) = [\xi_v]$ for any non-Archimedean place v. From the condition that $\delta_2([\mu]) = \delta_1([\xi])$, we see that $\iota_2([\mu_v]) \in \delta_1^{-1}(\delta_1([\xi_v]))$. By [Se, Chap. 1, Sec. 5], $\delta_1^{-1}(\delta_1([\xi_v]))$ is in bijective correspondence with $H^1(F_v, \xi G_0)/\sim$ for some equivalence relation \sim . Because we assume that ξG_0 is simply connected and v is non-Archimedean, Kneser's theorem gives that $H^1(F_v, \xi G_0) = \{1\}$ and so $\delta_1^{-1}(\delta_1([\xi_v])) = \{[\xi_v]\}$; that is, $\iota_2([\mu_v]) = [\xi_v]$.

Next, given $v \in V_{\infty,\mathbb{R}}^F$, condition (2) gives that $\delta_2([v_v]) = \delta_1([\xi_v])$ and condition (1) that $\delta_2([\mu_v]) = \delta_1([\xi_v])$, so $\delta_2([v_v]) = \delta_2([\mu_v])$. By the exactness of the bottom row in (*), we have $[\mu_v] = [v_v] \cdot \pi_2([\lambda_v])$ for some $[\lambda_v] \in H^1(F_v, T)$. From [PR], the map $H^1(F, T) \xrightarrow{\prod \text{Res}_{F_v}} \prod_{v \in V_{\infty,\mathbb{R}}^F} H^1(F_v, T)$ is surjective. This means that we can choose $[\alpha] \in H^1(F, T)$ such that $[\alpha_v] = [\lambda_v]$ for all $v \in V_{\infty,\mathbb{R}}^F$.

I claim that $[\gamma] := [\mu] \cdot \pi_2([\alpha])$ has $\iota_2([\gamma_v]) = [\xi_v]$ for every v. For v non-Archimedean, note that

 $\delta_1(\iota_2([\gamma_v])) = \delta_2([\gamma_v]) = \delta_2([\mu_v]) \cdot \delta_2(\pi_2([\alpha_v])) = \delta_2([\mu_v]) = \delta_1([\xi_v]);$

however, we have shown that the fibre of $[\xi_v]$ under δ_1 is just $\{[\xi_v]\}$, so $\iota_2([\gamma_v]) = [\xi_v]$ for every non-Archimedean v. Finally, for $v \in V_{\infty,\mathbb{R}}^F$ we have

 $\iota_{2}([\gamma_{v}]) = \iota_{2}([\mu_{v}] \cdot \pi_{2}([\alpha_{v}])) = \iota_{2}([\mu_{v}] \cdot \pi_{2}([\lambda_{v}])) = \iota_{2}([\nu_{v}]) = [\xi_{v}]$ by construction.

4.2. Construction of a Special Torus T

Let *G* now be a simply connected group of type ${}^{3,6}D_4$ corresponding to $[\xi] \in H^1(F, \overline{G}_0)$, where G_0 is now the simply connected quasi-split group of type ${}^{3,6}D_4$. Let *E* be a cubic extension of *F* over which *G* has type ${}^{1,2}D_4$. Then $Z(G_0) \simeq R^{(1)}_{E/F}(\mu_2)$ and so $H^2(F, Z(G_0)) \simeq \ker({}_2\operatorname{Br}(E) \xrightarrow{N} {}_2\operatorname{Br}(F))$, where *N* is the norm map. Let $[(a, b)_E]$ be the image of $[\xi]$ in $H^2(F, Z(G_0))$. By [BOI] we can choose *a*, *b* such that $a \in F$, $F(\sqrt{a})$ has no real completions, and $N_{E/F}(b) = 1$.

The following result is proved in [CLM].

THEOREM 4.1. There exists a subgroup $H < G_0$ of type $A_1 \times A_1 \times A_1 \times A_1$ that is isogenous to $R_{P/F}(SL_2)$ for some quartic field extension P/F contained in $E(\sqrt{b}, \sqrt{\sigma(b)}, \sqrt{\sigma^2(b)})$, where $\sqrt{\sigma^i(b)}$ are the Galois conjugates of \sqrt{b} in the normal closure of E over F. Let $\tilde{H} = R_{P/F}(SL_2)$, *H* be the image of \tilde{H} in G_0 , \bar{H} be the image of \tilde{H} in \bar{G}_0 , and $\bar{H}' = \tilde{H}/Z(\tilde{H})$. If we consider the sequence of projections

$$\tilde{H} \xrightarrow{\phi_1} H \xrightarrow{\phi_2} \bar{H} \xrightarrow{\phi_3} \bar{H}',$$

then ker(ϕ_1) is the diagonal embedding of μ_2 into $Z(\tilde{H})$ over the algebraic closure, ker(ϕ_2) = $Z(G_0)$, and ker(ϕ_3) = $Z(\tilde{H}) = Z(\tilde{H})/Z(G_0) \simeq \mu_2$.

We need some notation from the proof in [CLM]. Let

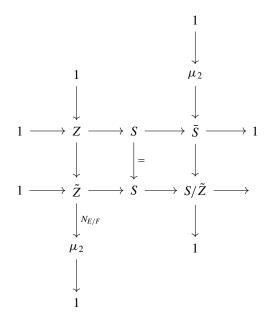
$$\tilde{T}_0 = \mathbf{G}_{\mathrm{m}} \times R_{E/F}(R_{E(\sqrt{b})/E}^{(1)}(\mathbf{G}_{\mathrm{m}})),$$

let T_0 be its image in G_0 , and let \overline{T}_0 be its image in \overline{G}_0 . If $\alpha_1, \ldots, \alpha_4$ are a basis of $\Sigma(G_0, T_0)$, then $R_{E/F}(R_{E(\sqrt{b})/E}^{(1)}(G_m)) = T_0 \cap G_{\alpha_1,\alpha_3,\alpha_4}$ and $H = G_{\Phi}$, where $\Phi = \{\alpha_2, \alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_3\}.$

LEMMA 4.3. There exists a cocycle $[\mu_{\tilde{T}_0}] \in H^1(F, \bar{T}_0)$ such that $[\mu_{\tilde{T}_0}] \mapsto [(a, b)_E]$ under $H^1(F, \bar{T}_0) \to H^1(F, \bar{G}_0) \to H^2(F, Z(G_0))$.

Proof. Consider the subtorus $S \leq T_0$ given by $S = R_{E/F}R_{E(\sqrt{b})/E}^{(1)}G_m$, and let \bar{S} be the image of S in \bar{G}_0 . I claim that there exists a $[\mu_{\bar{S}}] \in H^1(F, \bar{S})$ that maps to $[(a, b)_E] \in H^2(F, Z(G_0))$. The image of $[\mu_{\bar{S}}] \in H^1(F, \bar{T}_0)$ is then the cocycle we are looking for.

To see that $[\mu_{\tilde{S}}]$ exists, consider the *F*-defined subgroups $Z, Z \leq S$, where *Z* is the center of G_0 and \tilde{Z} is the 2-torsion part of *S*, which is also given by $R_{E/F}(\mu_2)$. Note that, over \bar{F} , \tilde{Z} has the form $\mu_2 \times \mu_2 \times \mu_2$, the norm map is given by the product of the entries, and *Z* is the kernel of this map. Using this, we have an interlocking diagram of exact sequences,



that induces the following exact sequences of Galois cohomology sets with corresponding morphisms:

$$\begin{array}{cccc} H^{1}(F,S) & \longrightarrow & H^{1}(F,\bar{S}) & \longrightarrow & H^{2}(F,Z) \\ & \downarrow = & & \downarrow & & \downarrow \\ H^{1}(F,S) & \longrightarrow & H^{1}(F,S/\tilde{Z}) & \longrightarrow & H^{2}(F,\tilde{Z}) \\ & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & H^{2}(F,\mu_{2}) & \stackrel{=}{\longrightarrow} & H^{2}(F,\mu_{2}) \end{array}$$

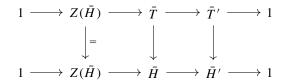
Suppose a $[\mu_{S/\tilde{Z}}] \in H^1(F, S/\tilde{Z})$ maps to $[(a, b)_E]$ under $H^1(F, S/\tilde{Z}) \rightarrow H^2(F, \tilde{Z})$ in the preceding diagram. The norm of $(a, b)_E$ is trivial by assumption, so $[\mu_{S/\tilde{Z}}]$ is the image of some $[\mu_{\tilde{S}}] \in H^1(F, \tilde{S})$. We have a section $\lambda \colon \mu_2 \to \tilde{Z}$ given by the diagonal embedding, and so $H^2(F, Z) \to H^2(F, \tilde{Z})$ is injective. This, combined with the commutativity of the upper right-hand square, shows that $[\mu_{\tilde{S}}] \mapsto [(a, b)_E] \in H^2(F, Z)$.

It remains to prove that there exists a $[\mu_{S/\tilde{Z}}] \in H^1(F, S/\tilde{Z})$ such that $[\mu_{S/\tilde{Z}}] \mapsto [(a, b)_E] \in H^2(F, \tilde{Z})$. Note that, by Shapiro's lemma, $H^1(F, S/\tilde{Z}) \to H^2(F, \tilde{Z})$ is equivalent to $H^1(E, R^{(1)}_{E(\sqrt{b})/E}(G_m)/\mu_2) \to H^2(E, \mu_2)$. Thus Lemma 4.1 gives the existence of $[\mu_{S/\tilde{Z}}] \in H^1(F, S/\tilde{Z})$.

Let $[\mu_{\tilde{H}}]$ be the image of $[\mu_{\tilde{T}_0}]$ in $H^1(F, \bar{H})$, let $[\mu_{\tilde{H}'}]$ be its image in $H^1(F, \bar{H}')$, and let $[(a, b)_P]$ be the image of $[\mu_{\tilde{H}'}]$ under the isomorphism $H^1(F, \bar{H}') \rightarrow$ $H^2(F, R_{P/F}(\mu_2)) \simeq {}_2\text{Br}(P)$. Choose $p \in P$ such that $[(a, b)_P]$ splits over $P(\sqrt{p})$, and define $\tilde{T} = R_{P/F}(R_{P(\sqrt{p})/P}^{(1)}(G_m))$ embedded in \tilde{H} via the regular representation. Let T be the image of \tilde{T} in H, \bar{T} the image of \tilde{T} in \bar{H} , and \bar{T}' the image of \tilde{T} in \bar{H}' .

LEMMA 4.4. There exists a $[\mu] \in H^1(F, \overline{T})$ such that $[\mu] \mapsto [\mu_{\overline{H}}]$ under $H^1(F, \overline{T}) \to H^1(F, \overline{H})$.

Proof. By Shapiro's lemma, the mapping $H^1(F, \overline{T}') \xrightarrow{\iota_4} H^1(F, \overline{H}')$ is isomorphic to $H^1(P, R_{P(\sqrt{P})/P}^{(1)}(G_m)) \to H^1(P, PSL_2)$; hence, by Lemma 4.1, there exists a $[\mu'] \in H^1(F, \overline{T}')$ such that $\iota_4([\mu']) = [\mu_{\overline{H}'}]$. Consider the following commutative diagram with exact rows:



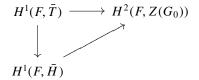
This induces the following commutative diagram with exact rows:

$$\begin{array}{cccc} H^{1}(F,Z(\bar{H})) & \stackrel{\iota_{1}}{\longrightarrow} & H^{1}(F,\bar{T}) & \stackrel{\pi_{1}}{\longrightarrow} & H^{1}(F,\bar{T}') & \stackrel{\delta_{1}}{\longrightarrow} & H^{2}(F,Z(\bar{H})) \\ & & \downarrow = & & \downarrow \iota_{2} & & \downarrow \iota_{4} & & \downarrow = & (**) \\ H^{1}(F,Z(\bar{H}) & \stackrel{\tau_{3}}{\longrightarrow} & H^{1}(F,\bar{H}) & \stackrel{\pi_{2}}{\longrightarrow} & H^{1}(F,\bar{H}') & \stackrel{\delta_{2}}{\longrightarrow} & H^{2}(F,Z(\bar{H})) \end{array}$$

By the assumption that $\iota_4([\mu']) = [\mu_{\bar{H}'}]$ we have that $\delta_1([\mu']) = \delta_2([\mu_{\bar{H}'}]) = 1$, so there exists a $[\mu''] \in H^1(F, \bar{H})$ such that $\pi_1([\mu'']) = [\mu']$. By the commutativity of diagram (**) we have $\pi_2(\iota_2([\mu''])) = \pi_2([\mu_{\bar{H}}])$ and so, from [Se, Chap. 1, Sec. 5], we find that there exists a $[\theta] \in H^1(F, Z(\bar{H}))$ such that $\iota_3([\theta]) \cdot \iota_2([\mu'']) =$ $[\mu_{\bar{H}}]$. If we define $[\mu] = \iota_1([\theta]) \cdot [\mu'']$, then $\iota_2([\mu]) = \iota_2\iota_1([\theta]) \cdot \iota_2([\mu'']) =$ $\iota_3([\theta]) \cdot \iota_2([\mu'']) = [\mu_{\bar{H}}]$.

4.3. Modification of $[\mu]$

By Lemma 4.4 and the commutativity of the diagram



we have that $[\mu] \mapsto [(a, b)_E]$ under $H^1(F, \overline{T}) \to H^2(F, Z(G_0))$. In this section we modify $[\mu]$ as in Section 4.1.2 to obtain a cocycle $[\gamma] \in H^1(F, \overline{T})$ such that $[\gamma] \mapsto [\xi]$ under $H^1(F, \overline{T}) \to H^1(F, \overline{G}_0)$. In order to do this, we need cocycles $[\nu_v] \in H^1(F_v, \overline{T})$ for each $v \in V_{\infty,\mathbb{R}}^F$ such that $[\nu_v] \mapsto [\xi_v]$ under $H^1(F_v, \overline{T}) \to$ $H^1(F_v, \overline{G}_0)$. We break this into two cases.

4.3.1. $E \otimes_F F_v \simeq F_v \times F_v \times F_v$

In order to understand how \overline{T} behaves over F_v , it is necessary to understand the structure of $P \otimes_F F_v$. Recall that H is isogenous to $R_{P/F}(SL_2)$ and so, in order to understand $P \otimes_F F_v$, it is instructive to examine H over F_v . In order to examine H, we need to remember that $H = G_{\Phi}$, where $\Phi = \{\alpha_2, \alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_3, \alpha_2 + \alpha_1 + \alpha_4\} \subset \Sigma(G, T_0)$ has Galois action described in [CLM]. I claim that the sign of b under each of the maps $E \hookrightarrow E \otimes_F F_v \xrightarrow{\pi_i} F_v$ determines the Galois action of Gal(\mathbb{C}/F_v) on Φ and hence determines the structure of H and thus the structure of $P \otimes_F F_v$.

LEMMA 4.5. With notation as before, let b_1, b_2, b_3 be the images of b under the maps $E \hookrightarrow E \otimes_F F_v \xrightarrow{\pi_i} F_v$. If at least one of b_1, b_2, b_3 is negative, then $P \otimes_F F_v \simeq \mathbb{C} \times \mathbb{C}$; if all of b_1, b_2, b_3 are positive, then $P \otimes_F F_v \simeq F_v \times F_v \times F_v \times F_v$.

Proof. Suppose that b_1, b_2, b_3 are all positive in F_v . In this case,

$$R_{E/F}(R_{E(\sqrt{b})/E}^{(1)}(\mathbf{G}_{m}))_{F_{v}}$$

$$\simeq R_{F_{v}(\sqrt{b_{1}})/F_{v}}^{(1)}(\mathbf{G}_{m}) \times R_{F_{v}(\sqrt{b_{2}})/F_{v}}^{(1)}(\mathbf{G}_{m}) \times R_{F_{v}(\sqrt{b_{3}})/F_{v}}^{(1)}(\mathbf{G}_{m})$$

$$\simeq \mathbf{G}_{m} \times \mathbf{G}_{m} \times \mathbf{G}_{m}$$

and so T_0 is split over F_v . This gives that all $\alpha \in \Sigma(G_0, T_0)$ are fixed under $\operatorname{Gal}(\mathbb{C}/F_v)$. Therefore, Φ is fixed under $\operatorname{Gal}(\mathbb{C}/F_v)$; hence $\tilde{H}_{F_v} \simeq \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$ and so $P \otimes_F F_v \simeq F_v \times F_v \times F_v \times F_v$.

Suppose now that one of b_1, b_2, b_3 is negative. Up to renumbering, we may assume that b_1 and b_2 are negative while b_3 is positive (because $N_{E/F}(b) = 1$). In this case,

$$R_{E/F}(R_{E(\sqrt{b})/E}^{(1)}(\mathbf{G}_{m}))_{F_{v}}$$

$$\simeq R_{F_{v}}^{(1)}(\sqrt{b_{1}})_{F_{v}}(\mathbf{G}_{m}) \times R_{F_{v}}^{(1)}(\sqrt{b_{2}})_{F_{v}}(\mathbf{G}_{m}) \times R_{F_{v}}^{(1)}(\sqrt{b_{3}})_{F_{v}}(\mathbf{G}_{m})$$

$$\simeq R_{\mathbb{C}/F_{v}}^{(1)}(\mathbf{G}_{m}) \times R_{\mathbb{C}/F_{v}}^{(1)}(\mathbf{G}_{m}) \times \mathbf{G}_{m}$$

and thus (again, up to renumbering) $1 \neq \tau \in \text{Gal}(\mathbb{C}/F_v)$ acts by

$$\alpha_1 \mapsto \alpha_1,$$

 $\alpha_3 \mapsto -\alpha_3,$
 $\alpha_4 \mapsto -\alpha_4;$

if $\tilde{\alpha}$ is a root of maximal height, then $\tilde{\alpha} \mapsto \tilde{\alpha}$ (since this was true over *F*). This means that $\alpha_2 \mapsto \alpha_2 + \alpha_1 + \alpha_3$ and $\alpha_1 + \alpha_2 + \alpha_4 \mapsto \alpha_2 + \alpha_3 + \alpha_4$; hence Φ has type $[A_1 \times A_1] \times [A_1 \times A_1]$, with $\operatorname{Gal}(\mathbb{C}/F_v)$ permuting the factors inside the brackets. This gives that $\tilde{H}_{F_v} \simeq R_{\mathbb{C}/F_v}(\operatorname{SL}_2) \times R_{\mathbb{C}/F_v}(\mathbb{C}/F_v)$, so $P \otimes_F F_v \simeq \mathbb{C} \times \mathbb{C}$.

By our restriction that $E \otimes_F F_v \simeq F_v \times F_v \times F_v$, we have that G_{F_v} is of type 1D_4 . By the classification given in Section 4.1.1, we have that G_{F_v} is of rank 0, 2, or 4. Recall that $[\xi]_v$ is in the image of $H^1(F_v, G_0) \to H^1(F_v, \tilde{G}_0)$ if and only if *G* has rank 0 or 4. This is true if and only if $(a, b_1)_{F_v}$, $(a, b_2)_{F_v}$, and $(a, b_3)_{F_v}$ are all split, which is equivalent to the condition that b_1, b_2, b_3 are all positive (since $F(\sqrt{a})$ is purely imaginary by assumption). When combined with Lemma 4.5, these remarks yield our next lemma.

LEMMA 4.6. If G_{F_v} has rank 2, then \tilde{T} has the form

$$R_{\mathbb{C}/F_v}(\mathbf{G}_{\mathrm{m}}) \times R_{\mathbb{C}/F_v}(\mathbf{G}_{\mathrm{m}})$$

and at least one of b_1, b_2, b_3 is negative in F_v .

If G_{F_v} is anisotropic or split, then b_1, b_2, b_3 are all positive in F_v . Moreover, if we let $\psi_{i,v}$ be the composition

$$P \hookrightarrow P \otimes_F F_v \simeq F_v \times F_v \times F_v \times F_v \xrightarrow{\pi_i} F_v,$$

then \tilde{T}_{F_v} has the form

$$\begin{split} R^{(1)}_{F_{v}\left(\sqrt{\psi_{1,v}(p)}\right)/F_{v}}(\mathbf{G}_{\mathbf{m}}) &\times R^{(1)}_{F_{v}\left(\sqrt{\psi_{2,v}(p)}\right)/F_{v}}(\mathbf{G}_{\mathbf{m}}) \\ &\times R^{(1)}_{F_{v}\left(\sqrt{\psi_{3,v}(p)}\right)/F_{v}}(\mathbf{G}_{\mathbf{m}}) \times R^{(1)}_{F_{v}\left(\sqrt{\psi_{4,v}(p)}\right)/F_{v}}(\mathbf{G}_{\mathbf{m}}). \end{split}$$

Notice that if b_1, b_2, b_3 are all positive in F_v , then the structure of \overline{T}_{F_v} depends on the sign of $\psi_{i,v}(p)$. The following lemma allows us to control these signs.

LEMMA 4.7. There exists a $p \in P$ such that $P(\sqrt{p})$ splits $(a,b)_P$ and $\psi_{i,v}(p) < 0$ in F_v if and only if $[\xi]$ is trivial over F_v .

Proof. Recall the definition of $[\mu_{\bar{H}}]$ and $[\mu_{\bar{H}'}]$ that was given immediately before Lemma 4.4.

Let $\Psi_1 \subset V_{\infty,\mathbb{R}}^F$ be the set of all places of F such that b_1, b_2, b_3 are all positive in F_v but $[\xi]_v$ is nontrivial. Let $([(\alpha_1, \beta_1)_{F_v}], [(\alpha_2, \beta_2)_{F_v}], [(\alpha_3, \beta_3)_{F_v}], [(\alpha_4, \beta_4)_{F_v}])$ be the image of $[(a, b)_P]$ under the isomorphism $H^1(F_v, \overline{H'}) \simeq H^2(F_v, \mu_2) \times \cdots \times H^2(F_v, \mu_2)$. Given a quaternion algebra over the real numbers, it is always possible to find a pure quaternion q such that $q^2 = -1$. For $v \in \Psi_1$, choose $x_{i,v}, y_{i,v}, z_{i,v} \in F_v$ such that

$$\alpha_{i} x_{i,v}^{2} + \beta_{i} y_{i,v}^{2} - \alpha_{i} \beta_{i} z_{i,v}^{2} = -1.$$

Let Ψ_2 be the set of all places of *F* such that $[\xi]_v$ is split. For every such *v*, I claim that $[(\alpha_1, \beta_1)_{F_v}], [(\alpha_2, \beta_2)_{F_v}], [(\alpha_3, \beta_3)_{F_v}]$, and $[(\alpha_4, \beta_4)_{F_v}]$ are split. To see this, recall the definition of *S* from the proof of Lemma 4.3 and consider the short exact sequence

$$1 \to Z(G_0) \to S \to \overline{S} \to 1.$$

Recall also that $[\mu_{\bar{H}'}]$ was the image of a cocycle $[\mu_{\bar{S}}] \in H^1(F, \bar{S})$ that mapped to $[(a, b)_E]$ under $H^1(F, \bar{S}) \to H^2(F, Z(G_0))$. Because $[(a, b)_E]$ is split over F_v , this means that $[\mu_{\bar{S}}]$ is the image of some $[\mu_S] \in H^1(F_v, S)$; but by the definition of $S, S_{F_v} \simeq G_m \times G_m \times G_m$. This means that $[\mu_{\bar{S}}]$ is split over F_v by Hilbert 90. Hence $[\mu_{\bar{H}'}]$ is also split over F_v and thus $[(\alpha_1, \beta_1)_{F_v}], [(\alpha_2, \beta_2)_{F_v}], [(\alpha_3, \beta_3)_{F_v}],$ and $[(\alpha_4, \beta_4)_{F_v}]$ are split as claimed.

Because $[(\alpha_i, \beta_i)_{F_v}]$ are split, there exist pure quaternions $q_i \in (\alpha_i, \beta_i)$ such that $q_i^2 = 1$. For $v \in \Psi_2$, choose $x_{i,v}, y_{i,v}, z_{i,v} \in \mathbb{R}$ such that

$$\alpha_{i} x_{i,v}^{2} + \beta_{i} y_{i,v}^{2} - \alpha_{i} \beta_{i} z_{i,v}^{2} = 1.$$

Next, choose $\varepsilon > 0$ such that, if $|x'_{i,v} - x_{i,v}| + |y'_{i,v} - y_{i,v}| + |z'_{i,v} - z_{i,v}| < \varepsilon$, then

$$|\alpha_{i}x_{i,v}^{\prime 2} + \beta_{i}y_{i,v}^{\prime 2} - \alpha_{i}\beta_{i}z_{i,v}^{\prime 2} - \alpha_{i}x_{i,v}^{2} - \beta_{i}y_{i,v}^{2} + \alpha_{i}\beta_{i}z_{i,v}^{2}| < \frac{1}{2}$$

Applying the weak approximation property then provides $x, y, z \in P$ such that

$$|\psi_{i,v}(x) - x_{i,v}| + |\psi_{i,v}(y) - y_{i,v}| + |\psi_{i,v}(z) - z_{i,v}| < \varepsilon$$

and so, if we let $p = \alpha x^2 + \beta y^2 - \alpha \beta z^2$, then p satisfies the conditions of the lemma.

Recall that there are three possibilities for G_{F_v} : it can be split, anisotropic, or of rank 2. If G_{F_v} is split then $[\xi]_v$ is trivial, so we can let $[v_v] = 1$ and then $[v_v] \mapsto [\xi]_v$. If G_{F_v} is anisotropic then, by our choice of p, T_{F_v} is anisotropic and thus T_{F_v} is isomorphic to a maximal torus of G_{F_v} . By Steinberg's theorem, we therefore have an embedding $\phi: \overline{T}_{F_v} \hookrightarrow \overline{G}_{0,F_v}$ and $[v'_v] \in H^1(F_v, \phi(\overline{T}_{F_v}))$ such that $[v'_v] \mapsto [\xi]_v$.

Any two anisotropic tori in \overline{G}_{0,F_v} are conjugate [Hu]. Hence the image of $H^1(F_v, \overline{T}_{F_v})$ and $H^1(F_v, \phi(\overline{T}_{F_v}))$ in $H^1(F_v, \overline{G}_{0,F_v})$ are the same and there exists a $[v_v] \in H^1(F_v, \overline{T}_{F_v})$ such that $[v_v] \mapsto [\xi]_v$.

Finally, we must consider the case in which G_{F_v} has rank 2. In this case, Lemma 4.6 gives that $P \otimes_F F_v \simeq \mathbb{C} \times \mathbb{C}$ and $\tilde{T}_{F_v} \simeq R_{\mathbb{C}/\mathbb{R}}(G_m) \times R_{\mathbb{C}/\mathbb{R}}(G_m)$. Recall the definition of T_0 . The action of $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ on $\Sigma(G_0, T_0)$ is described in Lemma 4.5 and, up to renumbering, the subsets $\Phi_1 = \{\alpha_2, \alpha_2 + \alpha_1 + \alpha_3\}$ and $\Phi_2 = \{\alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_4\}$ are $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ -stable. Let G_i be the subgroup of G_{0,F_v} generated by G_α , where $\alpha \in \Phi_i$. Finally, recall that G_0 is split over F_v in this case and hence $G_{0,F_v} \simeq \operatorname{Spin}(f_4)$ (with f_4 defined as in Section 4.1). The following is a slight rephrasing of Lemma 2.6 to suit our situation.

LEMMA 4.8. Given (V, f_4) as before, there exist $V_1, V_2 \subset V$ such that $V = V_1 \oplus V_2$ and $V_2 = V_1^{\perp}$ under $(\cdot, \cdot)_f$. Also, if $g_1 = f_4|_{V_1}$ and $g_2 = f_4|_{V_2}$ then $f = g_1 \oplus g_2$ and, up to isogeny, $G_i \leq G_{0, F_v}$ is given by $SO(g_i) \leq SO(f_4)$.

For a given 2-dimensional quadratic form g over a field F,

$$\operatorname{Spin}(g) \simeq R_{F(\sqrt{\operatorname{disc}(g)})/F}(\operatorname{SL}_1(T)),$$

where *T* is a quaternion algebra over $F(\sqrt{\text{disc}(g)})$. Recalling from Lemma 4.5 that $G_i \simeq R_{\mathbb{C}/\mathbb{R}}(\text{SL}_2)$, this gives that the g_i have nontrivial discriminant and so, up to multiplication by ± 1 , $g_1 = \langle 1, 1, 1, -1 \rangle = g_2$. Lemma 4.8 gives that $g_1 \oplus g_2 = \langle 1, -1, 1, -1, 1, -1, 1, -1 \rangle$ and so, up to renumbering, $g_1 = \langle 1, 1, 1, -1 \rangle$ and $g_2 = \langle 1, -1, -1, -1 \rangle$.

Let *T*' be the image of *T* in SO(*f*₄). Consider $z = (1, -1) \in SO(g_1) \times SO(g_2) \leq SO(f_4)$. Let $[v'_v] \in H^1(F_v, PSO(f_4)) = H^1(F_v, \overline{G}_{0,F_v})$ be given by $(v'_v)_\tau = \overline{z} \in PSO(f_4)$ if $\tau \in Gal(\mathbb{C}/\mathbb{R})$ is nontrivial. By definition of *T*, we have that $T' \cap SO(g_2)$ is a maximal torus in SO(*g*₂); thus $Z(SO(g_2)) \leq T' \cap SO(g_2)$ and so $z \in T'$. Hence there exists $[v_v] \in H^1(F_v, \overline{T}_{F_v})$ such that $[v_v] \mapsto [v'_v]$.

Lemma 4.9. Under $H^1(F_v, \overline{T}_{F_v}) \to H^1(F_v, \overline{G}_{0, F_v}), [v_v] \mapsto [\xi]_v.$

Proof. It suffices to show that $_{v'_v}G_{0,F_v} \simeq G$. This property is invariant under taking quotients by a central subgroup, so it suffices to show that $_{v'_v}SO(f_4) \simeq SO(\sum_{i=1}^6 x_i^2 - x_7^2 - x_8^2)$, which can be verified by direct calculation. \Box

NOTE. From our choice of p it follows that \overline{T}_{F_v} has higher rank for all $v \in V_{\infty,\mathbb{R}}^F$ such that $F_v \otimes_F E \simeq F_v \times F_v \times F_v$ and $v \in S_G''$.

4.3.2. $E \otimes_F F_v \simeq F_v \times \mathbb{C}$ In this case, $[(a, b)_E]$ has norm $[(a, b_1)_{F_v}] \cdot \operatorname{Res}_{\mathbb{C}/\mathbb{R}}([M_2(\mathbb{C})]) = [(a, b_1)_{F_v}]$, where b_1 is the image of b under the map

$$E \hookrightarrow E \otimes_F F_v \xrightarrow{\pi_1} \mathbb{R} \times \mathbb{C}.$$

By the restriction that $N_{E/F}([(a, b)_E]) = 1$, we therefore get that $(a, b_1)_E$ becomes split over F_v . Because we chose a such that $F(\sqrt{a})$ is purely imaginary,

 $\operatorname{Sign}_{v}(a) = -1$ and so $\operatorname{Sign}_{v}(b_{1}) = 1$. The next lemma gives us the structure of $P \otimes_{F} F_{v}$.

LEMMA 4.10. If $E \otimes_F F_v \simeq F_v \times \mathbb{C}$, then $P \otimes_F F_v \simeq \mathbb{R} \times \mathbb{R} \times \mathbb{C}$.

Proof. First, recall that if G_0 is as in [CLM] then $G_{0,\alpha_1,\alpha_3,\alpha_4}$ has maximal torus $R_{E/F}(R_{E(\sqrt{b})/E}^{(1)}(G_m))$, which becomes $G_m \times R_{\mathbb{C}/F_v}(G_m)$ over F_v . So up to relabeling, $Gal(\mathbb{C}/F_v)$ acts by fixing α_1 and sending $\alpha_3 \mapsto \pm \alpha_4$. Next, by [CLM], $\tilde{\alpha}$ is fixed and so $Gal(\mathbb{C}/F_v)$ acts on $\Phi = \{\alpha_2, \alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_3, \alpha_2 + \alpha_1 + \alpha_4\}$ by fixing two elements and permuting the other two (which elements are fixed and which are permuted depends on the sign of $\alpha_3 \mapsto \pm \alpha_4$). This gives that $\tilde{H}_{F_v} \simeq SL_2 \times SL_2 \times R_{\mathbb{C}/F_v}(SL_2)$; thus $P \otimes_F F_v \simeq \mathbb{R} \times \mathbb{R} \times \mathbb{C}$.

As in the case $E \otimes_F F_v \simeq F_v \times F_v \times F_v$, it is necessary to understand the sign of p under the maps $\psi_{i,v} \colon P \hookrightarrow P \otimes_F F_v \xrightarrow{\pi_i} F_v$ for i = 1, 2. How the sign of $\psi_{i,v}(p)$ is controlled will depend on the form that \overline{G} takes over F_v . From the restriction that $E \otimes_F F_v \simeq F_v \times \mathbb{C}$ we have that \overline{G} is of type 2D_4 over F_v , so Tits's classification gives two possibilities: either \overline{G}_{F_v} is quasi-split of rank 3 or \overline{G}_{F_v} has rank 1.

Let $\Psi_3 \subset V_{\infty,\mathbb{R}}^F$ be the set of all places of F such that $E \otimes_F F_v \simeq F_v \times \mathbb{C}$ and G becomes quasi-split over F_v , and let $\Psi_4 \subset V_{\infty,\mathbb{R}}^F$ be the set of all places of F such that $E \otimes_F F_v \simeq F_v \times \mathbb{C}$ and G has rank 1 over F_v .

LEMMA 4.11. There exists a $p \in P$ satisfying the conditions of Lemma 4.7 and such that $\psi_{i,v}(p)$ is positive in F_v if $v \in \Psi_3$ and is negative in F_v if $v \in \Psi_4$.

Proof. The proof is identical to the proof of Lemma 4.7 with one exception. Recall the definitions of *S* and \overline{S} from Lemma 4.3. Although we do not have that *S* is split in this case, we do still have that $H^1(F_v, S) = H^1(F_v, G_m \times R_{\mathbb{C}/\mathbb{R}}(G_m)) = 1$; and the same arguments as in Lemma 4.7 then give that $[(\alpha_1, \beta_1)_{F_v}]$ and $[(\alpha_2, \beta_2)_{F_v}]$ as defined there are split (here there are no $[(\alpha_3, \beta_3)_{F_v}]$ or $[(\alpha_4, \beta_4)_{F_v}]$, since $P \otimes_F F_v \simeq F_v \times F_v \times \mathbb{C}$).

Now, choosing *p* as in Lemma 4.11, I claim that there exist $[v_v] \in H^1(F_v, \overline{T}_{F_v})$ that map to $[\xi]_v$ for all $v \in \Psi_3 \cup \Psi_4$. This is proven in an analogous manner to the case where $E \otimes_F F_v \simeq F_v \times F_v \times F_v$, with a few exceptions. Namely, in this case $G_{0,F_v} \simeq \text{Spin}(f_3)$. Recall the definition of $T_0 \leq G_0$ and the $\text{Gal}(\mathbb{C}/\mathbb{R})$ -action described in Lemma 4.10. Up to renumbering, if we let G_1 be the subgroup of G_0 generated by the root subgroups corresponding to $\{\alpha_2, \alpha_2 + \alpha_3 + \alpha_4\}$ then $G_1 \simeq$ $SL_2 \times SL_2$, and if we let G_2 be the subgroup generated by the root subgroups corresponding to $\{\alpha_2 + \alpha_1 + \alpha_4, \alpha_2 + \alpha_1 + \alpha_3\}$ then $G_2 \simeq R_{\mathbb{C}/\mathbb{R}}(SL_2)$.

LEMMA 4.12. Given (V, f_3) with f_3 as defined in Section 4.1, there exist $V_1, V_2 \subset V$ such that $V = V_1 \oplus V_2$ and $V_2 = V_1^{\perp}$ under $(\cdot, \cdot)_{f_3}$. Also, if $g_1 = f_3|_{V_1}$ and $g_2 = f_3|_{V_2}$ then $f = g_1 \oplus g_2$ and, up to isogeny, $G_i \leq G_{0,F_v}$ is given by $SO(g_i) \leq SO(f_3)$.

Proof. As in Lemma 4.8.

Recall that we have $\operatorname{Spin}(\underline{g}_i) \simeq R_{F_v(\sqrt{\operatorname{disc}(g_i)})/F_v}(\operatorname{SL}_1(T))$, where *T* is a quaternion algebra over $F_v(\sqrt{\operatorname{disc}(g_i)})$. Because G_1 is split, g_1 is as well; in contrast, G_2 has no F_v -defined subgroups of type A_1 and so g_2 has nontrivial discriminant. This means that, up to multiplication by ± 1 , we have

$$g_1 = x_1^2 - x_2^2 + x_3^2 - x_4^2,$$

$$g_2 = y_1^2 + y_2^2 + y_3^2 - y_4^2,$$

and the criterion that $g_1 \oplus g_2 = f_3$ means that we can choose g_i as above.

If G_{F_v} has rank 3 then $G_{F_v} \simeq G_{0,F_v}$, so $[\xi]_v$ is trivial and $1 \in H^1(F_v, \bar{T})$ maps to $[\xi]_v$. If G_{F_v} has rank 1 then recall that, by our choice of p, we have $T_1 = T \cap G_1 \simeq R_{\mathbb{C}/F_v}^{(1)}(G_m) \times R_{\mathbb{C}/F_v}^{(1)}(G_m)$. Let $S_1 = \operatorname{Spin}(x_1^2 + x_3^2) \times \operatorname{Spin}(-x_2^2 - x_4^2) \leq G_1$. Since any two anisotropic tori over \mathbb{R} are conjugate, it follows that if \bar{T}_1 and \bar{S}_1 are the images of T_1 and S_1 in PSO (g_1) then the images of $H^1(F_v, \bar{T}_1)$ and $H^1(F_v, \bar{S}_1)$ in $H^1(F_v, \operatorname{PSO}(g_1))$ are the same. Let T_1' and S_1' be the images of T_1 and S_1 in SO (g_1) , and let $z_1 = (1, -1) \in S_1'$. If we let $[\gamma_v] \in H^1(F_v, \bar{S}_1)$ be given by $(\gamma_v)_\tau = \bar{z}_1 \in \bar{S}_1$, let $[\gamma_v'] \in H^1(F_v, \bar{T}_1)$ be chosen such that $\operatorname{Im}([\gamma_v']) = \operatorname{Im}([\gamma_v]) \in H^1(F_v, \operatorname{PSO}(g_1))$.

Let $[\nu_v] \in H^1(F_v, \overline{T})$ be the image of $[\gamma'_v]$ under the map $H^1(F_v, \overline{T}_1) \rightarrow H^1(F_v, \overline{T}_{F_v})$. Let $g_{11} = x_1^2 + x_2^2$ and $g_{12} = -x_2^2 - x_4^2$ so that $g_1 = g_{11} \oplus g_{12}$. As in Lemma 4.9, direct calculation shows that $\nu_v SO(f_3) \simeq SO(f_1)$. We thus have our next lemma.

LEMMA 4.13. In the situation just described, $[v_v] \mapsto [\xi]_v$ under $H^1(F_v, \overline{T}_{F_v}) \rightarrow H^1(F_v, \overline{G}_{0, F_v})$.

NOTE. For every $v \in S_G$ such that $E \otimes_F F_v \simeq F_v \times \mathbb{C}$, we have that T_{F_v} has rank 1 whenever $v \in S'_G$ but is of higher rank whenever $v \in S'_G$.

4.4. Concluding Argument

Proof of Proposition 4.1. Thus far we have constructed a torus $\overline{T} \leq \overline{G}_0$ such that:

(1) there exists a $[\gamma] \in H^1(F, \overline{T})$ that maps to $[\xi] \in H^1(F, \overline{G}_0)$;

(2) $T \leq H$, where $H \leq G_0$ is a simple group of type $A_1 \times A_1 \times A_1 \times A_1$; and

(3) T has appropriate real rank.

If we let $[\chi]$ be the image of $[\gamma]$ in $H^1(F, \overline{H})$, then $[\chi] \mapsto [\xi]$ under $H^1(F, \overline{H}) \to H^1(F, \overline{G}_0)$ and so ${}_{\chi}H \leq G$. Also, ${}_{\chi}H$ is a simple group and ${}_{\lambda}T = T \leq {}_{\chi}H$. This means that ${}_{\chi}H$ is a proper simple subgroup of *G* that is of appropriate real rank.

NOTE. Allison [A] showed how to construct all central simple Lie algebras of type D_4 over an algebraic number field. It was pointed out by the referee that these results can also be used to obtain subgroups of *G* of type $A_1 \times A_1 \times A_1 \times A_1$, at least one of which has appropriate real rank. We keep the original proof here

because the same technique (i.e., modification of cocycles) is used to prove that groups of type ${}^{1,2}E_6$ are not minimal.

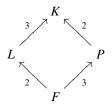
5. Type ${}^{1,2}E_6$

PROPOSITION 5.1. If G is of type ${}^{2}E_{6}$, then G contains a simple subgroup of type A_{5} of appropriate real rank over real completions.

5.1.1. Construction of a Special Torus

Let G_0 be the simply connected quasi-split group of type 2E_6 , let \overline{G}_0 be the adjoint, and let $G = {}^{\underline{\xi}}G_0$ for $[\underline{\xi}] \in H^1(F, \overline{G}_0)$. Our strategy is to apply Lemma 4.2 to a torus that normalizes a subgroup of type 2A_5 with appropriate real rank. Recall that $Z(G_0) \simeq R_{L/F}^{(1)}(\mu_3)$, where L/F is the unique quadratic extension of F over which G becomes inner, and recall that $H^2(F, Z(G_0)) \simeq \ker({}_3\mathrm{Br}(L) \xrightarrow{\mathrm{cor}} {}_3\mathrm{Br}(F))$. Let [D] be the image of $[\underline{\xi}]$ in $H^2(F, Z(G_0))$, and let τ be the involution of the second kind on D fixing F. The first step in applying Lemma 4.2 is to show that we can choose $T \leq G_0$ such that [D] is in the image of $H^1(F, \overline{T}) \to H^2(F, Z(G_0))$.

First, some notation. Let $K \subset D$ be any maximal subfield of D, and let $P = K^{\tau}$ (note that $K = P \otimes_F L$, with τ acting on the second component by [PrR, Proof of Prop. 2.1]). This means that we have the following diagram of extensions:



LEMMA 5.1. Let T_0 be an F-defined maximal quasi-split torus of G_0 and let $\Sigma' \subset \Sigma(G_0, T_0)$ be the root subsystem of type 2A_5 generated by roots $\{\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$. Let $H_0 \leq G_0$ be the subgroup generated by the root subgroups $G_{\alpha} \leq G_0$ for $\alpha \in \Sigma'$, and let T_1 be any maximal torus of $H' = SU_2(D, \langle -1, 1 \rangle)$. Then there exists an embedding $T_1 \hookrightarrow G_0$ such that $[D] \in Im(H^1(F, \overline{T}_1) \to H^2(F, Z(G_0)))$.

Proof. Let $\tilde{H}_0 = H_0/Z(H_0)$ and $\tilde{T}_1 = T_1/Z(H_0)$. Then H' is a form of H_0 and so there exists a $[\lambda'] \in H^1(F, \tilde{H}_0)$ such that ${}^{\lambda'}H_0 = H'$. By Steinberg's theorem, there exists an embedding $T_1 \hookrightarrow H_0$ such that $[\lambda'] \in \text{Im}(H^1(F, \tilde{T}_1) \to H^1(F, \tilde{H}_0))$. Let $[\mu'] \in H^1(F, \tilde{T}_1)$ be chosen such that $[\mu'] \mapsto [\lambda']$. Let $[\chi']$ be the image of $[\mu']$ in $H^2(F, Z(H_0))$. Note that H' becomes quasi-split over P; hence $[\lambda']$ (and $[\chi']$) become split over P as well. This means that $[[\chi']]$ divides 3 in $H^2(F, Z(H_0))$.

Note that $Z(H_0) = R_{L/F}^{(1)}(\mu_6)$ and $Z(G_0) = R_{L/F}^{(1)}(\mu_3)$ fit in the exact sequence

$$1 \to Z(G_0) \to Z(H_0) \to \mu_2 = R_{L/F}^{(1)}(\mu_2) \to 1$$
 (†)

and that this sequence splits. We can use these facts to construct the following diagram with exact columns:

Because $[\chi']$ has order dividing 3, its image in $H^2(F, \mu_2)$ is trivial; because the diagram commutes, there exist a $[\mu] \in H^1(F, \overline{T}_1)$ and a $[\lambda] \in H^1(F, \overline{H}_0)$ such that $[\mu] \mapsto [\mu']$ and $[\lambda] \mapsto [\lambda']$ under the maps in the diagram. Let $[\chi]$ be the image of $[\lambda]$ in $H^2(F, Z(G_0))$, and consider the following diagram:

$$H^{2}(F, Z(G_{0})) \longrightarrow H^{2}(F, Z(H_{0}))$$

$$Res \downarrow \qquad \qquad \downarrow Res$$

$$H^{2}(L, Z(G_{0})) \longrightarrow H^{2}(L, Z(H_{0}))$$

here the horizontal arrows are injections because the sequence (†) is exact. The vertical arrow on the left-hand side is injective because Cor \circ Res is multiplication by [L : F] = 2 and $H^2(F, Z(G_0))$ is a 3-torsion group. Thus, to prove that $[\lambda] \in H^1(F, \bar{H}_0)$ maps to [D] in $H^2(F, Z(G_0))$, it suffices to show that $[\chi]_L = [D]_L$. Recall that if $[\alpha] \in H^1(F, \text{PGL}_n)$ has ${}^{\alpha}\text{SL}_n = \text{SL}_1(A)$ for A a central simple algebra of degree n (not necessarily a division algebra), then $[A] = \text{Im}([\alpha]) \in H^2(F, \mu_n) = {}_n\text{Br}(F)$.

The proof is then completed by noticing that

$$^{\lambda}(H_0)_L = \operatorname{SL}_2(D) \text{ and } H^2(L, Z(G_0)) \hookrightarrow H^2(L, Z(H_0)).$$

Let $\tilde{\alpha}$ be the root of maximal height in the root system of G_0 , and let $G_{\tilde{\alpha}}$ be the corresponding root subgroup. Then $G_{\tilde{\alpha}}$ commutes with H_0 . I aim to construct a torus T that is the almost direct product of maximal tori $T_1 \leq G_{\tilde{\alpha}}$ and $T_2 \leq H_0$.

For T_1 , choose $a \in F$ such that a is positive in F_v for all $v \in V^F_{\infty,\mathbb{R}}$ such that G_{F_v} is split or quasi-split and negative otherwise, and let $T_1 = R^{(1)}_{F(\sqrt{a})/F}(G_m)$ be embedded in $G_{\tilde{\alpha}}$ via the regular embedding.

Next, we construct T_2 . Let σ be the involution on $M_2(D)$ corresponding to the τ -hermitian form $\langle 1, -1 \rangle$. Recall from the classification of minimal groups of type 2A_n that, given local constructions $E_v \subset M_2(D) \otimes_F F_v$ such that $E_v^{\tau_v}$ has dimension *n* for every $v \in V_{\infty,\mathbb{R}}^F$, there exists a subfield $E \subset M_2(D)$ such that $(E \otimes_F F_v, \tau \otimes 1) \simeq (E_v, \tau_v)$ (see [PrR, Proof of Thm. 5.1, p. 135] and [PrR, Apx. A, pp. 176–178]). We break the local construction into the following three cases. (i) If rank_{*F_v*(*G*) = 0 then, by Tits's classification, *G* remains outer over *F_v* in this case; thus $(M_2(D) \otimes F_v, \langle 1, -1 \rangle) \simeq (M_6(\mathbb{C}), \langle 1, -1, 1, -1, 1, -1 \rangle)$. Let $E_v = \mathbb{C}^6$ embed via diagonal matrices, so $E_v^{\tau_v} = \mathbb{R}^6$ and the maximal torus of SU₆($\mathbb{C}, \langle 1, -1, 1, -1, 1, -1 \rangle$) corresponding to E_v is anisotropic.}

(ii) If G_{F_v} is isotropic of outer type, we have that $(M_2(D) \otimes F_v, \langle 1, -1) \simeq (M_6(\mathbb{C}), \langle -1, -1, -1, 1, 1, 1 \rangle)$. Note that $M_3(\mathbb{R}) \times M_3(\mathbb{R}) \subset M_6(\mathbb{C})^{\tau_v}$ in this case, so we can embed $F_v = (\mathbb{R} \times \mathbb{C}) \times (\mathbb{R} \times \mathbb{C}) \subset M_6(\mathbb{C})^{\tau_v}$ by first embedding $\mathbb{R} \times \mathbb{C} \subset M_3(\mathbb{R})$ via the regular representation along the diagonal and then taking the product of this embedding with itself. We then let $E_v = F_v \otimes_{\mathbb{R}} \mathbb{C} \hookrightarrow M_6(\mathbb{C})$ via $(M_3(\mathbb{R}) \times M_3(\mathbb{R}) \otimes \mathbb{C} \hookrightarrow M_6(\mathbb{C})$. Then

$$\{x \in E_v \mid x\tau_v(x) = 1 = \operatorname{Nrd}(x)\} = \{(z_1, z_2, z_2^{-1}, z_1^{-1}, z_4, z_4^{-1}) \mid N_{\mathbb{C}/\mathbb{R}}(z_1) = 1\},\$$

so the maximal torus of $SU_6(\mathbb{C}, \langle 1, -1, 1, -1, 1, -1 \rangle)$ corresponding to E_v in this case has F_v -rank 2.

(iii) If G_{F_v} is isotropic of inner type, let $E_v = \mathbb{C}^3 \times \mathbb{C}^3 \hookrightarrow M_6(\mathbb{R}) \times M_6(\mathbb{R})^{op}$ with exchange involution (embedded via the regular embedding). Then the maximal torus of $SL_6(\mathbb{R})$ corresponding to E_v is

$$\{(z_1, z_2, z_3) \mid N_{\mathbb{C}/\mathbb{R}}(z_1 z_2 z_3) = 1\},\$$

which has rank 2 over \mathbb{R} .

Let $E \subset M_2(D)$ be a maximal subfield such that $(E \otimes_F F_v, \tau \otimes 1) \simeq (E_v, \tau_v)$ for each $v \in V_{\infty,\mathbb{R}}^F$, and let $T_2 = \{x \in E \mid x\tau(x) = 1 = \operatorname{Nrd}(x)\}$. By Lemma 5.1 there exists an embedding $\phi: T_2 \hookrightarrow G_0$ such that $[D] \in \operatorname{Im}(H^1(F, \overline{T}_2) \to H^2(F, Z(G_0)))$. Let $T = \phi(T_2) \cdot T_1$; then there exists a $[\mu] \in H^1(F, \overline{T})$ such that $[\mu] \mapsto [D]$.

5.1.2. Modification of $[\mu]$

In order to apply Lemma 4.2 to $[\mu]$, it suffices to show that $[\xi]_v$ is in the image of $H^1(F_v, T) \rightarrow H^1(F_v, G_0)$ for every $v \in V_{\infty,\mathbb{R}}^F$. When G_v is split, we may choose the trivial cocycle in $H^1(F_v, T)$. When G_v is anisotropic, T is anisotropic over F_v by construction and so $H^1(F_v, T) \rightarrow H^1(F_v, G_0)$ by [Bo, Thm. 1]. Thus it remains to address the cases where G_v is isotropic but not split.

If G_v is inner then $|H^1(F_v, G_0)| = 2$, so it suffices to prove that the image of $H^1(F_v, T)$ in $H^1(F_v, G_0)$ is nontrivial. Also, if G_v is outer of rank 2 then T_v is also rank 2; hence any twist by a cocycle in T_v will also have rank at least 2. We have that $|H^1(F_v, G_0)| = 3$ by Tits's classification, where one element is trivial and another corresponds to the anisotropic group. If $1 \neq [\chi]$ is in the image of $H^1(F_v, T)$ in $H^1(F_v, G_0)$, then ${}^{\chi}G_0$ is neither split nor anisotropic and so must be equal to $[\xi]_v$. Thus it suffices to prove that the image of $H^1(F_v, T)$ in $H^1(F_v, G_0)$ is nontrivial as well.

LEMMA 5.2. If T is nonsplit over F_v , then the image of $H^1(F_v, T) \rightarrow H^1(F_v, G_0)$ is nontrivial.

Proof. If G_0 is inner over F_v , then T has rank 2 over F_v ; thus the anisotropic part of T_a over F_v has rank 4 and hence is maximal anisotropic (see Proposition 5.3 to

follow). Therefore, $H^1(F_v, T_a) \twoheadrightarrow H^1(F_v, G_0)$ by [Bo]; in particular, the image of $H^1(F_v, T) \to H^1(F_v, G_0)$ is nontrivial.

If G_0 is outer over F_v then let $T = T_1 \cdot T_2$, where T_1 is split of rank 2 over F_v and T_2 is anisotropic of rank 4. Then $C_{G_0}(T_2)$ is a reductive group and so $C_{G_0}(T_2) = H \cdot S$, where S is a torus in G_0 containing T_2 and H is semisimple.

Claim. $S = T_2$.

Suppose not. If *H* is trivial, then $C_{G_0}(T_2) = T$. But G_0 contains a maximal anisotropic torus containing T_2 , and *T* has rank 2—a contradiction.

If *H* has rank 1, then $C_{G_0}(T_2) = SL_2 \cdot S$. Let T_a be a maximal torus of G_0 that is anisotropic over F_v and contains T_2 ; then $T_a \subset SL_2 \cdot S$ yields that $T_a \cap S$ has dimension 5 and *S* is anisotropic. In particular: $C_{G_0}(T_2)$ has rank 1 but $T \subset C_{G_0}(T_2)$ has rank 2, a contradiction. This proves the claim.

Because *H* is standard of rank 2, *H* may be either of type $A_1 \times A_1$ or of type A_2 (if *H* were of type G_2 or B_2 then *H* would have roots of different lengths, which is impossible). In either case, *H* contains a split subgroup of type A_1 . If $\tilde{\alpha}$ is the root of maximal height in E_6 , then we may assume (after conjugation) that $G_{\tilde{\alpha}} \leq H$. Then $T_2 \subset C_{G_0}(H) \subset C_{G_0}(G_{\tilde{\alpha}})$, so we can consider $C_{C_{G_0}(G_{\tilde{\alpha}})}(T_2)$. We have $C_{C_{G_0}(G_{\tilde{\alpha}})}(T_2) = H' \cdot S'$, where *H'* is semisimple and *S'* is a torus containing T_2 , as before.

Note that $C = C_{G_0}(G_{\tilde{\alpha}})$ is standard in G_0 of type 2A_5 . Thus *C* contains an anisotropic torus of rank 5. Arguing as in the claim, we see that $S' = T_2$ and $H' \simeq SL_2$. Let $\tilde{\beta}$ be the root of maximal height in A_5 . After conjugation by an element of *C*, we may assume that $H' = G_{\tilde{\beta}}$. Then $C_C(H') = H'' \cdot S''$, where H'' is of type 2A_3 and S'' is anisotropic of dimension 1. Then $T_2 \cap H''$ is a maximal torus of H'', which is also maximal. By [Bo], it follows that there exists an element $[\alpha]$ of $H^1(F_v, T_2 \cap H'')$ such that ${}^{\alpha}H''$ is compact. It suffices to show that the image of $[\alpha]$ in $H^1(F_v, G_0)$ is nontrivial.

To see this, first note that because ${}^{\alpha}H'' \leq {}^{\alpha}C$ is standard, if ${}^{\alpha}H'' = SU(\mathbb{C}, f_4)$ for a compact hermitian form f_4 then ${}^{\alpha}C = SU(\mathbb{C}, f_4 \oplus f_2)$ for some hermitian 2-form f_2 . Thus the maximum possible rank of ${}^{\alpha}C$ is 2, so the image of $[\alpha]$ in $H^1(F_v, C)$ is nontrivial.

To complete the proof, it suffices to show that, if $[\alpha] \in H^1(F_v, C)$ maps to the trivial cocycle in $H^1(F_v, G_0)$, then $[\alpha]$ is trivial. Recall that C commutes with $G_{\tilde{\alpha}}$ by definition of C, so for any $[\alpha] \in H^1(F_v, C)$ we have ${}^{\alpha}G_{\tilde{\alpha}} = G_{\tilde{\alpha}}$. Let T_0 be a split torus sitting in $G_{\tilde{\alpha}}$, and consider $C_{\alpha G_0}(T_0)$. Because ${}^{\alpha}C \leq C_{\alpha G_0}(T_0)$ and $C_{\alpha G_0}(T_0)$ is reductive, we have that $C_{\alpha G_0}(T_0) = T_0 \cdot {}^{\alpha}C$. Thus the maximum possible rank of any torus containing T_0 is 1 + 2 = 3, but if ${}^{\alpha}G_0$ is split then T_0 is contained in a maximal split torus in ${}^{\alpha}G_0$, which has rank 4—a contradiction.

5.1.3. Concluding Argument

Proof of Proposition 5.1. Applying Lemma 4.2, we see that there exists a cocycle $[\gamma] \in H^1(F, \overline{T})$ such that $[\gamma] \mapsto [\xi]$. Since *T* normalizes a group of type 2A_5 containing T_2 , it follows that ${}^{\xi}G_0 = G$ contains a subgroup *H* of type 2A_5 that contains T_2 . Because T_2 has appropriate real rank by construction, so does *H* and therefore *G* is not minimal.

5.2. Type
$${}^{1}E_{6}$$

For the duration of this section, G_0 will be a simply connected split group of type ${}^{1}E_6$ and G will be a twist of G_0 corresponding to $[\xi] \in H^1(F, \overline{G}_0)$. We then have that $Z(G_0) = \mu_3$ over F and thus $H^2(F, Z(G_0)) \simeq {}_{3}Br(F)$. Note that, over a number field F, any element of ${}_{3}Br(F)$ corresponds to a unique cyclic algebra of degree 3. Let $[D] \in {}_{3}Br(F)$ be the image of $[\xi]$ in $H^2(F, Z(G_0))$ with D a cyclic division algebra of degree 3, and let $L \subset D$ be a maximal subfield that is Galois over F.

PROPOSITION 5.2. G contains a simple subgroup of type A_5 of appropriate real rank.

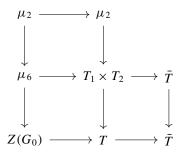
5.2.1. Construction of a Special Torus T

Let $\{\alpha_1, \ldots, \alpha_6\}$ be a basis of the root system $\Sigma(G_0, T_0)$, where T_0 is any maximal split torus of G_0 . Let Σ' be the subsystem of E_6 generated by the roots $\{\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$. We then have that $G_{0, \Sigma'} =: H$ is a split subgroup of type ${}^{1}A_5$; that is, $H \simeq SL_6$.

Let $P = F(\sqrt{-1})$ and *L* be as above; then $L \cdot P$ is a Galois extension of degree 6 over *P*. Consider the regular representation $R_{L \cdot P/F}^{(1)}(G_m) \hookrightarrow H$, and let T_1 be the image of this representation so that T_1 is an anisotropic torus in H_0 of absolute rank 5. Let $T_2 \leq G_{0,\tilde{\alpha}}$ be $R_{P/F}^{(1)}(G_m)$ and define $T = T_1 \cdot T_2 \leq G_0$.

LEMMA 5.3. There exists a $[\mu] \in H^1(F, \overline{T})$ such that $[\mu] \mapsto [D]$ under $H^1(F, \overline{T}) \to H^2(F, Z(G_0)).$

Proof. Consider the diagram



with exact columns and rows. This gives a diagram of interconnected long exact sequences with segment

$$\begin{array}{cccc} H^{1}(F,T_{1}\times T_{2}) &\longrightarrow & H^{1}(F,\bar{T}) \xrightarrow{\phi_{1}} & H^{2}(F,\mu_{6}) \xrightarrow{\phi_{2}} & H^{2}(F,T_{1}\times T_{2}) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ H^{1}(F,T) &\longrightarrow & H^{1}(F,\bar{T}) \xrightarrow{\phi_{4}} & H^{2}(F,\mu_{3}) \end{array}$$

By commutativity, $\text{Im}(\phi_4) = \text{Im}(\phi_3 \circ \phi_1) = \phi_3(\text{ker}(\phi_2))$. Then using Shapiro's lemma, we have that

$$H^{2}(F, T_{1} \times T_{2}) = \ker(\operatorname{Br}(L \cdot P) \xrightarrow{\operatorname{Norm}} \operatorname{Br}(F)) \times \ker(\operatorname{Br}(P) \xrightarrow{\operatorname{Norm}} \operatorname{Br}(F)).$$

Recall that elements of ${}_{6}Br(F)$ can be written in the form $[D_1 \otimes D_2]$, with D_1 cubic cyclic and D_2 a quaternion algebra, because *F* is a number field. The map $\mu_6 \rightarrow T_1 \times T_2$ takes $\xi_6 \mapsto (\xi_6, \xi_6^3)$, so

$$\phi_2([D_1 \otimes D_2]) = ([D_1 \otimes_F D_2 \otimes_F L \cdot P], [D_1 \otimes_F D_2 \otimes_F]^3)$$
$$= ([D_1 \otimes_F D_2 \otimes_F L \cdot P], [D_2 \otimes_F P]).$$

If $[D_1 \otimes_F D_2]$ is in the kernel of this map, then D_2 is split by P and $D_1 \otimes_F D_2$ is split by $L \cdot P$. The first condition gives that D_1 is split by $L \cdot P$ and so, because the degree of D_1 is relatively prime to the degree of P over F, we have that D_1 is split over L. This means that the kernel of ϕ_2 is given by $\{[D_1 \otimes D_2] \in {}_{6}\text{Br}(F) \mid [D_1 \otimes L] = 1 = [D_2 \otimes P]\}$. The map $\mu_6 \to \mu_3$ is given by squaring, so $\phi_3([D_1 \otimes_F D_2]) = [D_1 \otimes_F D_2]^2 = [D_1]^{-1}$. Combining these results gives that [D] is in the image of ϕ_4 if and only if $[D]^{-1}$ contains L as a maximal subfield, which is true because [D] is assumed to contain L and $[D]^{-1} = [D^{op}]$. Thus we have proved the existence of $[\mu]$.

5.3. Concluding Argument

Proof of Proposition 5.2. By Lemma 5.2 we have that the image of $H^1(F_v, T) \rightarrow H^1(F_v, G_0)$ is nontrivial for every $v \in V_{\infty,\mathbb{R}}^F$ such that T has rank 2 over F_v . Because $|H^1(F_v, G_0)| = 2$, we can apply Lemma 4.2 to $[\mu]$ from Lemma 5.3 to see that there exists a $[\gamma] \in H^1(F, \overline{T})$ such that $[\gamma] \mapsto [\xi]$. Then γH is a simple subgroup of $G = {}^{\xi}G_0$ containing T_2 ; hence γH has appropriate real rank because T_2 does and thus G is not minimal.

5.4. Anisotropic Tori in E_6 over \mathbb{R}

The following was used in the proof of Lemma 5.2.

PROPOSITION 5.3. Over \mathbb{R} , any maximal anisotropic torus of a split group G_0 of type E_6 has absolute rank 4.

Proof. Because all maximal anisotropic tori are conjugate, it suffices to prove that there exists an anisotropic torus of rank 4 in G_0 that is not properly contained in a larger anisotropic torus. Using the numbering found in [B], consider the subgroup H_0 of type 1D_4 generated by the root subgroups $G_{\alpha_2}, G_{\alpha_3}, G_{\alpha_4}, G_{\alpha_5}$. This subgroup is isogenous to the group SO₈ ($\sum_{i=1}^{4} x_i^2 - \sum_{i=1}^{4} y_i^2$) and therefore contains an anisotropic torus of rank 4 (take products of the SO($x_i^2 + x_{i+1}^2$)). Call this torus *T*.

Claim. $C_{G_0}(T)$ is a torus.

Note that this claim holds over F if it holds over \overline{F} . To prove this claim, take a maximal torus of G_0 that includes T and then consider the root system of G_0 with respect to this torus over the closure. Because T is a torus, $C_{G_0}(T)$ is reductive;

hence $C_{G_0}(T)$ is the almost direct product of a central torus and its derived subgroup. The derived subgroup is generated by those root subgroups that commute with *T*, of which I claim there are none. This may be proved by computing

$$h_{\alpha_2}(t_2)h_{\alpha_3}(t_3)h_{\alpha_4}(t_4)h_{\alpha_5}(t_5)X_{\alpha}(h_{\alpha_2}(t_2)h_{\alpha_3}(t_3)h_{\alpha_4}(t_4)h_{\alpha_5}(t_5))^{-1}$$

and showing that it is not X_{α} for any α . Indeed, if this is true for some α then $\langle \alpha_i, \alpha \rangle = 0$ for i = 2, 3, 4, 5. If $\alpha = \sum_{i=1}^{8} c_i \varepsilon_i$ (again, in the notation of [B]), then these equations give

$$c_1 = -c_2, \quad c_1 = c_2, \quad c_2 = c_3, \quad c_3 = c_4;$$

these equalities imply $c_1 = c_2 = c_3 = c_4 = 0$, which is impossible for any root $\alpha \in E_6$. This proves the claim.

Any torus is contained in a maximal torus, so there is a maximal torus (call it *S*) contained in $C_{G_0}(T)$. Because $C_{G_0}(T)$ is also a torus, we must have that $C_{G_0}(T) = S$. Assume that *S* contains a split torus of rank 2. If there is an anisotropic torus properly containing *T*, say *S'*, then we would have $S' \subset C_{G_0}(T) =$ *S* and so *S* could have rank at most 1—a contradiction. Thus, it suffices to prove that *S* contains a split torus of rank 2.

Note that, if $C_{G_0}(H_0)$ contains a split torus of rank 2, then $C_{G_0}(T)$ does as well. In order for an element $\prod h_{\alpha_i}(t_i)$ (recall that we take roots with respect to an *F*-split torus) to commute with H_0 , we have the following restrictions on t_i :

$$t_2^2 t_4 = 1$$
, $t_1 t_3^2 t_4 = 1$, $t_3 t_4^2 t_2 t_5 = 1$, $t_6 t_4 t_5 = 1$.

Now elements of the form $h_{\alpha_1}(s^2t^2)h_{\alpha_2}(s)h_{\alpha_3}(t)h_{\alpha_4}(s^{-2})h_{\alpha_5}(t^{-1})h_{\alpha_6}(s^2t)$ form a 2-dimensional split torus that commutes with H_0 (and thus with T).

6. Non–Absolutely Simple Groups

Collecting the results from Sections 2–5 completes the proof of Theorem 1.2. It remains to prove Theorem 1.3. Thus, we consider G that is not absolutely simple. By [BOI, (28.8)], we know that simple algebraic groups over number fields that are not absolutely simple are the restriction of scalars of absolutely simple groups over finite extensions of F. Moreover, the following lemma shows that we may restrict ourselves to the case where G is the restriction of a minimal absolutely simple group.

LEMMA 6.1. If $G = R_{K/F}(H)$, where H is an absolutely simple group over K of absolute rank at least 2 and H is not minimal, then G is not minimal.

Proof. Choose a subgroup $H' \leq H$ that has appropriate real rank over K. Consider $G' = R_{K/F}(H') \leq G$. This is proper because H' is. For $v \in V_{\infty,\mathbb{R}}^F$ we have

$$G'_{F_v} = R_{K_{w_1}/F_v}(H'_{K_{w_1}}) \times \cdots \times R_{K_{w_s}/F_v}(H'_{K_{w_s}})$$

where w_i are the valuations on K that restrict to v on F. Assume $v \in S'_G$. If $K_{w_i} \simeq \mathbb{C}$ for some i, then G_{F_v} has a factor of the form $R_{K_{w_i}/F_v}(H_{K_{w_i}})$ that has rank at

least 2, which contradicts $v \in S'_G$. If $K_{w_i} \simeq \mathbb{R}$ for each *i*, then $H_{K_{w_i}}$ has rank 1 for some *i* and so $H'_{K_{w_i}}$ has rank 1 as well; thus *G'* has F_v -rank 1.

If $v \in S''_G$ and $w_i \in S''_H$ for some *i*, then $H'_{K_{w_i}}$ has higher rank and thus so does G'_{F_v} . Moreover, if $K_{w_i} \simeq \mathbb{C}$ for some *i*, then G' also has F_v -rank at least 2 because $R_{K_{w_i}/F_v}(H')$ does. Thus, we may assume that no w_i is in S''_H and no w_i has $K_{w_i} \simeq \mathbb{C}$. This gives that at least two w_i are in $S'_H = S'_{H'}$, so G' has appropriate F_v -rank.

Notice that $SL_1(D)$ and $SU(D, \tau)$ are simply connected and have no *F*-defined proper semisimple subgroups for deg(D) = p prime. The following lemma strongly limits the possible simple subgroups $R_{K/F}(G)$ when *G* has no semi-simple *K*-defined subgroups.

LEMMA 6.2. Suppose that $G = R_{K/F}(H)$, where H is defined over K, is simply connected and has no proper semisimple subgroups defined over K. Then every F-simple proper subgroup of G is isomorphic to $R_{P/F}(H')$ for $F \subset P \subsetneq K$, where H' is defined over P and H'_K is isomorphic to H_K . In particular, if G has proper F-simple subgroups, then H admits descent to a subfield $P \subset K$.

Proof. Suppose that $G' \leq G$ is a nontrivial proper semisimple subgroup of G as before. Let $K \otimes_F K \simeq K \times K'$, where K' is an étale extension of K and $G_K \simeq H_K \times R_{K'/K}(H_1)$ for some H_1 defined over K'. Let π be the projection $G_K \twoheadrightarrow H_K$. Then $\pi(G'_K)$ is a semisimple subgroup of H_K , so $\pi(G'_K)$ is either trivial or all of H_K .

Assume that the image of G'_{K} under π is trivial. Over \bar{K} , $G_{\bar{K}}$ becomes

$$H_{\bar{K}} \times \cdots \times H_{\bar{K}}$$

with $\Gamma = \text{Gal}(\bar{K}/K)$ permuting the components of $G_{\bar{K}}$ transitively. Let $1 \neq g = (g_1, \ldots, g_n) \in G'_K(\bar{K})$ and suppose that $g_j \neq 1$. Because Γ permutes the components of $G_{\bar{K}}$ transitively, there exists a $\sigma \in \Gamma$ such that the first component of $\sigma(g)$ is $\sigma(g_j)$. Then $\pi(\sigma(g)) = \sigma(g_j) \neq 1$, but $\sigma(g) \in G'_F(K)$ because G' is F-defined and so $\pi(\sigma(g)) = 1$, a contradiction.

If *G'* is absolutely simple then the kernel of π is finite; hence, setting H' = G' and P = F, we have that π is a finite covering of H_K by H'_K . By the assumption that *H* is simply connected, we obtain that π is an isomorphism.

If *G*' is not absolutely simple, then $G' = R_{F'/F}(H')$ for some *H*' absolutely simple over *F*'. Suppose $F' \otimes_F K \simeq K_1 \times \cdots \times K_\ell$ with K_i/K finite field extensions. Then

$$G'_K \simeq R_{K_1/K}(H'_{K_1}) \times \cdots \times R_{K_\ell/K}(H'_{K_\ell}).$$

Let π_i be the composition $R_{K_i/K}(H'_{K_i}) \hookrightarrow G'_K \xrightarrow{\pi} H_K$. If the images of all of the π_i are trivial then the image of π is trivial, which is impossible. Therefore, since H_K contains no proper semisimple subgroups and since the $R_{K_i/K}(H'_{K_i})$ are *K*-simple, it follows that some π_i is an *K*-defined isogeny. By the assumption that H_K is simply connected, we get that π_i is an isomorphism. If K_i/K is a nontrivial field extension, then π_i is an isomorphism between one group that is absolutely simple and one that is not, which is impossible. Hence $K_i = K$ and π_i is an isomorphism $H'_K \rightarrow H_K$. Identifying *P* with the image of *F'* in $K_i = K$, we see that *H'* is defined over *P* and $G' = R_{P/K}(H')$, as required.

This lemma allows us to handle several cases, as follows.

PROPOSITION 6.1. If $G = R_{K/F}(SL_1(D))$ for a central division algebra D/K of prime degree $p \ge 3$, then G is minimal if and only if D does not descend to any subfield $F \subset P \subsetneq K$.

Proof. Assume that *D* does not descend. By Lemma 6.2, *G* contains no proper *F*-simple subgroups in this case. If *D* does descend, then $H = R_{P/F}(SL_1(D'))$ is a proper *F*-simple subgroup of appropriate real rank. Indeed, by the assumption that *D'* has prime degree $p \ge 3$, we must have that *D'* is split over P_w for all $w \in V_{\infty,\mathbb{R}}^P$.

PROPOSITION 6.2. If G is of the form $R_{K/F}(SL_1(D))$ for D a quaternion algebra over K, then G is minimal if and only if, for every $F \subset P \subsetneq K$ such that D descends to P, there exists a $v_0 \in S_G$ such that:

- if $v_0 \in S'_G$, then $P_{w_i} \simeq \mathbb{R}$ and $D' \otimes_P P_{w_i} \simeq \mathbb{H}$ for all w_i lying over v_0 ; and
- *if* $v_0 \in S_G^{''}$, then there is at most one w_i lying over v_0 such that either $P_{w_i} \simeq \mathbb{C}$ or $D' \otimes_P P_{w_i} \simeq M_2(\mathbb{R})$.

Proof. Using Lemma 6.2, we find that all possible *F*-simple subgroups correspond to $F \subset P \subsetneq K$ such that *D* descends to *P*. Then the conditions imposed upon such *P* exactly yield that the corresponding subgroup cannot have appropriate real rank.

EXAMPLE. Let $K = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$, D = (-1, -1), $F = \mathbb{Q}$, and $G = R_{K/\mathbb{Q}}(\mathrm{SL}_1(D))$. Then K has two real and two complex completions, so

$$G_{\mathbb{R}} \simeq \mathrm{SL}_{1}(D) \times \mathrm{SL}_{1}(D) \times R_{\mathbb{C}/\mathbb{R}}(\mathrm{SL}_{2}(\mathbb{C})) \times R_{\mathbb{C}/\mathbb{R}}(\mathrm{SL}_{2}(\mathbb{C}))$$

has \mathbb{R} -rank 2. For any field $\mathbb{Q} \subset P \subsetneq K$ we have that *D* descends to *P*, but *P* has at most one complex completion; hence $R_{P/\mathbb{Q}}(SL_1(D))$ has \mathbb{R} -rank at most 1 and so, by Lemma 6.2, *G* is minimal.

PROPOSITION 6.3. If $G = R_{K/F}(SU(D, \tau))$ for D a central division algebra of degree $p \ge 3$ over K'/K quadratic with involution of the second kind τ such that $K'^{\tau} = K$, then G is minimal if and only if, for all $F \subset P \subsetneq K$ such that D descends to a central simple algebra (D', τ') over a quadratic extension P'/P with involution of the second kind τ' with $P'^{\tau'} = P$, there exists a $v_0 \in S_G$ such that $P_{w_i} \simeq \mathbb{R}$ and $P_{w_i} \otimes P' \simeq \mathbb{C}$ for all w_i lying v_0 and such that either:

- (1) if $v_0 \in S'_G$ then $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \pm \langle 1, \ldots, 1 \rangle)$ for all w_i lying over v_0 ; or
- (2) if $v_0 \in S''_G$ then $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \pm \langle 1, -1, 1, ..., 1 \rangle)$ for at most one *i* and $(D' \otimes_P P_{w_i}, \tau' \otimes 1) \simeq (M_n(\mathbb{C}), \pm \langle 1, ..., 1 \rangle)$ for all others.

Proof. Using Lemma 6.2, we find that all possible simple subgroups correspond to $F \subset P \subsetneq K$ such that D' exists as before. Once again, the conditions imposed upon such P exactly guarantee that the corresponding subgroup cannot have appropriate real rank.

It remains to consider the restrictions of absolutely simple groups of the form $SU_3(K', f)$ for K'/K a quadratic extension and f a 3-dimensional hermitian form over K'. Notice that there do exist proper, nontrivial, K-simple subgroups $H \leq SU_3(K', f)$; however, because A_2 does not contain a root system of type $A_1 \times A_1$, these subgroups can only be of absolute rank 1.

PROPOSITION 6.4. Let G be of the form $R_{K/F}(SU_3(K', f))$ for K'/K quadratic, and let f be hermitian over K'^3 . Then G is minimal if and only if the following statements hold.

- (1) For any $F \subset P \subsetneq K$ such that $SU_3(K', f)$ descends to P, there exists a $v_0 \in S_G$ such that $P_{w_i} \simeq \mathbb{R}$ for all w_i lying over v_0 and:
 - (a) if $SU_3(K', f)$ descends to $SU_3(P', f')$, where $f' = \langle 1, a_2, a_3 \rangle$, then $P_{w_i} \otimes P' \simeq \mathbb{C}$ for every w_i and
 - (i) if $v_0 \in S'_G$ then the image of a_j in P_{w_i} is positive for all i, or
 - (ii) if $v_0 \in S''_G$ then the image of a_j in P_{w_i} is negative for at most one *i*; and
 - (b) if SU₃(K', f) descends to SU(D, τ), where D is a central division algebra of degree 3 over P'/P quadratic with involution τ of the second kind, then P' ⊗ P_{wi} ≃ C for every i and
 - (i) if $v_0 \in S'_G$ then $(D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma)$, where $\sigma(X) = \bar{X}^T$, for every w_i , or
 - (ii) if $v_0 \in S''_G$ then $(D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma)$ for all but at most one w_i and, for at most one w_i , $(D \otimes P_{w_i}, \tau \otimes 1) \simeq (M_3(\mathbb{C}), \sigma \circ \operatorname{Int}(\operatorname{diag}(1, -1, 1)))$ or $(M_3(\mathbb{C}), \sigma \circ \operatorname{Int}(\operatorname{diag}(1, -1, -1)))$.
- (2) For any $F \subset P \subseteq K$ such that a subgroup $SL_1(D') \leq SU_3(K', f)$ descends to $SL_1(D)$ over P, there exists a $v_0 \in S_G$ such that:
 - (a) if $v_0 \in S'_G$, then $P_{w_i} \simeq \mathbb{R}$ and $D \otimes P_{w_i} \simeq \mathbb{H}$ for all w_i over v_0 ; or
 - (b) if $v_0 \in S''_G$, then $P_{w_i} \simeq \mathbb{C}$ or $D \otimes P_{w_i} \simeq M_2(\mathbb{R})$ for at most one w_i over v_0 .

Proof. Arguing as in the proof of Lemma 6.2, let $G' \leq G$ be an *F*-defined, *F*-simple subgroup and let $G_K = SU_3(K', f) \times R_{K'/K}(H_1)$. Let $\pi : G_K \to SU_3(K', f)$ be projection on the first component. If $\pi(G'_K) = 1$ then, as before, G' = 1—a contradiction. This means that $\pi(G'_K)$ is either all of $SU_3(K', f)$ or isomorphic to $SL_1(D)$ for a quaternion algebra *D* defined over *K*. If $\pi(G'_K) \leq$ $SL_1(D) \leq SU_3(K', f)$ and if $g = (g_1, \ldots, g_n) \in G'_K(\bar{K})$ then, for any g_i , there exists a $\sigma \in \Gamma$ such that $\sigma(g_i)$ is the first component of $\sigma(g)$. Because $SL_1(D)$ and G'_K are *K*-defined, we therefore have that $g_i \in SL_1(D)$. This means that $G' \leq R_{K/F}(SL_1(D))$, so we can apply Lemma 6.2 to find that G' is isomorphic to $R_{P/F}(SL_1(D'))$ for some D' over *P*. The conditions listed in item (2) are exactly what is necessary to ensure that no subgroup of this form has appropriate real rank. Assume that $\pi(G'_K) = SU_3(K', f)$. If G'_K is absolutely simple then π is an isomorphism, and by setting F = P we see that the conditions in 1 ensure that any such subgroup does not have appropriate real rank. If G' is not absolutely simple, then $G' \simeq R_{F'/F}(H')$ for some absolutely simple H'. Hence

$$G'_K = R_{K_1/K}(H'_{K_1}) \times \cdots \times R_{K_m/K}(H'_{K_m}).$$

Let π_i be the restriction of π to $R_{K_i/K}(H'_{K_1})$. Because the $R_{K_i/K}(H'_{K_i})$ are Ksimple, we must have that ker(π_i) is either finite or all of $R_{K_i/K}(H'_{K_i})$. Assume that some π_i is surjective. Then π_i is an isomorphism because SU₃(K', f) is simply connected. Arguing as in Lemma 6.2 gives $K_i = K$ and $H'_K \simeq$ SU₃(K', f), and the conditions listed in item (1) are exactly those required to ensure that G'does not have appropriate real rank.

Assume that π_i is not surjective for any *i*. Then the image of π_i cannot be trivial for all *i*, else the image of π would be trivial; thus there exists some *i* for which the image of π_i is SL₁(*D*) for some quaternion algebra *D* over *K*. This means that H'_{K_i} has type A_1 , so $\pi_i : R_{K_i/K}(SL_1(D_1)) \rightarrow SL_1(D)$ is a surjection with finite kernel. As a result, π_i must be an isomorphism and *G'* is again of the form $R_{P/F}(SL_1(D))$ for a quaternion algebra *D*. The conditions listed in item (2) are exactly what is required for such a subgroup not to have appropriate real rank.

ACKNOWLEDGMENTS. I would like to thank the referees for their suggestions, which allowed me to simplify the exposition considerably.

References

- [A] B. Allison, *Lie algebras of type D*₄ over number fields, Pacific J. Math. 156 (1992), 209–249.
- [B0] M. Borovoi, Galois cohomology of real reductive groups and real forms of simple Lie algebras, Funct. Anal. Appl. 22 (1988), 135–136.
- [B] N. Bourbaki, *Lie groups and Lie algebras*, Elem. Math. (Berlin), Springer-Verlag, Berlin, 2002.
- [CLM] V. Chernousov, L. Lifschitz, and D. W. Morris, Almost-minimal nonuniform lattices of higher rank, Michigan Math. J. 56 (2008), 453–478.
- [CMe] V. Chernousov and A. Merkurjev, *Private communications with Chernousov*, January 2009.
- [GGi] S. Garibaldi and P. Gille, Algebraic groups with few subgroups, J. London Math. Soc. (2) 80 (2009), 405–430.
 - [Gh] É. Ghys, Actions de réseaux sur le cercle, Invent. Math. 137 (1999), 199–231.
 - [H] J. E. Humphreys, *Linear algebraic groups*, Grad. Texts in Math., 21, Springer-Verlag, New York, 1975.
- [BOI] M. A. Knus, A. Merkurjev, M. Rost, and J.-P. Tingol, *The book of involutions*, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998.
- [La] T. Lam, Introduction to quadratic forms over fields, Grad. Stud. Math., 67, Amer. Math. Soc., Providence, RI, 2005.
- [LM] L. Lifschitz and D. W. Morris, Bounded generation and lattices that cannot act on the line, Pure Appl. Math. Q. 4 (2008), 99–126.

- [Ma] G. Margulis, *Discrete subgroups of semisimple Lie groups*, Springer-Verlag, Berlin, 1991.
- [PR] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., 139, Academic Press, Boston, 1994.
- [PrR] G. Prasad and A. Rapinchuk, Computation of the metaplectic kernel, Inst. Hautes Études Sci. Publ. Math. 84 (1996), 91–187.
 - [S] W. Scharlau, *Quadratic and Hermitian forms*, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985.
 - [Se] J.-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 1997.
 - [T] J. Tits, *Classification of algebraic semisimple groups*, Algebraic groups and discontinuous subgroups (Boulder, 1965), Proc. Sympos. Pure Math., 9, pp. 33–62, Amer. Math. Soc., Providence, RI, 1966.
 - [W] B. Weisfeiler, *Semi-simple algebraic groups which are split over a quadratic extension*, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 56–71.

Department of Mathematical Sciences University of Alberta Edmonton, Alberta T6G 2G1 Canada

aondrus@math.ualberta.ca

Appendix: Isotropy of Hermitian Forms over Finite Field Extensions

V. CHERNOUSOV & A. MERKURJEV

Let *A* be a central, finite-dimensional division algebra over a field *F*. For any element $a \in A$, we denote by Λ_a the set of all elements in *A* of the form [a, x] = ax - xa where $x \in A$. Clearly, Λ_a is an *F*-subspace in *A*.

LEMMA A.1. Let $n \in \mathbb{N}$ and $x \in A$. Then $[a^n, x] \in \Lambda_a$.

Proof. We have

$$[a^{n}, x] = a^{n}x - xa^{n}$$

= $a^{n}x - a^{n-1}xa + a^{n-1}xa - xa^{n}$
= $a(a^{n-1}x) - (a^{n-1}x)a + a^{n-1}(xa) - (xa)a^{n-1}$

By induction, $a^{n-1}(xa) - (xa)a^{n-1} \in \Lambda_a$ and so the result follows.

Let F[t] and A[t] be the polynomial rings over F and A, respectively.

LEMMA A.2. Let $\varphi(t) \in F[t]$ and $\psi(t) \in A[t]$. Then

$$(\varphi(t)\psi(t))(a) - \varphi(a)\psi(a) \in \Lambda_a.$$

Proof. We may assume without loss of generality that $\varphi(t) = bt^n$ and $\psi(t) = ct^m$, where $b \in F$ and $c \in A$. Then

$$\begin{aligned} (\varphi(t)\psi(t))(a) - \varphi(a)\psi(a) &= bca^{n+m} - ba^n ca^m \\ &= b((ca^m)a^n - a^n(ca^m)). \end{aligned}$$

Since $b \in F$ and $(ca^m)a^n - a^n(ca^m) \in \Lambda_a$ by Lemma A.1, we are done.

Let σ be an involution of the first kind on A, V a right A-module, and h a hermitian form on V.

LEMMA A.3. Assume that a is σ -symmetric; that is, $\sigma(a) = a$. Let $v(t), v'(t) \in V[t]$ and let $\varphi(t) = h(v(t), v'(t))$. Then

$$\varphi(a) - h(v(a), v'(a)) \in \Lambda_a.$$

Proof. We may assume that $v(t) = vt^n$ and $v'(t) = v't^m$, where $v, v' \in V$. Then $\varphi(t) = h(v, v')t^{n+m}$ and so, setting x = h(v, v'), by Lemma A.1 we have

$$\varphi(a) - h(v(a), v'(a)) = xa^{n+m} - a^n xa^m = [a^n, -xa^m] \in \Lambda_a$$

as required.

 \square

Let $L \subset A$ be a maximal separable subfield.

LEMMA A.4. Let $w_1, \ldots, w_n \in L$ be a basis of L over F and let $v_1, \ldots, v_n \in V$. If $\sum_{i=1}^{n} v_i \cdot b \cdot w_i = 0$ for all $b \in A$, then $v_i = 0$ for all $i = 1, \ldots, n$.

Proof. Clearly, we may assume without loss of generality that dim V = 1 and so we may identify V = A. Assume the contrary. Then the condition $\sum_{i=1}^{n} v_i \cdot b \cdot w_i = 0$ also holds for all $b \in A_E = A \otimes_F E$, where E/F is an arbitrary field extension. Replacing *F* by an algebraic closure of *F*, we may assume that *A* is split (i.e., $A = M_n(F)$). Since *L* is a split étale subalgebra in *A* up to conjugation, we may also assume that *L* consists of all diagonal matrices and that

$$w_{1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, w_{n} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Then the condition $\sum_{i=1}^{n} v_i \cdot b \cdot w_i = 0$ is equivalent to saying that, for all i = 1, ..., n, the *i*th column of the matrix $v_i \cdot b$ is zero for all $b \in M_n(F)$. This can happen only if $v_i = 0$.

THEOREM A.1. Let A be a central, finite-dimensional division algebra over a field F, σ an involution of the first kind on A, V a right A-module, h a hermitian form on V, and $L \subset A$ a maximal separable subfield. If h is isotropic over L, then there is a 1-dimensional A-subspace $U \subset V$ such that $h|_U$ is isotropic over L.

Proof. By the theorem on extensions of involutions, there is an involution of the first kind σ' on A that is the identity on L. Replacing σ by σ' , we may assume that every element in L is σ -symmetric. Choose a generator a of L over F and let $f(t) \in F[t]$ be its minimal polynomial. The element $\xi = 1 \otimes a$ is in the center of $A_L = A \otimes_F L$. Since h is isotropic over L, there is a polynomial $v(t) \in V[t]$ such that $v(\xi) \neq 0$ and $h(v(\xi), v(\xi)) = 0$. Then h(v(t), v(t)) is divisible by f(t); that is,

$$h(v(t), v(t)) = f(t) \cdot g(t) \tag{A.1}$$

for some $g(t) \in A[t]$. Note that we can replace v(t) with $v(t) \cdot b$ for any nonzero $b \in A$. Let $v(t) = v_0 + v_1t + \cdots + v_{n-1}t^{n-1}$, where $v_i \in V$ and $n = \deg A$. By Lemma A.4, there exists a $b \in A$ such that $\sum v_i \cdot b \cdot a^i \neq 0$. Replacing v(t) with $v(t) \cdot b$, we may assume that $v(a) \neq 0$ in V. We shall now show that the 1-dimensional subspace U in V generated by v(a) has the required property. Consider the polynomial

$$g(t) = \frac{f(t)}{t-a} \in L[t] \subset A[t].$$

Clearly, $g(\xi) \cdot (\xi - a) = 0$ and $v(a) \cdot g(\xi)$ is a nonzero vector in $V_L = V \otimes_F L$. Since $g(\xi) \cdot \xi = g(\xi) \cdot a$, in A_L we have

$$g(\xi)[a,x] = g(\xi)ax - g(\xi)xa = g(\xi)\xi x - g(\xi)xa = g(\xi)x(\xi - a).$$
(A.2)

By Lemmas A.2 and A.3 applied to $\varphi(t) = f(t)$, we have $\psi(t) = g(t)$ and v'(t) = v(t). Now taking (A.1) into consideration, we find that there is an $x \in A$ such that

$$h(v(a), v(a)) = [a, x].$$

Finally, taking into account (A.2) and that $g(\xi)$ is σ -symmetric, we obtain

$$h(v(a) \cdot g(\xi), v(a) \cdot g(\xi)) = g(\xi) \cdot h(v(a), v(a)) \cdot g(\xi)$$
$$= (g(\xi) \cdot [a, x]) \cdot g(\xi)$$
$$= g(\xi) \cdot x \cdot (\xi - a) \cdot g(\xi)$$
$$= 0.$$

Thus, the 1-dimensional subspace $U = \langle v(a) \rangle$ in V is isotropic over L.

V. Chernousov Department of Mathematical and Statistical Sciences University of Alberta Edmunton, Alberta T6G 2G1 Canada A. Merkurjev Department of Mathematics University of California at Los Angeles Los Angeles, CA 90095 merkurev@math.ucla.edu

chernous@math.ualberta.ca

397