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Birational Invariants Defined
by Lawson Homology

Wenchuan Hu

1. Introduction

In this paper, all varieties are defined over C. Let X be an n-dimensional projec-
tive variety. The Lawson homology LpHk(X) of p-cycles is defined by

LpHk(X) := πk−2p(Zp(X)) for k ≥ 2p ≥ 0,

where Zp(X) is provided with a natural topology (see [F1; L1; Li1] for the quasi-
projective case). For general background, the reader is referred to Lawson’s survey
paper [L2].

In [FM], Friedlander and Mazur showed that there are natural transformations,
called cycle class maps,

�p,k : LpHk(X) → Hk(X).

Definition 1.

LpHk(X)hom := ker{�p,k : LpHk(X) → Hk(X)};
TpHk(X) := Image{�p,k : LpHk(X) → Hk(X)};

TpHk(X, Q) := TpHk(X) ⊗ Q.

The Griffiths group of codimension q-cycles is defined to

Griff q(X) := Z q(X)hom/Z q(X)alg

It was proved by Friedlander [F1] that, for any smooth projective variety X,
LpH2p(X) ∼= Zp(X)/Zp(X)alg. Therefore

LpH2p(X)hom
∼= Griffp(X),

where Griffp(X) := Griff n−p(X).

It was shown in [FM, Sec. 7] that the subspaces TpHk(X, Q) form a decreasing
filtration,

· · · ⊆ TpHk(X, Q) ⊆ Tp−1Hk(X, Q) ⊆ · · · ⊆ T0Hk(X, Q) = Hk(X, Q),

and that TpHk(X, Q) vanishes if 2p > k.

Received August 10, 2009. Revision received July 9, 2010.
This material is based upon work supported by the NSF under agreement no. DMS-0635607.

331



332 Wenchuan Hu

Definition 2 [FM]. Denote by GpHk(X, Q) ⊆ Hk(X, Q) the Q-vector sub-
space of Hk(X, Q) generated by the images of mappings Hk(Y, Q) → Hk(X, Q)

induced from all morphisms Y → X of varieties of dimension ≤ k − p.

The subspaces GpHk(X, Q) also form a decreasing filtration (called geometric
filtration):

· · · ⊆ GpHk(X, Q) ⊆ Gp−1Hk(X, Q) ⊆ · · · ⊆ G0Hk(X, Q) ⊆ Hk(X, Q).

If X is smooth, then the weak Lefschetz theorem implies that

G0Hk(X, Q) = Hk(X, Q).

Since Hk(Y, Q) vanishes for k greater than twice the dimension of Y, it follows
that GpHk(X, Q) vanishes if 2p > k.

The first main result in this paper is as follows.

Theorem 1.1. If X is a smooth, n-dimensional projective variety, then
L1Hk(X)hom and Ln−2Hk(X)hom are smooth, birational invariants for X. More
precisely, if ϕ : X → X ′ is a birational map between smooth projective mani-
folds X and X ′, then ϕ induces isomorphisms L1Hk(X)hom

∼= L1Hk(X
′)hom for

k ≥ 2 and Ln−2Hk(X)hom
∼= Ln−2Hk(X

′)hom for k ≥ 2(n − 2). In particular,
L1Hk(X)hom = 0 and Ln−2Hk(X)hom = 0 for any smooth rational variety.

Corollary 1.2. Let X be a smooth rational projective variety with dim(X) ≤ 4;
then �p,k : LpHk(X) → Hk(X) is injective for all k ≥ 2p ≥ 0.

Remark 1.3. Corollary 1.2 has been proved before in dimension ≤ 2 by Fried-
lander [F1]. In dimensions 3 and 4, Voineagu [V] has independently proved this
result by a different method.

Remark 1.4. In general, for 2 ≤ p ≤ n − 3, LpHk(X)hom is not a birational in-
variant for the smooth projective variety X. This follows from the blowup formula
in Lawson homology (see Corollary 1.2 and Remark 1.3).

Remark 1.5. If p = 0, n − 1, n, then LpHk(X)hom = 0 for all k ≥ 2p. In these
cases, the statement in the theorem is trivial. The case for p = 0 follows from the
Dold-Thom theorem [DT]. The case for p = n −1 is due to Friedlander [F1], and
the case for p = n is from the definition. In particular, these invariants are trivial
for smooth projective varieties with dimension ≤ 2.

Our second main result is the following theorem.

Theorem 1.6 (Lawson homology for a blowup). Let X be smooth projective
manifold and let Y ⊂ X be a smooth subvariety of codimension r. Let σ : X̃Y → X

be the blowup of X along Y, let π : D = σ−1(Y ) → Y be the natural map, and let
i : D = σ−1(Y ) → X̃Y be the exceptional divisor of the blowup. Then, for each p

and k with k ≥ 2p ≥ 0, we have the following isomorphism:

Ip,k :

{ ⊕
1≤j≤r−1

Lp−jHk−2j(Y )

}
⊕ LpHk(X) ∼= LpHk(X̃Y).
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As applications, we have two corollaries.

Corollary1.7. For eachn ≥ 5, there exists a rational manifoldX of dim(X) = n

such that
dimQ{Griffp(X) ⊗ Q} = ∞, 2 ≤ p ≤ n − 3.

Corollary 1.8. For any integer p > 1 and k ≥ 0, there exists rational pro-
jective manifold X such that LpHk+2p(X) ⊗ Q is an infinite-dimensional vector
space over Q.

The following results have been proved by Friedlander and Mazur.

Proposition 1.9 [FM]. Let X be any projective variety.

(i) For nonnegative integers p and k, TpHk(X, Q) ⊆ GpHk(X, Q).

(ii) If k = 2p, then TpH2p(X, Q) = GpH2p(X, Q).

Question 1.10 [FM; L2]. Does one have equality in Proposition 1.9 when X is
a smooth projective variety?

Friedlander [F2] proved the following result.

Proposition 1.11 [F2]. Let X be a smooth projective variety of dimension n.

Assume that the Grothendieck Standard Conjecture B [Gro] is valid for a resolu-
tion of singularities of each irreducible subvariety of Y ⊂ X of dimension k − p.

Then
TpHk(X, Q) = GpHk(X, Q).

Remark 1.12 [Lew, Sec. 15.32]. The Grothendieck Standard Conjecture B is
known to hold for a smooth projective variety X in the following cases:

(i) dim X ≤ 2;
(ii) flag manifolds X;

(iii) smooth complete intersections X;
(iv) abelian varieties [Lie].

Remark1.13. The Friedlander–Mazur conjecture remains open for general three-
folds. The reason is that, even though Friedlander’s result (Proposition1.11) and the
Grothendieck Standard Conjecture B both hold for 2-dimensional smooth varieties,
they do not give information about TpHk(X, Q) = GpHk(X, Q) for k − p ≥ 3.

In particular, we don’t know if T1H4(X, Q) = G1H4(X, Q) (= H4(X, Q)) for X

with dim X = 3.

The methods employed in the proof of Theorem 1.1 can be used with the blowup
formula to prove the following results.

Proposition 1.14. Let X be a smooth projective variety of dimension n. If
TpHk(X, Q) = GpHk(X, Q) holds for X with p = 1 (resp. p = n − 2) and
k arbitrary, then TpHk(X

′, Q) = GpHk(X
′, Q) holds also for any smooth projec-

tive variety X ′ that is birationally equivalent to X with p = 1 (resp. p = n − 2).
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In particular, for a smooth projective variety with dim(X) ≤ 4, the assertion that
TpHk(X, Q) = GpHk(X, Q) holds for all k ≥ 2p ≥ 0 is a birational invariant
statement.

Proposition 1.15. For any smooth projective variety X,

TpH2p+1(X, Q) = GpH2p+1(X, Q).

The next two corollaries follow from this proposition.

Corollary 1.16. Let X be a smooth, n-dimensional projective variety with
H 2,0(X) = 0. Then Tn−2Hk(X, Q) = Gn−2Hk(X, Q) for k ≥ 2n − 4. In par-
ticular, this equality holds for X a complete intersection of dimension ≥ 2, for
any product of a smooth projective curve with a complete intersection of dimen-
sion ≥ 2, et cetera.

Remark 1.17. The condition H 2,0(X) = 0 in Corollary 1.16 is used only to prove

Tn−2H2n−2(X, Q) = Gn−2H2n−2(X, Q).

In the following corollary we use the Künneth formula in homology with rational
coefficient.

Corollary1.18. Let X be the product of a smooth projective curve and a smooth,
simply connected projective variety Y with dim Y = n−1. Then Tn−2Hk(X, Q) =
Gn−2Hk(X, Q) for any k ≥ 2(n − 2) ≥ 0. In particular, the Friedlander–Mazur
conjecture holds for the product of a smooth projective curve and a smooth simply
connected projective surface.

Conjecture 1.19 (Suslin conjecture for Lawson homology with coefficient A;
[FHW, Sec. 7]). For any abelian group A and smooth quasi-projective variety
X of dimension n, the map LpHk(X, A) → H BM

k (X, A) is an isomorphism for
k ≥ n + p and a monomorphism for k = n + p − 1.

As an application of the method used in the proof of Proposition 1.15, we have the
following result.

Theorem 1.20. If the Suslin conjecture for Lawson homology with coefficient Z

holds, then the topological filtration is the same as the geometric filtration for a
smooth projective variety.

Remark 1.21. This result was given (without proof ) in Walker’s paper [Wa,
Sec. 2].

The main tools used to prove the main result are: the long exact localization se-
quence given by Lima-Filho in [Li1], the explicit formula for the Lawson homol-
ogy of codimension-1 cycles on a smooth projective manifold given by Friedlander
in [F1], and the Hironaka desingularization theorem [Hi]. Using the blowup for-
mula for Lawson homology and diagram chases, we obtain birational invariant
statements for the topological and geometric filtrations.
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2. Some Fundamental Materials in Lawson Homology

First recall that, for a morphism f : U → V between projective varieties, there
exist induced homomorphisms

f∗ : LpHk(U) → LpHk(V )

for all k ≥ 2p ≥ 0; furthermore, if g : V → W is another morphism between
projective varieties, then

(g � f )∗ = g∗ � f∗.

It has also been shown by Peters [P] that, if U and V are smooth and pro-
jective, then there are Gysin “wrong way” homomorphisms f ∗ : LpHk(V ) →
Lp−cHk−2c(U), where c = dim(V ) − dim(U). If g : V → W is another mor-
phism between smooth projective varieties, then

(g � f )∗ = f ∗ � g∗.

Recall also that there is a long exact sequence (cf. [FGa; Li1])

· · · → LpHk(U − V ) → LpHk(U) → LpHk(V ) → LpHk−1(U − V ) → · · · ,
where U is quasi-projective and U − V is any algebraic closed subset in U.

Let X be a smooth projective variety and let i0 : Y ↪→ X be a smooth sub-
variety of codimension r ≥ 2. Let σ : X̃Y → X be the blowup of X along Y, let
π : D = σ−1(Y ) → Y be the natural map, and let i : D = σ−1(Y ) ↪→ X̃Y be the
exceptional divisor of the blowup. Set U := X − Y ∼= X̃Y − D. Denote by j0 the
inclusion U ⊂ X and by j the inclusion U ⊂ X̃Y . Note that π : D = σ−1(Y ) → Y

makes D into a projective bundle of rank r −1, given precisely by D = P(NY/X),
and we have (cf. [Vo, p. 271])

OX̃Y
(D)|D = OP(NY/X)(−1).

Denote by h the class of OP(NY/X)(−1) in Pic(D). We have h = −D|D and
−h = i∗i∗ : LqHm(D) → Lq−1Hm−2(D) for 0 ≤ 2q ≤ m [FGa, Thm. 2.4; P,
Lemma 11]. The last equality can be equivalently regarded as a Lefschetz operator

−h = i∗i∗ : LqHm(D) → Lq−1Hm−2(D), 0 ≤ 2q ≤ m. (1)

The proof of the main result is based on the following lemma.

Lemma 2.1. For each p ≥ 0, we have the following commutative diagram:

· · · �� LpHk(D)
i∗ ��

π∗
��

LpHk(X̃Y)
j∗

��

σ∗
��

LpHk(U)
δ∗ ��

∼=
��

LpHk−1(D) ��

π∗
��

· · ·

· · · �� LpHk(Y )
(i0 )∗

�� LpHk(X)
j∗

0 �� LpHk(U)
(δ0 )∗ �� LpHk−1(Y ) �� · · · .

Proof. The lemma follows from the corresponding commutative diagram of fi-
bration sequences of p-cycles. More precisely, to show the first square, we begin
from the following commutative diagram:
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D ↪
i ��

π

��

X̃Y

σ

��

Y ↪
i0 �� X .

From this, we obtain the corresponding commutative diagram of p-cycles,

Zp(D) ↪
i∗ ��

π∗
��

Zp(X̃Y)

σ∗
��

Zp(Y ) ↪
(i0 )∗ �� Zp(X).

Since Y is a smooth projective variety, it follows that X̃Y and D are also smooth
projective varieties; hence we have the following commutative diagram:

Zp(X̃Y) ��

σ∗
��

Zp(X̃Y)/Zp(D)

∼=
��

Zp(X) �� Zp(X)/Zp(Y ).

We thus obtain the following commutative diagram of the fibration sequences of
p-cycles:

Zp(D) ↪
i∗ ��

π∗
��

Zp(X̃Y) ��

σ∗
��

Zp(X̃Y)/Zp(D)

∼=
��

Zp(Y ) ↪
(i0 )∗ �� Zp(X) �� Zp(X)/Zp(Y );

that the rows are fibration sequences is due to Lima-Filho [Li1].
By taking the homotopy groups of these fibration sequences, we get the long

exact sequences of commutative diagram given in the lemma.

Proposition 2.2. If p = 0 then we have the commutative diagram

· · · �� Hk(D)
i∗ ��

π∗
��

Hk(X̃Y)
j∗

��

σ∗
��

H BM
k (U)

δ∗ ��

∼=
��

Hk−1(D) ��

π∗
��

· · ·

· · · �� Hk(Y )
(i0 )∗

�� Hk(X)
j∗

0 �� H BM
k (U)

(δ0 )∗ �� Hk−1(Y ) �� · · · .

Moreover, if x ∈ Hk(D) maps to zero under π∗ and i∗ , then x = 0 ∈ Hk(D).

Proof. The first statement follows directly from Lemma 2.1 (with p = 0) and the
Dold–Thom theorem. For the second statement, assume i∗(x) = 0 and π∗(x) =
0. Then there exists an element y ∈ H BM

k+1(U) such that the image of y under the
boundary map (δ0)∗ : H BM

k+1(U) → Hk(Y ) is 0 by the given condition. Hence there
exists an element z ∈ Hk+1(X) such that (j0)

∗(z) = y. Now the surjectivity of
the map σ∗ : Hk+1(X̃Y) → Hk+1(X) implies that there is an element z̃ ∈ Hk+1(X̃Y)

such that j ∗(z̃) = y. Therefore, x = 0 ∈ Hk(D).
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Corollary 2.3. If p = n − 2 then we have the commutative diagram

· · · �� Ln−2Hk(D)
i∗ ��

π∗
��

Ln−2Hk(X̃Y)
j∗

��

σ∗
��

Ln−2Hk(U)
δ∗ ��

∼=
��

Ln−2Hk−1(D) ��

π∗
��

· · ·

· · · �� Ln−2Hk(Y )
(i0 )∗

�� Ln−2Hk(X)
j∗

0 �� Ln−2Hk(U)
(δ0 )∗ �� Ln−2Hk−1(Y ) �� · · · .

Lemma 2.4. For each p, we have the following commutative diagram:

· · · �� LpHk(D)
i∗ ��

�p,k

��

LpHk(X̃Y)
j∗

��

�p,k

��

LpHk(U)
δ∗ ��

�p,k

��

LpHk−1(D) ��

�p,k−1

��

· · ·

· · · �� Hk(D)
i∗ �� Hk(X̃Y)

j∗
�� H BM

k (U)
δ∗ �� Hk−1(D) �� · · · .

In particular, this statement holds for p = 1, n − 2.

Proof. See [Li1] and also [FM].

Lemma 2.5. For each p, we have the following commutative diagram:

· · · �� LpHk(Y )
(i0 )∗ ��

�p,k

��

LpHk(X)
j∗

��

�p,k

��

LpHk(U)
(δ0 )∗ ��

�p,k

��

LpHk−1(Y ) ��

�p,k−1

��

· · ·

· · · �� Hk(Y )
(i0 )∗ �� Hk(X)

j∗
�� H BM

k (U)
(δ0 )∗ �� Hk−1(Y ) �� · · · .

In particular, it is true for p = 1, n − 2.

Proof. See [Li1] and also [FM].

Remark 2.6. The smoothness of X and Y is not necessary in Lemma 2.5.

Remark 2.7. All the preceding commutative diagrams of long exact sequences
remain commutative and exact when tensored with Q. We will use these lemmas
and corollaries with rational coefficients.

3. Lawson Homology for Blowups

As an application of Lemma 2.1, we give an explicit formula for a blowup in Law-
son homology. Since it may have some independent interest, we devote a separate
section to it. First, we want to revise the projective bundle theorem given by Fried-
lander and Gabber [FGa, Prop. 2.5]. It is convenient to extend the definition of
Lawson homology by setting

LpHk(X) = L0Hk(X) if p < 0.

Now we have the following “revised” projective bundle theorem.

Proposition 3.1. Let E be an algebraic vector bundle of rank r over a smooth
projective variety Y. Then, for each p ≥ 0, we have
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LpHk(P(E)) ∼=
r−1⊕
j=0

Lp−jHk−2j(Y ),

where P(E) is the projectivization of the vector bundle E.

Remark 3.2. The difference between this and the projective bundle theorem of
[FGa] is that here we place no restriction on p.

Proof of Proposition 3.1. For p ≥ r −1, this is exactly the projective bundle theo-
rem given in [FGa]. If p < r −1, then we can use the same method of [FGa] (i.e.,
the localization sequence and the naturality of �) to reduce to the case in which
E is trivial. From

Z 0(P
r−1 × Y ) → Z 0(P

r × Y ) → Z 0(C
r × Y )

we obtain the long exact localization sequence given at the beginning of Section 2:

· · · → L0Hk(P
r−1 × Y ) → L0Hk(P

r × Y )

→ L0Hk(C
r × Y ) → L0Hk−1(P

r−1 × Y ) → · · · .

From this, together with the Künneth formula for P r × Y, we have the following
isomorphism:

Hk−2r (Y ) ∼= L0Hk(C
r × Y ) ∼= H BM

k (Cr × Y ). (∗)

Note that
Hk−2r (Y ) ∼= Lp−rHk−2r (Y ) if p ≤ r. (∗∗)

All the remaining arguments are the same as those in [FGa, Prop. 2.5], as we re-
view next.

We want to use induction on r. For r − 1 = p, the conclusion holds. From the
commutative diagram of abelian groups of cycles, we have{

p⊕
j=0

Zp−j (X)

}
⊕

{
r−1⊕

j=p+1

Z 0(X × Cj−p)

}
��

��

{
p⊕

j=0

Zp−j (X)

}
⊕

{
r⊕

j=p+1

Z 0(X × Cj−p)

}

��

Zp(X × P r−1) �� Zp(X × P r ).

We obtain the commutative diagram of fibration sequences:{
p⊕

j=0

Zp−j (X)

}
⊕

{
r−1⊕

j=p+1

Zp−j (X)

}
��

��

{
p⊕

j=0

Zp−j (X)

}
⊕

{
r⊕

j=p+1

Zp−j (X)

}

��

Zp(X × P r−1) �� Zp(X × P r )

�� Z 0(X × Cr−p)

��
�� Zp(X × Cr ),

where Zp−j(X) := Z 0(X × Cj−p) for p − j < 0.
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The first vertical arrow is a homotopy equivalence by induction; the last one is
a homotopy equivalence by complex suspension theorem [L1]. Hence, by the five
lemma, we obtain the homotopy equivalence of the middle vertical arrow.

The proof is completed by combining this with statements (∗) and (∗∗).

Remark 3.3. The isomorphism

ψ :
r−1⊕
j=0

Lp−jHk−2j(Y )
∼=−→ LpHk(P(E))

in Proposition 3.1 is given explicitly by

ψ(u0, u1, . . . , ur−1) =
r−1∑
j=0

hjπ∗uj ,

where h is the Lefschetz hyperplane operator

h : LqHm(P(E)) → Lq−1Hm−2(P(E))

defined in (1). For p ≥ r − 1, this explicit formula has been proved in [FGa,
Prop. 2.5]. In the remaining cases, h is the Lefschetz hyperplane operator
h : Hm(P(E)) → Hm−2(P(E)) defined in (1).

In the notation of Section 2, we have the following result.

Theorem 3.4 (Lawson homology for a blowup). Let X be smooth projective
manifold and Y ⊂ X a smooth subvariety of codimension r. Let σ : X̃Y → X be
the blowup of X along Y, let π : D = σ−1(Y ) → Y be the natural map, and let
i : D = σ−1(Y ) → X̃Y be the exceptional divisor of the blowup. Then, for each p

and k with k ≥ 2p ≥ 0, we have the isomorphism

Ip,k :

{ ⊕
1≤j≤r−1

Lp−jHk−2j(Y )

}
⊕ LpHk(X)

∼=−→ LpHk(X̃Y)

given by

Ip,k(u1, . . . , ur−1, u) =
r−1∑
j=1

i∗hjπ∗uj + σ ∗u.

Proof. We use certain ideas of the proof of Chow groups for blowups. Let U :=
X̃Y −D = X−Y. By Lemma 2.1and our definitions of the maps i, π, and σ, we have
the following commutative diagram of the long exact localization sequences:

· · · �� LpHk(D)
i∗ ��

π∗
��

LpHk(X̃Y)
j∗

��

σ∗
��

LpHk(U)
δ∗ ��

∼=
��

LpHk−1(D) ��

π∗
��

· · ·

· · · �� LpHk(Y )
(i0 )∗

�� LpHk(X)
j∗

0 �� LpHk(U)
(δ0 )∗ �� LpHk−1(Y ) �� · · · .

(2)

From this and the surjectivity of j ∗, we have

LpH2p(X̃Y) = σ ∗LpH2p(X) + i∗LpH2p(D).
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By the “revised” projective bundle theorem (Proposition 3.1), for any p ≥ 0
there is an isomorphism

LpHk(D) ∼=
r−1⊕
j=0

hjπ∗Lp−jHk−2j(Y ), 0 ≤ 2p ≤ k.

Hence we see that

LpH2p(X̃Y) = σ ∗LpH2p(X) +
r−1∑
j=0

i∗hjπ∗Lp−jH2p−2j(Y ). (3)

But clearly, by Lemma 2.1 and the projective bundle theorem, if u ∈ LpHk(Y )

then

σ∗(i∗hr−1π∗(u)) = (i0)∗(u).

Since σ is a birational morphism, it has degree 1. As a direct corollary of the
projection formula (cf. [P, Lemma 11(c)]), we have σ∗(σ ∗a) = a for any a ∈
LpHk(X). Now

σ∗(σ ∗((i0)∗u)) = (i0)∗u, u ∈ LpHk(Y ).

Thus we obtain the relations

i∗hr−1π∗u − σ ∗((i0)∗u) =: v ∈ ker σ∗ , u ∈ LpHk(Y ).

Since j ∗ = (j0)
∗σ∗ in (2), we get j ∗(v) = 0. From the exactness of the upper

row in (2), we get

v ∈
r−1∑
j=1

i∗hjLp−jHk−2j(Y ). (4)

The equality (3) and the relation (4) together imply immediately that the map Ip,2p

is surjective for the case k = 2p.

To prove the injectivity for the case that k = 2p, we consider

(u1, u2, . . . , ur−1, u) ∈ ker Ip,2p.

Applying σ∗ , we find that u = 0. Note that i∗i∗ = −h. Applying i∗ to the equality

r−1∑
j=1

i∗hjπ∗uj = 0,

we get
r−1∑
j=1

hj+1π∗uj = 0 ∈ Lp−1Hk−2(D).
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The isomorphism in Proposition 3.1 implies that uj = 0 for 1 ≤ j ≤ r − 1. This
completes the proof for the case k = 2p.

From this and (2), we have

· · · �� LpH2p+1(D)
i∗ ��

π∗
��

LpH2p+1(X̃Y)
j∗

��

σ∗
��

LpH2p+1(U)
δ∗ ��

∼=
��

0

· · · �� LpH2p+1(Y )
(i0 )∗

�� LpH2p+1(X)
j∗

0 �� LpH2p+1(U)
(δ0 )∗ �� 0.

(5)

Now the situation for k = 2p +1 is the same as that in the case k = 2p. From (5)
and the “revised” projective bundle theorem, we have

LpH2p+1(X̃Y) = σ ∗LpH2p+1(X) +
r−1∑
j=0

i∗hjπ∗Lp−jH2p+1−2j(Y ). (6)

From (4) and (6) we obtain the surjectivity of Ip,2p+1 for the case that k = 2p + 1.
To prove the injectivity, consider (u1, u2, . . . , ur−1, u) ∈ ker Ip,2p+1. Applying

σ∗ , we find that u = 0. Note that i∗i∗ = −h. By applying i∗ to the equality

r−1∑
j=1

i∗hjπ∗uj = 0,

we get
r−1∑
j=1

hj+1π∗uj = 0 ∈ Lp−1Hk−2(D).

The isomorphism in Proposition 3.1 again implies that uj = 0 for 1 ≤ j ≤ r − 1.
This completes the proof for the case k = 2p + 1.

Now, for k ≥ 2p + 2, we reach the same situation as in the case that k = 2p or
k = 2p +1. More precisely, we give the complete argument by using mathemati-
cal induction.

Suppose that we have

· · · �� LpH2p+m(D)
i∗ ��

π∗
��

LpH2p+m(X̃Y)
j∗

��

σ∗
��

LpH2p+m(U)
δ∗ ��

∼=
��

0

· · · �� LpH2p+m(Y )
(i0 )∗

�� LpH2p+m(X)
j∗

0 �� LpH2p+m(U)
(δ0 )∗ �� 0

(7)

for some integer m ≥ 0. We want to prove that Ip,2p+m is an isomorphism and

· · · �� LpH2p+m+1(D)
i∗ ��

π∗
��

LpH2p+m+1(X̃Y)
j∗

��

σ∗
��

LpH2p+m+1(U)
δ∗ ��

∼=
��

0

· · · �� LpH2p+m+1(Y )
(i0 )∗

�� LpH2p+m+1(X)
j∗

0 �� LpH2p+m+1(U)
(δ0 )∗ �� 0.

(8)

Once this step is done, the proof of Theorem 3.4 will be complete.
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From the assumption (7), we have

LpH2p+m(X̃Y) = σ ∗LpH2p+m(X) +
r−1∑
j=0

i∗hjπ∗Lp−jH2p+m−2j(Y ). (9)

From (4) for k = 2p + m and (9), we obtain the surjectivity of Ip,2p+m for the
case that k = 2p + m.

To prove the injectivity, consider (u1, u2, . . . , ur−1, u) ∈ ker Ip,2p+m. Applying
σ∗ , we find that u = 0. Note that i∗i∗ = −h. By applying i∗ to the equality

r−1∑
j=1

i∗hjπ∗uj = 0,

we get
r−1∑
j=1

hj+1π∗uj = 0 ∈ Lp−1Hk−2(D).

The isomorphism in Proposition 3.1 once again implies that uj = 0 for 1 ≤ j ≤
r − 1. This completes the proof for the case k = 2p + m. Now (7) automatically
reduces to (8), and this completes the proof of the theorem.

As an application, this result gives many examples of smooth projective manifolds
(even rational ones) for which the Griffiths group of p-cycles is infinitely gener-
ated (even modulo torsion) for p ≥ 2. Recall that the Griffiths group Griffp(X) is
defined as the p-cycles homologically equivalent to zero modulo the subgroup of
p-cycles algebraically equivalent to zero.

Example. Recall from [F1] that Griff2(X̃Y) ∼= L2H4(X̃Y)hom. For X = P 5, Y ⊂
P 4 the general hypersurface of degree 5, we obtain an infinite-dimensional Q-
vector space Griff2(X̃Y) ⊗ Q from the fact dimQ(Griff1(Y ) ⊗ Q) = ∞ (cf. [C]).
This space gives the example mentioned in Remark 1.1.

From the blowup formula for Lawson homology and Clemens’s result [C], we
have our next corollary. This result is probably known to experts in this field, but
I cannot find an explicit statement in the literature.

Corollary 3.5. For each n ≥ 5, there exists a rational manifold X with
dim(X) = n such that

dimQ{Griffp(X) ⊗ Q} = ∞, 2 ≤ p ≤ n − 3.

Proof. Note that Griffp(X) ∼= LpH2p(X)hom for any smooth projective variety X.

Now the remaining argument follows directly from Theorem 3.4 and the result of
Clemens [C].

More generally, from the blowup formula for Lawson homology and a result given
in [Hu], we have the following.
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Corollary 3.6. For any integers p > 1 and k ≥ 0, there exists a rational pro-
jective manifold X such that LpHk+2p(X) ⊗ Q is an infinite-dimensional vector
space over Q.

Proof. This follows from the blowup formula for Lawson homology and [Hu,
Thm. 1.4]. For example, if p = 2 and k = 1, we can find a rational projective
manifold X with dim(X) = 6 such that L2H5(X) ⊗ Q is an infinite-dimensional
Q-vector space.

4. Proof of the First Main Theorem

Now we begin the proof of our main results. We first address a special case that
involves only one blowup along a smooth submanifold of codimension ≥ 2. Then
we use Proposition 4.4 to obtain general cases.

The following result of Friedlander will be used several times in the proof of
Theorem 1.1.

Theorem 4.1 [F1]. Let X be any smooth projective variety of dimension n. Then
we have the following isomorphisms:

Ln−1H2n(X) ∼= Z ,

Ln−1H2n−1(X) ∼= H2n−1(X, Z),

Ln−1H2n−2(X) ∼= Hn−1,n−1(X, Z) = NS(X),

Ln−1Hk(X) = 0 for k > 2n.

Here NS(X) is the Néron–Severi group of X.

Remark 4.2. In what follows we adopt the notational convention Hk(X) =
Hk(X, Z).

Now we give a proof of our main Theorem1.1. It is reproduced here for the reader’s
convenience.

Theorem 4.3 (Theorem 1.1). If X is a smooth, n-dimensional projective vari-
ety, then L1Hk(X)hom and Ln−2Hk(X)hom are smooth, birational invariants for
X. More precisely, if ϕ : X → X ′ is a birational map between smooth projective
manifolds X and X ′, then ϕ induces isomorphisms L1Hk(X)hom

∼= L1Hk(X
′)hom

for k ≥ 2 and Ln−2Hk(X)hom
∼= Ln−2Hk(X

′)hom for k ≥ 2(n − 2). In particu-
lar, L1Hk(X)hom = 0 and Ln−2Hk(X)hom = 0 for any smooth rational variety.

Proof. There are two parts of the proof of the main theorem: p = 1and p = n − 2.

Part I:p = 1.

Case A: σ∗ : L1Hk(X̃Y)hom → L1Hk(X)hom is injective. We will use the com-
mutative diagrams in Lemmas 2.1 and 2.5.

Let a ∈ L1Hk(X̃Y)hom be such that σ∗(a) = 0. By Lemma 2.1, we have
j ∗(a) = 0 ∈ L1Hk(U) and hence there exists an element b ∈ L1Hk(D) such
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that i∗(b) = a. Set b̃ = π∗(b). By the commutative diagram in Lemma 2.1 again,
we have (i0)∗(b̃) = 0 ∈ L1Hk(X). By the exactness of the rows in the commu-
tative diagram, there exists an element c̃ ∈ L1Hk+1(U) such that the image of c̃

under the boundary map (δ0)∗ : L1Hk+1(U) → L1Hk(Y ) is b̃. Note that δ∗ is the
other boundary map δ∗ : L1Hk+1(U) → L1Hk(D). Therefore, π∗(b − δ∗(c̃)) =
0 ∈ L1Hk(Y ) and j∗(b − δ∗(c̃)) = a. Now by the “revised” projective bundle
theorem and the Dold–Thom theorem [DT], we have

L1Hk(D) ∼= L1Hk(Y ) ⊕ L0Hk−2(Y ) ⊕ Hk−4(Y ) ⊕ · · ·
∼= L1Hk(Y ) ⊕ Hk−2(Y ) ⊕ Hk−4(Y ) ⊕ · · · .

We know that b − δ∗(c̃) ∈ Hk−2(Y ) ⊕ Hk−4(Y ) ⊕ · · · . By the explicit formula
of the cohomology (and homology) for a blowup [GHa], it follows that each map
Hk−2∗(Y ) → Hk(X̃Y) is injective. Hence a must be zero in L1Hk(X̃Y). This is
the injectivity of σ∗.

Case B: σ∗ : L1Hk(X̃Y)hom → L1Hk(X)hom is surjective. Let a ∈L1Hk(X)hom.

From the surjectivity of the map σ∗ : L1Hk(X̃Y) → L1Hk(X), we know there exists
an element ã ∈ L1Hk(X̃Y) such that σ∗(ã) = a. Set b̃ = �1,k(ã). By the commu-
tative diagram in Lemma 2.1 we have j ∗(b̃) = 0 ∈ H BM

k (U). From the exactness
of the rows of the diagram in Lemma 2.1, we have an element c̃ ∈ Hk(D) such
that i∗(c̃) = b̃. Set c = π∗(c̃). Then (i0)∗(c) = 0 by the assumption on a and
the commutativity of the diagram in Lemma 2.1. Using the exactness of rows in
Lemma 2.1 again, we can find an element d ∈ H BM

k+1(U) such that (δ0)∗(d ) = c.

Hence i∗(c̃ − δ∗(d )) = b̃ ∈ Hk(X̃Y) and π∗(c̃ − δ∗(d )) = 0. Now we need to use
the formula L1Hk(D) ∼= L1Hk(Y )⊕Hk−2(Y )⊕Hk−4(Y )⊕· · · again. From this
we can find an element e ∈ L1Hk(D) such that �1,k(e) = c̃ − δ(d ). Obviously,
�1,k(ã − i∗(e)) = 0 and σ∗(ã − i∗(e)) = a as we want. This completes the proof
of Part I.

Part II:p = n − 2.

Case 1: σ∗ is injective. The injectivity of

j ∗
0 : Ln−2Hk(X)hom → Ln−2Hk(U)hom

is trivial because dim(Y ) ≤ n − 2, where j0 : U → X is the inclusion. In fact,
if dim(Y ) < n − 2, then j ∗

0 : Ln−2Hk(X) → Ln−2Hk(U) is an isomorphism
and so is j ∗

0 : Ln−2Hk(X)hom → Ln−2Hk(U)hom. If dim(Y ) = n − 2 then, for
k ≥ 2(n − 2) + 1, the injectivity of j ∗

0 follows from the commutative diagram in
Lemma 2.5 and the vanishing of Ln−2Hk(Y ) and Hk(Y ); for k = 2(n − 2), the
injectivity of j ∗

0 is from the commutative diagram in Lemma 2.5 and the nontrivi-
ality of (i0)∗ : H2(n−2)(Y ) → H2(n−2)(X), since Y is a Kähler submanifold of X

with complex dimension n − 2.

Now we need to prove that j ∗ : Ln−2Hk(X̃Y)hom → Ln−2Hk(U)hom is injec-
tive, where j : U → X̃Y is the inclusion. Let a ∈ Ln−2Hk(X̃Y)hom be such that
j ∗(a) = 0 ∈ Ln−2Hk(U)hom; then there exists an element b ∈ Ln−2Hk(D) such
that i∗(b) = a. Now, by the commutative diagram in Corollary 2.3, we have
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j ∗
0(σ∗(a)) = 0. Set a ′ ≡ σ∗(a). From the exactness of the localization sequence

in the bottom row of Corollary 2.3, there is an element b ′ ∈ Ln−2Hk(Y ) such that
(i0)∗(b ′) = a ′.

Claim: In the commutative diagram in Corollary 2.3, there exists an element c ′ ∈
Ln−2Hk+1(U) such that (δ0)∗(c ′) = b ′ under the map (δ0)∗ : Ln−2Hk+1(U) →
Ln−2Hk(Y ) and δ∗(c ′) = b under the map δ∗ : Ln−2Hk+1(U) → Ln−2Hk(D).

Proof of Claim. Since �n−2,k : Ln−2Hk(Y ) ∼= Hk(Y ) (note: k ≥ 2(n − 2) ≥
dim(Y )), we use the same notation b ′ for its image in Hk(Y ) since Ln−2Hk(Y ) →
Hk(Y ) is injective for all k ≥ 2(n − 2). At the beginning of the proof of the injec-
tivity of the main theorem, we showed that j ∗

0 : Ln−2Hk(X)hom → Ln−2Hk(U)hom

is injective. That is to say, (i0)∗(b ′) = 0 ∈ Ln−2Hk(X)hom. Hence there exists an
element c ∈ Ln−2Hk+1(U) whose image is b ′ under the boundary map

(δ0)∗ : Ln−2Hk+1(U) → Ln−2Hk(Y ).

Let b̃ be the image of c under the map Ln−2Hk+1(U) → Ln−2Hk(D). Now
π∗(b̃ − b) = 0 ∈ Ln−2Hk(Y ) and i∗(�n−2,k(b̃ − b)) = 0 ∈ Hk(X̃Y) by Proposi-
tion 2.1, so we have �n−2,k(b̃ − b) = 0. Since �n−2,k is injective on Ln−2Hk(D)

(see Theorem 4.1), we get b̃ − b = 0. This c satisfies both conditions of the claim.

Now everything is clear. The element a comes from the element c in Ln−2Hk+1(U).

By the exactness of the localization sequence in the upper row of Lemma 2.1, we
get a = 0 ∈ Ln−2Hk(X̃Y). This completes the proof of the injectivity.

Case 2: σ∗ is surjective. Similarly to the injectivity, the surjectivity of

j ∗
0 : Ln−2Hk(X)hom → Ln−2Hk(U)hom

is trivial because dim(Y ) ≤ n − 2, where j0 : U → X is the inclusion. In fact,
if dim(Y ) < n − 2, then j ∗

0 : Ln−2Hk(X) → Ln−2Hk(U) is an isomorphism
and so is j ∗

0 : Ln−2Hk(X)hom → Ln−2Hk(U)hom. If dim(Y ) = n − 2, then the
surjectivity of j ∗

0 follows from the commutative diagram in Lemma 2.5 and the
isomorphism

�n−2,2(n−2) : Ln−2H2(n−2)(Y ) ∼= H2(n−2)(Y ) ∼= Z.

We need only show that j ∗ : Ln−2Hk(X̃Y)hom
∼= Ln−2Hk(U)hom, where j : U →

X̃Y is the inclusion. There are a few cases.
(a) k = 2(n − 2): The map j ∗ : Ln−2Hk(X̃Y) → Ln−2Hk(U) is a surjective

map. Hence the induced map j ∗ on Ln−2Hk(X̃Y)hom is also surjective by trivial
reasoning.

(b) k = 2(n − 2) + 1: By the commutative diagram in Lemma 2.4 and since
�n−2,2(n−2) : Ln−2H2(n−2)(D) → H2(n−2)(D) is injective, it follows for a ∈
Ln−2H2(n−2)+1(U)hom that the image of a under the boundary map

δ∗ : Ln−2H2(n−2)+1(U) → Ln−2H2n(D)

must be zero. Hence a comes from an element b ∈ Ln−2H2(n−2)+1(X̃Y). If
b̄ := �n−2,2(n−2)+1(b) �= 0, then there exists a c ∈ Ln−2H2(n−2)+1(D) such



346 Wenchuan Hu

that b − i∗(c) ∈ Ln−2H2(n−2)+1(X̃Y)hom and j ∗(b − i∗(c)) = a. In fact, since
j ∗(b̄) = 0, there exists a c̄ ∈ H2(n−2)+1(D) such that (i0)∗(c̄) = b̄. Note that
�n−2,2(n−2)+1 : Ln−2H2(n−2)+1(D) → H2(n−2)+1(D) is an isomorphism by Theo-
rem 4.1; hence there exists a c ∈ Ln−2H2(n−2)+1(D) such that �n−2,2(n−2)+1(c) =
c̄. This shows the surjectivity in this case.

(c) k ≥ 2(n−2)+2: In this last case, the surjectivity of j ∗ : Ln−2Hk(X̃Y)hom →
Ln−2Hk(U)hom is from the commutative diagram in Lemma 2.4 and the surjec-
tivity of the map �n−2,k : Ln−2Hk(D) → Hk(D) (see Theorem 4.1). In fact, if
a ∈ Ln−2Hk(U)hom then, by the exactness of rows in the commutative diagram in
Lemma 2.4, there is an element b ∈ Ln−2Hk(X̃Y) such that j ∗(b) = a. Set b̄ =
�n−2,k(b). Since j ∗(b̄) = 0 ∈ H BM

k (U), there exists a c̄ ∈ Hk(D) such that i∗(c̄) =
b̄. Now �n−2,k : Ln−2Hk(D) ∼= Hk(D) (see Theorem 4.1), and there exists a c ∈
Ln−2Hk(D) such that �n−2,k(c) = c̄. The commutative diagram in Lemma 2.4
implies that �n−2,k(b − i∗(c)) = 0; that is, b − i∗(c) ∈ Ln−2Hk(X̃Y)hom. The ex-
actness of the upper row in Lemma 2.4 gives j ∗(b − i∗(c)) = a. This completes
the surjectivity in this case.

This completes the proof for a blowup along a smooth subvariety Y of codimen-
sion ≥ 2 in X.

Note that ϕ : X → X ′ is birational between projective manifolds. We com-
plete the proof of the birational invariance of Ln−2Hk(X)hom for any smooth X

by applying the following proposition.

Proposition 4.4. If we know the birational invariance under one blowup of
Lawson homology groups LpHk(X)hom for a smooth projective variety X, where
p and k are given as in Theorem 1.1, then we can deduce the birational invariance
of LpHk(X)hom for any birational transformation.

Proof. We need to use the Hironaka desingularization theorem together with the
functoriality properties described in Section 2.

Let ϕ : X ��� X ′ be a birational map. Then, by the desingularization theorem
(cf. [Hi]), there exist

ϕ̂ : X̂ → X ′ and τ : X̂ → X,

where ϕ̂ is a morphism and τ is the composition of a sequence of blowups along
smooth centers. By using the desingularization theorem once again, we have

ψ : X̂ ′ → X̂ and τ ′ : X̂ ′ → X ′,

where ψ is a morphism and τ ′ is the composition of a sequence of blowups
along smooth centers. Furthermore, ψ is the quasi-inverse of ϕ̂ in the sense that
τ ′ = ϕ̂ � ψ.

Now we can define the homomorphism ϕ∗ : LpHk(X)hom → LpHk(X
′)hom as

ϕ̂∗ by using that τ∗ is an isomorphism from LpHk(X̂)hom to LpHk(X)hom, as we
proved in the first step. Now we prove that ϕ∗ is an isomorphism of abelian groups.

Note that, since τ ′∗ is an isomorphism, we see that ϕ̂∗ is surjective because τ ′∗ =
ϕ̂∗ � ψ∗ is surjective. Thus we have proved the surjectivity of ϕ∗ for birational
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maps. From this, now we prove the injectivity of ϕ∗. Note that, by definition,
ϕ∗ = ϕ̂∗. Since the surjectivity holds for any birational map by the previous step,
ψ∗ is surjective. Hence it suffices to show that ϕ̂∗ �ψ∗ is injective. This is true be-
cause ϕ̂∗ � ψ∗ = τ ′∗ is an isomorphism.

Remark 4.5. Griffiths [G] showed the nontriviality of the Griffiths group of 1-
cycles of general quintic hypersurfaces in P 4, and Friedlander [F1] showed that
L1H2(X)hom

∼= Griff1(X) for any smooth projective variety X. Hence, in general,
this is a nontrivial birational invariant even for projective threefolds.

5. The Geometric and Topological Filtration

In this section, we prove Propositions 1.14 and 1.15 and Theorem 1.20. The proof
of Proposition 1.14 consists of a diagram chase by using the results presented in
Section 2.

Proposition 5.1 (Proposition 1.14). Let X be a smooth projective variety of di-
mension n. If TpHk(X, Q) = GpHk(X, Q) holds for X with p = 1 (resp. p =
n − 2) and k arbitrary, then TpHk(X

′, Q) = GpHk(X
′, Q) holds also for any

smooth projective variety X ′ that is birationally equivalent to X with p = 1 (resp.
p = n − 2). In particular, for a smooth projective variety with dim(X) ≤ 4, the
assertion that TpHk(X, Q) = GpHk(X, Q) holds for all k ≥ 2p ≥ 0 is a bira-
tional invariant statement.

Proof.

Part I:p = n − 2. There are two cases.

Case 1: If TpHk(X, Q) = GpHk(X, Q), then TpHk(X̃Y , Q) = GpHk(X̃Y , Q).

The injectivity of TpHk(X̃Y , Q) → GpHk(X̃Y , Q) was proved by Friedlander and
Mazur in [FM]; hence we need only show the surjectivity. Note that the case k =
2p + 1 holds for any smooth projective variety (Proposition 1.15). We only need
to consider the cases where k ≥ 2p + 2. In these cases, k − p ≥ p + 2 = n by
definition of the geometric filtrations, so we have GpHk(X̃, Q) = Hk(X̃Y , Q) and
GpHk(X, Q) = Hk(X, Q).

Since σ∗ : Ln−2Hk(X̃Y) ⊗ Q → Ln−2Hk(X) ⊗ Q is surjective, it follows from
Proposition 2.2 and the commutative diagram

Ln−2Hk(X̃Y) ⊗ Q
σ∗ ��

�n−2,k

��

Ln−2Hk(X) ⊗ Q

�n−2,k

��

Hk(X̃Y , Q)
σ∗ �� Hk(X, Q)

that TpHk(X̃Y , Q) → GpHk(X̃Y , Q) is surjective (by using a diagram chase).

Case 2: If TpHk(X̃Y , Q) = GpHk(X̃Y , Q), then TpHk(X, Q) = GpHk(X, Q).

This part is relatively easy; it follows from Lemma 2.4 and the blowup formula for
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singular homology [GHa]. This completes the proof for a blowup along a smooth
codimension ≥ 2 subvariety Y in X. This completes the proof of Part I.

Part II:p = 1. The injectivity of the map

T1Hk(W, Q) → G1Hk(W, Q)

has been proved for any smooth projective variety W by Friedlander and Mazur in
[FM]. We need only show the surjectivity under certain assumptions.

Similar to the case p = n − 2, one can show the following two cases by using
Lemma 2.4 together with the blowup formula for Lawson homology (Theorem1.6)
and the singular homology.

1. If T1Hk(X, Q) = G1Hk(X, Q), then T1Hk(X̃Y , Q) = G1Hk(X̃Y , Q).

2. If T1Hk(X̃Y , Q) = G1Hk(X̃Y , Q), then T1Hk(X, Q) = G1Hk(X, Q).

This completes the proof for one blowup along a smooth codimension ≥ 2 sub-
variety Y in X. The birational invariant statement follows from Proposition 4.4.
This completes the proof of Part II.

Remark 5.2. From the proof of the Proposition 1.14, we can draw the following
conclusions.

(i) If
TrHk(Y, Q) = GrHk(Y, Q)

for all k is true for algebraic r-cycles with r ≥ p for dim(Y ) = n, then

Tp−1Hk(X, Q) = Gp−1Hk(X, Q) for all k

is a birationally invariant statement for smooth projective varieties X with
dim(X) ≤ n + 2.

(ii) If
TrHk(Y, Q) = GrHk(Y, Q)

for all k is true for r-algebraic cycles with r ≤ p for dim(Y ) = n, then

Tp+1Hk(X, Q) = Gp+1Hk(X, Q) for all k

is a birationally invariant statement for smooth projective varieties X with
dim(X) ≤ n + 2.

Now we give the proof of Proposition 1.15. First we revise a result of Friedlander
(cf. Theorem 4.1) as follows.

Proposition 5.3. For any irreducible projective variety Y of dimension n, we
have

Ln−1H2n(Y ) ∼= Z ,

Ln−1H2n−1(Y ) ∼= H2n−1(Y, Z),

Ln−1H2n−2(Y ) →H2n−2(Y, Z) is injective,

Ln−1Hk(Y ) = 0 for k > 2n.
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Proof. The proof is based on Friedlander’s result on the smooth projective variety.
Set S = sing(Y ), the set of singular points. Then S is the union of proper irre-

ducible subvarieties. Set S = ( ⋃
i Si

) ∪ S ′, where dim(Si) = n − 1 and S ′ is the
union of subvarieties with dimension ≤ n − 2. Let V = Y − S be the smooth
open part of Y. According to Hironaka [Hi], we can find Ỹ such that Ỹ is a smooth
compactification of V. Let D = Ỹ − V, where D is a divisor on Ỹ with normal
crossing. Denote by i0 : S ↪→ Y and i : D ↪→ Ỹ the inclusions of closed sets;
denote by j0 : V ↪→ Y and j : V ↪→ Ỹ the inclusions of open sets.

There are three cases need to be proved: k ≥ 2n; k = 2n −1; and k = 2n − 2.

Case 1: k ≥ 2n. This follows from the localization long exact sequence in
Lawson homology and the singular homology.

Case 2: k = 2n − 1. This case follows from applying Lemma 2.5 to the pairs
(Y, S) and (Ỹ, D) for p = n − 1 together with the five lemma.

Case 3: k = 2n−2. This case follows from the five lemma, Lemma 2.5, and the
fact that the homology class of an algebraic subvariety is nontrivial in the homol-
ogy of the Kählar manifold [GHa, p. 110]. The last fact still holds when “Kählar
manifold” is replaced with “complex projective algebraic variety” because the lat-
ter can be embedded into a complex projective space, which is a Kählar manifold.

To see this, apply the five lemma to the pair (Ỹ, D) in the commutative dia-
gram of Lemma 2.5 for the case p = n − 1. We obtain the injectivity of the map
Ln−1H2n−2(V ) → H BM

2n−2(V ) because Ln−1H2n−2(Ỹ ) → H2n−2(Ỹ ) is injective
and Ln−1H2n−2(D) → H2n−2(D) is surjective (in fact, it is also injective). Now,
applying Lemma 2.5 to the pair (Y, S) for the case p = n −1 yields the following
commutative diagram of long exact sequences:

· · · �� Ln−1H2n−2(S)
(i0 )∗ ��

�p,k

��

Ln−1H2n−2(Y )
j∗

��

�p,k

��

Ln−1H2n−2(V ) ��

�p,k

��

0

· · · �� H2n−2(S)
(i0 )∗ �� H2n−2(Y )

j∗
�� H BM

2n−2(V ) �� H2n−3(S).

For a ∈ Ln−1H2n−2(Y ) such that �p,k(a) = 0, set b = j ∗(a). Since the map
Ln−1H2n−2(V ) → H BM

2n−2(V ) is injective, we get b = 0. Since the first row of the
preceding diagram is exact, there exists an element c ∈ Ln−1H2n−2(S) such that
(i0)∗(c) = a. Set c̄ = �p,k(c), and note that Ln−1H2n−2(S) → H2n−2(S) is an
isomorphism owing to the dimension of S. Moreover, (i0)∗(c̄) = 0 by assump-
tion. So we get c̄ = 0 and then c = 0. This implies that a = 0 and hence the
injectivity of Ln−1H2n−2(Y ) → H2n−2(Y ).

Proposition 5.4 (Proposition 1.15). For any smooth projective variety X,

TpH2p+1(X, Q) = GpH2p+1(X, Q).

Proof. For any smooth projective variety X, the injectivity of TpH2p+1(X, Q) →
GpH2p+1(X, Q) was proved in [FM, Sec. 7]; hence we need only show the
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surjectivity of TpH2p+1(X, Q) → GpH2p+1(X, Q). For any subvariety i : Y ⊂ X,
we denote by V =: X − Y the complement of Y in X. We have the following
commutative diagram of the long exact sequences (cf. Lemma 2.5]):

· · · �� LpH2p+1(Y ) ��

�p,2p+1
��

LpH2p+1(X) ��

�p,2p+1
��

LpH2p+1(V ) ��

�p,2p+1
��

LpH2p(Y ) ��

�p,2p

��

· · ·

· · · �� H2p+1(Y ) �� H2p+1(X) �� H BM
2p+1(V ) �� H2p(Y ) �� · · · .

Obviously, this commutative diagram holds when tensored with Q. In what fol-
lows we consider only the commutative diagrams with Q-coefficient.

Now let a ∈ GpH2p+1(X, Q). By definition, we can assume that a lies in the
image of the map i∗ : H2p+1(Y, Q) → H2p+1(X, Q) for some subvariety Y ⊂ X

with dimension dim Y = (2p + 1) − p = p + 1. Hence there exists an ele-
ment b ∈ H2p+1(Y, Q) such that i∗(b) = a. By Proposition 5.3, we know that
�p,2p+1 : LpH2p+1(Y ) ⊗ Q → H2p+1(Y, Q) is an isomorphism. Hence there
exists an element b̃ ∈ LpH2p+1(Y ) ⊗ Q such that �p,2p+1(b̃) = b. Set ã = i∗(b̃).

Then ã maps to a under the map LpH2p+1(X) ⊗ Q → H2p+1(X, Q). By the def-
inition of the topological filtration, a ∈ TpH2p+1(X, Q). This completes the proof
of surjectivity of TpH2p+1(X, Q) → GpH2p+1(X, Q).

Remark 5.5. In the proof of the surjectivity of Proposition 1.15, the assumption
of smoothness is not necessary. More precisely, for any irreducible projective va-
riety X, the image of the natural transformation �p,2p+1 ⊗Q : LpH2p+1(X, Q) →
H2p+1(X, Q) contains GpH2p+1(X, Q).

Remark 5.6. Independently, Warker [Wa, Prop. 2.5] has recently also obtained
this result.

Corollary 5.7 (Corollary 1.16). Let X be a smooth, n-dimensional projective
variety with H 2,0(X) = 0. Then Tn−2Hk(X, Q) = Gn−2Hk(X, Q) for k ≥ 2n−4.

In particular, this equality holds for X a complete intersection of dimension ≥ 2,
for any product of a smooth projective curve with a complete intersection of di-
mension ≥ 2, et cetera.

Proof. By Propositions 1.9 and 1.15, we need only prove the cases k ≥ 2n − 2.

By the assumption and Poincaré duality, for k = 2n − 2 we have

H2n−2(X, Q) ∼= H2(X, Q) = H1,1(X, Q).

Therefore, Gn−2H2n−2(X, Q) ∼= H1,1(X, Q) and, by the commutative diagram

Ln−1H2n−2(X) ⊗ Q
s ��

�n−1,2n−2
��

Ln−2H2n−2(X) ⊗ Q

�n−2,2n−2
��

H2n−2(X, Q)
= �� H2n−2(X, Q)
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[FM, Prop. 6.3], we have the surjectivity of Ln−2H2n−2(X)⊗Q → H2n−2(X, Q)

given the surjectivity of Ln−1H2n−2(X) ⊗ Q → H2n−2(X, Q). Now we need to
show the cases when k ≥ 2n − 1. Again we use a commutative diagram,

Ln−1Hk(X) ⊗ Q
s ��

�n−1,k
��

Ln−2Hk(X) ⊗ Q

�n−2,k

��

Hk(X, Q)
= �� Hk(X, Q)

[FM, Prop. 6.3], to obtain the surjectivity of �n−2,k : Ln−2Hk(X) ⊗ Q →
Hk(X, Q) from the surjectivity of �n−1,k : Ln−1Hk(X) ⊗ Q → Hk(X, Q). The
latter is guaranteed by Theorem 4.1.

Corollary 5.8 (Corollary 1.18). Let X be the product of a smooth projective
curve and a smooth, simply connected projective variety Y with dim Y = n − 1.
Then Tn−2Hk(X, Q) = Gn−2Hk(X, Q) for any k ≥ 2(n − 2) ≥ 0. In particular,
the Friedlander–Mazur conjecture holds for the product of a smooth projective
curve and a smooth simply connected projective surface.

Proof. Suppose X = C × Y, where C is a smooth projective curve and Y is a
smooth projective variety of dimension n − 1. By the proof of Corollary 1.16, we
need only consider the surjectivity of Ln−2H2n−2(X)⊗Q → H2n−2(X, Q). Now
the Künneth formula for the rational homology of H2n−2(C ×Y, Q), together with
Theorem 4.1 for Y and C, gives the surjectivity in this case.

Now we give the proof of Theorem 1.20.

Theorem 5.9 (Theorem 1.20). If the Suslin conjecture for Lawson homology
with coefficient Z holds, then the topological filtration is the same as the geomet-
ric filtration for a smooth projective variety.

Proof. By Propositions 1.9 and 1.15, we only need to show that TpHk(X, Q) =
GpHk(X, Q) for k ≥ 2p + 2. By the definition of geometric filtration, an element
a ∈ GpHk(X, Q) comes from the linear combinations of the images of elements
bj ∈ Hk(Yj , Q) for subvarietiesYj of dim Yj ≤ k−p (equivalently, dim Yj = k−p).

From the commutative diagram

LpHk(Y ) ⊗ Q
i∗⊗Q

��

�p,k⊗Q

��

LpHk(X) ⊗ Q

�p,k⊗Q

��

Hk(Y, Q)
i∗⊗Q

�� Hk(X, Q)

it is enough to show that �p,k : LpHk(Y ) → Hk(Y ) is surjective for any irre-
ducible subvariety Y ⊂ X with dim(Y ) = k − p. From the Suslin conjecture, this
map �p,k is surjective for any smooth variety Y with dim(Y ) = k − p. Hence
it is enough to show that �p,k is also surjective for any singular irreducible vari-
ety Y (under the assumption that the Sulin conjecture for Lawson homology with
coefficient Z holds).
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We will use induction to prove the following lemma.

Lemma 5.10. If the Suslin conjecture for Lawson homology with coefficient Z

holds for every smooth projective variety, then the map LpHk(Y ) → H BM
k (Y ) is

an isomorphism for k ≥ m+p and a monomorphism for k = m+p −1 for every
( possibly singular ) quasi-projective variety Y, where m = dim(Y ).

Proof. Supposing that Y is an irreducible quasi-projective variety with dim(Y ) =
m, we shall prove the lemma by induction on the dimension of Y. The statement
is trivial if m = dim(Y ) = 0.

Let W be an irreducible quasi-projective variety with dim(W ) = n < m. Then,
by the induction assumption, we have

LpHn+p−1(W ) →Hn+p−1(W ) is injective,

LpHn+q(W ) ∼= Hn+q(W ) for q ≥ p.

Denote by Ȳ a projective closure of Y and S = sing(Ȳ ) the singular point set of Ȳ.

Set U = Ȳ − S. Let σ : Ỹ → Ȳ be a desingularization of Ȳ, and set D := Ỹ − U.

The existence of a smooth Ỹ is guaranteed by Hironaka [Hi]. Then D is the union
of irreducible varieties with dimension ≤ m − 1.

By Lemma 2.5, we have the commutative diagram

· · · �� LpHk(Z) ��

�p,k

��

LpHk(V ) ��

�p,k

��

LpHk(U) ��

�p,k

��

LpHk−1(Z) ��

�p,k−1
��

· · ·

· · · �� Hk(Z) �� Hk(V ) �� H BM
k (U) �� LpHk−1(Z) �� · · · ,

(10)

where U ⊂ V are quasi-projective varieties of dim(V ) = dim(U) = m and Z =
V − U is a closed subvariety of V.

Claim: By inductive assumption, the commutative diagram (10), and the five
lemma, there is an equivalence between

LpHm+p−1(U) →Hm+p−1(U) is injective,

LpHm+q(U) ∼= Hm+q(U) for q ≥ p

and

LpHm+p−1(V ) →Hm+p−1(V ) is injective,

LpHm+q(V ) ∼= Hm+q(V ) for q ≥ p.

Using the Claim a finite number of times beginning from V = Ỹ, we obtain the
result for any quasi-projective variety U and hence for Ȳ, since S is the union of
irreducible varieties of lower dimensions. Using the Claim once again yields the
statement for Y because Ȳ − Y is also the union of irreducible varieties of lower
dimensions. This completes the proof of Lemma 5.10.

By Lemma 5.10, the Suslin conjecture holds for all singular varieties if it holds for
all smooth projective varieties. This completes the proof of Theorem 1.20.
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