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On the Holomorphic Extension of CR Functions
from Nongeneric CR Submanifolds of C

n:
The Positive Defect Case

Nicolas Eisen

1. Introduction

1.1. Statement of Results

A real submanifold M of C
n is said to be CR if the dimension of TpM ∩ iTpM

does not depend on p. HereM is a generic submanifold of C
n if, for any p ∈M,

TpM + JTpM = TpCn. We say that a vector v in C
n is complex transversal toM

at p ∈ M if v /∈ spanC TpM. The question we address in this paper is the holo-
morphic extension of continuous CR functions on nongeneric CR submanifolds
of C

n to wedges whose directions are complex transversal. In [4], we proved that
any decomposable CR distribution admits a holomorphic extension to a complex
transversal wedge. In this paper, we shall consider the case where CR functions
(or distributions) are not decomposable. Define OCR

p to be the Sussmann manifold
throughp (the union of the CR orbits throughp), which by [9] is a CR submanifold
ofM of same CR dimension. Assume the CR dimension (the complex dimension
of TpM ∩ iTpM) of M is k. Then the defect of M at p is said to be � if the real
dimension of OCR

p is 2k + �. Our main result is the following theorem.

Theorem 1. LetM be a smooth (C∞) nongeneric CR submanifold of C
n of pos-

itive defect at some p. Then, for any v complex transversal to M at p and U a
neighborhood of p, there exists a wedge W of direction v and with edge a neigh-
borhood U′ ⊂ U of p in M such that any continuous CR function on U extends
holomorphically to W.

1.2. Background

Theorem 1 generalizes results by Nagel and Rudin that imply a version of Theo-
rem 1 in the totally real case. Let N be a smooth submanifold of the boundary
of �, a strictly pseudoconvex domain in C

n. If N is complex tangential (TN ⊂
(T (∂�) ∩ iT (∂�))) then N is a peak interpolating set (see e.g. [7] or [8]). Given
N, a totally real nongeneric submanifold of C

n, one can easily construct � as just
described and deduce Theorem 1 in the totally real case. As pointed out earlier, we
first obtained Theorem 1 for the class of CR functions that are decomposable [4],
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which of course implies Theorem 1 for the case of maximum defect (minimality
in the sense of Tumanov).

One should note that the question of complex transversal holomorphic exten-
sion can be viewed as a Cauchy problem with Cauchy data on a characteristic
setM. In [4] we constructed an example of an abstract CR structure where there
is no CR extension property and hence no holomorphic extension.

There is a long history of studying the holomorphic extension of CR functions
on generic submanifolds of C

n.We recommend the survey paper of Trépreau [10]
for those interested in this subject; for general background on CR geometry, we
recommend the books by Baouendi, Ebenfelt, and Rothschild [1], Boggess [3],
and Jacobowitz [6].

1.3. Outline of the Paper

By assumption, the Sussmann manifold CR is not a complex manifold. Hence,
by Tumanov’s theorem, there exists a complex wedge (that is not an open set in
C
n) where CR functions admit some holomorphic extension. In this wedge, we

deform the CR orbits. We then use an elliptic theory developed by Baouendi and
Treves and solve a Dirichlet problem with boundary value the CR function that we
seek to extend. Thanks to our deformation, the solution to the Dirichlet problem
is holomorphic.

2. Local Coordinates and Reductions

2.1. Local Coordinates

Let M be a nongeneric submanifold of C
n, and let m be the codimension of

TpM + iTpM in C
n. We consider a trivial (in the CR sense) “generic” version

of M: N = M × R
m, so N is generic with the same CR structure as M. A non-

generic CR submanifold of C
n is, locally, the CR graph of a generic submani-

fold of C
n−m (see e.g. [3]); that is to say, M = {(z,w,h(z,w)) : (z,w) ∈ N ,

h : N → C
m}, where N is a generic submanifold of C

n−m and h is a smooth CR
map of N into C

m. Hence the CR structure of M is uniquely determined by N.
We call N the graphing manifold ofM. We thus have

M = {(Z,h(Z)) : Z ∈ N , h : N → C
m}, N = {(Z, u′′′ + h(Z))}, (2.1)

where N is generic in C
n−m and h is a CR map from N into C

m. We will prove
Theorem 1 in the case where m = 1. That is,M is the graph of a function h. The
proof in the general case follows in the same manner (see Remark 5).

We may choose local coordinates on M such that p is the origin and N is pa-
rameterized in C

k+r = C
k
z × C

r (k + r = n− 1) by

N = {(z, (w ′,w ′′))∈ C
k × C

r :

Im(w ′,w ′′) = a(z, Re(w ′,w ′′)), a(0) = da(0) = 0}. (2.2)

If the defect ofM at the origin is maximal (i.e.,M is minimal at the origin and
OCR

0 = M near 0) then Theorem 1 is proved by [4]. We will therefore assume that
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the defect is not maximal—that is,M is not minimal at 0 and so N is not minimal
at 0. We will henceforth use the notation (w ′,w ′′) ∈ C

s
w ′ × C

r−s
w ′′ because OCR

0 ,
the union of the CR orbits at the origin, is a CR submanifold of M that plays an
important part in the proof of Theorem 1 and has a graphing manifold M of CR
dimension k that is generic in C

k+s.
After a linear change of variables, we may assume that the complex transverse

vector v is given by
v = (0, 1)∈ C

n−1 × C. (2.3)

We will denote by (u′, u′′) = Re(w ′,w ′′)∈ R
r. We thus have

N = {(z, u′ + ia ′(z, u′, u′′), u′′ + ia ′′(z, u′, u′′))}
= {(z,w ′(z, u′, u′′),w ′′(z, u′, u′′))} ⊂ C

k × C
r,

T0N = C
k × R

r.

(2.4)

Define CTpN = TpN ⊗ C and T 0,1
p N = T 0,1

p C
k+m ∩ CTpN. To say that N is a

CR manifold simply means that dimC T
0,1
p N does not depend on p. The CR vec-

tor fields of N are vector fields L on N such that for any p ∈ N we have Lp ∈
T 0,1
p N. One can choose a basis L of T 0,1N near the origin consisting of vector

fields Lj of the form

Lj = ∂

∂z̄j
+

r∑
�=1

Fj�
∂

∂u�
. (2.5)

We have assumed that the local defect ofM (hence of N) at the origin is pos-
itive but not maximal. In other words, OCR

0 is a proper CR submanifold of M of
same CR dimension that is not a complex submanifold. Note that OCR

0 is minimal
at the origin. Hence we have, after a linear change of variables,

OCR
0 = {(z,w ′(z, u′, 0), g(z, u′, 0),h(z, u′, 0)} ⊂ M; (2.6)

here w ′(z, u′, 0) = u′ + ia ′(z, u′, 0) ∈ C
s, s < r, and g is CR on the graphing

manifold M of OCR
0 , where M is given by

M = {(z,w ′(z, u′, 0))} ⊂ C
k × C

s. (2.7)

By construction, OCR
0 is minimal at the origin; hence so is M. Therefore, by

Tumanov’s theorem [12], there exists a wedgeW in C
k+s with edge a neighbor-

hood of the origin in M on which we have holomorphic extension of continuous
CR functions near the origin. Thus, for some η > 0 and Vη, a ball centered at the
origin in C

k+s of radius η, we have

W = (U + i$),
where U = Vη∩M and $ is a conic neighborhood of someµ∈ R

s \{0} and where
continuous CR functions extend holomorphically toW.

2.2. Deformations of M

Denote by Bε the ball of radius ε centered at the origin in R
s and by Bε the unit

ball centered at the origin in C
k. Let d ∈ R be such that, for η as given in the defi-

nition ofW, we have
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0 < d <
η√
s
. (2.8)

Let ε > 0 be given, and let {bj}sj=1 be C∞ functions such that

bj |Bε×Bε = a ′
j(·, ·, 0)|Bε×Bε ,

bj = d if u∈ R
s \ B2ε.

(2.9)

Define M̃, a generic submanifold of C
k × C

s, as follows:

M̃ = {(z, u′ + ib(z, u′)) : (z, u′)∈ C
k × R

s} =: {(z, w̃ ′(z, u′))}. (2.10)

We have, on some neighborhood of the origin,

M̃ = M.

Proposition 1. For ε small enough, there exist bj as in (2.9) such that any con-
tinuous CR function of M extends to a continuous CR function of M̃ in an η
neighborhood of the origin.

Proof. The main tool is the following lemma.

Lemma 1. There exist bj such that, for ε small enough, we have

(M̃ ∩Vη) ⊂ W.
Proof. By a linear change of variables, we may identify µ with (1,1, . . . , 1) in R

s.

Hence, we can assume thatW is of the form

W = (U + i$),
where U is a neighborhood of the origin in M and $ is a conic neighborhood of
(1,1, . . . , 1) in R

s. By (2.2) we have

‖a ′
j(·, ·, 0)‖L∞(B3ε×B3ε) < Cε

2. (2.11)

Let ϑj = ϑj(z, u′) be smooth (C∞(Rs )) real-valued functions such that

ϑj ≥ 0;
ϑj = 1 if u′ ∈ R

s \ B2ε,
ϑj = 0 if u′ ∈Bε.

(2.12)

We will now perturb the functions a ′
j in the w ′

j as follows:

bj(z, u
′) = dϑj(z, u′)+ (1 − ϑj(z, u′))a ′

j(z, u
′), (2.13)

where d is as given by (2.8). We see that bj = aj if u′ ∈ Bε and that bj = d if
u′ ∈B3ε \ B2ε.

Fix real constants σ0, σ1 such that 1 < σ0 < σ1 < 2. Let ξ = ξ(u′) ∈ C∞ be
such that

0 ≤ ξ ≤ 1;
ξ(u′) = 1 if u′ ∈Bσ0ε,
ξ(u′) = 0 if u′ ∈Bσ1ε \ Bσ0ε.

(2.14)

Choose ϑ1 = ϑ1(u
′) verifying (2.12) and such that
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ϑ1 ≡ 1 if u′ ∈ R
s \ Bσ0ε. (2.15)

We now define the remaining ϑj for j > 1 as follows:

ϑj(z, u
′) = ξ(u′)ϑ1(u

′)
d − a1(z, u′, 0)

d − aj(z, u′, 0)
+ (1 − ξ(u′)). (2.16)

By (2.11), we can choose ε small enough that d − aj(z, u′, 0) �= 0 when (z, u′) ∈
B3ε × B3ε, in which case ϑj ∈ C∞.

By (2.13) we now have (z, s+ ib(z, u′)) = (z, u′+ ia(z, u′, 0))+ (0, iv(z, u′)),
where v = (ϑ1(d − a1),ϑ2(d − a2), . . . ,ϑm(d − am)) ∈ R

s. Hence to prove the
lemma it suffices to show that, if ε is small enough, then v ∈$. By (2.13)–(2.16),
v is given by

v = ϑ1(d − a1)(1, . . . , 1) if u′ ∈Bσ0ε.

Furthermore, we have

v(z, u′)

=


(d − a1(z, u′, 0), v ′

2(z, u
′), . . . , v ′

m(z, u
′)) if u′ ∈Bσ1ε \ Bσ0ε,

(d − a1(z, u′, 0), d − a2(z, u′, 0), . . . ,
d − am(z, u′, 0)) if u′ ∈B2ε \ Bσ1ε,

(2.17)

where
v ′
j (z, u

′) = d + aj(z, u′, 0)(ξ(u′)− 1)− a1(z, u
′, 0)ξ(u′). (2.18)

By (2.11), (2.17), and (2.18) we see that v(z, u′) can be written as v(z, u′) =
(d + O(ε2), d + O(ε2), . . . , d + O(ε2)) when u′ ∈ B3ε \ Bσ0ε. Therefore, if ε is
chosen small enough then v(z, u′) ∈ $. To conclude the proof of Lemma 1, we
need to make sure that ε is small enough that (z, u′ + id) ∈ Vη when (z, u′) ∈
B3ε × B3ε, which is indeed the case by (2.8).

The proof of Proposition 1 is now immediate.

2.3. Reductions

We now will make use of an analogue of the edge-of-the-wedge theorem due to
Tumanov [13], although in this case it deals with CR extension instead of holo-
morphic extension.

Theorem 2 [13]. Let M be as before. Then any continuous CR function in a
neighborhood of the origin CR extends locally, near the origin, to a CR manifold
M of CR dimension k + s with edgeM given by

M = {(z,w ′, w′′(z,w ′, u′′),H(z,w ′, u′′))},
where H is CR on

{(z,w ′, w′′(z,w ′, u′′))}
:= {(z,w ′, u′′ + iβ(z,w ′, u′′)) : u′′ ∈ R

r−s, b : C
k × C

s × R
r−s → R

r−s}.
Furthermore, in a sufficiently small neighborhood of the origin, we have

{(z,w ′, g(z,w ′),h(z,w ′)) : (z,w ′)∈W } ⊂ M. (2.19)
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By (2.19) there exist u′′µ : C
k × R

s × R
r−s → R

s such that, if we set

u′′µ(z, u′, u′′) =
r−s∑
j=1

u′′
j µj(z, u

′, u′′) and

w̃ ′(z, u′)+ iu′′µ(z, u′, u′′), u′′) = w̃ ′(z, u′, u′′),

(2.20)

then we have

(z, w̃ ′(z, u′, u′′), w′′(z, w̃ ′(z, u′, u′′), u′′),H(z, w̃ ′(z, u′, u′′), u′′))∈ M. (2.21)

We are now ready to define the deformed version ofM on which we shall be work-
ing. Consider the manifold M̃ given by

M̃ = {(z, w̃ ′(z, u′, u′′), w′′(z, w̃ ′(z, u′, u′′), u′′),H(z, w̃ ′(z, u′, u′′), u′′))}. (2.22)

This M̃ verifies the following two properties.

(1) M̃ is a CR submanifold of C
n of CR dimension k.

Indeed, H(z, w̃ ′(z, u′, u′′), u′′) is CR on

{(z, w̃ ′(z, u′, u′′), w′′(z, w̃ ′(z, u′, u′′), u′′))}
because it is CR on {(z,w ′, w′′(z,w ′, u′′)} and, by (2.21),

{(z, w̃ ′(z, u′, u′′), w′′(z, w̃ ′(z, u′, u′′), u′′))} ⊂ {(z,w ′, w′′(z,w ′, u′′)}.
(2) M̃ is not minimal at the origin.

We have

{(z, w̃ ′(z, u′, 0), w′′(z, w̃ ′(z, u′, 0), 0),

H(z, w̃ ′(z, u′, 0), w′′(z, w̃ ′(z, u′, 0), 0)))} ⊂ M,

where w′′(z, w̃ ′(z, u′, 0), 0) and H(z, w̃ ′(z, u′, 0), w′′(z, w̃ ′(z, u′, 0), 0)) are
CR on M̃.

By Proposition 1, together with (2.19) and (2.21), we now obtain the following
corollary.

Corollary 3. Given any neighborhood of the origin U inM, we can choose ε
small enough such that any continuous CR function on U extends as a continuous
CR function to a neighborhood Ũ of the origin in M̃ such that

{(z, w̃ ′(z, u′, u′′), w′′(z, w̃ ′(z, u′, u′′), u′′),H(z, w̃ ′(z, u′, u′′), u′′)) :

z∈ B3ε, u
′ ∈B3ε, u

′′ ∈ B3ε} ⊂ Ũ. (2.23)

(Abuse of) Notation. Henceforth we shall be working exclusively on M̃ and
therefore drop the tilde notation.

We have
OCR

0 ⊂ M ⊂ N ⊂ C
n,

where N is a generic submanifold of C
n that is parameterized near the origin by
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N = {(z,w ′(z, u′, u′′),w ′′(z, u′, u′′),w ′′′(z, u′, u′′, u′′′))};
w ′(z, u) = u′ + i(b(z, u′)+ u′′µ(z, u′, u′′)),
w ′′(z, u) = g(z, u′)+ u′′ + iu′′β(z, u′, u′′),
w ′′′(z, u) = u′′′ + h(z, u′, u′′);
g(z, u′) is CR on {(z,w ′(z, u′, 0))},

h(z, u′, u′′)) is CR on {(z,w ′(z, u′, u′′),w ′′(z, u′, u′′))}.

(2.24)

HereM is given as a subset of N by u′′′ = 0; that is,

M = {(z,w ′(z, u′, u′′),w ′′(z, u′, u′′),h(z, u′, u′′))}.
Since OCR

0 is given as a subset of N by u′′ = 0 and u′′′ = 0, it follows that

OCR
0 = {(z,w ′(z, u′, 0),w ′′(z, u′, 0),h(z, u′, 0))}

= {(z,w ′(z, u′, 0), g(z, u′),h(z, u′, 0)}.
After the deformation argument, we have

w ′(z, u′, 0) = u′ if u′ ∈ R
s \ B2ε. (2.25)

We also deal with CR functions defined in a neighborhood U of the origin such that

{(z,w ′(z, u′, u′′),w ′′(z, u′, u′′),h(z, u′, u′′)) :

z∈ B3ε, u
′ ∈B3ε, u

′′ ∈B3ε} ⊂ U. (2.26)

3. Analytic Vectors

In this section, we apply a theory developed by Baouendi and Treves in their
study of approximation of CR functions [2]. We include some proofs but claim no
originality.

3.1. Elliptic Operator 0

Lemma 2. If Lj are the generators of the CR vectors fields near the origin in N,
then there exist r + 1 vector fields Rj of the form

Rj =
r+1∑
l=1

ajl(z, u)
∂

∂ul
,

where the ajl are smooth functions, such that :

(i) Rj(wl) = δjl , j, l ∈ {1, . . . , r + 1};
(ii) [Rj ,Rl] = 0;

(iii) [Lj ,Rl] = 0;
(iv) the set {L1, . . . ,Lk , L̄1, . . . , L̄k ,R1, . . . ,Rr+1} spans the complex tangent plane

to N near the origin.

The proof of this lemma is classic. Parts (ii), (iii), and (iv) are a consequence
of (i). We thus determine the Rj by solving for their coefficients in (i) (see e.g. [1,
Lemma 8.7.13, p. 234]).
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We shall consider an elliptic operator0, of degree 2 and with no constant terms,
given by

0 =
r+1∑
j=1

R2
j . (3.1)

From Lemma 2, we immediately deduce the following.

Proposition 2. The operator −0 is strongly elliptic of degree 2 on N with
smooth (C∞) coefficients and no constant terms.

Here0 is a differential operator in the variables u whose coefficient functions de-
pend smoothly on the z variable. We shall study a Dirichlet problem on N. To do
this, we must construct�—an open set in N with boundary ∂� parameterized by
some closed submanifold of N of codimension 1.

3.2. Construction of the Open Set �

Let ω be a smooth (C∞) bounded open set contained in R
s
u′ × Ru′′′ ∩ {u′′′ > 0}

with boundary ∂ω. Define � as follows:

� = {(z,w ′(z, u),w ′′(z, u),w ′′′(z, u)) : z∈ B3ε, u∈ω}. (3.2)

If 5 is the projection of R
r+1 onto R

r × {0}, we choose ω such that� verifies the
following property:

{(z,w ′(z, u),w ′′(z, u),w ′′′(z, u)) : z∈ B3ε, u∈5(ω)} ⊂ U,

{(z,w ′(z, u),w ′′(z, u),w ′′′(z, u)) : z∈ B3ε, u
′ ∈B3ε, u

′′ ∈B3ε, u
′′′ = 0} (3.3)

⊂ {(z,w ′(z, u),w ′′(z, u),w ′′′(z, u)) : z∈ B3ε, u∈ [ω̄{∩ u′′′ = 0}]}.
The boundary of� on which we shall impose the Dirichlet data is defined to be

∂� = {(z,w(z, u)) : z∈ B3ε, u∈ ∂ω}.
Set

∂�0 = {(z,w(z, u)) : z∈ B3ε, (u
′, u′′′)∈ ∂ω, u′′ = 0}.

We then have
∂�0 ⊂ ∂�.

Lemma 3. ∂�0 is a smooth CR submanifold of N of same CR dimension.

Proof. The lemma is clear for the part of ∂�0 that is OCR
0 . Out of OCR

0 × R, the
generators of the CR vector fields Lj are equal to ∂

∂z̄j
, from which the lemma

follows.

Denote by (D) the Dirichlet problem on �:

(D)

{
0(u) = 0 in �,

u = f on ∂�.

Theorem 4. For f ∈ C0(�), (D) has a unique solution.
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Let S be the solution operator for (D). That is, for f ∈ C0(�) we have{
0(S(f )) = 0 in �,

S(f ) = f on ∂�.
(3.4)

3.3. Elliptic Estimates

Definition. For α ∈ N
r+1, set Rα = R

α1
1 · · ·Rαr+1

r+1 . We shall say that a con-
tinuous function f in ω is an analytic vector of the system of vector fields
{R1, . . . ,Rr+1} if Rαf ∈ C0 for any α ∈ N

k+r+1 and if for every compact setK of
ω there is a constant ρ > 0 such that, in K,

sup
α∈Nr+1

(
ρ|α| |Rαf |

|α|!
)
<∞. (3.5)

For V a neighborhood of the origin in C
k, we have

(z,w(z, u))∈�⇐⇒ (z, u)∈V × ω.
The following proposition is a simplified version of Lemma 4.1 in [2]. Let B be

a ball of center x and radius ρ in R
r+1; for ϑ ∈ (0,1], let Bϑ be a ball of center x

and radius ρϑ.

Proposition 3. With B as before and such that B � ω, there exist C1 and C2

depending only on ω and 0 such that, for any C∞ function f in an open neigh-
borhood of the closure of B with

0f = 0 in B,

for any z in V and every α ∈ N
r+1 we have

‖Rαf ‖L2(Bϑ ) ≤ C1

(
C2

(1 − ϑ)
)|α|

|α|!. (3.6)

Here the L2 norm can be replaced by L∞ norm.

The proof of this proposition is found in [2, p. 403].

Proposition 4 [11, Prop. II.4.1]. Let p ∈� so that f ∈ C0 is an analytic vector
of the system of vector fields {R1, . . . ,Rr+1}. It is necessary and sufficient that there
exist an open neighborhood V of p in C

r+1 and a continuous function F(z,w) in
V holomorphic with respect to w and such that f(z, u) = F(z,w(z, u)).
The main difficulty in the proof of Proposition 4 is showing that the function de-
fined by

F(z,w) =
∑
α∈Nr+1

Rαf(z, u)

|α|! (w − w(z, u))α

is equal to f for w near w(z, u) in � if f is an analytic vector of the vector fields
{R1, . . . ,Rr+1}.
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We shall use Proposition 3 to construct analytic vectors of the vector fields
{R1, . . . ,Rr+1} and then apply Proposition 4 to these vectors in order to obtain a
holomorphic extension in the variables w.

4. Proof of Theorem 1

Let � be as previously constructed, and let f be a continuous CR function on U.

Then, trivially, f CR-extends to U × R ⊂ N (since N has the same CR structure
as M, any CR function on M is itself a CR function on N). Consider the func-
tion S(f ) given by (3.4); we have 0S(f ) = 0 on �. By Proposition 3, S(f ) is
an analytic vector for the vector fields Rj on � that extends holomorphically as a
function of w to a wedge Wv of direction v. We shall next prove that this func-
tion is holomorphic in z. By Proposition 4, the holomorphic extension F of S(f )
is given by

F(z,w) =
∑
α∈Nr+1

RαSf(z,w(z, u))

|α|! (w − w(z, u))α. (4.1)

Proposition 5. For any j ∈ [1, . . . , k] and α ∈ N
r+1 we have

Rα
[
∂

∂z̄j

]
F(z,w(z, u′, 0, u′′′)) = 0.

Lemma 4. For F as before we have, for any generator Lj of the CR vector fields
on OCR

0 ,
Lj(F )|∂�0 = 0.

Proof. The lemma holds because ∂�0 is a CR submanifold of �0 of same CR di-
mension. Hence Lj(F )|∂�0 = L|∂�0(f |∂�0 ) = 0.

Since F extends holomorphically as a function of w, we have

Lj(F ) =
[
∂

∂z̄j
F

]
(z,w(z, u)). (4.2)

By Lemma 4 and (4.2), ∂
∂z̄j
F |∂�0 = 0. By the maximum principle, since F is

holomorphic in w we obtain
∂

∂z̄j
F |�0 = 0. (4.3)

Let α ∈ N
r+1, and consider RαF. Since [Lj ,Rs] = 0, by Lemma 4 we have

Lj(R
αF )|∂�0 = 0. Hence, since RαF extends holomorphically in w,

Lj(R
αF )|∂�0 = ∂

∂z̄j
RαF |∂�0 = 0. (4.4)

So by the maximum principle we have

Lj(R
αF )|�0 = ∂

∂z̄j
RαF |�0 = 0, (4.5)
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and since [Lj ,Rs] = 0 it follows that

∂

∂z̄j
RαF = LjRαF = RαLjF = Rα ∂

∂z̄j
F. (4.6)

Hence, restricting (4.6) to �0 and combining with (4.5), we conclude that

Rα
∂

∂z̄j
F |�0 = 0.

This finishes the proof of Proposition 5.

Now the proof of Theorem 1 follows easily. Indeed, by (4.1) we have

F(z,w) =
∑
α∈Nr+1

RαF(z,w(z, u))

|α|! (w − w(z, u))α.

So
∂

∂z̄j
F = Lj

∑
α∈Nr+1

RαF(z,w(z, u))

|α|! (w − w(z, u))α

=
∑
α∈Nr+1

LjR
αF(z,w(z, u))

|α|! (w − w(z, u))α

=
∑
α∈Nr+1

RαLjF(z,w(z, u))

|α|! (w − w(z, u))α

=
∑
α∈Nr+1

Rα ∂
∂z̄j
F(z,w(z, u))

|α|! (w − w(z, u))α.

Therefore, by choosing (z,w(z, u)) in �0 and given Proposition 5, we see that
∂
∂z̄j
F is null on some open subset of Wv. Hence F is holomorphic on Wv. This

concludes the proof of Theorem 1.

Remark 5. If the manifold M is given by M = {(z,w,h(z,w)) : (z,w) ∈
N ⊂ C

n−m, h : N → C
m} with m > 1, then proceed as before with N =

{(z,w, u′′′ + h(z,w)), (z,w) ∈ N}. Construct 0 in the same manner and, by
a linear change of variable, assume that v = (0, v ′) ∈ C

n−m × C
m and v ′ =

(0, . . . , 0, 1)∈ C
m−1×C. Define� as before and solve the Dirichlet problem. The

∂z̄ of the solution of the Dirichlet problem still vanishes to infinite order on OCR
0

and hence is null.

5. Corollaries and Remarks

Corollary 6. LetM be a smooth (C∞) nongeneric CR submanifold of C
m such

that the defect of the graphing manifold at some point p is positive. Then, for any
v complex transversal to M at (p,h(p)), there exists a wedge W of direction v
and edge a neighborhood of (p,h(p)) in M such that any CR distribution near
p extends holomorphically to W.
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Proof. Consider the elliptic operator onM given by

0̃ = 0− ∂ 2

∂u′′′2 =
r∑
j=1

R2
j .

Given u, a CR distribution in a neighborhood of (p,h(p)), by [11] there exist an
integer k(u) and f a continuous CR function such that, in a neighborhood V of
(p,h(p)), we have

u = [0̃]k(u)f.

Apply Theorem 1 to f to obtain a holomorphic extension F. SetU to be defined by

U =
r+s∑
j=1

∂ 2

∂w2
j

F.

Then U is obviously holomorphic in Wv and has boundary value u.

Corollary 7. LetM be a C∞ smooth nongeneric CR submanifold of C
n of pos-

itive defect at the origin. If the graphing manifold N is generic in C
n−m then, for

any v complex transversal toM at the origin, there exist a wedge Wv of direction
v and gj (j = 1, . . . ,m) holomorphic functions in Wv such that

dg1 ∧ dg2 ∧ · · · ∧ dgm �= 0 in Wv ,

gj |M = 0.

Proof. SinceM is not generic, it is given by

M = {(z,w,h(z,w)) : (z,w)∈ N} ⊂ C
n−m × C

m,

where N is the graphing manifold. Note that, by Theorem 1, the functions gj =
w ′′′
j − hj(z,w ′,w ′′) are holomorphic in Wv and vanish onM.

Corollary 8. Let N ⊂ M be two C∞ smooth CR submanifolds of C
n such

that N and M have the same CR dimension and such that the defect of N at the
origin is positive. Then any continuous CR function of N admits a C∞ smooth
CR extension to M in a complex transversal direction. Furthermore, given v ∈
T0M \ [T0N + iT0N ], there exists a nonconstant CR function g of M, defined in
a wedge inM of direction v and edge N, such that g is null on N.

Remark 9. We do not know whether, in Corollary 8, there exists a CR function
ofM defined in a neighborhood of the origin that is nonconstant and vanishes on
N. In [4] we constructed an example of an abstract CR structure in which there
is no CR extension. It is even easier to construct an example where there is no
nontrivial CR function vanishing on N.

Example. Let L be a real analytic vector field (e.g., the Lewy operator) of
the form

L = ∂

∂z̄
+ f(z, u) ∂

∂u
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that is not solvable (Hörmander’s theorem [5]). Let g be a smooth function not in
the image of L. Define the abstract CR structure (M, L), where L is given by

L = L+ tg ∂
∂t
.

Then the equation L(tf ) = 0 is not solvable. Indeed, suppose it were; then we
would have

tL(f )+ fL(t) = t(L(f )+ fg) = 0.

Decomposing f = f0 + tf1, where f0 = f0(z, u), we obtain

L(Log(f0))+ g = 0.

By real analyticity of L, we see that there are plenty of nontrivial functions in the
kernel of L.

It is also obvious that, if we require the function f to be holomorphic in a neigh-
borhood of a nongeneric CR manifold, then it cannot vanish on M and be non-
constant. For example, let In be a sequence of disjointed intervals (separated by
some open sets) in R accumulating to the origin and let f be a smooth function
such that f |In = 1/n. Let γ = {(s, f(u))} ⊂ C

2. Suppose g is holomorphic on a
neighborhood of the origin and that g|γ = 0. Then g(w1,1/n) = 0 for all n for
|w1| small enough and thus g ≡ 0.

Corollary 8 gives a continuous CR extension in the case whereN has codimen-
sion 1 inM. In the case of codimension 1, there exist C∞ nonconstant CR functions
vanishing onN. Indeed, let g be a CR function obtained by Corollary 7 inM+ (N
cuts M in two). Then we may assume without loss of generality that Re(g) ≥ 0
onM+. The desired smooth CR function is then obtained by

f(Z) =
{
e−1/g(Z), Z ∈M+;
0, Z ∈M \M+.
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