Sharpness of the Assumptions for the Regularity of a Homeomorphism

Stanislav Hencl

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. We say that a mapping $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$ has finite (outer) distortion if $J_{f}(x) \geq 0$ almost everywhere and $J_{f}(x)=0$ implies $|D f(x)|=0$ a.e. Moreover, we say that a mapping $f \in W_{\mathrm{loc}}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$ has finite inner distortion if $J_{f}(x) \geq 0$ almost everywhere and $J_{f}(x)=0$ implies $|\operatorname{adj} D f|=$ 0 a.e. (for basic properties, examples, and applications, see e.g. [10]). Here adj A means the adjugate matrix; see Section 2 for the definition.

Our aim is to show the sharpness of the following recent result from [1] (see also $[6 ; 7 ; 8 ; 11 ; 14]$).

THEOREM 1.1. Let $\Omega \subset \mathbb{R}^{n}$ be an open set and let $f \in W_{\mathrm{loc}}^{1, n-1}\left(\Omega, \mathbb{R}^{n}\right)$ be a homeomorphism of finite inner distortion. Then $f^{-1} \in W_{\mathrm{loc}}^{1,1}\left(f(\Omega), \mathbb{R}^{n}\right)$ and f^{-1} is a mapping of finite outer distortion. Moreover,

$$
\begin{equation*}
\int_{f(\Omega)}\left|D f^{-1}(y)\right| d y=\int_{\Omega}|\operatorname{adj} D f(x)| d x \tag{1.1}
\end{equation*}
$$

This statement is actually claimed in [1] only for mappings of finite outer distortion. However, with a very slight modification of the arguments given there (see Section 3 for details) it is possible to show the statement also for a wider class of mappings of finite inner distortion (see also [4]). Also formula (1.1) is not shown there, but it was previously shown under stronger assumptions in [7] and under a $W^{1, n-1}$ regularity assumption in [16]. Let us also note that the assumption that f has finite inner distortion is not artificial, because it was shown in [9, Thm. 4] that each homeomorhism such that $f \in W_{\text {loc }}^{1,1}, J_{f} \geq 0$, a.e. and $f^{-1} \in W_{\text {loc }}^{1,1}$ is necessarily a mapping of finite inner distortion.

Our aim is to show that the assumptions of Theorem 1.1 are sharp in the sense that the crucial regularity condition $|D f| \in L_{\text {loc }}^{n-1}$ cannot be weakened. From the equality (1.1) one may be tempted to believe that to conclude $D f^{-1} \in L^{1}$ it could be enough to assume that adj $D f \in L^{1}$. We show that this is not true.

Example 1.2. Let $0<\varepsilon<1$ and $n \geq 3$. There exist a domain $\Omega \subset \mathbb{R}^{n}$ and a homeomorphism $f \in W^{1, n-1-\varepsilon}\left(\Omega, \mathbb{R}^{n}\right)$ such that $|\operatorname{adj} D f| \in L^{1}(\Omega)$ and a pointwise derivative ∇f^{-1} exists a.e. in $f(\Omega)$ but $\left|\nabla f^{-1}\right| \notin L^{1}(f(\Omega))$.

[^0]It is known that for any $n \geq 3$ and $0<\varepsilon<1$ there exists a homeomorphism $f \in$ $W^{1, n-1-\varepsilon}$ such that $f^{-1} \notin W_{\text {loc }}^{1,1}$ (see [8, Ex. 3.1] or Example 1.2) and therefore Theorem 1.1 is sharp on a scale of Sobolev spaces. Let us note that, for many problems connected with the theory of mapping of finite distortion, the optimal regularity of $D f$ is not on the Lebesgue scale but on some finer Orlicz scale (see [13] and the references given there). We show that this is not the case for Theorem 1.1 and that no smaller integrability condition of $D f$ is enough.

Example 1.3. Let $n \geq 3$ and suppose that $g:[0, \infty) \rightarrow(0, \infty)$ is a decreasing function such that

$$
\lim _{s \rightarrow \infty} g(s)=0
$$

Then there is a homeomorphism $f \in W^{1,1}\left(B(0,1) ; \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\int_{B(0,1)}|D f(x)|^{n-1} g(|D f(x)|) d x<\infty \tag{1.2}
\end{equation*}
$$

and a pointwise derivative ∇f^{-1} exists almost everywhere in $f(B(0,1))$ but $\left|\nabla f^{-1}\right| \notin L_{\mathrm{loc}}^{1}(f(B(0,1)))$.

Let us point out that the conclusion of our examples that ∇f^{-1} exists and is not integrable implies that $f^{-1} \notin W^{1,1}$ and even that $f^{-1} \notin B V$.

2. Preliminaries

The Lebesgue measure of a set $A \subset \mathbb{R}^{n}$ is denoted by $\mathcal{L}_{n}(A)$.
Given a square matrix $B \in \mathbb{R}^{n \times n}$, we define the norm $|B|$ as the supremum of $|B x|$ over all vectors x of unit Euclidean norm. The adjugate adj B of a regular matrix B is defined by the formula

$$
\begin{equation*}
B \operatorname{adj} B=I \operatorname{det} B, \tag{2.1}
\end{equation*}
$$

where $\operatorname{det} B$ denotes the determinant of B and I is the identity matrix. The operator adj is then continuously extended to $\mathbb{R}^{n \times n}$.

2.1. Differentiability of Radial Functions

By $\|x\|$ we denote the norm of $x \in \mathbb{R}^{n}$; in fact, we use either Euclidean norm or maximum norm $\|x-y\|=\max \left\{\left|x_{i}-y_{i}\right|: i=1, \ldots, n\right\}$. The following lemma can be verified by an elementary calculation for the Euclidean norm. The maximum norm can be obtained from the Euclidean norm by the bi-Lipschitz change of variables and therefore it is easy to check that the formulas hold also for this norm.

Lemma 2.1. Let $\rho:(0, \infty) \rightarrow(0, \infty)$ be a strictly monotone, differentiable function. Then for the mapping

$$
f(x)=\frac{x}{\|x\|} \rho(\|x\|), \quad x \neq 0
$$

we have for almost every x

$$
D f(x) \sim \max \left\{\frac{\rho(\|x\|)}{\|x\|},\left|\rho^{\prime}(\|x\|)\right|\right\}, \quad J_{f}(x) \sim \rho^{\prime}(\|x\|)\left(\frac{\rho(\|x\|)}{\|x\|}\right)^{n-1}
$$

and

$$
|\operatorname{adj} D f(x)| \sim \max \left\{\frac{\rho(\|x\|)}{\|x\|},\left|\rho^{\prime}(\|x\|)\right|\right\}\left(\frac{\rho(\|x\|)}{\|x\|}\right)^{n-2}
$$

2.2. Area Formula

We say that a mapping $f: \Omega \rightarrow \mathbb{R}^{n}$ satisfies the Lusin condition (N) if the implication $|S|=0 \Rightarrow|f(S)|=0$ holds for any measurable set $S \subset \Omega$.

Let $f \in W_{\text {loc }}^{1,1}\left(\Omega ; \mathbb{R}^{n}\right)$ be a homeomorphism and let η be a nonnegative Borelmeasurable function on \mathbb{R}^{n}. Without any additional assumptions we have

$$
\begin{equation*}
\int_{\Omega} \eta(f(x))\left|J_{f}(x)\right| d x \leq \int_{\mathbb{R}^{n}} \eta(y) d y . \tag{2.2}
\end{equation*}
$$

Moreover, there exists a set $\Omega^{\prime} \subset \Omega$ of full measure such that the area formula holds for f on Ω^{\prime} :

$$
\begin{equation*}
\int_{\Omega^{\prime}} \eta(f(x))\left|J_{f}(x)\right| d x=\int_{f\left(\Omega^{\prime}\right)} \eta(y) d y . \tag{2.3}
\end{equation*}
$$

Also, the area formula holds on each set on which the Lusin condition (N) is satisfied. This follows from the area formula for Lipschitz mappings, the a.e. approximative differentiability of $f[2, \mathrm{Thm} .3 .1 .4]$, and a general property of a.e. approximatively differentiable functions [2, Thm. 3.1.8]-namely, that Ω can be exhausted up to a set of measure 0 by sets the restriction to which of f is Lipschitz continuous.

3. Finite Inner Distortion

The following lemma from [1, Lemma 4.3] contains the main ingredient for the proof of Theorem 1.1.

Lemma 3.1. Let $f \in W_{\text {loc }}^{1, n-1}\left(\Omega, \mathbb{R}^{n}\right)$ be a homeomorphism. Then

$$
\begin{equation*}
\int_{B}\left|f^{-1}(y)-c\right| d y \leq C r_{0} \int_{f^{-1}(B)}|\operatorname{adj} D f(x)| d x \tag{3.1}
\end{equation*}
$$

for each ball $B=B\left(y_{0}, r_{0}\right) \subset f(\Omega)$, where

$$
c=\int_{B} f^{-1}(y) d y
$$

and $C=C(n)$.
The following theorem was shown in [1, Thm. 4.5].
THEOREM 3.2. Let $\Omega \subset \mathbb{R}^{n}$ be an open set and let $f \in W_{\text {loc }}^{1, n-1}\left(\Omega, \mathbb{R}^{n}\right)$ be a homeomorphism such that $f^{-1} \in W_{\mathrm{loc}}^{1,1}\left(f(\Omega), \mathbb{R}^{n}\right)$ and $J_{f} \geq 0$ a.e. Then f^{-1} is a mapping of finite outer distortion.

In order to prove the equality (1.1), we will need the following technical lemma from [4, Lemma 2.1].
Lemma 3.3. Let $f: \Omega \rightarrow \mathbb{R}^{n}$ be a homeomorphism such that $f \in W_{\mathrm{loc}}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$ and $f^{-1} \in W_{\text {loc }}^{1,1}\left(f(\Omega), \mathbb{R}^{n}\right)$. Set

$$
\begin{gathered}
E=\left\{y \in f(\Omega): f^{-1} \text { is approximatively differentiable at } y\right. \\
\text { and } \left.\left|J_{f^{-1}}(y)\right|>0\right\} .
\end{gathered}
$$

Then there exists a Borel set $A \subset E$ such that $|E \backslash A|=0$,

$$
\begin{gathered}
f^{-1}(A) \subset \tilde{E}:=\{x \in \Omega: f \text { is approximatively differentiable at } x \\
\text { and } \left.\left|J_{f}(x)\right|>0\right\},
\end{gathered}
$$

and

$$
\begin{equation*}
D f^{-1}(y)=\left[D f\left(f^{-1}(y)\right)\right]^{-1} \quad \text { for every } y \in A \tag{3.2}
\end{equation*}
$$

Moreover, $\left|\tilde{E} \backslash f^{-1}(A)\right|=0$.
Proof. It is enough to show that $\left|\tilde{E} \backslash f^{-1}(A)\right|=0$, because everything else is stated and shown in [4, Lemma 2.1]. Suppose for contradiction that there is a Borel set $G \subset \tilde{E} \backslash f^{-1}(A)$ such that $|G|>0$. Without loss of generality we can also suppose that (2.3) holds for G (i.e., $G \subset \Omega^{\prime}$) and thus

$$
\int_{G} J_{f}(x) d x=\int_{\mathbb{R}^{n}} \chi_{f(G)}(y) d y=|f(G)| .
$$

Since $J_{f}>0$ on G we obtain that $|f(G)|>0$. We know that the area formula holds for f^{-1} on a Borel subset $M \subset f(G)$ of full measure. From

$$
\int_{f^{-1}(M)} J_{f}(x) d x=|M|>0
$$

we obtain that $\left|f^{-1}(M)\right|>0$. Therefore we can use area formula for f^{-1} to conclude

$$
\int_{f(G) \cap M}\left|J_{f-1}(y)\right| d y=\left|G \cap f^{-1}(M)\right|>0 .
$$

It follows that $J_{f^{-1}}>0$ on a subset of $f(G)$ of positive measure. Clearly f^{-1} is approximatively differentiable a.e. on $f(G)$ and therefore $f(G) \cap A \neq \emptyset$ gives us a contradiction.

Proof of Theorem 1.1. We claim that there is a function $g \in L_{\mathrm{loc}}^{1}(f(\Omega))$ such that

$$
\begin{equation*}
\int_{f^{-1}(B)}|\operatorname{adj} D f|=\int_{B} g \tag{3.3}
\end{equation*}
$$

This and Lemma 3.1 imply that the pair f, g satisfies a 1-Poincaré inequality in $f(\Omega)$. From [3, Thm. 9] we then deduce that $f^{-1} \in W_{\mathrm{loc}}^{1,1}\left(f(\Omega), \mathbb{R}^{n}\right)$.

There is a set $\Omega^{\prime} \subset \Omega$ of full measure such that the area formula (2.2) holds for f on Ω^{\prime}. We define a function $g: f(\Omega) \rightarrow \mathbb{R}$ by setting

$$
g(f(x))= \begin{cases}\frac{|\operatorname{adj} D f(x)|}{J_{f}(x)} & \text { if } x \in \Omega^{\prime} \text { and } J_{f}(x)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Since f is a mapping of finite inner distortion, we have

$$
|\operatorname{adj} D f(x)|=g(f(x)) J_{f}(x) \text { a.e. in } \Omega .
$$

Hence, for every $A \subset f(\Omega)$,

$$
\begin{align*}
\int_{f^{-1}(A)}|\operatorname{adj} D f(x)| d x & =\int_{f^{-1}(A) \cap \Omega^{\prime}} g(f(x)) J_{f}(x) d x \\
& =\int_{A} g(y) d y . \tag{3.4}
\end{align*}
$$

For $A=B$ this gives (3.3) and for other sets A it also implies $g \in L_{\mathrm{loc}}^{1}$. Hence $f^{-1} \in W_{\text {loc }}^{1,1}$ and from Theorem 3.2 we obtain that f^{-1} has finite outer distortion.

We will use Lemma 3.3 to prove (1.1). First let us notice that the Lusin (N) condition is valid on $f^{-1}(A)$ and therefore we can use (2.3) there. Indeed, let $S \subset$ $f^{-1}(A)$ be a set of measure 0 and let us find a Borel-measurable set $S_{1} \supset S$ of measure 0 . We can use (2.2) for f^{-1} and $\eta=\chi_{S_{1}}$ to obtain

$$
\int_{f\left(S_{1}\right)}\left|J_{f^{-1}}\right| \leq\left|S_{1}\right|=0
$$

Since $J_{f^{-1}}>0$ on A, it follows that $\left|f\left(S_{1}\right)\right|=0$. Since f^{-1} is a mapping of finite distortion and each $W^{1,1}$ function is approximatively differentiable almost everywhere, we obtain

$$
\int_{f(\Omega)}\left|D f^{-1}(y)\right| d y=\int_{E}\left|D f^{-1}(y)\right| d y
$$

and, analogously,

$$
\int_{\tilde{E}}|\operatorname{adj} D f(x)| d x=\int_{\Omega}|\operatorname{adj} D f(x)| d x
$$

since f is a mapping of finite inner distortion. Now we can use $|E \backslash A|=0$, (2.3), (3.2), (2.1), and $\left|\tilde{E} \backslash f^{-1}(A)\right|=0$ to obtain

$$
\begin{aligned}
\int_{f(\Omega)}\left|D f^{-1}(y)\right| d y & =\int_{A}\left|D f^{-1}(y)\right| d y \\
& =\int_{f^{-1}(A)}\left|D f^{-1}(f(x))\right| J_{f}(x) d x=\int_{f^{-1}(A)}\left|(D f(x))^{-1}\right| J_{f}(x) d x \\
& =\int_{f^{-1}(A)}|\operatorname{adj} D f(x)| d x=\int_{\Omega}|\operatorname{adj} D f(x)| d x
\end{aligned}
$$

4. Construction of Examples

In this section we use the notation $Q(c, r)$ for an open cube in \mathbb{R}^{n-1} centered at c and with edge length $2 r$.

One of the main ingredients of the proof of Lemma 3.1 is that the homeomorphism $f \in W^{1, n-1}$ must satisfy the ($n-1$)-dimensional Lusin (N) condition on almost all hyperplanes. First we construct an auxiliary mapping that fails the Lusin (N) condition in \mathbb{R}^{n-1}. For a construction of a homeomorphism that does not satisfy the Lusin condition (N) we use Cantor-type construction from [12] (see also [5; 15]).

Example 4.1. Let $0<\varepsilon<1$ and $n \geq 3$. There is a homeomorphism $g \in$ $W^{1, n-1-\varepsilon}\left((-1,1)^{n-1},(-1,1)^{n-1}\right)$ such that $J_{g} \in L^{\infty}\left((-1,1)^{n-1}\right)$ and $|\operatorname{adj} D g| \in$ $L^{1}\left((-1,1)^{n-1}\right)$ but g does not satisfy the Lusin condition (N).

Proof. By \mathbb{V} we denote the set of 2^{n} vertices of the cube $[-1,1]^{n-1}$. The sets $\mathbb{V}^{k}=$ $\mathbb{V} \times \cdots \times \mathbb{V}, k \in \mathbb{N}$, will serve as the sets of indices for our construction.

Let us denote

$$
\begin{equation*}
a_{k}=\frac{1}{k} \quad \text { and } \quad b_{k}=\frac{1}{2}\left(1+\frac{1}{k^{n-1}}\right) \tag{4.1}
\end{equation*}
$$

Set $z_{0}=\tilde{z}_{0}=0$, and let us define

$$
\begin{equation*}
r_{k}=a_{k} 2^{-k} \quad \text { and } \quad \tilde{r}_{k}=b_{k} 2^{-k} \tag{4.2}
\end{equation*}
$$

It follows that $(-1,1)^{n-1}=Q\left(z_{0}, r_{0}\right)$, and we now proceed by induction. For $\boldsymbol{v}=\left[v_{1}, \ldots, v_{k}\right] \in \mathbb{V}^{k}$ we let $\boldsymbol{w}=\left[v_{1}, \ldots, v_{k-1}\right]$ and define

Figure 1 Cubes Q_{v} and Q_{v}^{\prime} for $\boldsymbol{v} \in \mathbb{V}^{1}$ and $\boldsymbol{v} \in \mathbb{V}^{2}$
The number of the cubes $\left\{Q_{v}: \boldsymbol{v} \in \mathbb{V}^{k}\right\}$ is $2^{(n-1) k}$. It is not difficult to find out that the resulting Cantor set

$$
\bigcap_{k=1}^{\infty} \bigcup_{v \in \mathbb{V}^{k}} Q_{v}=: C_{A}=C_{a} \times \cdots \times C_{a}
$$

is a product of $n-1$ Cantor sets in \mathbb{R}. Moreover, $\mathcal{L}_{n-1}\left(C_{A}\right)=0$ since

$$
\mathcal{L}_{n-1}\left(\bigcup_{v \in \mathbb{V}^{k}} Q_{v}\right)=2^{(n-1) k}\left(2 a_{k} 2^{-k}\right)^{n-1} \xrightarrow{k \rightarrow \infty} 0
$$

Analogously, we define

$$
\begin{aligned}
& \tilde{z}_{v}=\tilde{z}_{w}+\frac{1}{2} \tilde{r}_{k-1} v_{k}=\tilde{z}_{0}+\frac{1}{2} \sum_{j=1}^{k} \tilde{r}_{j-1} v_{j} \\
& \tilde{Q}_{v}^{\prime}=Q\left(\tilde{z}_{v}, \frac{\tilde{r}_{k-1}}{2}\right), \quad \text { and } \quad \tilde{Q}_{v}=Q\left(\tilde{z}_{v}, \tilde{r}_{k}\right)
\end{aligned}
$$

The resulting Cantor set

$$
\bigcap_{k=1}^{\infty} \bigcup_{v \in \mathbb{V}^{k}} \tilde{Q}_{v}=: C_{B}=C_{b} \times \cdots \times C_{b}
$$

satisfies $\mathcal{L}_{n-1}\left(C_{B}\right)>0$ since $\lim _{k \rightarrow \infty} b_{k}>0$. It remains to find a homeomorphism g that maps C_{A} onto C_{B} and satisfies our assumptions. Since $\mathcal{L}_{n-1}\left(C_{A}\right)=$ 0 and $\mathcal{L}_{n-1}\left(C_{B}\right)>0$, we will obtain that g does not satisfy the (N) condition.

Figure 2 The transformation of $Q^{\prime} \backslash Q^{\circ}$ onto $\tilde{Q}^{\prime} \backslash \tilde{Q}^{\circ}$
Again we will proceed by induction and we will find a sequence of homeomorphisms $g_{k}:(-1,1)^{n-1} \rightarrow(-1,1)^{n-1}$. We set $g_{0}(x)=x$, and for $k \in \mathbb{N}$ we define

$$
g_{k}(x)= \begin{cases}g_{k-1}(x) & \text { for } x \notin \bigcup_{v \in \mathbb{V}^{k}} Q_{v}^{\prime} \\ g_{k-1}\left(z_{v}\right)+\left(\alpha_{k}\left\|x-z_{v}\right\|+\beta_{k}\right) \frac{x-z_{v}}{\left\|x-z_{v}\right\|} & \text { for } x \in Q_{v}^{\prime} \backslash Q_{v}, \boldsymbol{v} \in \mathbb{V}^{k} \\ g_{k-1}\left(z_{v}\right)+\frac{\tilde{r}_{k}}{r_{k}}\left(x-z_{v}\right) & \text { for } x \in Q_{v}, \boldsymbol{v} \in \mathbb{V}^{k}\end{cases}
$$

where the constants α_{k} and β_{k} are given by

$$
\begin{equation*}
\alpha_{k} r_{k}+\beta_{k}=\tilde{r}_{k} \quad \text { and } \quad \alpha_{k} \frac{r_{k-1}}{2}+\beta_{k}=\frac{\tilde{r}_{k-1}}{2} \tag{4.3}
\end{equation*}
$$

It is not difficult to find out that each g_{k} is a homeomorphism and maps

$$
\bigcup_{v \in \mathbb{V}^{k}} Q_{v} \text { onto } \bigcup_{v \in \mathbb{V}^{k}} \tilde{Q}_{v}
$$

The limit $g(x)=\lim _{k \rightarrow \infty} g_{k}(x)$ is clearly one-to-one and continuous and therefore a homeomorphism. Moreover, it is easy to see that g is differentiable almost everywhere, is absolutely continuous on almost all lines parallel to coordinate axes, and maps C_{A} onto C_{B}.

Let $k \in \mathbb{N}$ and $\boldsymbol{v} \in \mathbb{V}^{k}$. We need to estimate $D g(x),|\operatorname{adj} D g|$, and $J_{g}(x)$ in the interior of the annulus $Q_{v}^{\prime} \backslash Q_{v}$. Since

$$
g(x)=g\left(z_{v}\right)+\left(\alpha_{k}\left\|x-z_{v}\right\|+\beta_{k}\right) \frac{x-z_{v}}{\left\|x-z_{v}\right\|}
$$

there, we can use Lemma 2.1, $r_{k} \sim r_{k-1}, \tilde{r}_{k} \sim \tilde{r}_{k-1}$, (4.3), (4.2), and (4.1) to obtain

$$
\begin{gathered}
D g(x) \sim \max \left\{\frac{\tilde{r}_{k}}{r_{k}}, \alpha_{k}\right\} \sim \max \left\{k, \frac{1}{k^{n-2}}\right\} \sim k, \\
|\operatorname{adj} \operatorname{Dg}(x)| \sim|D f(x)|\left(\frac{\tilde{r}_{k}}{r_{k}}\right)^{n-3} \sim k^{n-2} \\
J_{g}(x) \sim \alpha_{k}\left(\frac{\tilde{r}_{k}}{r_{k}}\right)^{n-2} \sim 1
\end{gathered}
$$

It follows that $J_{g} \in L^{\infty}\left((-1,1)^{n-1}\right)$. Moreover, we can estimate

$$
\mathcal{L}_{n-1}\left(Q_{v}^{\prime} \backslash Q_{v}\right)=\left(r_{k-1}\right)^{n-1}-\left(2 r_{k}\right)^{n-1} \sim 2^{-k(n-1)} \frac{1}{k^{n}}
$$

and we have $2^{(k-1) n}$ annuli like that. Therefore,

$$
\begin{aligned}
\int_{Q_{0}}|D g(x)|^{n-1-\varepsilon} d x & \leq \sum_{k=1}^{\infty} \sum_{v \in \mathbb{V}^{k}} \int_{Q_{v}^{\prime} \backslash Q_{v}}|D g(x)|^{n-1-\varepsilon} d x \\
& \leq C \sum_{k=1}^{\infty} 2^{(k-1) n} 2^{-k(n-1)} \frac{1}{k^{n}} k^{n-1-\varepsilon}<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{Q_{0}}|\operatorname{adj} D g(x)| d x & \leq \sum_{k=1}^{\infty} \sum_{v \in \mathbb{V}^{k}} \int_{Q_{v}^{\prime} \backslash Q_{v}}|\operatorname{adj} D g(x)| d x \\
& \leq C \sum_{k=1}^{\infty} 2^{(k-1) n} 2^{-k(n-1)} \frac{1}{k^{n}} k^{n-2}<\infty .
\end{aligned}
$$

Proof of Example 1.2. In this example we will use notation and results from Example 4.1. Set

$$
f(x)=\left[g_{1}\left(\left[x_{1}, \ldots, x_{n-1}\right]\right), \ldots, g_{n-1}\left(\left[x_{1}, \ldots, x_{n-1}\right]\right), e^{-x_{n}}\right] .
$$

We also define

$$
\Omega=\left(C_{A} \times(0, \infty)\right) \cup \bigcup_{k=1}^{\infty}\left(\bigcup_{v \in \mathbb{V}^{k}} Q_{v}^{\prime} \backslash Q_{v}\right) \times(0, \log (k+1))
$$

Clearly f is a homeomorphism and both f and f^{-1} are differentiable almost everywhere. Moreover, it is easy to check that $\Omega \subset(-1,1)^{n-1} \times(0, \infty)$ is an open set.

The matrix $D f$ has a special form because only one term in the last column and in the last row is nonzero. This is the term $\frac{\partial f_{n}}{\partial x_{n}}$, so it is easy to check that

$$
|\operatorname{adj} D f(x)| \sim \max \left\{\left|J_{g}(\tilde{x})\right|,|\operatorname{adj} D g(\tilde{x})|\left|\frac{\partial e^{-x_{n}}}{\partial x_{n}}\right|\right\}
$$

where $\tilde{x}=\left[x_{1}, \ldots, x_{n-1}\right]$. From

$$
\begin{aligned}
\mathcal{L}_{n}(\Omega) & =\sum_{k \in \mathbb{N}} \sum_{v \in \mathbb{V}^{k}} \mathcal{L}_{n-1}\left(Q_{v}^{\prime} \backslash Q_{v}\right) \log (k+1) \\
& =\sum_{k \in \mathbb{N}} 2^{(k-1) n} 2^{-k(n-1)} \frac{1}{k^{n}} \log (k+1)<\infty
\end{aligned}
$$

and $\left|J_{g}\right| \in L^{\infty}\left((-1,1)^{n-1}\right)$ we obtain $\left|J_{g}(\tilde{x})\right| \in L^{1}(\Omega)$. Furthermore,

$$
\int_{\Omega}|\operatorname{adj} D g(\tilde{x})|\left|\frac{\partial e^{-x_{n}}}{\partial x_{n}}\right| d x \leq \int_{(-1,1)^{n-1}}|\operatorname{adj} D g| \int_{0}^{\infty} e^{-x_{n}} d x_{n}<\infty
$$

and hence $|\operatorname{adj} D f| \in L^{1}(\Omega)$. Moreover,

$$
D f(x)=\max \left\{|D g(\tilde{x})|,\left|\frac{\partial e^{-x_{n}}}{\partial x_{n}}\right|\right\} \sim|D g(\tilde{x})|
$$

and therefore

$$
\begin{aligned}
\int_{\Omega}|D f(x)|^{n-1-\varepsilon} d x & \leq \sum_{k=1}^{\infty} \sum_{v \in \mathbb{V}^{k}}\left(\int_{Q_{v}^{\prime} \backslash Q_{v}}|D g(\tilde{x})|^{n-1-\varepsilon} d \tilde{x}\right) \log (k+1) \\
& \leq C \sum_{k=1}^{\infty} 2^{(k-1) n} 2^{-k(n-1)} \frac{1}{k^{n}} k^{n-1-\varepsilon} \log (k+1)<\infty
\end{aligned}
$$

Since $C_{A} \times(0, \infty) \subset \Omega$, we obtain that

$$
f^{-1}(\{[y, t] \in f(\Omega): t \in(0,1)\})=g^{-1}(y) \times(0, \infty) \quad \text { for every } y \in C_{B}
$$

and thus

$$
\int_{0}^{1}\left|\nabla f^{-1}(y, t)\right| d t \geq \int_{0}^{1}\left|\frac{\partial f^{-1}}{\partial t}(y, t)\right| d t=\infty
$$

Since $\mathcal{L}_{n-1}\left(C_{B}\right)>0$, we obtain that $\left|\nabla f^{-1}\right| \notin L^{1}(f(\Omega))$.
Remark 4.2. Let us note that the unboundedness of Ω is not essential for our arguments; it only makes them simpler. It would be possible to twist our Ω and to obtain a bounded domain with the same properties.

5. Sharpness on the Orlicz Scale

Lemma 5.1. Let $h:(0,1) \rightarrow(0, \infty)$ be an increasing function such that $\lim _{t \rightarrow 0+} h(t)=0$. Then there is a function $f:(0,1) \rightarrow(0, \infty)$ such that $\lim _{t \rightarrow 0+} f(t)=0$,

$$
\int_{0}^{1} \frac{f(t)}{t} d t=\infty, \quad \text { and } \quad \int_{0}^{1} \frac{f(t) h(t)}{t} d t<\infty
$$

Proof. We can easily find an increasing differentiable function $h_{1} \geq h$ that satisfies $\lim _{t \rightarrow 0+} h_{1}(t)=0$ and $\lim _{t \rightarrow 0+} \frac{t h_{1}^{\prime}(t)}{h_{1}(t)}=0$, which is some sort of strong concavity near 0 . Thus we may assume without loss of generality that h is differentiable and that the function

$$
\begin{equation*}
f(t):=\frac{t h^{\prime}(t)}{h(t)} \text { satisfies } \lim _{t \rightarrow 0+} f(t)=0 \tag{5.1}
\end{equation*}
$$

An elementary computation gives us

$$
\int_{0}^{1} \frac{f(t)}{t} d t=\int_{0}^{1} \frac{h^{\prime}(t)}{h(t)} d t=[\log h(t)]_{t=0}^{t=1}=\infty
$$

and

$$
\int_{0}^{1} \frac{f(t) h(t)}{t} d t=\int_{0}^{1} h^{\prime}(t) d t=[h(t)]_{t=0}^{t=1}<\infty .
$$

Proof of Example 1.3. We write \mathbf{e}_{i} for the i th unit vector in \mathbb{R}^{n}-that is, the vector with 1 on the i th place and 0 everywhere else. Given $x=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{n}$, we denote $\tilde{x}=\left[x_{1}, \ldots, x_{n-1}\right] \in \mathbb{R}^{n-1}$ and $\|\tilde{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n-1}^{2}}$.

From Lemma 5.1 we can find a function $a:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\begin{gather*}
\lim _{t \rightarrow 0+} a(t)=0, \\
\int_{0}^{1} \frac{a^{n-1}(t)}{t} d t=\infty, \tag{5.2}\\
\int_{0}^{1} \frac{a^{n-1}(t)}{t} g\left(\frac{1}{\sqrt{t}}\right) d t<\infty . \tag{5.3}
\end{gather*}
$$

Without loss of generality we may also suppose that

$$
\begin{equation*}
\left[\log ^{2 /(n-1)} \frac{1}{t}\right]^{-1} \leq a(t) \text { for every } t \in\left(0, \frac{1}{2}\right) \tag{5.4}
\end{equation*}
$$

since the integral in (5.2) is finite for the left-hand side. Therefore it is easy to see that, without loss of generality, we can also assume that a is increasing and concave.

Set

$$
f(x)=\sum_{i=1}^{n-1} \mathbf{e}_{i} \frac{x_{i}}{\|\tilde{x}\|} a(\|\tilde{x}\|)+\mathbf{e}_{n}\left(x_{n}+\|\tilde{x}\| \sin \left(\frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}\right)\right)
$$

if $\|\tilde{x}\|>0$ and set $f(x)=\mathbf{e}_{n} x_{n}$ if $\|\tilde{x}\|=0$. Our mapping f is clearly continuous, and it is easy to check that f is a one-to-one map since

$$
\begin{aligned}
\frac{x_{i}}{\|\tilde{x}\|} a(\|\tilde{x}\|)=\frac{z_{i}}{\|\tilde{z}\|} a(\|\tilde{z}\|) \quad \text { for every } i \in\{1, \ldots, n-1\} \\
\Longrightarrow a(\|\tilde{x}\|)=a(\|\tilde{z}\|) \Longrightarrow\|\tilde{x}\|=\|\tilde{z}\|
\end{aligned}
$$

and hence $x_{i}=z_{i}$ for every $i \in\{1, \ldots, n-1\}$. Therefore, f is a homeomorphism.
By Lemma 2.1 we obtain that the partial derivatives of $f_{i}, i \in\{1, \ldots, n-1\}$, are smaller than

$$
\begin{equation*}
C \max \left\{\frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}, a^{\prime}(\|\tilde{x}\|)\right\} \sim C \frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|} \tag{5.5}
\end{equation*}
$$

since a is concave and $a(0)=0$. Moreover,

$$
\begin{align*}
\frac{\partial f_{n}(x)}{\partial x_{1}}= & x_{1}\|\tilde{x}\|^{-1} \sin \left(\frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}\right) \\
& +\|\tilde{x}\|\left(\frac{a^{\prime}(\|\tilde{x}\|) x_{1}}{\|\tilde{x}\|^{2}}-\frac{a(\|\tilde{x}\|) x_{1}}{\|\tilde{x}\|^{3}}\right) \cos \left(\frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}\right) \tag{5.6}
\end{align*}
$$

can be also bounded by (5.5). We can bound other derivatives of f_{n} analogously and can therefore substitute spherical coordinates in \mathbb{R}^{n-1} to obtain

$$
\begin{aligned}
\int_{B(0,1)}|D f(x)|^{n-1} g(|D f(x)|) d x & \leq C \int_{B(0,1)} \frac{a(\|\tilde{x}\|)^{n-1}}{\|\tilde{x}\|^{n-1}} g\left(C \frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}\right) d x \\
& \leq C \int_{0}^{1} \frac{a(t)^{n-1}}{t^{n-1}} g\left(C \frac{a(t)}{t}\right) t^{n-2} d t
\end{aligned}
$$

From (5.4) we can find $\varepsilon>0$ such that for every $t \in(0, \varepsilon)$ we have $C(a(t) / t) \geq$ $1 / \sqrt{t}$; therefore, the last integral is finite by (5.3) and so (1.2) follows.

The inverse of f is given by

$$
f^{-1}(y)=\sum_{i=1}^{n-1} \mathbf{e}_{i} \frac{y_{i}}{\|\tilde{y}\|} a^{-1}(\|\tilde{y}\|)+\mathbf{e}_{n}\left(y_{n}-a^{-1}(\|\tilde{y}\|) \sin \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right)\right)
$$

if $\|\tilde{y}\|>0$ and by $f^{-1}(y)=\mathbf{e}_{n} y_{n}$ if $\|\tilde{y}\|=0$. The differential of f^{-1} is clearly continuous outside the segment $\{[0, \ldots, 0, t]: t \in \mathbb{R}\}$.

Analogously to (5.6), we obtain

$$
\begin{aligned}
\frac{\partial\left(f^{-1}\right)_{n}(y)}{\partial y_{1}}= & \left(a^{-1}\right)^{\prime}(\|\tilde{y}\|) y_{1}\|\tilde{y}\|^{-1} \sin \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right) \\
& +a^{-1}(\|\tilde{y}\|)\left(\frac{y_{1}}{\|\tilde{y}\| a^{-1}(\|\tilde{y}\|)}-\frac{y_{1}\left(a^{-1}\right)^{\prime}(\|\tilde{y}\|)}{a^{-1}(\|\tilde{y}\|)^{2}}\right) \cos \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right)
\end{aligned}
$$

It follows that we can find $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{\partial\left(f^{-1}\right)_{n}(y)}{\partial y_{1}}\right| \geq C\|\tilde{y}\| \frac{\left(a^{-1}\right)^{\prime}(\|\tilde{y}\|)}{a^{-1}(\|\tilde{y}\|)} \tag{5.7}
\end{equation*}
$$

for every

$$
y \in S:=\left\{y \in B(0, \delta): y_{1}>\frac{1}{2}\|\tilde{y}\|,\left|\cos \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right)\right| \geq \frac{\sqrt{2}}{2}\right\} .
$$

Here we have also used the fact that (5.4) gives us

$$
a^{-1}(y) \leq \exp \left(-\frac{1}{y^{(n-1) / 2}}\right) \quad \text { for small enough } y .
$$

Clearly, $\mathcal{L}_{n}(S)=C \mathcal{L}_{n}(G)$ for

$$
G:=\left\{y \in B(0, \delta):\left|\cos \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right)\right| \geq \frac{\sqrt{2}}{2}\right\}
$$

and thus we can use (5.7) to obtain

$$
\begin{align*}
\int_{f(B(0,1))}\left|D f^{-1}(y)\right| d y & \geq \int_{S}\left|\frac{\partial\left(f^{-1}\right)_{n}(y)}{\partial y_{1}}\right| d y \\
& \geq C \int_{G}\|\tilde{y}\| \frac{\left(a^{-1}\right)^{\prime}(\|\tilde{y}\|)}{a^{-1}(\|\tilde{y}\|)} d y . \tag{5.8}
\end{align*}
$$

Now let us consider a mapping

$$
h(x)=\sum_{i=1}^{n-1} \mathbf{e}_{i} \frac{x_{i}}{\|\tilde{x}\|} a(\|\tilde{x}\|)+\mathbf{e}_{n}\left(x_{n}+\|\tilde{x}\| \cos \left(\frac{a(\|\tilde{x}\|)}{\|\tilde{x}\|}\right)\right)
$$

if $\|\tilde{x}\|>0$ and $h(x)=\mathbf{e}_{n} x_{n}$ if $\|\tilde{x}\|=0$. As before, we obtain that h is a homeomorphism satisfying (1.2) and that

$$
\begin{equation*}
\int_{h(B(0,1))}\left|D h^{-1}(y)\right| d y \geq C \int_{\tilde{G}}\|\tilde{y}\| \frac{\left(a^{-1}\right)^{\prime}(\|\tilde{y}\|)}{a^{-1}(\|\tilde{y}\|)} d y \tag{5.9}
\end{equation*}
$$

where

$$
\tilde{G}=\left\{y \in B(0, \delta):\left|\sin \left(\frac{\|\tilde{y}\|}{a^{-1}(\|\tilde{y}\|)}\right)\right| \geq \frac{\sqrt{2}}{2}\right\}
$$

for some possibly smaller δ. By the formula of change of variables and (5.2) we obtain that

$$
\begin{align*}
\int_{B(0, \delta)}\|\tilde{y}\| \frac{\left(a^{-1}\right)^{\prime}(\|\tilde{y}\|)}{a^{-1}(\|\tilde{y}\|)} d y & \geq C \int_{0}^{\delta} s \frac{\left(a^{-1}\right)^{\prime}(s)}{a^{-1}(s)} s^{n-2} d s \\
& \geq C \int_{0}^{a^{-1}(\delta)} a(t) \frac{1}{t} a(t)^{n-2} d t=\infty \tag{5.10}
\end{align*}
$$

From (5.8), (5.9), $G \cup \tilde{G}=B(0, \delta)$, and (5.10) we obtain that either $\nabla f \notin L^{1}$ or $\nabla h \notin L^{1}$, which is the desired conclusion.

References

[1] M. Csörnyei, S. Hencl, and J. Malý, Homeomorphisms in the Sobolev space $W^{1, n-1}$, J. Reine Angew. Math. 644 (2010), 221-235.
[2] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, SpringerVerlag, New York, 1969.
[3] B. Franchi, P. Hajlasz, and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924.
[4] N. Fusco, G. Moscariello, and C. Sbordone, The limit of $W^{1,1}$ homeomorphisms with finite distortion, Calc. Var. Partial Differential Equations 33 (2008), 377-390.
[5] F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504-512.
[6] S. Hencl and P. Koskela, Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Rational Mech. Anal. 180 (2006), 75-95.
[7] S. Hencl, P. Koskela, and J. Malý, Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 1267-1285.
[8] S. Hencl, P. Koskela, and J. Onninen, Homeomorphisms of bounded variation, Arch. Rational Mech. Anal. 186 (2007), 351-360.
[9] S. Hencl, G. Moscariello, A. Passarelli di Napoli, and C. Sbordone, Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl. 355 (2009), 22-32.
[10] T. Iwaniec and G. Martin, Geometric function theory and nonlinear analysis, Oxford Math. Monogr., Oxford Univ. Press, New York, 2001.
[11] T. Iwaniec and J. Onninen, Deformations of finite conformal energy: Existence, and removability of singularities, Proc. London Math. Soc. (3) 100 (2010), 1-23.
[12] J. Kauhanen, P. Koskela, and J. Malý, Mappings of finite distortion: Condition N, Michigan Math. J. 49 (2001), 169-181.
[13] J. Kauhanen, P. Koskela, J. Malý, J. Onninen, and X. Zhong, Mappings of finite distortion: Sharp Orlicz-conditions, Rev. Mat. Iberoamericana 19 (2003), 857-872.
[14] J. Onninen, Regularity of the inverse of spatial mapping with finite distortion, Calc. Var. Partial Differential Equations 26 (2006), 331-341.
[15] S. Ponomarev, An example of an ACTL^{p} homeomorphism that is not absolutely continuous in the sense of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian).
[16] K. Quittnerová, Funkce více proměnných s konečnou variací [Functions of several variables with bounded variation], Master's thesis, Charles University, 2007.

Department of Mathematical Analysis
Charles University
Sokolovská 83
18600 Prague 8
Czech Republic
hencl@karlin.mff.cuni.cz

[^0]: Received March 24, 2009. Revision received October 22, 2009.
 The author was supported by MSM 0021620839.

