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Weighted Ck Estimates for a Class of
Integral Operators on Nonsmooth Domains

Dariush Ehsani

1. Introduction

Let X be an n-dimensional complex manifold equipped with a Hermitian metric,
and letD ⊂⊂ X be a strictly pseudoconvex domain with defining function r. Here
we do not assume the nonvanishing of the gradient, dr, thus allowing for the pos-
sibility of singularities in the boundary, ∂D, of D. We refer to such domains as
Henkin–Leiterer domains, as they were first systematically studied by Henkin and
Leiterer in [2].

We shall make the additional assumption that r is a Morse function.
Let γ = |∂r|. In [1] the author established an integral representation of the fol-

lowing form.

Theorem 1.1. There exist integral operators T̃q : L2
(0,q+1)(D) → L2

(0,q)(D) with

0 ≤ q < n = dimX such that, for f ∈L2
(0,q) ∩ Dom(∂̄) ∩ Dom(∂̄∗), one has

γ 3f = T̃q ∂̄f + T̃ ∗
q−1∂̄

∗f + (error terms) for q ≥ 1.

Theorem 1.1 is valid under the assumption that we are working with the Levi met-
ric. With local coordinates denoted by ζ1, . . . , ζn, we define a Levi metric in a
neighborhood of ∂D by

ds2 =
∑
j,k

∂ 2r

∂ζj , ∂ζ̄k
(ζ).

A Levi metric on X is a Hermitian metric that is a Levi metric in a neighborhood
of ∂D. In what follows we will be working with X equipped with a Levi metric.

The author [1] then used properties of the operators in the representation to es-
tablish the following estimates.

Theorem 1.2. For f ∈L2
0,q(D) ∩ Dom(∂̄) ∩ Dom(∂̄∗) with q ≥ 1,

‖γ 3(n+1)f ‖L∞ � ‖γ 2∂̄f ‖∞ + ‖γ 2∂̄∗f ‖∞ + ‖f ‖2.

In this paper we examine the operators in the integral representation, derive more
detailed properties of such operators under differentiation, and use the properties
to establish Ck estimates. Our main theorem is as follows.
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Theorem 1.3. Let f ∈ L2
0,q(D) ∩ Dom(∂̄) ∩ Dom(∂̄∗), q ≥ 1, and α < 1/4.

Then for N(k) large enough we have

‖γ N(k)f ‖Ck+α � ‖γ k+2∂̄f ‖Ck + ‖γ k+2∂̄∗f ‖Ck + ‖f ‖2.

We show that we may take any N(k) > 3(n+ 6)+ 8k.
Our results are consistent with those obtained by Lieb and Range in the case of

smooth strictly pseudoconvex domains [4], where we may take γ = 1. In [4], an
estimate as in Theorem 1.3 with γ = 1 and α < 1/2 was given.

In a separate paper we look to establish Ck estimates for f ∈L2(D)∩Dom(∂̄),
as the functions used in the construction of the integral kernels in the case q = 0
differ from those in the case q ≥ 1.

One of the difficulties in working on nonsmooth domains is the problem of the
choice of frame of vector fields with which to work. In the case of smooth do-
mains a special boundary chart is used in which ωn = ∂r is part of an orthonormal
frame of (1, 0)-forms. When ∂r is allowed to vanish, the frame needs to be modi-
fied. We get around this difficulty by defining a (1, 0)-form ωn by ∂r = γωn. In
the dual frame of vector fields we are then faced with factors of γ in the expres-
sions of the vector fields with respect to local coordinates, and we deal with these
terms by multiplying our vector fields by a factor of γ. This ensures that when
vector fields are commuted, there are no error terms that blow up at the singularity.

We organize our paper as follows. In Section 2 we define the types of operators
that make up the integral representation established in [1]. Section 3 contains the
most essential properties used to obtain our results. In Section 3 we consider the
properties of our integral operators under differentiation. Finally, in Section 4 we
apply the properties from Section 3 to obtain our Ck estimates.

The author extends thanks to Ingo Lieb, with whom he shared many fruitful dis-
cussions over the ideas presented here and from whom he originally had the idea
to extend results on smooth domains to Henkin–Leiterer domains.

2. Admissible Operators

Denoting local coordinates by ζ1, . . . , ζn, we define a Levi metric in a neighbor-
hood of ∂D by

ds2 =
∑
j,k

∂ 2r

∂ζj , ∂ζ̄k
(ζ) dζj dζ̄k.

A Levi metric on X is a Hermitian metric that is a Levi metric in a neighborhood
of ∂D.

We thus equip X with a Levi metric, and we take ρ(x, y) to be a symmetric
smooth function on X × X that coincides with the geodesic distance in a neigh-
borhood of the diagonal � and is positive outside of �.

For ease of notation, in what follows we will always work with local coordi-
nates ζ and z.

Since D is strictly pseudoconvex and r is a Morse function, we can take rε =
r + ε for epsilon small enough. Then rε will be defining functions for smooth,
strictly pseudoconvex Dε. For such rε we have that all derivatives of rε are inde-
pendent of ε. In particular, γε(ζ) = γ (ζ) and ρε(ζ, z) = ρ(ζ, z).
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Let F be the Levi polynomial for Dε :

F(ζ, z) =
n∑

j=1

∂rε

∂ζj
(ζ)(ζj − zj )− 1

2

n∑
j,k=1

∂ 2rε

∂ζj ζk
(ζj − zj )(ζk − zk).

We note that F(ζ, z) is independent of ε since derivatives of rε are.
For ε small enough we can choose δ > 0 and ε > 0 and a patching function

ϕ(ζ, z), independent of ε, on C
n × C

n such that

ϕ(ζ, z) =
{

1 for ρ2(ζ, z) ≤ 1
2ε,

0 for ρ2(ζ, z) ≥ 3
4ε.

Defining Sδ = {ζ : |r(ζ)| < δ}, D−δ = {ζ : r(ζ) < δ}, and

φε(ζ, z) = ϕ(ζ, z)(Fε(ζ, z)− rε(ζ))+ (1 − ϕ(ζ, z))ρ2(ζ, z),

we have the following result.

Lemma 2.1. On Dε ×Dε ∩ Sδ ×D−δ ,

|φε | � |〈∂r(z), ζ − z〉| + ρ2(ζ, z),

where the constants in the inequalities are independent of ε.

We at times have to be precise and keep track of factors of γ that occur in our in-
tegral kernels. We shall write Ej,k(ζ, z) for those double forms on open sets U ⊂
D ×D such that Ej,k is smooth on U and satisfies

Ej,k(ζ, z) � ξk(ζ)|ζ − z|j, (1)

where ξk is a smooth function in D with the property

|γ αDαξk| � γ k

for Dα a differential operator of order α, and such that

�ζEj,k = Ej−1,k + Ej,k−1,

where �ζ is a first-order differential operator in ζ.
We shall write Ej for those double forms on open sets U ⊂ X×X such that Ej

is smooth on U, can be extended smoothly to D̄ × D̄, and satisfies

Ej(x, y) � ρj(x, y);
E∗
j,k will denote forms that can be written as Ej,k(z, ζ).
For N ≥ 0, we let RN denote an N -fold product, or a sum of such products, of

first derivatives of r(z), with the notation R0 = 1. Here

Pε(ζ, z) = ρ2(ζ, z)+ rε(ζ)

γ (ζ)

rε(z)

γ (z)
.

Definition 2.2. A double differential form Aε(ζ, z) on D̄ε × D̄ε is an admissi-
ble kernel if it has the following properties.
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(i) Aε is smooth on D̄ε × D̄ε −�ε.

(ii) For each point (ζ0, ζ0) ∈ �ε there is a neighborhood U × U of (ζ0, ζ0) on
which Aε or Āε has the representation

RNR
∗
MEj,αE

∗
k,βP

−t0
ε φ t1ε φ̄

t2
ε φ

∗t3
ε φ̄∗t4

ε r lε r
∗m
ε (2)

with N, M, α, β, j, k, t0, . . . , m integers and j, k, t0, l, m ≥ 0, −t =
t1 + · · · + t4 ≤ 0, N,M ≥ 0, and with N + α ≥ 0 and M + β ≥ 0.

This representation is of smooth type s for

s = 2n+ j + min{2, t − l −m} − 2(t0 + t − l −m).

We define the type of Aε(ζ, z) to be

τ = s − max{0, 2 −N −M − α − β}.
We say that Aε has smooth type ≥ s if at each point (ζ0, ζ0) there is a represen-
tation (2) of smooth type ≥ s; Aε has type ≥ τ if at each point (ζ0, ζ0) there is a
representation (2) of type ≥ τ. We shall also refer to the double type of an operator
(τ, s) if the operator is of type τ and of smooth type s.

The definition of smooth type just given is taken from [5]. In this paper, (rε(x))∗ =
rε(y), where the asterisk has a similar meaning for other functions of one variable.

Let A
ε
j be kernels of type j. We denote by Aj the pointwise limit as ε → 0 of

A
ε
j and define the double type of Aj to be the double type of the A

ε
j of which it is a

limit. We also denote by Aεj those operators with kernels of the form A
ε
j ; Aj will

denote the operators with kernels Aj . We use the notation Aε
(j,k) (resp. A(j,k)) to

denote kernels of double type (j, k).
We let Eij−2n(ζ, z) be a kernel of the form

Eij−2n(ζ, z) = Em,0(ζ, z)

ρ2k(ζ, z)
, j ≥ 1,

wherem−2k ≥ j−2n. We denote byEj−2n the corresponding isotropic operator.
From [1], we have our next theorem.

Theorem 2.3. For f ∈L2
(0,q)(D)∩ Dom(∂̄)∩ Dom(∂̄∗), there exist integral op-

erators Tq , Sq , and Pq such that

γ (z)3f(z) = γ ∗Tq∂̄(γ 2f )+ γ ∗Sq∂̄∗(γ 2f )+ γ ∗Pq(γ 2f ).

The operators Tq , Sq , and Pq have the form

Tq = E1−2n + A1,

Sq = E1−2n + A1,

Pq = 1

γ
Aε
(−1,1) +

1

γ ∗A
ε
(−1,1).

3. Estimates

We begin with estimates on the kernels of a certain type. In [1] we proved the fol-
lowing statement.
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Proposition 3.1. Let Aj be an operator of type j > 0. Then

Aj : Lp(D) → Ls(D),
1

s
>

1

p
− j

2n+ 2
.

We describe what we shall call tangential derivatives on the Henkin–Leiterer do-
main D. A nonvanishing vector field T in R

2n will be called tangential if Tr = 0
on r = 0. Near a boundary point, we choose a coordinate patch on which we have
an orthonormal frame ω1, . . . ,ωn of (1, 0)-forms with ∂r = γωn. Let L1, . . . ,Ln

denote the dual frame. ThenL1, . . . ,Ln−1, L̄1, . . . , L̄n−1, and Y = Ln−L̄n are tan-
gential vector fields andN = Ln+ L̄n is a normal vector field. We say that a given
vector field X is a smooth tangential vector field if it is a tangential field and if,
near each boundary point, X is a combination of such vector fields L1, . . . ,Ln−1,
L̄1, . . . , L̄n−1, Y, and rN with coefficients in C∞(D̄). We make the important re-
mark here that, in the coordinate patch of a critical point, the smooth tangential
vector fields are not smooth combinations of derivatives with respect to the coordi-
nate system described in Lemma 3.9. In fact, they are combinations of derivatives
with respect to the coordinates of Lemma 3.9 with coefficients only in C 0(D̄)

owing to factors of γ that occur in the denominators of such coefficients. In gen-
eral, a kth-order derivative of such coefficients is in E0,−k. Thus, when integrating
by parts, special attention has to be paid to these nonsmooth terms.

Definition 3.2. We say an operator with kernel, A, is of commutator type j if
A is of type j and if, in the representation of A in (2), we have t1t3 ≥ 0, t2 t4 ≥ 0,
and (t1 + t3)(t2 + t4) ≤ 0.

Definition 3.3. Let W be a smooth tangential vector field on D̄. We call W
allowable if, for all ζ ∈ ∂D,

Wζ ∈ T 1,0
ζ (∂D)⊕ T

0,1
ζ (∂D).

The following theorem is obtained by a modification of Theorem 2.20 in [4] (see
also [3]). The new details, which arise because here we do not assume |∂r| �= 0,
require careful consideration and so we shall work out the calculations explicitly.

Theorem 3.4. Let A1 be an admissible operator of commutator type ≥ 1 and X
a smooth tangential vector field. Then

γ ∗XzA1 = −A1X̃
ζγ + A

(0)
1 +

l∑
ν=1

A
(ν)
1 Wζ

ν γ,

where X̃ is the adjoint of X, the Wν are allowable vector fields, and the A(ν)j are
admissible operators of commutator type ≥ j.

Proof. We use a partition of unity and suppose that X has arbitrarily small sup-
port on a coordinate patch near a boundary point in which we have an orthonormal
frame ω1, . . . ,ωn of (1, 0)-forms with ∂r = γωn, as described previously, with
L1, . . . ,Ln constituting the dual frame. We have L1, . . . ,Ln−1, L̄1, . . . , L̄n−1, and
Y = Ln− L̄n as tangential vector fields andN = Ln+ L̄n as a normal vector field.



594 Dariush Ehsani

We have the following decomposition of the tangential vector field X :

X =
n−1∑
j=0

ajLj +
n−1∑
j=0

bj L̄j + aY + brN,

where the aj , bj , a, and b are smooth with compact support. We shall prove the
theorem for each term in the decomposition.

Case 1: X = ajLj or bj L̄j , j ≤ n− 1, or aY. We write

γ ∗XzA1 = −γXζA1 + (γXζ + γ ∗Xz)A1.

Then an integration by parts gives

γ ∗XzA1f = −A1(X̃
ζγf )+ (f , (γXζ + γ ∗Xz)A1).

We now use the following relations:

(γXζ + γ ∗Xz)Ej,α = Ej,α ,

(γXζ + γ ∗Xz)E∗
j,β = E∗

j,β ,

(γXζ + γ ∗Xz)P = E2,0 + rr∗

γ γ ∗ E0,0

= E0,0P + E2,0,

(γXζ + γ ∗Xz)φ = E1,1 + E2,0.

(3)

Any type-1 kernel

A1(ζ, z) = RNR
∗
MEj,αE

∗
k,βP

−t0φt1 φ̄ t2φ∗t3 φ̄∗t4r lr∗m (4)

can be decomposed into terms

A1 = A′
1 + A2,

where A′
1 is of pure type—meaning that it has a representation as in (4) but with

t3 = t4 = 0 and t1t2 ≤ 0 [4]. From the relations (3) we have

(γXζ + γ ∗Xz)A2 = γA1 + A2.

In calculating (γXζ + γ ∗Xz)A′
1, we find the term that is not immediately seen

to be of type A1 is the one resulting from the operator γXζ + γ ∗Xz falling on φt1,
in which case we obtain the term of double type (0, 0),

B := RNR
∗
MEj+1,α+1E

∗
k,βP

−t0φt1−1φ̄ t2 r lr∗m,

where N + α ≥ 2, plus a term that is A1. We follow [3] in reducing to the case
where B can be written as a sum of terms Bσ such that Bσ or B̄σ is of the form

γ 2φσ(φ + φ̄ )τ1+τ2−σRNR∗
MEj+1,α−1E

∗
k,βP

−t0r lr∗m,

where τ1 + τ2 ≤ −3 and either τ1 ≤ σ ≤ τ1 + τ2 or τ2 ≤ σ ≤ τ1 + τ2.
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We fix a point z and choose local coordinates ζ such that

dζj(z) = ωj(z).

Working in a neighborhood of a singularity in the boundary (where we can use
a coordinate system as in (13) to follow), we see that ∂/∂ζn is a combination of
derivatives with coefficients of the form ξ0(z) and that Ln is a combination of
derivatives with coefficients of the form ξ0(ζ), where ξ0 is defined in (1). We have
that �n − ∂/∂zn is a sum of terms of the form

E1,−1�
ε ,

where � is a first-order differential operator.
Using these special coordinates, we note that

Yφ = γ + E1,0 + E2,−1,

Yφ̄ = −γ + E1,0 + E2,−1,

YP = E1,0 + E0,0

γ
(P + E2,0)

and write

Bσ = γ 2φσ(φ + φ̄ )τ1+τ2−σRNR∗
MEj+1,α−1E

∗
k,βP

−t0r lr∗m

= γY(φσ+1(φ + φ̄ )τ1+τ2−σRNR∗
MEj+1,α−1E

∗
k,βP

−t0r lr∗m)

+ γφσ(φ + φ̄ )τ1+τ2−σRNR∗
MEj+2,α−1E

∗
k,βP

−t0r lr∗m

+ γφσ(φ + φ̄ )τ1+τ2−σRNR∗
MEj+3,α−2E

∗
k,βP

−t0r lr∗m

+ γφσ+1(φ + φ̄ )τ1+τ2−σ−1RNR
∗
MEj+2,α−1E

∗
k,βP

−t0r lr∗m

+ γφσ+1(φ + φ̄ )τ1+τ2−σ−1RNR
∗
MEj+3,α−2E

∗
k,βP

−t0r lr∗m

+ γφσ+1(φ + φ̄ )τ1+τ2−σRN−1R
∗
MEj+1,α−1E

∗
k,βP

−t0r lr∗m

+ γφσ+1(φ + φ̄ )τ1+τ2−σRNR∗
MEj,α−1E

∗
k,βP

−t0r lr∗m

+ γφσ+1(φ + φ̄ )τ1+τ2−σRNR∗
MEj+2,α−1E

∗
k,βP

−t0−1r lr∗m

+ φσ+1(φ + φ̄ )τ1+τ2−σRNR∗
MEj+1,α−1E

∗
k,βP

−t0r lr∗m

+ φσ+1(φ + φ̄ )τ1+τ2−σRNR∗
MEj+3,α−1E

∗
k,βP

−t0−1r lr∗m.
Thus

Bσ = γYA(1,2) + A′
1.

By the strict pseudoconvexity ofD there exist allowable vector fieldsW1,W2,W3

and a function ϕ, smooth on the interior of D, that satisfies

;kϕ = E0,1−k ,

where ; is a first-order differential operator, such that Y can be written as

Y = ϕ[W1,W2 ] +W3.

Thus
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γYA(2,1) = γϕ[W1,W2 ]A(1,2) + γW3 A(1,2)

= γ [W1,W2 ]ϕA(1,2) + A′
1

with A′
1 of commutator type ≥ 1.

An integration by parts gives

(f , γ [W1,W2 ](ϕA2)) = (W̃1γf ,W2(ϕA(1,2)))− (W̃2γf ,W1(ϕA(1,2))).

Here W̃1 and W̃2 are allowable vector fields and bothW2(ϕA(1,2)) andW1(ϕA(1,2))

are of the form A′
1, where A′

1 is of commutator type. This proves the theorem for
Case 1.

Case 2: X = E0rN. We use

(rγNζ + r∗γ ∗Nz)Ej,α = Ej,α ,

(rγNζ + r∗γ ∗Nz)P = E2,0 + r

γ

r∗

γ ∗ E0,0

= E2,0 + PE0,0,

(rγNζ + r∗γ ∗Nz)φ = rE0,0 + r∗E0,0.

(5)

Thus

γ ∗XA1f = (E0r
∗f , γ ∗NzA1)

= (−E0rf , γNζA1)+ (f , E0(rγN
ζ + r∗γ ∗Nz)A1)

= (−Ñζ(E0rγf ), A1)+ (f , E0(rγN
ζ + r∗γ ∗Nz)A1).

We have
Ñζ(E0rγf ) = E0,0f + E0rÑ

ζγf ,

and E0rÑ
ζ is an allowable vector field. The relations in (5) show that

(rγNζ + r∗γ ∗Nz)A1

is of commutator type ≥ 1. Case 2 therefore follows.

We will use a criterion for Hölder continuity given by Schmalz.

Lemma 3.5 [6, Lemma 4.1]. LetD ⊆ R
m (m ≥ 1) be an open set, and let B(D)

denote the space of bounded functions on D. Suppose r is a C2 function on R
m,

m ≥ 1, such that D := {r < 0} ⊆ R
m. Then there exists a constant C < ∞ such

that the following statement holds: If a function u ∈B(D) satisfies for some 0 <
α ≤ 1/2 and for all z,w ∈D the estimate

|u(z)− u(w)| ≤ |z− w|α + max
y=z,w

|∇r(y)||z− w|1/2+α

|r(y)|1/2
,

then
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|u(z)− u(w)| ≤ C|z− w|α
for all z,w ∈D.
We will also refer to another lemma of Schmalz [6, Lemma 3.2] that provides a
useful coordinate system in which to prove estimates.

Lemma 3.6. Define xj by ζj = xj + ixj+n for 1 ≤ j ≤ n. Let Eδ(z) := {ζ ∈D :
|ζ − z| < δγ (z)} for δ > 0. Then there exist a constant c and numbers l,m ∈
{1, . . . , 2n} such that, for all z∈D,

{−r(ζ), Imφ(·, z), x1, . . . l̂ , m̂ . . . , x2n},
where xl and xm are omitted, forms a coordinate system in Ec(z). We have the
estimate

dV �
1

γ (z)2
|dr(ζ) ∧ d Imφ(·, z) ∧ dx1 ∧ · · · l̂ , m̂ · · · ∧ dx2n| on Ec(z),

where dV is the Euclidean volume form on R
2n.

We next define the function spaces with which we will be working.

Definition 3.7. Let 0 ≤ β and 0 ≤ δ. We define

‖f ‖L∞,β,δ(D) = sup
ζ∈D

|f(ζ)|γ β(ζ)|r(ζ)|δ.

Definition 3.8. For 0 < α < 1 we set

�α(D) =
{
f ∈L∞(D) : ‖f ‖�α

:= ‖f ‖L∞ + sup
|f(ζ)− f(z)|

|ζ − z|α < ∞
}
.

We also define the spaces �α,β by

�α,β := {f : ‖f ‖�α,β
= ‖γ βf ‖�α

< ∞}.
From [1], we have the following lemma.

Lemma 3.9. rε

γ
∈C1(Dε)

with C1 estimates independent of ε.

For our Ck estimates later, we will need the following properties.

Theorem 3.10. Let T be a smooth first-order tangential differential operator on
D. For A an operator of type 1, we have:

(i) A : L∞,2+ε,0(D) → �α,2−ε ′(D) with 0 < ε, ε ′ and α + ε + ε ′ < 1/4;
(ii) γ ∗TA : L∞,2+ε,0(D) → L∞,ε ′,δ(D) with 1/2 < δ < 1 and ε < ε ′ < 1;

(iii) A : L∞,ε,δ(D) → L∞,ε ′,0(D) with ε < ε ′ and δ < 1/2 + (ε ′ − ε)/2.

Proof. (i) We will prove part (i) of the theorem in the cases that A, the kernel of
A, is of double type (1, 1) satisfying the inequality
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|A| �
γ (ζ)2

P n−1/2−µ|φ|µ+1
, µ ≥ 1,

and A is of double type (1, 2) satisfying

|A| �
γ (ζ)

P n−1−µ|φ|µ+1
, µ ≥ 1.

All other cases are handled by the same methods.

Case A: A, the kernel of A, is of double type (1, 1). We estimate∫
D

1

γ ε(ζ)

∣∣∣∣ γ (z)2−ε ′

(φ(ζ, z))µ+1P(ζ, z)n−1/2−µ − γ (w)2−ε ′

(φ(ζ,w))µ+1P(ζ,w)n−1/2−µ

∣∣∣∣ dV(ζ).
(6)

Then the integral in (6) is bounded by∫
D

1

γ ε(ζ)

∣∣∣∣γ (z)2−ε
′
(φ(ζ,w))µ+1 − γ (w)2−ε ′(φ(ζ, z))µ+1

(φ(ζ,w))µ+1(φ(ζ, z))µ+1P(ζ, z)n−1/2−µ

∣∣∣∣ dV(ζ)
+

∫
D

γ (w)2−ε ′

γ ε(ζ)

∣∣∣∣ P(ζ, z)n−1/2−µ − P(ζ,w)n−1/2−µ

(φ(ζ,w))µ+1P(ζ, z)n−1/2−µP(ζ,w)n−1/2−µ

∣∣∣∣ dV(ζ)
= I + II.

In I we use

(φ(ζ,w))µ+1 − (φ(ζ, z))µ+1 =
µ∑
l=0

(φ(ζ,w))µ−l(φ(ζ, z))l(φ(ζ,w)− φ(ζ, z))

and
φ(ζ,w)− φ(ζ, z) = O(γ (ζ)+ |ζ − z|)|z− w|.

Therefore,

I �
µ∑
l=0

∫
D

γ (z)2−ε ′

γ ε(ζ)

(γ (ζ)+ |ζ − z|)|z− w|
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−1−2µ

dV(ζ)

+
∫
D

1

γ ε(ζ)

|γ (z)2−ε ′ − γ (w)2−ε ′|
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ

dV(ζ)

�
µ∑
l=0

∫
D

γ (z)3−ε ′

γ ε(ζ)

|z− w|
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−1−2µ

dV(ζ)

+
µ∑
l=0

∫
D

γ (z)2−ε ′

γ ε(ζ)

|z− w|
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−2−2µ

dV(ζ)

+
∫
D

1

γ ε(ζ)

|γ (z)2−ε ′ − γ (w)2−ε ′|
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ

dV(ζ)

= Ia + Ib + Ic.

For the integral Ia we break the region of integration into two parts, {|ζ − w| ≤
|ζ − z|} and {|ζ − z| ≤ |ζ −w|}. By symmetry, we need only consider the region
{|ζ − z| ≤ |ζ − w|}.
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We first consider the region Ec, where c is chosen as in Lemma 3.5. Without
loss of generality we can choose c sufficiently small so that γ (z) � γ (ζ) holds in
Ec(z). We thus estimate∫

D∩Ec|ζ−z|≤|ζ−w|
γ (z)3−ε ′−ε |z− w|

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−1−2µ
dV(ζ). (7)

We use γ (z) � γ (w)+ |z− w| and

|z− w|β � |ζ − z|β + |ζ − w|β
� |ζ − w|β (8)

for β > 0 to bound the integral in (7) by a constant times

|z− w|1/2+α
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)2γ (w)|ζ − w|1/2−α

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−1−2µ+ε+ε ′ dV(ζ)

+ |z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)2|ζ − w|2−α
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−1−2µ+ε+ε ′ dV(ζ).

(9)

We use a coordinate system s1, s2, t1, . . . , t2n−2 as given by Lemma 3.6 with s1 =
−r(ζ) and s2 = Imφ, and we use the estimate from that lemma on the volume
element

dV(ζ) �
t 2n−3

γ (z)2
|ds1 ds2 dt |, (10)

where t =
√
t 2
1 + · · · + t 2

2n−2; the second line follows from γ (ζ) � γ (z) onEc(z).

We have the estimates

φ(ζ, z) � s1 + |s2| + t 2,

φ(ζ,w) � −r(w)+ s1 + t 2.

After redefining s2 to be positive, we bound the first integral of (9) by

|z− w|1/2+α

|r(w)|1/2
γ (w)∫

V

|ζ − w|1/2−α

(s1 + s2 + t 2)µ+1−l(s1 + |ζ − w|2)l+1/2 t 2n−1−2µ+ε+ε ′ t
2n−3 ds1 ds2 dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2µ−2−ε−ε ′

(s1 + s2 + t 2)µ+1−l(s1 + t 2)l+1/4+α/2
ds1 ds2 dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

1

s7/8
1 (s1 + s2)t 3/4+α+ε+ε ′ ds1 ds2 dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

1

s15/16
1 s15/16

2 t 3/4+α+ε+ε ′ ds1 ds2 dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w), (11)

where V is a bounded subset of R
3.
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The second integral of (9) can be bounded by a constant times

|z− w|α
∫
V

|ζ − w|2−α
(s1 + s2 + t 2)µ+1−l(s1 + |ζ − w|2)l+1t 2n−1−2µ+ε+ε ′ t

2n−3 ds1 ds2 dt

� |z− w|α
∫
V

t 2µ−2−ε−ε ′

(s1 + s2 + t 2)µ+1−l(s1 + t 2)l+α/2
ds1 ds2 dt

� |z− w|α,
where again V is a bounded subset of R

3. The last line follows by the estimates
in (11).

In estimating the integrals of Ia over the region D \ Ec, we write∫
D\Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

|z− w|
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−4−2µ+ε ′ dV(ζ)

� |z− w|α∫
D\Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

|ζ − w|1−α
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−4−2µ+ε ′ dV(ζ)

� |z− w|α∫
D\Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

1

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1/2+α/2|ζ − z|2n−4−2µ+ε ′ dV(ζ)

� |z− w|α
∫
D\Ec

1

γ ε(ζ)

1

|ζ − z|2n−1+α+ε ′ dV(ζ). (12)

We denote the critical points of r by p1, . . . ,pk and take ε small enough so that,
in each

U2ε(pj ) = {ζ : D ∩ |ζ − pj | < 2ε},
for j = 1, . . . , k there are (by the Morse lemma) coordinates uj1, . . . , ujm ,vjm+1,
. . . ,vj2n such that

−r(ζ) = u2
j1
+ · · · + u2

jm
− v2

jm+1
− · · · − v2

j2n
(13)

with ujα(pj ) = vjβ (pj ) = 0 for all 1 ≤ α ≤ m and m + 1 ≤ β ≤ 2n. Let Uε =⋃k
j=1Uε(pj ). We break the problem of estimating (12) into subcases depending

on whether z∈Uε.
Subcase a: z∈Uε(pj ). Define w1, . . . ,w2n by

wα =
{
ujα for 1 ≤ α ≤ m,

vjα for m+ 1 ≤ α ≤ 2n.
(14)

Let x1, . . . , x2n be defined by ζα = xα + ixn+α. By the Morse lemma, the Jaco-
bian of the transformation from coordinates x1, . . . , x2n to w1, . . . ,w2n is bounded
from below and above; thus we have
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|ζ − z| � |w(ζ)− w(z)|
for ζ, z∈U2ε(pj ).

From (13) we have γ (z) � |w(z)| and thus

|w(ζ)− w(z)| � |ζ − z|
� γ (z)

� |w(z)|
≥ |w(ζ)| − |w(ζ)− w(z)|,

so we obtain

|w(ζ)| � |w(ζ)− w(z)|
� |ζ − z|.

Using |w(ζ)| � γ (ζ), we use the preceding coordinates to estimate

|z− w|α
∫
Uε\Ec

1

γ ε(ζ)

1

|ζ − z|2n−1+α+ε ′ dV(ζ)

� |z− w|α
∫
V

um−1v2n−m−1

(u+ v)2n−1+α+ε ′+ε du dv

� |z− w|α,
where we use u =

√
u2
j1
+ · · · + u2

jm
and v =

√
v2
jm+1

+ · · · + v2
j2n

and where V is
a bounded set.

In integrating over the region D \Uε, we have

|z− w|α
∫
(D\Uε)\Ec

1

γ ε(ζ)

1

|ζ − z|2n−1+α+ε ′ dV(ζ)

� |z− w|α
∫
(D\Uε)\Ec

1

γ ε(ζ)
dV(ζ) � |z− w|α,

which follows by using the coordinates w1, . . . ,w2n.

Subcase b: z /∈ Uε. We have |ζ − z| � γ (z), but γ (z) is bounded from below
since z /∈Uε. We therefore have to estimate∫

D

1

γ ε(ζ)
dV(ζ),

which is easily done by working with the coordinates w1, . . . ,w2n.

The region in which |ζ −w| ≤ |ζ − z| is handled in the same manner, and thus
we are finished bounding Ia.

We now estimate Ib, and again we consider only the region |ζ − z| ≤ |ζ − w|.
We first estimate the integrals of Ib over the region Ec(z), where c is chosen as
in Lemma 3.6 and sufficiently small so that |ζ − z| � γ (ζ). As we chose coordi-
nates for the integrals in Ia , we choose a coordinate system in which s1 = −r(ζ)
and s2 = Imφ, and we use the estimate on the volume element given by (10). We
thus write
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D∩Ec|ζ−z|≤|ζ−w|

γ (z)2
|z− w|

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−2−2µ+ε+ε ′ dV(ζ)

� |z− w|α∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)2
1

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1/2+α/2|ζ − z|2n−2−2µ+ε+ε ′ dV(ζ)

� |z− w|α
∫
V

t 2n−3

(s1 + s2 + t 2)µ+1−l(s1 + t 2)l+1/2+α/2 t 2n−2−2µ+ε+ε ′ ds1 ds2 dt

� |z− w|α
∫ M

0

∫ N

0

t 2µ−1−ε−ε ′

(s1 + t 2)µ−l(s1 + t 2)l+1/2+α/2
ds1 dt

� |z− w|α
∫ M

0

∫ N

0

1

s7/8
1 t1/4+α+ε+ε ′

ds dt

� |z− w|α, (15)

where we have redefined the coordinate s2 to be positive, V is a bounded subset
of R

3, and M,N > 0 are constants. The integrals of Ib over the region D \Ec are
estimated by (12).

For the integral Ic we use

|γ (w)2−ε ′ − γ (z)2−ε
′| � |z− w|(γ (w)1−ε ′ + γ (z)1−ε

′
)

and estimate∫
D
|ζ−z|≤|ζ−w|

1

γ ε(ζ)

|z− w|(γ (w)1−ε ′ + γ (z)1−ε ′)
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ

dV(ζ). (16)

Let us first consider the case γ (w) ≤ γ (z) and integrate (16) over the region Ec.

We use a coordinate system s, t1, . . . , t2n−1 with s = −r and the estimate

dV(ζ) �
t 2n−2

γ (z)
ds dt

for t =
√
t 2
1 + · · · + t 2

2n−1. We thus bound (16) by∫
D∩Ec|ζ−z|≤|ζ−w|

|z− w|γ (z)1−ε ′
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ+ε dV(ζ)

� |z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)

|φ(ζ,w)|µ+1/2+α/2|ζ − z|2n−1−2µ+ε+ε ′ dV(ζ)

� |z− w|α
∫
V

t 2n−2

(s + t 2)µ+1/2+α/2 t 2n−1−2µ+ε+ε ′ ds dt

� |z− w|α
∫
V

1

s 3/4t1/2+ε+ε ′+α/2
ds dt

� |z− w|α, (17)

where V is here a bounded region of R
2.
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Over the complement of Ec, (16) is bounded by

|z− w|α
∫
D
|ζ−z|≤|ζ−w|

1

γ ε(ζ)

1

|φ(ζ,w)|µ+1/2+α/2|ζ − z|2n−2−2µ+ε ′ dV(ζ)

� |z− w|α
∫
D

1

γ ε(ζ)

1

|ζ − z|2n−1+ε ′+α dV(ζ)

� |z− w|α,
which follows from the estimates of (12).

For the case γ (z) ≤ γ (w) we estimate (16) over the region Ec, using coordi-
nates as before, by∫

D∩Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

|z− w|γ (w)1−ε ′
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ

dV(ζ)

�
|z− w|1/2+α/2

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−1−2µ+ε ′ dV(ζ)

�
|z− w|1/2+α/2

|r(w)|1/2
γ (w)

∫
V

t 2n−2

(s + t 2)µ+1/4+α/2 t 2n−2µ+ε+ε ′ ds dt

�
|z− w|1/2+α/2

|r(w)|1/2
γ (w), (18)

where the last line follows as before. Over the complement of Ec, we use γ (w) �
|ζ − w| to bound (16) by

|z− w|α
∫
D
|ζ−z|≤|ζ−w|

1

γ ε(ζ)

1

|φ(ζ,w)|µ+ε ′/2+α/2|ζ − z|2n−1−2µ
dV(ζ)

� |z− w|α
∫
D

1

γ ε(ζ)

1

|ζ − z|2n−1+ε ′+α dV(ζ)

� |z− w|α.
We are now done with integral I.

For II we again break the integral into regions |ζ − z| ≤ |ζ −w| and |ζ −w| ≤
|ζ − z|, again considering only the region |ζ − z| ≤ |ζ − w| since the other case
is handled similarly.

We write

(P(ζ, z)1/2)2n−1−2µ − (P(ζ,w)1/2)2n−1−2µ

=
2n−2µ−2∑

l=0

(P(ζ, z)1/2)2n−2−2µ−l(P(ζ,w)1/2)l(P(ζ, z)1/2 − P(ζ,w)1/2)

and use



604 Dariush Ehsani

|P(ζ, z)1/2 − P(ζ,w)1/2| = |P(ζ, z)− P(ζ,w)|
P(ζ, z)1/2 + P(ζ,w)1/2

�
|ζ − z| + |r(ζ)|

γ (ζ)

|ζ − z| |z− w|

�
|ζ − w| + |r(w)|

γ (w)

|ζ − z| |z− w|,
which follows from Lemma 3.9.

We thus estimate∫
D
|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ ε(ζ)

∣∣∣∣ P(ζ, z)n−1/2−µ − P(ζ,w)n−1/2−µ

(φ(ζ,w))µ+1P(ζ, z)n−1/2−µP(ζ,w)n−1/2−µ

∣∣∣∣ dV(ζ)
�

2n−2µ−2∑
l=0∫

D
|ζ−z|≤|ζ−w|

γ (w)2−ε′

γ ε(ζ)
|z− w|(|ζ − z| + |r(w)|

γ (w)

)
|φ(ζ,w)|µ+1(P(ζ, z)1/2)l+1(P(ζ,w)1/2)2n−1−2µ−l|ζ − z| dV(ζ)

�
∫
D
|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ ε(ζ)

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ)

+
∫
D
|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ ε(ζ)

|r(w)||z− w|
|φ(ζ,w)|µ+1|ζ − z|2n+1−2µ

dV(ζ)

= IIa + IIb.

For IIa , we break the integral into the regions Ec(z) and its complement. We
first consider∫

D\Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ ε(ζ)

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

1

|φ(ζ,w)|µ−1/2+α/2+ε ′/2|ζ − z|2n−2µ
dV(ζ)

� |z− w|α
∫
D

1

γ ε(ζ)

1

|ζ − z|2n−1+α+ε ′ dV(ζ)

� |z− w|α, (19)

where we use γ (w) � |ζ − w| and the estimates for (12).
We then bound the integral IIa over the region Ec(z) by considering the differ-

ent cases γ (w) ≤ γ (z) and γ (z) ≤ γ (w). In the case γ (w) ≤ γ (z), we use a
coordinate system, s, t1, . . . , t2n−1 in which s = −r(ζ); then, using the estimate

dV(ζ) �
t 2n−2

γ (z)
ds dt, (20)

we have
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∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ ε(ζ)

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|
γ (z)1−ε

′ 1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2µ−2−ε−ε ′

(s + t 2)µ+1/4+α/2
ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

1

s7/8t 3/4+α+ε+ε ′ ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w). (21)

In the case γ (z) ≤ γ (w) we estimate, as before,∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ ε(ζ)

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|
γ (w)

1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

(γ (z)+ |ζ − w|)
|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ).

The integral involvingγ (z) is estimated exactly as before. We thus have to deal with

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

|ζ − w|
|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ),

which we estimate using the coordinates s, t1, . . . , t2n−1 as

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

|ζ − w|
|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2n−2

(s + t 2)µ−1/4+α/2(s + t)2n−2µ+1+ε+ε ′ ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

1

s 3/4+α/2+ε+ε ′+δt1−δ
ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w),

where 0 < δ < 1/4 − (α/2 + ε + ε ′).
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For IIb we first estimate∫
D\Ec|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ ε(ζ)

|r(ζ)||z− w|
|φ(ζ,w)|µ+1|ζ − z|2n+1−2µ

dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ ε(ζ)

|ζ − w|2−α−ε ′
|φ(ζ,w)|µ|ζ − z|2n+1−2µ

dV(ζ)

� |z− w|α
∫
D

1

γ ε(ζ)

1

|ζ − z|2n−1+α+ε ′ dV(ζ)

� |z− w|α,
where c is chosen as in Lemma 3.6 and we use γ (w) � |ζ − w| on D \ Ec(z).

We now finish the estimates for IIb. We have∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ ε(ζ)

|r(ζ)||z− w|
|φ(ζ,w)|µ+1|ζ − z|2n+1−2µ

dV(ζ)

� |z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)1−ε
′ 1

|φ(ζ,w)|µ−1/2+α/2|ζ − z|2n+1−2µ+ε dV(ζ).

(22)

We again consider the different cases γ (w) ≤ γ (z) and γ (z) ≤ γ (w) separately.
With γ (w) ≤ γ (z), we use coordinates s, t1, . . . , t2n−1 as before with the volume
estimate (20) to estimate (22) as

|z− w|α
∫
V

t 2n−2

(s + t 2)µ−1/2+α/2(s + t)2n+1−2µ+ε+ε ′ ds dt

� |z− w|α
∫
V

1

s1/2+α/2+ε+ε ′+δt1−δ
ds dt

� |z− w|α,

where 0 < δ < 1/2− (α/2+ ε+ ε ′) andV again denotes a bounded subset of R
2.

In the case γ (z) ≤ γ (w), we write γ (w) � γ (z)+|ζ −w| and estimate (22) as

|z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)+ |ζ − w|
|φ(ζ,w)|µ−1/2+α/2|ζ − z|2n+1−2µ+ε+ε ′ dV(ζ).

The integral involving γ (z) is handled exactly as before, so we estimate

|z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

|ζ − w|
|φ(ζ,w)|µ−1/2+α/2|ζ − z|2n+1−2µ+ε+ε ′ dV(ζ)

� |z− w|α
∫
D∩Ec|ζ−z|≤|ζ−w|

1

|φ(ζ,w)|µ−1+α/2|ζ − z|2n+1−2µ+ε+ε ′ dV(ζ).
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The case of µ = 1 is trivial, so we assume µ ≥ 2 and use the coordinates
s, t1, . . . , t2n−1 to estimate

|z− w|α
∫
V

t 2n−2

(s + t 2)µ−1+α/2(s + t)2n+2−2µ+ε+ε ′ ds dt

� |z− w|α
∫
V

1

s 3/4+α/2+ε+ε ′t1/2
ds dt

� |z− w|α.
Case B: A is of double type (1, 2). Following the previous arguments, we see

that we need to estimate∫
D

1

γ (ζ)1+ε

∣∣∣∣γ (z)2−ε
′
(φ(ζ,w))µ+1 − γ (w)2−ε ′(φ(ζ, z))µ+1

(φ(ζ,w))µ+1(φ(ζ, z))µ+1P(ζ, z)n−1−µ

∣∣∣∣ dV(ζ)
+

∫
D

γ (w)2−ε ′

γ (ζ)1+ε

∣∣∣∣ P(ζ, z)n−1−µ − P(ζ,w)n−1−µ

(φ(ζ,w))µ+1P(ζ, z)n−1−µP(ζ,w)n−1−µ

∣∣∣∣ dV(ζ)
= III + IV.

Following the calculations for integral I in Case A, we estimate III by the
integrals

µ∑
l=0

∫
D

γ (z)2−ε ′

γ (ζ)ε

|z− w|
|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−2−2µ

dV(ζ)

+
µ∑
l=0

∫
D

γ (z)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−3−2µ
dV(ζ)

+
∫
D

1

γ (ζ)1+ε
|γ (z)2−ε ′ − γ (w)2−ε ′|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ)

= IIIa + IIIb + IIIc.

Estimates for the integral IIIa are given by Ib in Case A.
For the integrals of IIIb, we consider separately the regions Ec(z) and its com-

plement. We again consider only the case |ζ − z| ≤ |ζ − w|.
In the region D ∩ Ec(z), we use a coordinate system in which s = −r(ζ) is a

coordinate, and we use the estimate on the volume element inEc(z) given by (20).
We can also assume that c is sufficiently small to guarantee that |ζ − z| � γ (ζ)

in Ec.

The integrals∫
D∩Ec
|ζ−z|≤|ζ−w|

γ (z)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−3−2µ
dV(ζ)

can thus be bounded by
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|z− w|1/2+α

|r(z)|1/2
γ (z)∫

V

|ζ − w|1/2−α

(s + |ζ − z|2)µ+1/2−l(s + |ζ − w|2)l+1|ζ − z|2n−2−2µ+ε+ε ′ t
2n−2 ds dt

�
|z− w|1/2+α

|r(z)|1/2
γ (z)

∫
V

t 2n−2

(s + |ζ − z|2)µ+5/4+α/2|ζ − z|2n−2−2µ+ε+ε ′ ds dt

�
|z− w|1/2+α

|r(z)|1/2
γ (z)

∫
V

t 2µ−ε−ε ′

(s + t 2)µ+5/4+α/2
ds dt

�
|z− w|1/2+α

|r(z)|1/2
γ (z)

∫
V

1

s7/8t 3/4+α+ε+ε ′ ds dt

�
|z− w|1/2+α

|r(z)|1/2
γ (z),

where V is a bounded subset of R
2.

We now estimate∫
D\Ec|ζ−z|≤|ζ−w|

γ (z)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ, z)|µ+1−l|φ(ζ,w)| l+1|ζ − z|2n−3−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|φ(ζ,w)| l+1/2+α/2|ζ − z|2n−3−2 l+ε ′ dV(ζ).

We use coordinates uj1, . . . , ujm ,vjm+1, . . . ,vj2n as in (13) and the neighborhoods
U2ε(pj ) defined previously. We break the problem into subcases depending on
whether z∈Uε.

Subcase a: z∈Uε(pj ). As we did before, define w1, . . . ,w2n by

wα =
{
ujα for 1 ≤ α ≤ m,

vjα for m+ 1 ≤ α ≤ 2n,

and let x1, . . . , x2n be defined by ζα = xα + ixn+α. Recall that we have |w(ζ)| �
|ζ − z| and |w(ζ)| � γ (ζ). Thus we estimate, using the coordinates just defined,

|z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|φ(ζ,w)| l+1/2+α/2|ζ − z|2n−3−2 l+ε ′ dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|ζ − z|2n−2+α+ε ′ dV(ζ)

� |z− w|α
∫
V

um−1v2n−m−1

(u+ v)2n−1+α+ε+ε ′ du dv

� |z− w|α
∫
V

1

u1/2v1/2+α+ε+ε ′ du dv

� |z− w|α, (23)
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where we use u =
√
u2
j1
+ · · · + u2

jm
and v =

√
v2
jm+1

+ · · · + v2
j2n

and where V is
a bounded set.

Subcase b: z /∈ Uε. We have |ζ − z| � γ (z), but γ (z) is bounded from below
since z /∈Uε. We therefore have to estimate∫

D

1

γ (ζ)1+ε
dV(ζ),

which is easily done by working with the coordinates w1, . . . ,w2n.

We now estimate integral IIIc. We use

|γ (z)2−ε ′ − γ (w)2−ε
′| � |z− w|(γ (z)1−ε ′ + γ (w)1−ε

′
)

to write

IIIc �
∫
D
|ζ−z|≤|ζ−w|

γ (z)1−ε ′ + γ (w)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ).

We first assume γ (w) ≤ γ (z). Then we estimate∫
D
|ζ−z|≤|ζ−w|

γ (z)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ) (24)

by breaking the integral into the regions Ec and D \ Ec. In Ec, again assuming c
is sufficiently small so that |ζ − z| � γ (ζ), we see that (24) is bounded by∫

D
|ζ−z|≤|ζ−w|

γ (z)1−ε
′ |z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ+ε dV(ζ),

which we showed to be bounded by |z − w|α in (17). In the region D \ Ec, we
estimate∫

D\Ec|ζ−z|≤|ζ−w|

γ (z)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|φ(ζ,w)|µ+1/2+α/2|ζ − z|2n−3−2µ+ε ′ dV(ζ)

� |z− w|α,
where the last line follows from (23).

We therefore now consider the case γ (z) ≤ γ (w) so that

IIIc �
∫
D
|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ).

In the region Ec, we estimate
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∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ)

�
∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ+ε+ε ′ dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|

1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−1−2µ+ε+ε ′ dV(ζ).

Using the coordinate system s = −r(ζ), t1 . . . , t2n−2 with volume estimate (20),
as before we can estimate

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2n−2

(s + t 2)µ+1/4+α/2 t 2n−2µ+ε+ε ′ ds dt �
|z− w|1/2+α

|r(w)|1/2
γ (w)

by (21).
In the region D \ Ec, we use γ (w) � |ζ − w| to estimate∫
D\Ec|ζ−z|≤|ζ−w|

γ (w)1−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ)

�
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
|ζ − w|1−ε ′|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|φ(ζ,w)|µ+ε ′/2+α/2|ζ − z|2n−2−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|ζ − z|2n−2+ε ′+α dV(ζ)

� |z− w|α
∫
V

um−1v2n−1−m

(u+ v)2n−1+ε+ε ′+α du dv

� |z− w|α, (25)

where the coordinates u and v are defined as in (23) and where the last line follows
from (23). We have finished estimating integral III and now turn to IV.

As in Case A for integral II, we estimate IV by the integrals∫
D
|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ
dV(ζ)

+
∫
D
|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)2+ε
|r(ζ)||z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−2µ
dV(ζ)

= IVa + IVb.
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To estimate IVa , we break the region of integration into Ec and D \ Ec. In the
region D \ Ec we use γ (w) � |ζ − w| and estimate∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+ε ′/2|ζ − z|2n−1−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|φ(ζ,w)|µ+ε ′/2−1/2+α/2|ζ − z|2n−1−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)1+ε
1

|ζ − z|2n−2−2µ+ε ′+α dV(ζ)

� |z− w|α,
where the last line follows from (25).

In the region Ec, we consider the different cases γ (w) ≤ γ (z) and γ (z) ≤
γ (w) separately. In the case γ (w) ≤ γ (z) we write∫

D∩Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ
dV(ζ)

� γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ+ε ′ dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|
γ (z)

1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ).

We choose a coordinate system in which s = −r(ζ), and we use the estimate on
the volume element given by (20) to reduce the estimate to

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2µ−2−ε−ε ′

(s + t 2)µ+1/4+α/2
ds dt �

|z− w|1/2+α

|r(w)|1/2
γ (w),

which follows from (21).
In the case γ (z) ≤ γ (w), we have∫
D∩Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)1+ε
|z− w|

|φ(ζ,w)|µ+1|ζ − z|2n−1−2µ
dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)∫

D∩Ec|ζ−z|≤|ζ−w|
γ (w)

1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ).

We then write γ (w) � γ (z)+ |ζ − w|. We bound
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|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

γ (z)
1

|φ(ζ,w)|µ+1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ)

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

by (18) and then consider

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
D∩Ec|ζ−z|≤|ζ−w|

1

|φ(ζ,w)|µ−1/4+α/2|ζ − z|2n−2µ+ε+ε ′ dV(ζ).
(26)

The case µ = 1 is trivial, so we assume µ ≥ 2. Here we use coordinates s =
−r(ζ), t1, . . . , t2n−1 and bound (26) by

|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

t 2µ−3−ε−ε ′

(s + t 2)µ−1/4+α/2
ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w)

∫
V

1

s7/8t 3/4+α+ε+ε ′ ds dt

�
|z− w|1/2+α

|r(w)|1/2
γ (w).

To estimate IVb, we use
|r(ζ)|
γ (ζ)2

� 1,

which follows by working in the coordinates of (13) near a critical point; thus
we have

IVb �
∫
D
|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)ε

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ). (27)

We break the regions of integration in (27) into Ec and D \Ec. The estimates for
IVb in the region Ec are handled in the same manner as for IVa. In the region
D \ Ec, we use γ (w) � |ζ − w| to bound (27) by∫

D\Ec|ζ−z|≤|ζ−w|

γ (w)2−ε ′

γ (ζ)ε

|z− w|
|φ(ζ,w)|µ+1|ζ − z|2n−2µ

dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)ε

1

|φ(ζ,w)|µ−1/2+ε ′/2+α/2|ζ − z|2n−2µ
dV(ζ)

� |z− w|α
∫
D\Ec|ζ−z|≤|ζ−w|

1

γ (ζ)ε

1

|ζ − z|2n−1+ε ′+α dV(ζ)

� |z− w|α.
This completes the proof of part (i) of Theorem 3.10.

(ii) For T z a smooth, first-order tangential differential operator on D with re-
spect to the z variable, we have
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T zr = 0,

T zr∗ = E0,0r,

T zP = E1,0 + E∗
0,0
r

γ

r∗

(γ ∗)2

= E1,0 + E∗
0,0

γ ∗ (P + E2,0),

T zφ = E0,1 + E1,0.

We consider first the case in which the kernel of A is of double type (1, 3) and
of the form A(3)(ζ, z), where the subscript (3) refers to the smooth type. Thus
we write

γ ∗T zA(3) = γ ∗A(1)γ + γ ∗A(2) + A(3) (28)

and estimate integrals involving the various forms that the integral kernels of dif-
ferent types assume.

We insert (28) into

γ ∗TA(3)f =
∫
D

f(ζ)γ ∗T zA(3)(ζ, z) dV(ζ),

and we change the factors of γ ∗ through the equality γ (z) = γ (ζ)+E1,0. Part (ii)
will then follow in this case by the estimates∫

D

γ ε
′
(z)

γ ε(ζ)
|A(1)(ζ, z)| dV(ζ) �

1

|r(z)|δ ,

∫
D

γ ε
′
(z)

γ 1+ε(ζ)
|A(2)(ζ, z)| dV(ζ) �

1

|r(z)|δ ,

∫
D

γ ε
′
(z)

γ 2+ε(ζ)
|A(3)(ζ, z)| dV(ζ) �

1

|r(z)|δ . (29)

We will prove the case of (29) in which A(3) satisfies

|A(3)| �
1

P n−3/2−µ|φ|µ+1
, µ ≥ 1;

the other cases are handled similarly.
Using the notation from part (i), we choose coordinatesuj1, . . . ,ujm ,vjm+1, . . . ,vj2n

such that
−r(ζ) = u2

j1
+ · · · + u2

jm
− v2

jm+1
− · · · − v2

j2n

and let Uε = ⋃k
j=1Uε(pj ). We break the problem into subcases depending on

whether z∈Uε.
Subcase a: z∈Uε(pj ). We estimate∫

U2ε(pj )

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ) (30)

and
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∫
Dε\U2ε

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ). (31)

We break up the integral in (30) into integrals over Ec(z) and its complement,
where c is as in Lemma 3.6. We also choose c < 1 so that we also have the esti-
mate |ζ − z| � γ (ζ). We set θ = −r(z).

In the caseU2ε(pj )∩Ec(z), we use a coordinate system s = −r(ζ), t1, . . . , t2n−1

and estimate∫
U2ε(pj )∩Ec(z)

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ)

�
∫
V

t 2n−2

γ 1−ε ′(z)(θ + s + t 2)µ+1(s + t)2n−1−2µ+ε ds dt

�
∫
V

t 2µ−2+ε ′−ε

(θ + s + t 2)µ+1
ds dt

�
1

θδ

∫
V

t 2µ−2+ε ′−ε

(s + t 2)µ+1−δ ds dt

�
1

θδ

∫ M

0

1

s 3/2−δ ds
∫ ∞

0

t̃ 2µ−2+ε ′−ε

(1 + t̃ 2)µ+1−δ dt̃

�
1

θδ
,

where M > 0 is some constant and we have made the substitution t = s1/2 t̃.

We now estimate the integral∫
U2ε(pj )\Ec(z)

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ). (32)

Defining u =
√
u2
j1
+ · · · + u2

jm
and v =

√
v2
jm+1

+ · · · + v2
j2n

and then using the
estimates

|w(ζ)| � |ζ − z| and |w(ζ)| � γ (ζ),

where w(ζ) is defined as in (14), we can bound the integral in (32) by∫
U2ε(pj )\Ec(z)

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ)

�
∫
V

um−1v2n−m−1

(u+ v)2n−1+ε−ε ′(θ + u2 + v2)
du dv

�
∫
V

1

(u+ v)1+ε−ε ′(θ + u2 + v2)
du dv

�
1

θδ

∫
V

1

(u+ v)3−2δ+ε−ε ′ du dv

�
1

θδ
, (33)
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where V is a bounded region. We have therefore bounded (30), and we turn now
to (31).

In D \U2ε we have that |ζ − z| and γ (ζ) are bounded from below, so∫
D\U2ε

γ ε
′
(z)

γ 2+ε(ζ)
1

|φ|µ+1P n−3/2−µ dV(ζ) � 1.

This finishes Subcase a.
Subcase b: z /∈Uε. We divide D into the regions D ∩Ec(z) and D \Ec(z). In

D ∩Ec(z) the same coordinates and estimates work here as when we established
the estimates for the integral in (33).

In D \ Ec(z) we have |ζ − z| � γ (z), but γ (z) is bounded from below since
z /∈Uε. We therefore have to estimate∫

D

1

γ 2+ε(ζ)
dV(ζ),

which is easily done by working with the coordinates w1, . . . ,w2n.

(iii) The proof of Theorem 3.10(iii) follows the same steps as those in the proof
of part (ii); we leave the details to the reader.

Theorem 3.11. Let X be a smooth tangential vector field. Then

γ ∗XzE1−2n = −E1−2nX̃
ζγ + E

(0)
1−2n +

l∑
ν=1

E
(ν)
1−2n,

where X̃ is the adjoint of X and the E(ν)
1−2n are isotropic operators.

Proof. The proof follows the line of argument used in proving Case 1 of Theo-
rem 3.4 and makes use of (γXζ + γ ∗Xz)Ei1−2n = Ei1−2n.

Theorem 3.12. Let T be a smooth tangential vector field. Set E to be an oper-
ator with kernel of the form Ei1−2n(ζ, z)R1(ζ) or Ei2−2n(ζ, z). Then, for any 1 ≤
p ≤ s ≤ ∞ with 1/s > 1/p − 1/2n, we have the following properties:

(i) E1−2n : Lp(D) → Ls(D);
(ii) E : L∞,2+ε,0(D) → �α,2−ε ′(D) with 0 < ε, ε ′ and α + ε + ε ′ < 1;

(iii) γ ∗TE : �α,2+ε(D) → L∞,ε ′,0(D) with ε < ε ′;
(iv) E : L∞,ε,δ(D) → L∞,ε ′,0(D) with ε < ε ′ and δ < 1/2 + (ε ′ − ε)/2.

Proof. Part (i) is proved in [3]. The proof of (ii) follows that of Theorem 3.10(i).
For (iii), we let E(ζ, z) be the kernel of E and calculate

(γ ∗)1+ε
′
TEf =

∫
D

f(ζ)γ ∗T zE(ζ, z) dV(ζ)

=
∫
D

(γ ∗)ε
′
γ 2+εf(ζ)

γ ∗T zE(ζ, z)

γ 2+ε dV(ζ)

=
∫
D

(γ ∗)ε
′
(γ 2+εf(ζ)− (γ ∗)2+εf(z))

γ ∗T zE(ζ, z)

γ 2+ε dV(ζ)

+ (γ ∗)2+εf(z)
∫
D

(γ ∗)ε
′ γ ∗T zE(ζ, z)

γ 2+ε dV(ζ). (34)
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We use Theorem 3.11 in the last integral to bound the last term of (34) by

(γ ∗)2+εf(z)
∫
D

E1−2n,0(γ
∗)ε

′
(

1

γ 1+ε + E1,0

γ 2+ε

)
dV(ζ) � (γ ∗)2+ε |f(z)|

� ‖f ‖L∞,2+ε,0 ,

� ‖f ‖�α,2+ε ,

where the first inequality can be proved by breaking the integrals into the regions
U2ε and D \U2ε and by using, in the region D \U2ε, the same coordinates as in
the proof of Theorem 3.10(ii).

For the first integral in (34), we note that if f ∈�α then γ 2+εf ∈�α. We have∫
D

(γ ∗)ε
′
∣∣∣∣(γ 2+εf(ζ)− (γ ∗)2+εf(z))

γ ∗T zE(ζ, z)

γ 2+ε

∣∣∣∣ dV(ζ)
� ‖γ 2+εf ‖�α

∫
D

|ζ − z|α(γ ∗)ε
′
∣∣∣∣γ ∗T zE(ζ, z)

γ 2+ε

∣∣∣∣ dV(ζ)
� ‖γ 2+εf ‖�α

.

The proof of part (iv) follows as in the case of Theorem 3.10(iii).

4. Ck Estimates

We define Z1 operators to be those that take the form

Z1 = A(1,1)+ E1−2n  γ,

and we write Theorem 2.3 as

γ 3f = Z1γ
2∂̄f + Z1γ

2∂̄∗f + Z1f. (35)

We define Zj operators to be those operators of the form

Zj = Z1  · · ·  Z1︸ ︷︷ ︸
j times

.

We establish mapping properties for Zj operators as follows.

Lemma 4.1. For 0 < ε ′ < ε,

‖Zjf ‖L∞,ε,0 � ‖f ‖L∞,j+ε ′,0 . (36)

The proof follows arguments similar to those used to prove Theorem 3.10.

Lemma 4.2. Let T be a tangential vector field and ε > 0. For ε > 0 sufficiently
small, we have:

(i) Zn+2 : L2(D) → L∞(D);
(ii) ‖γTZ4f ‖C1/4−ε � ‖f ‖L∞,3+ε,0 .

Proof. For part (i), apply Corollary 3.1 and Theorem 3.12(i) n+ 2 times.
For part (ii) we let α < 1/4, apply the commutator theorem (Theorem 3.4), and

consider the two compositions Z1  Z1  γTA1  Z1 and Z1  Z1  γTE  Z1. From
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Theorems 3.10 and 3.12 we can find ε1, . . . , ε4 such that 0 < εj+1 < εj and such
that in the first composition we have

‖Z1  Z1  γTA1  Z1f ‖�α
� ‖Z1  γTA1  Z1f ‖L∞,ε1,0 � ‖γTA1  Z1f ‖L∞,ε2,δ

� ‖Z1f ‖L∞,2+ε3,0 � ‖f ‖L∞,3+ε4,0

and, in the second,

‖Z1  Z1  γTE  Z1f ‖�α
� ‖Z1  γTE  Z1f ‖L∞,ε1,0 � ‖γTE  Z1f ‖L∞,1+ε2,0

� ‖Z1f ‖�α,3+ε3
� ‖f ‖L∞,3+ε4,0 .

The second and third inequalities are proved in the same way as in parts (ii) and
(iii) of Theorem 3.12.

We now iterate (35) to get

γ 3jf = (Z1γ
3(j−1)+2 + Z2γ

3(j−2)+2 + · · · + Zjγ
2)∂̄f

+ (Z1γ
3(j−1)+2 + Z2γ

3(j−2)+2 + · · · + Zjγ
2)∂̄∗f + Zjf. (37)

Then we can prove the following statement.

Theorem 4.3. For f ∈L2
0,q(D) ∩ Dom(∂̄) ∩ Dom(∂̄∗), q ≥ 1, and ε > 0,

‖γ 3(n+3)f ‖C1/4−ε � ‖γ 2∂̄f ‖∞ + ‖γ 2∂̄∗f ‖∞ + ‖f ‖2.

Proof. Use Theorems 3.10(i) and 3.12(ii) and Lemma 4.2(i) in (37) with j =
n+ 3.

We useDk to denote a kth-order differential operator, which is a sum of terms that
are composites of k vector fields.

We define

Qk(f ) =
k∑

j=0

‖γ j+2Dj ∂̄f ‖∞ +
k∑

j=0

‖γ j+2Dj ∂̄∗f ‖∞ + ‖f ‖2.

We shall use T k to denote a kth-order tangential differential operator, which is
a sum of terms that are composites of k tangential vector fields.

Lemma 4.4. Let T k be a tangential operator of order k. For ε, ε > 0,

‖γ 3(n+6)+8k+εT kf ‖C1/4−ε � Qk(f ).

Proof. We first prove

‖γ 3(n+2)+9+8k+εT kf ‖L∞ � Qk(f ). (38)

The proof is by induction in which the first step is proved as was Theorem 4.3. We
choose j = 3 in (37) and then apply (37) to γ 3(n+2)+7kf to get

γ 3(n+2)+9+7kf = Z1γ
2∂̄f + Z1γ

2∂̄∗f + Z3γ
3(n+2)+7kf.

We then apply γ ε(γT )k, where T is a tangential operator. We use the commutator
theorem, Theorem 3.4, to show that
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γ 3(n+2)+9+8k+εT kf

= γ ε
k−1∑
j=0

Z3γ
3(n+2)+7k+jT jf + γ εγTZ3γ

3(n+2)+8k−1T k−1f

+ γ ε
k∑

j=0

Z1γ
j+2T j ∂̄f + γ ε

k∑
j=0

Z1γ
j+2T j ∂̄∗f. (39)

By Lemma 4.1 and the induction hypothesis, we conclude that the L∞ norm of the
first term on the right-hand side of (39) is bounded by Qk−1(f ).

In the same way that we proved Lemma 4.2 we have

γTZ3 : L∞,3+ε ′,0(D) → L∞,ε,0(D)

for some 0 < ε ′ < ε, so the L∞ norm of the second term is bounded by

‖γ 3(n+2)+8k+2+ε ′T k−1f ‖L∞ � ‖γ 3(n+2)+9+8(k−1)T k−1f ‖L∞ � Qk−1(f ).

The last two terms on the right-hand side of (39) are obviously bounded byQk(f ),
and thus we are done with the proof of (38).

To finish the proof of the lemma, we follow the proof of (38) and choose k = 4
in (37). We then apply (37) to γ 3(n+2)+7kf and again apply the operators γ ε(γT )k,
where T is a tangential operator. In this way, we show that

γ 3(n+2)+12+8k+εT kf

= γ ε
k−1∑
j=0

Z4γ
3(n+2)+7k+jT jf + γ εγTZ4γ

3(n+2)+8k−1T k−1f

+ γ ε
k∑

j=0

Z1γ
j+2T j ∂̄f + γ ε

k∑
j=0

Z1γ
j+2T j ∂̄∗f. (40)

By Theorems 3.10(i) and 3.12(ii), for some ε ′ > 0 the first sum on the right-hand
side of (40) has its C1/4−ε norm bounded by

‖Z3γ
3(n+2)+7k+ε ′+jT jf ‖L∞ � Qk−1(f ).

We can use Lemma 4.2(ii) to show that the C1/4−ε norm of the second term is
bounded by

‖γ 3(n+2)+10+8(k−1)+ε ′T k−1f ‖∞ � Qk−1(f )

as before.
The last two terms on the right-hand side of (40) are easily seen to be bounded

by Qk(f ), and this finishes the proof of Lemma 4.4.

In order to generalize Lemma 4.4 to include nontangential operators, we use the fa-
miliar argument of utilizing the ellipticity of ∂̄ ⊕ ∂̄∗ to express a normal derivative
of a component of a (0, q)-form f in terms of tangential operators acting on com-
ponents of f and on components of ∂̄f and ∂̄∗f. With the (0, q)-form f written as

f =
∑
|J |=q

fJ ω̄
J
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locally, we have the decomposition in the following form:

γNfJ =
∑
jK

aJjKγTjfK +
∑
L

bJLfL

+
∑
M

cJMγ (∂̄f )M +
∑
P

dJP γ (∂̄
∗f )P , (41)

whereN = Ln+ L̄n is the normal vector field and T1, . . . , T2n−1 are the tangential
fields described in Section 3. The coefficients aJjK , bJL, cJM , and dJP are all of the
form E0,0, and the index sets are strictly ordered with J,K,L,M,P ⊂ {1, . . . , n},
|J | = |K| = |L| = q, |M| = q + 1, |P | = q − 1, and j = 1, . . . , 2n − 1. The
decomposition is well known in the smooth case (see [3]), and to verify (41) in
a neighborhood of γ = 0 one may use the coordinates uj1, . . . , ujm ,vjm+1, . . . ,vj2n

as in (13). For instance, integrating by parts to compute ∂̄∗f leads to terms of the
form E0,−1fJ , where multiplication by γ allows us to absorb these terms into bJL.

It is then straightforward to generalize Lemma 4.4. Suppose Dk is a kth-order
differential operator that contains the normal field at least once. In γ kDk we com-
mute γN with terms of the form γT, where T is tangential, and consider the op-
erator Dk = Dk−1  γN, where Dk−1 is of order k − 1. The error terms due to
the commutation involve differential operators of order ≤ k −1. By (41) we need
only consider Dk−1γTf , Dk−1∂̄f , and Dk−1∂̄∗f. The last two terms are bounded
byQk−1(f ), and we repeat the process withDk−1γTf until we are left with k tan-
gential operators for which we can apply Lemma 4.4.

We thus obtain the weighted Ck estimates described in the following theorem.

Theorem 4.5. Let f ∈ L2
0,q(D) ∩ Dom(∂̄) ∩ Dom(∂̄∗), q ≥ 1, α < 1/4, and

ε > 0. Then
‖γ 3(n+6)+8k+εf ‖Ck+α � Qk(f ).

As an immediate consequence we obtain weighted Ck estimates for the canonical
solution to the ∂̄-equation.

Corollary 4.6. Let q ≥ 2 and let Nq denote the ∂̄-Neumann operator for
(0, q)-forms. Let f be a ∂̄-closed (0, q)-form. Then, for α < 1/4 and ε > 0, the
canonical solution u = ∂̄∗Nqf to ∂̄u = f satisfies

‖γ 3(n+6)+8k+εu‖Ck+α � ‖γ k+2f ‖Ck + ‖f ‖2.

Using more efficient definitions and notation developed by Lieb and the author,
one can show that the left-hand side of the relation may be replaced with γ 2f. This
would imply an improvement for the estimates in Theorem 4.5 as well, with the
3(n+ 6) term being replaced by 2(n+ 6).
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