On the Divisibility of Fermat Quotients

Jean Bourgain, Kevin Ford, Sergei V. Konyagin, \& Igor E. Shparlinski

1. Introduction

For a prime p and an integer a the Fermat quotient is defined as

$$
q_{p}(a)=\frac{a^{p-1}-1}{p}
$$

It is well known that divisibility of Fermat quotients $q_{p}(a)$ by p has numerous applications, which include Fermat's last theorem and squarefreeness testing; see [6; 7; 8; 16].

In particular, the smallest value ℓ_{p} of a for which $q_{p}(a) \not \equiv 0(\bmod p)$ plays a prominent role in these applications. In this direction, Lenstra [16, Thm. 3] has shown that

$$
\ell_{p} \leq \begin{cases}4(\log p)^{2} & \text { if } p \geq 3 \tag{1}\\ \left(4 e^{-2}+o(1)\right)(\log p)^{2} & \text { if } p \rightarrow \infty\end{cases}
$$

see also [7]. Granville [9, Thm. 5] has shown that in fact

$$
\begin{equation*}
\ell_{p} \leq(\log p)^{2} \tag{2}
\end{equation*}
$$

for $p \geq 5$.
A very different proof of a slightly weaker bound $\ell_{p} \leq(4+o(1))(\log p)^{2}$ has been obtained by Ihara [12] as a by-product of the estimate

$$
\begin{equation*}
\sum_{\substack{\ell^{k}<p \\ \ell \in \mathcal{W}(p)}} \frac{\log \ell}{\ell^{k}} \leq 2 \log \log p+2+o(1) \tag{3}
\end{equation*}
$$

as $p \rightarrow \infty$, where the summation is taken over all prime powers up to p of primes ℓ from the set

$$
\mathcal{W}(p)=\left\{\ell \text { prime }: \ell<p, q_{p}(\ell) \equiv 0(\bmod p)\right\}
$$

However, the proof of (3) given in [12] is conditional on the extended Riemann hypothesis.

It has been conjectured by Granville [8, Conj. 10] that

$$
\begin{equation*}
\ell_{p}=o\left((\log p)^{1 / 4}\right) \tag{4}
\end{equation*}
$$

[^0]It is quite reasonable to expect a much stronger bound on ℓ_{p}. For example, Lenstra [16] conjectures that $\ell_{p} \leq 3$; this has been supported by extensive computation (see $[5 ; 14]$). The motivation for the conjecture (4) comes from the fact that this has some interesting applications to Fermat's last theorem [8, Cor. 1]. Although this motivation relating ℓ_{p} to Fermat's last theorem does not exist anymore, improving the bounds (1) and (2) is still of interest and may have some other applications.

Theorem 1. We have

$$
\ell_{p} \leq(\log p)^{463 / 252+o(1)}
$$

as $p \rightarrow \infty$.
Following the arguments of [16], we derive the following improvement of [16, Thm. 2].

Corollary 2. For every $\varepsilon>0$ and a sufficiently large integer n, if $a^{n-1} \equiv 1$ $(\bmod n)$ for every positive integer $a \leq(\log n)^{463 / 252+\varepsilon}$ then n is squarefree.

The proof of Theorem 1 is based on the original idea of Lenstra [16], which relates ℓ_{p} to the distribution of smooth numbers, which we also supplement by some recent results on the distribution of elements of multiplicative subgroups of residue rings of Bourgain, Konyagin, and Shparlinski [3] combined with a bound of Heath-Brown and Konyagin [10] for Heilbronn exponential sums. Also, using these results we can prove the following.

Theorem 3. For every $\varepsilon>0$, there is $\delta>0$ such that for all but one prime $Q^{1-\delta}<p \leq Q$, we have $\ell_{p} \leq(\log p)^{59 / 35+\varepsilon}$.

The proof of the next result is based on a large sieve inequality with square moduli that is due to Baier and Zhao [1].

Theorem 4. For every $\varepsilon>0$, there is $\delta>0$ such that for all but $O\left(Q^{1-\delta}\right)$ primes $p \leq Q$, we have $\ell_{p} \leq(\log p)^{5 / 3+\varepsilon}$.

We note that

$$
\frac{463}{252}=1.8373 \ldots, \quad \frac{59}{35}=1.6857 \ldots, \quad \frac{5}{3}=1.6666 \ldots
$$

Throughout the paper, the implied constants in the symbols " O " and "<<" may occasionally depend on the positive parameters ε and δ, and are absolute otherwise. We recall that the notations $U=O(V)$ and $U \ll V$ are both equivalent to the assertion that the inequality $|U| \leq c V$ holds for some constant $c>0$.

2. Smooth Numbers

For any integer n we write $P(n)$ for the largest prime factor of an integer n with the convention that $P(0)=P(\pm 1)=1$.

For $x \geq y \geq 2$ we define $\mathcal{S}(x, y)$ as the set y-smooth numbers up to x, that is

$$
\mathcal{S}(x, y)=\{n \leq x: P(n) \leq y\}
$$

and put

$$
\Psi(x, y)=\# \mathcal{S}(x, y)
$$

We make use of the following explicit estimate, which is due to Konyagin and Pomerance [15, Thm. 2.1] (see also [11] for a variety of other results).

Lemma 5. If $x \geq 4$ and $x \geq y \geq 2$, then

$$
\Psi(x, y)>x^{1-\log \log x / \log y} .
$$

3. Heilbronn Sums

For an integer $m \geq 1$ and a complex z, we put

$$
\mathbf{e}_{m}(z)=\exp (2 \pi i z / m)
$$

Let \mathbb{Z}_{n} be the ring of integers modulo an $n \geq 1$ and let \mathbb{Z}_{n}^{*} be the group of units of \mathbb{Z}_{n}.

Now, for a prime p and an integer λ, we define the Heilbronn sum

$$
H_{p}(\lambda)=\sum_{b=1}^{p} \mathbf{e}_{p^{2}}\left(\lambda b^{p}\right)
$$

For $x \in \mathbb{Z}_{p}$ denote

$$
\begin{equation*}
f(x)=x+\frac{x^{2}}{2}+\cdots+\frac{x^{p-1}}{p-1} \in \mathbb{Z}_{p} \tag{5}
\end{equation*}
$$

Also, define for $u \in \mathbb{Z}_{p}$

$$
\begin{equation*}
\mathcal{F}(u)=\left\{x \in \mathbb{Z}_{p}: f(x)=u\right\} \tag{6}
\end{equation*}
$$

We now recall the following two results due to Heath-Brown and Konyagin that are [10, Thm. 2] and [10, Lemma 7], respectively.

Lemma 6. Uniformly over all $s \not \equiv 0 \bmod p$, we have

$$
\sum_{r=1}^{p}\left|H_{p}(s+r p)\right|^{4} \ll p^{7 / 2}
$$

Lemma 7. Let \mathcal{U} be a subset of \mathbb{Z}_{p} and $T=\# \mathcal{U}$. Then

$$
\sum_{u \in \mathcal{U}} \# \mathcal{F}(u) \ll(p T)^{2 / 3}
$$

Since $H_{p}(r p)=0$ if $r \not \equiv 0 \bmod p$ and $H_{p}(r p)=p$ if $r \equiv 0 \bmod p$, we immediately derive from Lemma 6 that

$$
\begin{equation*}
\sum_{u=1}^{p^{2}}\left|H_{p}(u)\right|^{4} \ll p^{9 / 2} \tag{7}
\end{equation*}
$$

4. Distribution of Elements of Multiplicative Subgroups in Residue Rings

Given a multiplicative subgroup \mathcal{G} of \mathbb{Z}_{n}^{*}, we consider its coset in \mathbb{Z}_{n}^{*} (or multiplicative translate) $\mathcal{A}=\lambda \mathcal{G}$, where $\lambda \in \mathbb{Z}_{n}^{*}$. For an integer K and a positive integer k, we denote

$$
J(n, \mathcal{A}, k, K)=\#(\{K+1, \ldots, K+k\} \cap \mathcal{A}) .
$$

We need the following estimate from [3].
Lemma 8. Let \mathcal{A} be a coset of a multiplicative subgroup \mathcal{G} of \mathbb{Z}_{n}^{*} of order t. Then, for any fixed $\varepsilon>0$, we have

$$
J(n, \mathcal{A}, k, K) \ll \frac{k t}{n}+\frac{k}{t n} \sum_{w \in \mathbb{Z}_{n}} M_{n}(w ; Z, \mathcal{G})\left|\sum_{u \in \mathcal{A}} \mathbf{e}_{n}(u w)\right|,
$$

where

$$
Z=\min \left\{n^{1+\varepsilon} k^{-1}, n / 2\right\}
$$

and $M_{n}(w ; Z, \mathcal{G})$ is the number of solutions to the congruence

$$
w \equiv z u(\bmod n), \quad 1 \leq|z| \leq Z, u \in \mathcal{G}
$$

Let $N(n, \mathcal{G}, Z)$ be the number of solutions of the congruence

$$
u x \equiv y(\bmod n), \quad \text { where } 0<|x|,|y| \leq Z, \text { and } u \in \mathcal{G} .
$$

We use Lemma 8 in a combination with yet another result from [3], which gives an upper bound on $N(n, \mathcal{G}, Z)$. We note that the proof given in [3] works only for $Z \geq n^{1 / 2}$, which is always satisfied in this paper, however it is shown in [4] that the result holds without this condition too, exactly as it is formulated in [3].

Lemma 9. Let $v \geq 1$ be a fixed integer and let $n \rightarrow \infty$. Assume $\# \mathcal{G}=t \gg \sqrt{n}$. Then for any positive number Z we have

$$
N(n, \mathcal{G}, Z) \leq Z t^{(2 v+1) /(2 v(v+1))} n^{-1 /(2(v+1))+o(1)}+Z^{2} t^{1 / v} n^{-1 / v+o(1)}
$$

5. Large Sieve for Square Moduli

We make use of the following result of Baier and Zhao [1, Thm. 1].
Lemma 10. Let $\alpha_{1}, \ldots, \alpha_{N}$ be an arbitrary sequence of complex numbers and let

$$
Y=\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2} \quad \text { and } \quad S(u)=\sum_{n=1}^{N} \alpha_{n} \exp (2 \pi i u n)
$$

Then, for any fixed $\varepsilon>0$ and arbitrary $Q \geq 1$, we have

$$
\sum_{1 \leq q \leq Q} \sum_{\substack{a=1 \\ \operatorname{gcd}(a, q)=1}}^{q^{2}}\left|S\left(\frac{a}{q^{2}}\right)\right|^{2} \ll(Q N)^{\varepsilon}\left(Q^{3}+N+\min \left\{N Q^{1 / 2}, N^{1 / 2} Q^{2}\right\}\right) Y
$$

6. Proof of Theorem 1

For a positive integer $k<p^{2}$, let $N_{p}(k)$ denote the number of elements $v \in[1, k]$ of the subgroup $\mathcal{G} \subseteq \mathbb{Z}_{p^{2}}^{*}$ of order $p-1$, consisting of nonzero p th powers in $\mathbb{Z}_{p^{2}}$. We fix some $\varepsilon>0$.

To get an upper bound on $N_{p}(k)$ we use Lemma 8, which we apply with $n=p^{2}$, $\mathcal{A}=\mathcal{G}, t=p-1$, and $K=0$. For every integer a with $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ there is a unique integer b with $1 \leq b \leq p-1$ such that $a \equiv b^{p}\left(\bmod p^{2}\right)$. Thus the corresponding exponential sums of \mathcal{G} are Heilbronn sums, defined in Section 3. We derive

$$
\begin{equation*}
N_{p}(k)=J\left(p^{2}, \mathcal{G}, k, K\right) \ll \frac{k}{p}+\frac{k}{p^{3}} \sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})\left(\left|H_{p}(w)\right|+1\right) \tag{8}
\end{equation*}
$$

By the Hölder inequality, we obtain

$$
\begin{align*}
& \left(\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})\left|H_{p}(w)\right|\right)^{4} \\
& \quad=\left(\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})^{1 / 2}\left(M_{p^{2}}(w ; Z, \mathcal{G})^{2}\right)^{1 / 4}\left(\left|H_{p}(w)\right|^{4}\right)^{1 / 4}\right)^{4} \\
& \quad \leq\left(\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})\right)^{2} \sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})^{2} \sum_{w \in \mathbb{Z}_{p^{2}}}\left|H_{p}(w)\right|^{4} \tag{9}
\end{align*}
$$

Trivially, we have

$$
\begin{equation*}
\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})=2\lfloor Z\rfloor(p-1) \ll p^{3+2 \varepsilon} k^{-1} \tag{10}
\end{equation*}
$$

We also see that

$$
\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})^{2}=(p-1) N\left(p^{2}, \mathcal{G}, Z\right)
$$

We now choose

$$
k=\left\lfloor p^{463 / 252+3 \varepsilon}\right\rfloor .
$$

Lemma 9 applies with $v=6$ and leads to the estimate

$$
\begin{aligned}
N\left(p^{2}, \mathcal{G}, Z\right) & \leq Z p^{13 / 84}\left(p^{2}\right)^{-1 / 14+o(1)}+Z^{2} p^{1 / 6}\left(p^{2}\right)^{-1 / 6+o(1)} \\
& \leq Z p^{13 / 84}\left(p^{2}\right)^{-1 / 14+o(1)}
\end{aligned}
$$

(since for $Z \leq p^{41 / 252}$ the first term dominates). Hence,

$$
N\left(p^{2}, \mathcal{G}, Z\right) \leq p^{2+1 / 84+3 \varepsilon} k^{-1}
$$

Therefore

$$
\begin{equation*}
\sum_{w \in \mathbb{Z}_{p^{2}}} M_{p^{2}}(w ; Z, \mathcal{G})^{2} \ll p^{3+1 / 84+3 \varepsilon} k^{-1} \tag{11}
\end{equation*}
$$

Substituting (7), (10), and (11) in (9) and then using (8), we deduce that

$$
\begin{aligned}
N_{p}(k) & \ll \frac{k}{p}+\frac{k}{p^{3}}\left(p^{3+2 \varepsilon} k^{-1}\right)^{1 / 2}\left(p^{3+1 / 84+3 \varepsilon} k^{-1}\right)^{1 / 4}\left(p^{9 / 2}\right)^{1 / 4}+p^{2 \varepsilon} \\
& \ll \frac{k}{p}+k^{1 / 4} p^{127 / 336+2 \varepsilon},
\end{aligned}
$$

provided p is large enough.
Recalling our choice of k, we see that

$$
\begin{equation*}
N_{p}(k) \ll \frac{k}{p} \tag{12}
\end{equation*}
$$

for the preceding choice of k and sufficiently large p.
Since $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ for all positive integers $a \leq \ell_{p}$, this also holds for any a that is composed of primes $\ell \leq \ell_{p}$. In particular it holds for any $a \in \mathcal{S}\left(k, \ell_{p}\right)$. Thus

$$
\begin{equation*}
\Psi\left(k, \ell_{p}\right) \leq N_{p}(k) \tag{13}
\end{equation*}
$$

Now, using Lemma 5 and the bound (12), we derive from (13) that

$$
k^{1-\log \log k / \log \ell_{p}} \ll \frac{k}{p}
$$

which implies that

$$
\frac{\log \log k}{\log \ell_{p}} \geq \frac{\log p}{\log k}+O\left(\frac{1}{\log k}\right)=\left(\frac{463}{252}+3 \varepsilon\right)^{-1}+O\left(\frac{1}{\log p}\right)
$$

Therefore

$$
\begin{aligned}
\log \ell_{p} & \leq\left(\frac{463}{252}+3 \varepsilon\right) \log \log k+O\left(\frac{\log \log p}{\log p}\right) \\
& =\left(\frac{463}{252}+3 \varepsilon\right) \log \log p+O(1) \leq\left(\frac{463}{252}+4 \varepsilon\right) \log \log p
\end{aligned}
$$

provided that p is large enough. Taking into account that ε is arbitrary, we conclude the proof.

7. Proof of Theorem 3

7.1. Preliminaries

We need several statements about the groups of p th powers modulo p^{2}, which may be of independent interest.

Fix a prime p. Let again \mathcal{G} be the group of order $p-1$, consisting of nonzero p th powers modulo p^{2}.

Lemma 11. If $n_{1}, n_{2} \in \mathcal{G}$ are such that $n_{1} \equiv n_{2}(\bmod p)$ then we also have

$$
n_{1} \equiv n_{2}\left(\bmod p^{2}\right)
$$

Proof. Since $n_{1}, n_{2} \in \mathcal{G}$ we can write

$$
\begin{equation*}
n_{1} \equiv m_{1}^{p}\left(\bmod p^{2}\right) \quad \text { and } \quad n_{2} \equiv m_{2}^{p}\left(\bmod p^{2}\right) \tag{14}
\end{equation*}
$$

for some integers m_{1} and m_{2}. Therefore

$$
m_{1}-m_{2} \equiv m_{1}^{p}-m_{2}^{p} \equiv n_{1}-n_{2} \equiv 0(\bmod p)
$$

Then $m_{1}=m_{2}+p k$ for some integer k, which, after substitution in (14), yields the desired congruence.

For $v \in \mathbb{Z}_{p^{2}}$, let

$$
\begin{equation*}
\mathcal{D}_{p}(v)=\left\{\left(m_{1}, m_{2}\right): 0 \leq m_{1}, m_{2} \leq p-1, m_{1}^{p}-m_{2}^{p} \equiv v\left(\bmod p^{2}\right)\right\} \tag{15}
\end{equation*}
$$

We can rewrite Lemma 7 in the following form.
Lemma 12. Let \mathcal{V} be a subset of $\mathbb{Z}_{p^{2}}^{*}, T=\# \mathcal{V}$, and $v_{1} / v_{2} \notin \mathcal{G}$ for any distinct $v_{1}, v_{2} \in \mathcal{V}$. Then

$$
\sum_{v \in \mathcal{V}} \# \mathcal{D}_{p}(v) \ll(p T)^{2 / 3}
$$

Proof. We follow the arguments of the proof of Lemma 2 from [10]. For $v \in \mathbb{Z}_{p^{2}}^{*}$ denote

$$
\lambda(v)=v^{1-p} \in \mathbb{Z}_{p^{2}}^{*} .
$$

Since the cardinality $\# \mathcal{D}_{p}(v)$ is invariant under multiplication by elements of the group \mathcal{G} we have $\# \mathcal{D}_{p}(\lambda(v))=\# \mathcal{D}_{p}(v)$. Next, we always have $\lambda(v) \equiv 1(\bmod p)$. Therefore, the congruence

$$
\lambda(v) \equiv m_{1}^{p}-m_{2}^{p}\left(\bmod p^{2}\right)
$$

implies $m_{1}-m_{2} \equiv \lambda(v) \equiv 1(\bmod p)$. Hence

$$
\lambda(v) \equiv m_{1}^{p}-\left(m_{1}-1\right)^{p}\left(\bmod p^{2}\right) .
$$

But

$$
m_{1}^{p}-\left(m_{1}-1\right)^{p} \equiv 1-p f\left(m_{1}\right)\left(\bmod p^{2}\right)
$$

where the function $f(x)$ is defined by (5). Hence,

$$
\begin{equation*}
\# \mathcal{D}_{p}(v)=\# \mathcal{F}(U(v)) \tag{16}
\end{equation*}
$$

where

$$
U(v)=(1-\lambda(v)) / p \in \mathbb{Z}_{p}
$$

and the set $\mathcal{F}(u)$ is defined by (6).
The assumption that $v_{1} / v_{2} \notin \mathcal{G}$ for any distinct $v_{1}, v_{2} \in \mathcal{V}$ implies $\lambda\left(v_{1}\right) / \lambda\left(v_{2}\right) \notin$ \mathcal{G} and $U\left(v_{1}\right) \neq U\left(v_{2}\right)$. Applying Lemma 7 to the set

$$
U=\{U(v): v \in \mathcal{V}\}
$$

and using (16) we get

$$
\sum_{v \in V} \# \mathcal{D}_{p}(v)=\sum_{u \in U} \# \mathcal{F}(u) \ll(p T)^{2 / 3}
$$

as required.

Now we consider two primes $p_{1} \neq p_{2}$ and the corresponding subgroups $\mathcal{G}_{\nu} \subseteq \mathbb{Z}_{p_{v}^{2}}^{*}$ consisting of nonzero p_{ν} th powers modulo $p_{v}^{2}, v=1,2$.

Also, we denote by $\overline{\mathcal{G}}_{v}$ the subsets of \mathbb{Z} formed by the integers belonging to \mathcal{G}_{v} modulo p_{v}^{2}. That is, while \mathcal{G}_{v} is represented by some elements from the set $\left\{1, \ldots, p_{v}^{2}-1\right\}$, the set $\overline{\mathcal{G}}_{v}$ is infinite, $v=1,2$.

Lemma 13. Let x, K, and L be positive integers with $x<p_{1}^{2} p_{2}^{2}$. Suppose that a set $\mathcal{A} \subseteq[1, x] \cap \overline{\mathcal{G}}_{1} \cap \overline{\mathcal{G}}_{2}$ satisfies the following conditions:
(i) there are at least L pairs $\left(n_{1}, n_{2}\right) \in \mathcal{A}^{2}$ with $n_{1}>n_{2}$ and such that $n_{1} \equiv n_{2}$ $\left(\bmod p_{2}\right)$;
(ii) there are at most K elements of \mathcal{A} in any residue class modulo p_{1}.

Then

$$
\frac{L}{K} \ll p_{1}^{2 / 3} Z^{1 / 3} N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)^{1 / 3}
$$

where $Z=\left\lfloor x / p_{2}^{2}\right\rfloor$.
Proof. Denote

$$
M_{i}=\#\left\{n \in \mathcal{A}: n-i p_{2}^{2} \in \mathcal{A}\right\}, \quad i=1, \ldots, Z
$$

By Lemma 11 and the condition (i) we have

$$
\sum_{i=1}^{Z} M_{i} \geq L
$$

Next, let

$$
m_{i}=\#\left\{n \in \mathcal{G}_{1}: n-i p_{2}^{2} \in \mathcal{G}_{1}\right\}, \quad i=1, \ldots, Z
$$

Then by condition (ii) we have

$$
\begin{equation*}
\sum_{i=1}^{Z} m_{i} \geq \frac{1}{K} \sum_{i=1}^{Z} M_{i} \geq \frac{L}{K} \tag{17}
\end{equation*}
$$

We observe also that for $i=1, \ldots, Z$

$$
\begin{equation*}
m_{i} \leq \# \mathcal{D}_{p_{1}}\left(i p_{2}^{2}\right) \tag{18}
\end{equation*}
$$

Moreover, we have $Z<p_{1}^{2}$. In particular, if a positive integer $i \leq Z$ is divisible by p_{1} then, by Lemma 11 ,

$$
m_{i}=\# \mathcal{D}_{p_{1}}\left(i p_{2}^{2}\right)=0
$$

Assume that the residues of $i p_{2}^{2}$ modulo $p_{1}^{2}, i=1, \ldots, Z$, are contained in J distinct cosets C_{1}, \ldots, C_{J} of the group \mathcal{G}_{1}. For $j=1, \ldots, J$, we denote

$$
s_{j}=\#\left\{i: 1 \leq i \leq Z, i p_{2}^{2} \in C_{j}\right\}
$$

and also

$$
t_{j}=\# \mathcal{D}_{p_{1}}(v)
$$

for some element $v \in C_{j}$ (clearly, this quantity depends only on the coset C_{j} and does not depend on the choice of v).

Therefore, using (18) we can rewrite (17) as

$$
\begin{equation*}
\sum_{j=1}^{J} s_{j} t_{j} \geq \frac{L}{K} \tag{19}
\end{equation*}
$$

To estimate the left-hand side of (19) from above we consider that the cosets C_{1}, \ldots, C_{J} are ordered so that the sequence $\left\{t_{1}, \ldots, t_{J}\right\}$ is nonincreasing. By Lemma 12 we have for $j=1, \ldots, J$

$$
t_{1}+\cdots+t_{j} \ll\left(p_{1} j\right)^{2 / 3}
$$

Hence,

$$
\begin{equation*}
t_{j} \ll p_{1}^{2 / 3} j^{-1 / 3} \tag{20}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\sum_{j=1}^{J} s_{j}=Z \tag{21}
\end{equation*}
$$

By the definition of $N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)$, we have

$$
\begin{equation*}
\sum_{j=1}^{J} s_{j}^{2} \leq N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right) \tag{22}
\end{equation*}
$$

We notice that $Z \geq 1$; otherwise there are no $\left(n_{1}, n_{2}\right) \in \mathcal{A}^{2}$ with $n_{1}>n_{2}$ and such that $n_{1} \equiv n_{2}\left(\bmod p_{2}\right)$. Define

$$
J_{0}=\left\lfloor Z^{2} / N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)\right\rfloor \quad \text { and } \quad J_{1}=\min \left\{J_{0}, J\right\}
$$

It is easy to see that $J_{0} \geq 1$. Therefore, $J_{1} \geq 1$.
To estimate the left-hand side of (19) we consider separately the cases $j \leq J_{1}$ and $j>J_{1}$ (the second case can occur only if $J_{0}=J_{1}$). By (20), (22), and the Cauchy-Schwarz inequality, we have

$$
\left(\sum_{j=1}^{J_{1}} s_{j} t_{j}\right)^{2} \leq \sum_{j=1}^{J_{1}} s_{j}^{2} \sum_{j=1}^{J_{1}} t_{j}^{2} \leq \sum_{j=1}^{J} s_{j}^{2} \sum_{j=1}^{J_{0}} t_{j}^{2} \ll N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right) p_{1}^{4 / 3} J_{0}^{1 / 3}
$$

Therefore,

$$
\begin{equation*}
\sum_{j=1}^{J_{1}} s_{j} t_{j} \ll p_{1}^{2 / 3} Z^{1 / 3} N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)^{1 / 3} \tag{23}
\end{equation*}
$$

If $J_{0}=J_{1}$ then we also have to estimate the sum over $j>J_{0}$. To do so we use (20) and (21):

$$
\begin{equation*}
\sum_{j=J_{0}+1}^{J} s_{j} t_{j} \leq t_{J_{0}} Z \ll p_{1}^{2 / 3} Z^{1 / 3} N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)^{1 / 3} \tag{24}
\end{equation*}
$$

Combining (19), (23), and (24), we complete the proof.

Now we prove a combinatorial statement demonstrating that if a set $[1, x] \cap \overline{\mathcal{G}}_{1} \cap \overline{\mathcal{G}}_{2}$ is large then we can choose a set $\mathcal{A} \subseteq[1, x] \cap \overline{\mathcal{G}}_{1} \cap \overline{\mathcal{G}}_{2}$ satisfying the conditions of Lemma 13 with K and L such that $L / K \gg p_{2}$.

Let \mathcal{I}_{1} and \mathcal{I}_{2} be nonempty finite sets. For a set $\mathcal{A} \subseteq \mathcal{I}_{1} \times \mathcal{I}_{2}$ we denote the following horizontal and vertical "lines":

$$
\mathcal{A}(x, \cdot)=\left\{y \in \mathcal{I}_{2}:(x, y) \in \mathcal{A}\right\} ; \quad \mathcal{A}(\cdot, y)=\left\{x \in \mathcal{I}_{1}:(x, y) \in \mathcal{A}\right\} .
$$

Lemma 14. For any set $\mathcal{A} \subseteq \mathcal{I}_{1} \times \mathcal{I}_{2}$ there exist a subset $\mathcal{B} \subseteq \mathcal{A}$ and positive integers k_{1} and k_{2} such that:
(i) $\# \mathcal{B} \geq \frac{1}{2} \# \mathcal{A}$;
(ii) $\# \mathcal{B}(x, \cdot) \leq k_{1}$ for any $x \in \mathcal{I}_{1}$;
(iii) $\# \mathcal{B}(\cdot, y) \leq k_{2}$ for any $y \in \mathcal{I}_{2}$;
(iv) $\sum_{\substack{x \in \mathcal{I}_{1} \\ \# \mathcal{B}(x, \cdot)>k_{1} / 2}} \# \mathcal{B}(x, \cdot) \gg \frac{1}{\log \left(\# \mathcal{I}_{1}+\# \mathcal{I}_{2}\right)} \# \mathcal{A}$;
(v) $\sum_{\substack{y \in \mathcal{I}_{2} \\ \# \mathcal{B}(\cdot, y)>k_{2} / 2}} \# \mathcal{B}(\cdot, y) \gg \frac{1}{\log \left(\# \mathcal{I}_{1}+\# \mathcal{I}_{2}\right)} \# \mathcal{A}$.

Proof. The case $\mathcal{A}=\emptyset$ is trivial, so we now consider that $\# \mathcal{A}>0$. Let U be the smallest integer such that $2^{U} \geq \# \mathcal{I}_{1}+\# \mathcal{I}_{2}$, so $1 \leq U \ll \log \left(\# \mathcal{I}_{1}+\# \mathcal{I}_{2}\right)$.

We construct the following sequence of sets $\left\{\mathcal{A}_{v}\right\}, v=0,1, \ldots$ Set $\mathcal{A}_{0}=\mathcal{A}$. Assume that \mathcal{A}_{v} has been constructed. We now define u_{v} as the smallest integer u such that

$$
\begin{equation*}
\sum_{\substack{x \in \mathcal{I}_{1} \\ \neq \mathcal{A}_{v}(x, \cdot)>2^{u}}} \# \mathcal{A}_{v}(x, \cdot) \leq \frac{1}{8 U} \# \mathcal{A} \tag{25}
\end{equation*}
$$

Similarly, let v_{v} be the smallest integer v such that

$$
\begin{equation*}
\sum_{\substack{y \in \mathcal{I}_{2} \\ \# \mathcal{A}_{v}(\cdot, y)>2^{v}}} \# \mathcal{A}_{v}(\cdot, y) \leq \frac{1}{8 U} \# \mathcal{A} . \tag{26}
\end{equation*}
$$

Define

$$
\begin{align*}
\mathcal{A}_{v+1}=\mathcal{A}_{v} \backslash & \bigcup_{\substack{x \in \mathcal{I}_{1} \\
\# \mathcal{A}_{v}(x, \cdot)>2^{u_{v}}}}\left\{(x, y): y \in \mathcal{A}_{v}(x, \cdot)\right\} \\
& \backslash \bigcup_{\substack{y \in \mathcal{I}_{2} \\
\# \mathcal{A}_{v}(\cdot, y)>2^{v_{v}}}}\left\{(x, y): x \in \mathcal{A}_{v}(\cdot, y)\right\} . \tag{27}
\end{align*}
$$

Clearly, for any $\nu=0,1, \ldots$ we have

$$
\mathcal{A}_{v+1} \subseteq \mathcal{A}_{v}, \quad 0 \leq u_{v+1} \leq u_{v}<U, \quad 0 \leq v_{v+1} \leq v_{v}<U
$$

There exists a number $N<2 U$ such that

$$
u_{N+1}=u_{N} \quad \text { and } \quad v_{N+1}=v_{N}
$$

Set

$$
\mathcal{B}=\mathcal{A}_{N+1}, \quad k_{1}=2^{u_{N}}, \quad k_{2}=2^{v_{N}} .
$$

Now, from (25), (26), and (27), we derive

$$
\begin{aligned}
\#(\mathcal{A} \backslash \mathcal{B}) & \leq \sum_{v=0}^{N} \sum_{\substack{x \in \mathcal{I}_{1} \\
\# \mathcal{A}_{\nu}(x,)>2^{u_{v}}}} \# \mathcal{A}_{v}(x, \cdot)+\sum_{v=0}^{N} \sum_{\substack{y \in \mathcal{I}_{2} \\
\# \mathcal{A}(\cdot, y)>2^{v_{v}}}} \# \mathcal{A}_{v}(\cdot, y) \\
& \leq \frac{2(N+1)}{8 U} \# \mathcal{A} \leq \frac{1}{2} \# \mathcal{A} .
\end{aligned}
$$

So, condition (i) is satisfied.
By the definition of \mathcal{B}, k_{1}, and k_{2} we see that conditions (ii) and (iii) are satisfied too.

Next, if $k_{1}=1$ then

$$
\sum_{\substack{x \in \mathcal{I}_{1} \\ \# \mathcal{B}(x, \cdot)>k_{1} / 2}} \# \mathcal{B}(x, \cdot)=\# \mathcal{B} .
$$

If $k_{1}>1$ then we deduce from the equality $u_{N+1}=u_{N}$ that

$$
\sum_{\substack{\left.x \in \mathcal{I}_{1} \\ \# \mathcal{B} \cdot, y\right)>k_{1} / 2}} \# \mathcal{B}(\cdot, y)>\frac{1}{8 U} \# \mathcal{A} .
$$

In either case the condition (iv) holds. Analogously, we also have condition (v) satisfied.

7.2. Conclusion of the Proof

We suppose that Q is large enough while ε and δ are small enough and define

$$
x=Q^{59 / 24-3 \delta} \quad \text { and } \quad y=((1-\delta) \log Q)^{59 / 35+\varepsilon}
$$

Assume that there are two primes $p_{1} \neq p_{2}$ with $Q^{1-\delta}<p_{1}, p_{2} \leq Q$ and such that

$$
a^{p_{1}-1} \equiv 1\left(\bmod p_{1}^{2}\right), \quad a^{p_{2}-1} \equiv 1\left(\bmod p_{2}^{2}\right)
$$

for all positive integers $a \leq y$.
As before, for $v=1,2$, we use \mathcal{G}_{ν} to denote the subgroup of $\mathbb{Z}_{p_{\nu}^{2}}^{*}$ consisting of nonzero p_{ν} th powers modulo p_{v}^{2} and use $\overline{\mathcal{G}}_{\nu}$ for the subset of \mathbb{Z} formed by the integers belonging to \mathcal{G}_{v} modulo p_{v}^{2}.

Then $\mathcal{S}(x, y) \subseteq \overline{\mathcal{G}}_{1} \cap \overline{\mathcal{G}}_{2}$ (here we take into account that $y<\min \left\{p_{1}, p_{2}\right\}$). Since

$$
(59 / 24-3 \delta)\left(1-\frac{1}{59 / 35+\varepsilon}\right)>1+\delta
$$

provided δ is small enough compared to ε, we derive from Lemma 5 that

$$
\begin{equation*}
\Psi(x, y)>Q^{1+\delta} \tag{28}
\end{equation*}
$$

(provided ε and δ are small enough).

We now associate with any integer $n \in \mathcal{S}(x, y)$ the pair of residues

$$
\left(n\left(\bmod p_{1}\right), n\left(\bmod p_{2}\right)\right) \in \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}
$$

Using Lemma 14 we conclude the existence of a set

$$
\mathcal{A} \subseteq \mathcal{S}(x, y) \subseteq[1, x] \cap \overline{\mathcal{G}}_{1} \cap \overline{\mathcal{G}}_{2}
$$

and positive integers k_{1}, k_{2} and an absolute constant c_{0} satisfying the following conditions:
(a) $\# \mathcal{A} \geq \Psi(x, y) / 2$;
(b) there are at most k_{1} elements of \mathcal{A} in any residue class modulo p_{1};
(c) there are at most k_{2} elements of \mathcal{A} in any residue class modulo p_{2};
(d) there are at least $c_{0} \Psi(x, y) /\left(k_{1} \log Q\right)$ residue classes modulo p_{1} containing at least $k_{1} / 2$ elements from \mathcal{A};
(e) there are at least $c_{0} \Psi(x, y) /\left(k_{2} \log Q\right)$ residue classes modulo p_{2} containing at least $k_{2} / 2$ elements from \mathcal{A}.
Without loss of generality we can assume that $k_{2} \geq k_{1}$.
In particular, we see from property (a) and (28) that

$$
\# \mathcal{A} \gg Q^{1+\delta}
$$

Therefore, by properties (a) and (e) we have

$$
Q \geq p_{2} \geq c_{0} \frac{\Psi(x, y)}{k_{2} \log Q} \gg \frac{Q^{1+\delta}}{k_{2} \log Q}
$$

Hence,

$$
k_{2} \gg \frac{Q^{\delta}}{\log Q}
$$

provided that Q is large enough. If a residue class modulo p_{2} contains at least $k_{2} / 2$ elements from \mathcal{A}, then there are at least $k_{2}^{2} / 10$ pairs $\left(n_{1}, n_{2}\right) \in \mathcal{A}^{2}$ such that $n_{1}>n_{2}$ and $n_{1} \equiv n_{2}\left(\bmod p_{2}\right)$. Therefore, the conditions of Lemma 13 are fulfilled with $K=k_{1}$ and

$$
L=\left\lceil\frac{k_{2}^{2}}{10}\right\rceil \times\left\lceil\frac{c_{0} \Psi(x, y)}{k_{2} \log Q}\right\rceil \gg \frac{\Psi(x, y) k_{2}}{\log Q} \gg \frac{Q^{1+\delta} k_{2}}{\log Q} .
$$

Considering again that Q is large enough we obtain that

$$
\frac{L}{K} \geq \frac{k_{2} Q}{k_{1}} \geq Q
$$

Applying Lemma 13, we obtain

$$
\begin{equation*}
p_{1}^{2 / 3} Z^{1 / 3} N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)^{1 / 3} \gg Q \tag{29}
\end{equation*}
$$

where

$$
Z=\left\lfloor\frac{x}{p_{2}^{2}}\right\rfloor \leq Q^{11 / 24-\delta} \leq p_{1}^{11 / 24-\delta / 2}
$$

On the other hand, Lemma 9 applies with $v=2$ and yields

$$
N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right) \leq Z p_{1}^{5 / 12}\left(p_{1}^{2}\right)^{-1 / 6+o(1)}+Z^{2} p_{1}^{1 / 2}\left(p_{1}^{2}\right)^{-1 / 2+o(1)} \leq p_{1}^{13 / 24-\delta / 2+o(1)}
$$

Consequently,

$$
p_{1}^{2 / 3} Z^{1 / 3} N\left(p_{1}^{2}, \mathcal{G}_{1}, Z\right)^{1 / 3} \leq p_{1}^{1-\delta / 3+o(1)} \leq Q^{1-\delta / 3+o(1)}
$$

which disagrees with (29) for Q large enough. This contradiction completes the proof.

8. Proof of Theorem 4

Let \mathcal{P}_{y} be the set of all primes p for which

$$
\begin{equation*}
a^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{30}
\end{equation*}
$$

for all primes $a \leq y$.
We need the following estimate, from which Theorem 4 follows quickly.
Lemma 15. Suppose $Q \geq 2 y \geq 2$. Then for all $\delta>0$ and any $x \geq 2$, we have

$$
\#\left\{p \in \mathcal{P}_{y}: Q / 2<p \leq Q\right\} \ll \frac{(x Q)^{\delta}\left(Q^{2}+x Q^{-1}+\min \left(x Q^{-1 / 2}, x^{1 / 2} Q\right)\right)}{\Psi(x, y)}
$$

Proof. For real u, let

$$
T(u)=\sum_{n \in \mathcal{S}(x, y)} \exp (2 \pi i u n)
$$

and put $Y=T(0)=\Psi(x, y)$.
Let $p \in \mathcal{P}_{y}$. By the Parseval identity, we have for each prime p

$$
\begin{align*}
\sum_{\substack{a=1 \\
(a, p)=1}}^{p^{2}}\left|T\left(\frac{a}{p^{2}}\right)\right|^{2} & =\sum_{a=1}^{p^{2}}\left|T\left(\frac{a}{p^{2}}\right)\right|^{2}-\sum_{b=1}^{p}\left|T\left(\frac{b}{p}\right)\right|^{2} \\
& =p^{2} \sum_{a=1}^{p^{2}} N\left(p^{2}, a\right)^{2}-p \sum_{b=1}^{p} N(p, b)^{2} \tag{31}
\end{align*}
$$

where $N(q, a)$ is the number of elements of $n \in \mathcal{S}(x, y)$ in the progression $n \equiv a$ $(\bmod q)$. For $p \in \mathcal{P}_{y}$ we see that $n^{p-1} \equiv 1\left(\bmod p^{2}\right)$ for every $n \in \mathcal{S}(x, y)$. By Lemma 11, for each $b \in\{1, \ldots, p-1\}$ there is a unique residue a_{b} modulo p^{2} with $a_{b} \equiv b(\bmod p)$ and $a_{b}^{p-1} \equiv 1(\bmod p)$. Consequently, $N\left(p^{2}, a_{b}\right)=N(p, b)$. Therefore

$$
\sum_{a=1}^{p^{2}} N\left(p^{2}, a\right)^{2}=\sum_{b=1}^{p} N\left(p^{2}, a_{b}\right)^{2}=\sum_{b=1}^{p} N(p, b)^{2}
$$

which, after substitution in (31), implies that

$$
\sum_{\substack{1 \leq a \leq p^{2} \\(a, p)=1}}\left|T\left(\frac{a}{p^{2}}\right)\right|^{2}=p(p-1) \sum_{b=1}^{p} N(p, b)^{2} .
$$

Since

$$
\sum_{b=1}^{p} N(p, b)=Y
$$

and clearly $N(p, 0)=0$ for $p>Q / 2 \geq y$, by the Cauchy-Schwarz inequality, we obtain

$$
\sum_{\substack{1 \leq a \leq p^{2} \\(a, p)=1}}\left|T\left(\frac{a}{p^{2}}\right)\right|^{2}=p(p-1) \sum_{b=1}^{p-1} N(p, b)^{2} \geq p Y^{2}
$$

Therefore

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P}_{y} \\ Q / 2<p \leq Q}} \sum_{\substack{1 \leq a \leq p^{2} \\(a, p)=1}}\left|T\left(\frac{a}{p^{2}}\right)\right|^{2} \gg Q Y^{2} \#\left\{p \in \mathcal{P}_{y}: Q / 2<p \leq Q\right\} \tag{32}
\end{equation*}
$$

By Lemma 10,

$$
\begin{equation*}
\sum_{\substack{q \leq Q}} \sum_{\substack{1 \leq a \leq q^{2} \\(a, q)=1}}\left|T\left(\frac{a}{q^{2}}\right)\right|^{2} \ll(x Q)^{\delta}\left(Q^{3}+x+\min \left\{x Q^{1 / 2}, x^{1 / 2} Q^{2}\right\}\right) Y \tag{33}
\end{equation*}
$$

Comparing (32) and (33), we obtain the desired estimate.
To finish the proof of Theorem 4, we take $x=Q^{5 / 2}$ and $y=(\log Q)^{5 / 3+\varepsilon}$ in Lemma 15. Inserting the bound from Lemma 5, we have

$$
\Psi(x, y)>x^{1-1 /(5 / 3+\varepsilon)} \gg Q^{1+5 \delta}
$$

for a suitable $\delta>0$. Therefore, for the previous choice of y we obtain

$$
\#\left\{p \in \mathcal{P}_{y}: Q / 2<p \leq Q\right\} \ll Q^{1-\delta}
$$

which implies the desired estimate.

9. Comments

Lemmas 6, 8, and 9 can easily be obtained in fully explicit forms with concrete constants. Thus, the bound of Theorem 1 can also be obtained in a fully explicit form, which can be important for algorithmic applications. For example, it would be interesting to get an explicit formula for $n_{0}(\varepsilon)$ such that for $n \geq n_{0}(\varepsilon)$ the conclusion of Corollary 2 holds.

It is interesting to establish the limits of our approach. For example, the bound

$$
N_{p}(k) \ll k p^{-1+o(1)}
$$

for values of $k=p^{1+o(1)}$ (or larger), which is the best possible result about $N_{p}(k)$, leads only to the estimate

$$
\ell_{p} \leq(\log p)^{1+o(1)}
$$

which is still much higher than the expected size of ℓ_{p}. Furthermore, if instead of Lemma 10 we have the best possible bound

$$
\sum_{1 \leq q \leq Q} \sum_{\substack{a=1 \\ \operatorname{gcd}(a, q)=1}}^{q^{2}}\left|S\left(\frac{a}{q^{2}}\right)\right|^{2} \ll Q^{\delta}\left(Q^{3}+N\right) Y
$$

the exponent $5 / 3$ of Theorem 4 can be replaced with $3 / 2$.
Certainly, improving and obtaining unconditional variants of the estimate (3) and, more generally, investigating other properties of set $\mathcal{W}(p)$ is of great interest owing to important applications outlined in [12]. It is quite possible that Lemma 6 can be used for this purpose as well.

Congruences with Fermat quotients $q_{p}(a)$ modulo higher powers of p have also been considered in the literature; see [6;13]. Using our approach with bounds of generalized Heilbronn sums

$$
H_{p, m}(\lambda)=\sum_{b=1}^{p} \mathbf{e}_{p^{m}}\left(\lambda b^{p^{m-1}}\right)
$$

due to Bourgain and Chang [2] or Malykhin [17] (which is fully explicit), one can estimate the smallest a with

$$
q_{p}(a) \not \equiv 1\left(\bmod p^{m}\right)
$$

for fixed $m \geq 2$.

References

[1] S. Baier and L. Zhao, An improvement for the large sieve for square moduli, J. Number Theory 128 (2008), 154-174.
[2] J. Bourgain and M.-C. Chang, Exponential sum estimates over subgroups and almost subgroups of \mathbb{Z}_{Q}^{*}, where Q is composite with few prime factors, Geom. Funct. Anal. 16 (2006), 327-366.
[3] J. Bourgain, S. V. Konyagin, and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm, Internat. Math. Res. Notices (2008), 1-29.
[4] ——, Corrigenda to: Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm, Internat. Math. Res. Notices (2009), 3146-3147.
[5] R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), 433-449.
[6] R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp. 66 (1997), 1353-1365.
[7] W. L. Fouché, On the Kummer-Mirimanoff congruences, Quart. J. Math. Oxford Ser. (2) 37 (1986), 257-261.
[8] A. Granville, Some conjectures related to Fermat's last theorem, Number theory (Banff, 1988), pp. 177-192, de Gruyter, New York, 1990.
[9] -, On pairs of coprime integers with no large prime factors, Exposition. Math. 9 (1991), 335-350.
[10] D. R. Heath-Brown and S. V. Konyagin, New bounds for Gauss sums derived from k th powers, and for Heilbronn's exponential sum, Quart. J. Math. Oxford Ser. (2) 51 (2000), 221-235.
[11] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411-484.
[12] Y. Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, Algebraic geometry and number theory, Progr. Math., 850, pp. 407-451, Birkhäuser, Boston, 2006.
[13] W. Keller and J. Richstein, Solutions of the congruence $a^{p-1} \equiv 1\left(\bmod p^{r}\right)$, Math. Comp. 74 (2005), 927-936.
[14] J. Knauerand and J. Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005), 1559-1563.
[15] S.V. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, The mathematics of Paul Erdős, vol. I, pp. 176-198, Springer-Verlag, Berlin.
[16] H. W. Lenstra, Miller's primality test, Inform. Process. Lett. 8 (1979), 86-88.
[17] Y. V. Malykhin, Estimates of trigonometric sums modulo p ${ }^{r}$, Mat. Zametki 80 (2006), 793-796 (Russian); English translation in Math. Notes 80 (2006), 748-752.
J. Bourgain

Institute for Advanced Study
Princeton, NJ 08540
bourgain@ias.edu
S. V. Konyagin

Department of Mechanics
and Mathematics
Moscow State University
Moscow 119992
Russia
konyagin@ok.ru
K. Ford

Department of Mathematics
University of Illinois
Urbana, IL 61801
ford@math.uiuc.edu
I. E. Shparlinski

Department of Computing
Macquarie University
Sydney, NSW 2109
Australia
igor.shparlinski@mq.edu.au

[^0]: Received December 22, 2008. Revision received August 14, 2009.

