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An Explicit ∂̄-Integration Formula for
Weighted Homogeneous Varieties II.

Forms of Higher Degree

J. Ruppenthal & E. S. Zeron

1. Introduction

Let � be a weighted homogeneous (singular) subvariety of C
n. The main objec-

tive of this paper is to present a class of explicit integral formulas for solving the
∂̄-equation ω = ∂̄λ on the regular part of �, where ω is a ∂̄-closed (0, q)-form
with compact support and degree q ≥ 1. Particular cases of these formulas yield
Lp-bounded solution operators for 1 ≤ p ≤ ∞ if � is a homogeneous and pure
dimensional subvariety of C

n with an arbitrary singular locus.
As is well known, solving the ∂̄-equation forms one of the main pillars of com-

plex analysis; however, it also has deep consequences for algebraic geometry, par-
tial differential equations, and other areas. For example, the classical Dolbeault
theorem implies that the ∂̄-equation can be solved in all degrees on a Stein mani-
fold, and it is known that an open subset of C

n is Stein if and only if the ∂̄-equation
can be solved in all degrees (on that set). Nevertheless, it is usually not easy to
produce an explicit operator for solving the ∂̄-equation on a given Stein mani-
fold, even if we know that it can be solved. The construction of explicit operators
depends strongly on the geometry of the manifold on which the equation is con-
sidered. There exists a vast literature about this problem on smooth manifolds,
both in books and papers (see e.g. [10; 11]).

The respective Dolbeault theory on singular varieties has been developed only
recently. Let� be a singular subvariety of the space C

n and ω a bounded ∂̄-closed
differential form on the regular part of �. Fornæss, Gavosto, and Ruppenthal pro-
duced a general technique for solving the ∂̄-equation ω = ∂̄λ on the regular part
of �, and they have successfully applied this technique to varieties defined by the
formula zm = ∏

k w
bk
k in C

n; see [6; 9; 16]. Acosta, Solís, and Zeron have devel-
oped an alternative technique for solving the ∂̄-equation (if ω is bounded) on the
regular part of any singular quotient variety embedded in C

n that is generated by
a finite group of unitary matrices—such as, for instance, hypersurfaces in C

3 with
only a rational double point singularity; see [1; 2; 21].

Nevertheless, the research on calculating explicit operators for solving the ∂̄-
equation ω = ∂̄λ on the regular part of singular subvarieties � ⊂ C

n is still at a
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very early state; the techniques mentioned in the previous paragraph do not pro-
duce useful explicit formulas. In [19], Ruppenthal and Zeron proposed explicit
operators for calculating solutions λ if � is a weighted homogeneous variety and
ω is a ∂̄-closed (0,1)-differential form with compact support. The weighted ho-
mogeneous varieties are analyzed, for they are a main model for classifying the
singular subvarieties of C

n. A detailed analysis of the weighted homogeneous va-
rieties may be found in Chapter 2 (Section 4) and Appendix B of [4]. The main
objective of the present paper is to improve the explicit operators originally devel-
oped in [19] for calculating solutions λ to the ∂̄-equation ω = ∂̄λ on the regular
part of any weighted homogeneous variety � if ω is a ∂̄-closed (0, q)-differential
form with compact support and degree q ≥ 1. Furthermore, we produce ∂̄-solution
operators with Lp-estimates for 1 ≤ p ≤ ∞ if � is homogeneous with an arbi-
trary singular locus.

Definition 1. Let β ∈ Z
n be a fixed integer vector with strictly positive entries

βk ≥ 1. A holomorphic polynomial Q(z) on C
n is said to be weighted homoge-

neous of degree d ≥ 1 with respect to β if the following equality holds for all s ∈
C and z∈ C

n:
Q(sβ ∗ z) = s dQ(z) (1)

with the action

s β ∗ (z1, z2, . . . , zn) := (s β1z1, s β2z2, . . . , s βnzn). (2)

An algebraic subvariety � in C
n is said to be weighted homogeneous with re-

spect to β if � is the zero locus of a finite number of weighted homogeneous
polynomials Qk(z) of (perhaps different) degrees dk ≥ 1, but all of them with re-
spect to the same fixed vector β.

Let � ⊂ C
n be any subvariety. We use the following notation throughout. The

regular part �∗ = �reg is the complex manifold consisting of the regular points
of �, and it is always endowed with the induced metric; hence �∗ is a Hermitian
submanifold in C

n with corresponding volume element dV� and induced norm
|·|� on the Grassmannian �T ∗�∗. Thus, any Borel-measurable (0, q)-form ω on
�∗ admits a representation ω = ∑

J fJ dzJ , where the coefficients fJ are Borel-
measurable functions on �∗ that satisfy the inequality |fJ(z)| ≤ |ω(z)|� for all
points z ∈�∗ and multi-indexes |J | = q. Notice that such a representation is by
no means unique; see [16, Lemma 2.2.1] for a more detailed treatment of this point.
For 1 ≤ p < ∞, we also introduce the Lp-norm of a measurable (0, q)-form ω on
an open set U ⊂ �∗ via the formula

‖ω‖Lp

0,q
(U) :=

(∫
U

|ω|p� dV�

)1/p

.

We can now present the main result of this paper. We assume that the ∂̄-
differentials are calculated in the sense of distributions, for we work with Borel-
measurable functions.
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Theorem 2 (Main). Let � be a weighted homogeneous subvariety of C
n with

respect to a given vector β ∈ Z
n, where n ≥ 2 and all entries βk ≥ 1. Consider the

class of all (0, q)-formsω given by
∑

J fJ dzJ , where q ≥ 1, the coefficients fJ are
all Borel-measurable functions in �, and z1, . . . , zn are the Cartesian coordinates
of C

n. Let σ ≥ −q be any fixed integer. Then the operator Sσ
q is well-defined on

� for all forms ω that are essentially bounded and have compact support :

Sσ
q ω(z) :=

∑
|J |=q

ℵJ

2πi

∫
u∈C

fJ(u
β ∗ z)u

σ(uβJ ) dū ∧ du

ū(u − 1)
, (3)

where

ℵJ =
∑

j∈J,K=J\{j}

βjzjdzK

sgn(j,K)
and βJ =

∑
j∈J

βj . (4)

Observe that the multi-indexes J and K are both ordered in an ascending way
and that sgn(j,K) is the sign of the permutation used for arranging the elements
of the q-tuple (j,K) in ascending order. Finally, the form Sσ

q(ω) is a solution of
the ∂̄-equation ω = ∂̄Sσ

q(ω) on the regular part of � \ {0} whenever ω is also
∂̄-closed on the regular part of � \ {0}.
According to Definition 1, the origin of C

n is, in general, a singular point of �
and so the regular parts of � and � \ {0} coincide. We will prove Theorem 2 in
Section 2 of this paper. Similar techniques and a slight modification of equations
(3) and (4) can also be used to produce a ∂̄-solution operator with Lp-estimates
on homogeneous subvarieties with arbitrary singular locus.

Theorem 3 (Lp-estimates). Let � be a pure d-dimensional homogeneous (cone)
subvariety of C

n, where n ≥ 2 and each entry βk = 1 in Definition 1. Fix a real
number 1 ≤ p ≤ ∞ and an integer 1 ≤ q ≤ d. Consider the class Lp

0,q(�) of all
(0, q)-forms ω given by

∑
J fJ dzJ , where the coefficients fJ are allLp-integrable

functions in � and where z1, . . . , zn are the Cartesian coordinates of C
n. Choose

σ ∈ Z to be the smallest integer such that

σ ≥ 2d − 2

p
+ 1 − q. (5)

Then the operator Sσ
q(ω) is well-defined almost everywhere on � for all forms ω

that lie in Lp

0,q(�) and have compact support on �:

Sσ
q ω(z) :=

∑
|J |=q

ℵJ

2πi

∫
u∈C

fJ(uz)
uσuq dū ∧ du

ū(u − 1)
, (6)

where

ℵJ =
∑

j∈J,K=J\{j}

qzjdzK

sgn(j,K)
.

The form Sσ
q(ω) is a solution of the ∂̄-equation ω = ∂̄Sσ

q(ω) on the regular part
of � \ {0} whenever ω is also ∂̄-closed on the regular part of � \ {0}. Finally, if
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we assume that the support of ω is contained in an open ball BR of radius R > 0
and center at the origin, then there exists a strictly positive constantC�(R, σ) that
does not depend on ω and such that

‖Sσ
q(ω)‖Lp

0,q−1(�∩BR) ≤ C�(R, σ) · ‖ω‖Lp

0,q
(�). (7)

The case p = ∞ in Theorem 3 is a corollary of Theorem 2 because the formulas
(6) and (3) coincide in the homogeneous case (where all coefficients βJ = q). We
will give the full proof of Theorem 3 in Section 3.

The obstructions to solving the ∂̄-equation withLp-estimates on subvarieties of
C
n are not completely understood in general. An L2-solution operator (for forms

with noncompact support) is known only in the case where � is a complete inter-
section (more precisely, a Cohen–Macaulay space) of pure dimension ≥ 3 with
only isolated singularities. This operator was constructed by Fornæss, Øvrelid,
and Vassiliadou in [8] via an extension theorem for ∂̄-cohomology groups origi-
nally presented by Scheja [20]. Usually, the Lp-results come with some obstruc-
tions to the solvability of the ∂̄-equation. Different situations have been analyzed
in the works of Diederich, Fornæss, Øvrelid, Ruppenthal, and Vassiliadou, where
it is shown that the ∂̄-equation is solvable with Lp-estimates for forms lying in
a closed subspace of finite codimension of the vector space of all the ∂̄-closed
Lp-forms if the variety has only isolated singularities [3; 5; 8; 12; 17]. Moreover,
in [7] the ∂̄-equation is solved locally with some weighted L2-estimates for forms
that vanish to a sufficiently high order on the (arbitrary) singular locus of the given
varieties.

There is a second line of research about the ∂̄-operator on complex projective
varieties (see [13; 14] for the state of the art and further references). Although that
area clearly has much in common with the topic of ∂̄-equations on analytic sub-
varieties of C

n, it is a somewhat different theory because of the strong global tools
that cannot be used in the (local) situation of Stein spaces (owing to the lack of
compactness).

Because the estimates in Theorem 3 are given only for homogeneous varieties,
in Section 4 we propose a useful technique for generalizing the estimates in The-
orem 3 so as to consider weighted homogeneous subvarieties instead of homoge-
neous ones.

2. Proof of Main Theorem

The following result will be needed. We use L1
p,q to denote the class of all the

(p, q)-forms withL1-integrable coefficients, so that the differentials are calculated
in the sense of distributions.

Theorem 4. Let U ⊂ C
m be open, 2 ≤ q ≤ m, and let ω ∈ L1

0,q(U) be a
∂̄-closed form with compact support along the first coordinate z1—that is, such
that supp(ω)∩Fy is compact in U ∩Fy for all fibres Fy = C×{y} with y ∈ C

m−1.

Assume that ω is given by
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ω =
∑

|J |=q,1/∈J
[aJ ]dzJ +

∑
|K|=q−1,1/∈K

[a1,K ]dz1 ∧ dzK ,

where the multi-indexes J and K are both ordered in an ascending way. The
operator

Sq(ω) :=
∑

|K|=q−1,1/∈K
I[a1,K ]dzK

with

If(z1, . . . , zm) := 1

2πi

∫
t∈C

f(t, z2, . . . , zm)
dt̄ ∧ dt

t − z1

is defined almost everywhere in U and satisfies ω = ∂̄Sq(ω).

Notice that Sq(ω) is well-defined inU ifω is essentially bounded and has compact
support along the first coordinate z1.

Proof of Theorem 4. It is clear that the restrictions (a1,K)|Fy are all L1-integrable
on the intersections U ∩ Fy for almost every fibre Fy , so that η := Sq(ω) is de-
fined almost everywhere in U ; see [15, Apx. B] or [11; 16]. We need only show
that ∂̄η = ω. The assumption ∂̄ω = 0 implies that the following equation holds
for every multi-index |J | = q with 1 /∈ J :

∂[aJ ]

∂z1
=

∑
j∈J,K=J\{j}

sgn(j,K)
∂[a1,K ]

∂zj
. (8)

The function sgn(j,K) is the sign of the permutation used for ordering the ele-
ments of the q-tuple (j,K) in an ascending way. A direct application of the in-
homogeneous Cauchy integral formula in one complex variable, when combined
with the fact that ω has compact support along the first coordinate, yields the fol-
lowing identity for every multi-index |K| = q − 1 with 1 /∈K:

∂̄(I[a1,K ]) = [a1,K ]dz1 ∧ dzK +
∑

j /∈K, j �=1

I
[
∂[a1,K ]

∂zj

]
dzj ∧ dzK.

Therefore,

∂̄Sq(w) =
∑

|K|=q−1,1/∈K
[a1,K ]dz1 ∧ dzK +

∑
|J |=q,1/∈J

I(bJ)dzJ ,

where

bJ :=
∑

j∈J,K=J\{j}
sgn(j, J )

∂[a1,K ]

∂zj
.

Recall that the multi-indexes J and K are both ordered in an ascending way and
that sgn(j,K) is the sign of the permutation used for arranging the elements of
the q-tuple (j,K) in ascending order. Equation (8) implies that ∂̄Sq(w) is equal
to ω because aK has compact support along the first coordinate, so

I(bJ) = I
(
∂[aJ ]

∂z1

)
= aJ .
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We may now proceed with the proof of the Main Theorem.

Proof of Main Theorem. We follow the proof originally presented in [19], so here
we point out only the main elements. Let {Qk} be the set of polynomials that define
the algebraic variety � as its zero locus. The definition of weighted homogeneous
varieties implies that the polynomials Qk(z) are all weighted homogeneous with
respect to the same fixed vector β. Equation (1) automatically yields that every
point s β ∗ z lies in � for all s ∈ C and z ∈ �, so each coefficient fJ(·) in equa-
tion (3) is well-evaluated in �. Moreover, the coefficients βk ≥ 1 and βJ ≥ q for
all indexes k and multi-indexes J of degree q. Fixing any point z ∈ �, the given
hypotheses imply that the following Borel-measurable functions are all essentially
bounded and have compact support in C:

u �→ fJ(u
β ∗ z).

Hence, the operator Sσ
q(ω) in (3)–(4) is well defined on � for each fixed inte-

ger σ ≥ −q and for all forms ω that are essentially bounded and have compact
support. We shall prove that Sσ

q(ω) is also a solution of the equation ω = ∂̄Sσ
q(ω)

if the (0, q)-form ω is ∂̄-closed. We may suppose, without loss of generality and
in light of the given hypotheses, that the regular part of � does not contain the ori-
gin. Let ξ �= 0 be any fixed point in the regular part of �. We shall suppose for
simplicity that the first entry ξ1 �= 0, so we may define the following mapping and
subvariety:

η(y) := (y1/ξ1)
β ∗ (ξ1, y2, y3, . . . , yn) for y ∈ C

n,

Y := {ŷ ∈ C
n−1 : Qk(ξ1, ŷ) = 0 ∀k}. (9)

The action s β ∗ z was given in (2). We have that η(ξ) = ξ and that the follow-
ing identities hold for all s ∈ C and ŷ ∈ C

n−1 (recall equation (1) and the fact that
� is the zero locus of the polynomials {Qk}):

Qk(η(s, ŷ)) = (s/ξ1)
dkQk(ξ1, ŷ),

η(C∗ × Y ) = {z∈� : z1 �= 0}. (10)

The symbol C
∗ stands for C \ {0}. The mapping η(y) is locally a biholomor-

phism whenever the first entry y1 �= 0. Whence the point ξ lies in the regular part
of the variety C×Y, because ξ = η(ξ) also lies in the regular part of � and ξ1 �= 0.
Thus, we can find a biholomorphism

π = (π2, . . . ,πn) : U → Y ⊂ C
n−1

defined from an open and bounded domain U in C
m onto an open set in the regu-

lar part of Y and such that π(ζ) is equal to (ξ2, . . . , ξn) for some ζ ∈U. Consider
the following holomorphic mapping defined for all points s ∈ C and x ∈U :

0(s, x) := s β ∗ (ξ1,π(x)) = η(sξ1,π(x))∈�. (11)

The image 0(C × U) will be known as a generalized cone from now on. Ob-
serve that 0(C∗ × U) lies in the regular part of �, since π(U) is contained in
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the regular part of Y. The mapping 0(s, x) is locally a biholomorphism when-
ever s �= 0 because η is also a local biholomorphism for y1 �= 0, and the image
0(1, ζ) is equal to ξ. Hence, recalling the form ω and the operator Sσ

q(ω) defined
in (3)–(4), we need only prove that the pull-back 0∗ω is equal to the differential
∂̄0∗Sσ

q(ω) inside C
∗ × U in order to conclude that the ∂̄-equation ω = ∂̄Sσ

q(ω)

holds in a neighborhood of ξ in �. We can use equations (2) and (11) to calcu-
late the pull-back 0∗ω when ω is given by

∑
J fJ dzJ . To simplify the notation,

let π1(x) := ξ1 for all x ∈U, so that dπ1 = 0. Then

[0∗ω](s, x) =
∑
|J |=q

fJ(0(s, x))sβJ
∧
j∈J

dπj(x)

+
∑

|J |=q, j∈J

fJ(0)βj sβJ−1πj(x)

sgn(j, J \ {j}) ds̄ ∧
∧

k∈J\{j}
dπk(x). (12)

Recall that βJ = ∑
j∈J βj ≥ q ≥ −σ, the multi-index J is ordered in an as-

cending way, and sgn(α1, . . . ,αq) is the sign of the permutation used for arranging
the elements of the q-tuple (α1, . . . ,αq) in ascending order. The given hypotheses
on ω yield that the pull-back 0∗ω is ∂̄-closed and bounded in C

∗ ×U ; hence it is
also ∂̄-closed in C × U (see [16, Lemma 4.3.2] or [21, Lemma (2.2)]). The same
argument applies to the ∂̄-closed and essentially bounded form

sσ+1[0∗ω](s, x)∈L∞
0,q(C × U). (13)

The open set U is bounded in C
m. By the use of [16, Lemma 7.2.2, p. 186] or

[18, Lemma 3.6] it then follows from (12) and (13) that sσ0∗ω is bothL1
0,q(C×U)

and ∂̄-closed in C×U. It is easy to see that each coefficient fJ(0(s, x)) has com-
pact support with respect to the first coordinate s, so we can apply Theorem 4 to
t σ[0∗ω](t, x) and calculate the form

Sq(t
σ0∗ω) =

∑
|J |=q

2J

2πi

∫
t∈C

fJ(0(t, x))
t σ(t βJ ) dt̄ ∧ dt

t̄(t − s)
(14)

with

2J =
∑
j∈J

βjπj(x)

sgn(j, J \ {j})
∧

k∈J\{j}
dπk(x).

Theorem 4 now implies that

sσ[0∗ω](s, x) = ∂̄Sq(t
σ[0∗ω](t, x)).

Hence, we need only verify that the form Sq(t
σ0∗ω)/sσ is equal to the pull-back

0∗Sσ
q(ω) of the form defined in (3) in order to conclude that ω = ∂̄Sσ

q(ω), as de-
sired. We begin by calculating the pull-back0∗ℵ of the differential form ℵJ given
in (4). Notice that π1(x) ≡ ξ1 so that dπ1 = 0, and recall equations (2) and (11).
We have
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0∗ℵJ =
∑
j∈J

βj s βJπj(x)

sgn(j, J \ {j})
∧

k∈J\{j}
dπk(x)

+
∑

j,k∈J, j �=k

βjβk s βJ−1πj(x)πk(x)ds̄

sgn(j, J \ {j}) sgn(k, J \ {j, k}) ∧
∧

i∈J\{j,k}
dπi(x). (15)

Suppose that J = (α1, . . . ,αa , j, α̇1, . . . , α̇b, k, α̈1, . . . , α̈c); then

sgn(j, J \ {j}) sgn(k, J \ {j, k}) = (−1)a(−1)a+b,

sgn(k, J \ {k}) sgn(j, J \ {j, k}) = (−1)a+b+1(−1)a.

Hence the last sum in equation (15) vanishes and so the pull-back 0∗ℵJ is iden-
tically equal to s βJ2J , with 2J as defined for (14). Finally, we can calculate
the pull-back of the form Sσ

q(ω) given in (3), noticing that 0(us, x) is equal to
uβ ∗ 0(s, x):

0∗Sσ
q(w) =

∑
|J |=q

s βJ2J

2πi

∫
u∈C

fJ(0(us, x))
uσ(uβJ ) dū ∧ du

ū(u − 1)
. (16)

The change of variables t = us yields that the form Sq(t
σ0∗ω)/sσ in (14) is

equal to the identity (16), so ω = ∂̄Sσ
q(ω) as desired.

3. Lp-Estimates

We prove Theorem 3 in this section. Recall that � is a pure d-dimensional homo-
geneous (cone) subvariety of C

n with arbitrary singular locus, so that n ≥ 2 and
each entry βk = 1 in Definition 1. Moreover, given a fixed real number 1 ≤ p ≤
∞ and an integer 1 ≤ q ≤ d, we consider the class Lp

0,q of all (0, q)-forms ω ex-
pressed as

∑
J fJ dzJ , where the coefficients fJ are all Lp-integrable functions in

� and where z1, . . . , zn are the Cartesian coordinates of C
n. Assume that the sup-

port of each form ω ∈ L
p

0,q is contained in the open ball BR of radius R > 0 and
center at the origin. Fix σ ∈ Z to be the smallest integer such that

σ ≥ 2d − 2

p
+ 1 − q. (17)

We begin by showing that Sσ
q in (6) defines a bounded operator

Sσ
q : Lp

0,q(� ∩ BR) → L
p

0,q−1(� ∩ BR), (18)

where

Sσ
q ω(z) =

∑
|J |=q

ℵJ

2πi

∫
u∈C

fJ(uz)
uσuq dū ∧ du

ū(u − 1)
(19)

with

ℵJ =
∑

j∈J,K=J\{j}

qzjdzK

sgn(j,K)
.
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Recall that the multi-indexes J and K are both ordered in an ascending way
and that sgn(j,K) is the sign of the permutation used for arranging the elements
of the q-tuple (j,K) in ascending order. Observe that the case p = ∞ in (18) is
a corollary of Theorem 2 because the formulas (3) and (19) coincide when the va-
riety � is homogeneous (so that all βJ = q). Hence, we can suppose from now
on that p < ∞, and we only need to prove that the following inequality holds for
every multi-index |J | = q and j ∈ J in order to conclude that (18) and (7) hold:

∫
z∈�∩BR

∣∣∣∣zj
∫

|u|<R/‖z‖
fJ(uz)u

σ+q

(u − 1)u
dVC

∣∣∣∣p dV� � ‖ω‖p
L
p

0,q
(�)

. (20)

Notice that the support of fJ(z) is contained in the open ball BR of radius R and
that dVC and dV� are the respective volume forms on C and �. Furthermore, we
may use the variable u instead of its complex conjugate ū because we work under
an absolute-value sign. Let δ < 1 be any fixed real number. It is easy to deduce
the existence of a finite real constant M1 such that the following inequalities hold
for all complex numbers t̂ and ŵ:∫

|w|<R

dVC(w)

|t̂ |δ|w − t̂ | ≤ M1 and
∫

|t |<R

dVC(t)

|t |δ|ŵ − t | ≤ M1.

Hence, the generalized Young inequality for convolution integrals yields that
the modified Cauchy–Pompeiu formula defines an Lp-bounded operator (see e.g.
[15, Apx. B] with s = 1 and δ < 1):

∫
|t |<R

∣∣∣∣
∫

|w|<R

h(w) dw ∧ dw̄

(w − t)|t |δ
∣∣∣∣p dVC(t) �

∫
|t |<R

|h(t)|p dVC. (21)

Moreover, let �̃ be the projective variety associated to � in the space CP
n−1,

for� is a pure d-dimensional homogeneous subvariety of C
n. We also use the fact

that any integral on � can be decomposed as a pair of nested integrals on C and
�̃; that is:∫

z∈�
7(z) dV�(z) =

∫
[z]∈�̃

∫
t∈C

7(żt)|t |2d−2 dVC(t) dV�̃([z]),

where ż∈� is any representative of [z] ∈ �̃ with ‖ż‖ = 1. Finally, since σ ∈ Z is
the smallest integer that satisfies (17), we have that the constant

δ := σ + q − 1 + 2 − 2d

p
satisfies 0 ≤ δ < 1. (22)

We can now use the results presented in the preceding paragraphs to calculate
(20) and (7) with the change of variables w = ut :
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z∈�∩BR

∣∣∣∣zj
∫

|u|<R/‖z‖
fJ(uz)u

σ+q

(u − 1)u
dVC

∣∣∣∣p dV�

≤
∫

[z]∈�̃

∫
|t |<R

|t |p
∣∣∣∣
∫

|u|<R/|t |
fJ(użt)u

σ+q

(u − 1)u
dVC

∣∣∣∣p|t |2d−2 dVC dV�̃

=
∫

[z]∈�̃

∫
|t |<R

∣∣∣∣
∫

|w|<R

fJ(wż)w
σ+q−1

(w − t)t σ+q−2
· dVC

|t |2
∣∣∣∣p|t |2d−2+p dVC dV�̃

=
∫

[z]∈�̃

∫
|t |<R

∣∣∣∣
∫

|w|<R

fJ(wż)w
σ+q−1

(w − t)|t |δ dVC

∣∣∣∣p dVC dV�̃

�
∫

[z]∈�̃

∫
|t |<R

|fJ(t ż)t σ+q−1|p dVC dV�̃

=
∫

[z]∈�̃

∫
|t |<R

|fJ(t ż)|p|t |pδ+2d−2 dVC dV�̃

≤
∫
z∈�∩BR

|fJ(z)|pRpδ dV� � ‖fJ‖pLp(�) ≤ ‖ω‖p
L
p

0,q
(�)

< ∞.

Here we have used (22) and (21) with h(w) = fJ(wż)w
σ+q−1. This completes the

proof of equations (20) and (7).
Finally, notice that the operators Sσ

q(ω) given in (3), (6), and (19) are all the
same because the coefficients βJ = q for every multi-index |J | = q. Therefore,
we can show that the operator Sσ

q(ω) satisfies the differential equationω = ∂̄Sσ
q(ω)

by following step by step the proof presented in Section 2. We must first rewrite
the pull-back given in (12), which is ∂̄-closed in the product C

∗ × U:

[0∗ω](u, x) =
∑
|J |=q

fJ(0(u, x))uq
∧
j∈J

dπj(x)

+
∑

|J |=q, j∈J

fJ(0)quq−1πj(x)

sgn(j, J \ {j}) dū ∧
∧

k∈J\{j}
dπk(x). (23)

We must also show that uσ[0∗ω](u, x) lies in L1
0,q(C×U), where U is a bounded

domain in C
m. Thus, we have that uσ0∗ω is also ∂̄-closed in C × U by [16,

Lemma 7.2.2, p. 186] or [18, Lemma 3.6]. We can then apply Theorem 4 and fol-
low step by step the proof presented in Section 2 from equation (14) to the end of
that section.

Recall that the integer σ ≥ 2d−2
p

+ 1 − q. We begin by showing that the form
uσ0∗ω lies in L

p

0,q(C × U). Notice that 0(u, x) is equal to u(ξ1,π(x)) because
each entry βk = 1 in (2) and (11). It is easy to calculate the pull-back of the vol-
ume form dV� :

0∗dV� =
∑

|I |=|J |=d

βI,J(z)dzI ∧ dzJ

∣∣∣
z=u(ξ1,π(x))

= 2(x)|u|2d−2[du ∧ dū] ∧
d−1∧
k=1

[dxk ∧ dxk]. (24)
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Recall that x lies in the bounded open set U ⊂ C
d−1. Since � is a pure d-

dimensional homogeneous (cone) subvariety of C
n, it follows that the coefficients

βI,J(z) are all invariant under the transformations z �→ uz and so 2(x) depends
only on the values of π(x) and all its partial derivatives (2 is constant with respect
to u). That 0 is a biholomorphism from C

∗ × U onto its image also implies that
2 cannot vanish. Hence, choosing a smaller set U if necessary, we can suppose
that |2| is bounded from below by a constant M2 > 0.

On the other hand, since 0(u, x) = u(ξ1,π) and since the support of each fJ(z)
is contained in a ball of radius R > 0 and center at the origin, we have that every
fJ(0(u, x)) vanishes if |uξ1| > R. Thus, equation (23) and the analysis performed
in the preceding paragraphs imply that the formuσ0∗ω lies inLp

0,q(C×U), because
the following inequalities hold for every multi-index J and exponent b = 0,1:∫

C×U

|uσ+q−bfJ(0)|p dVC×U �
∫

C×U

|fJ(0)|p2(x)|u|2d−2 dVC×U

=
∫
0(C×U)

|fJ |p dV� ≤ ‖λ‖p
L2

0,1(�)
< ∞.

Recall that p(σ + q − b) ≥ 2d − 2 because of the hypothesis in (5)–(17). Fi-
nally, the support of 0∗ω is bounded in C × U because U is bounded and each
fJ(0(u, x)) vanishes if |uξ1| > R. Thus, we have that the form uσ0∗ω is L1

0,q

and ∂̄-closed in C × U (see e.g. [16, Lemma 7.2.2, p. 186] or [18, Lemma 3.6]).
We can then apply Theorem 4 and follow step by step the proof presented in Sec-
tion 2 from equation (14) to the end of that section in order to conclude that the
operator Sσ

q(ω) satisfies the differential equation ω = ∂̄Sσ
q(ω), as desired.

4. Weighted Homogeneous Estimates

We wish to close this paper by presenting a useful technique for generalizing the es-
timates given in Theorem 3, so as to consider weighted homogeneous subvarieties
instead of cones. Let � ⊂ C

n be a weighted homogeneous subvariety defined as
the zero locus of a finite set of polynomials {Qk}. Thus, the polynomials Qk(z)

are all weighted homogeneous with respect to the same vector β ∈ Z
n, and each

entry βk ≥ 1. Define the following holomorphic mapping:

7 : C
n → C

n with 7(x) = (x
β1
1 , xβ2

2 , . . . , xβnn ). (25)

It is easy to see that each polynomial Qk(7) is homogeneous, and so the subvari-
ety X ⊂ C

n defined as the zero locus of {Qk(7)} is a cone.
Consider a (0, q)-form ω given by the sum

∑
J fJ dzJ , where the coefficients fJ

are all Borel-measurable functions with compact support in� and where z1, . . . , zn
are the Cartesian coordinates of C

n. We may follow two different paths in order
to solve the equation ∂̄λ = ω. First, we may calculate the pull-back,

7∗ω =
∑
|J |=q

fJ(7(x))

[ ∏
j∈J

βjx
βj−1
j

]
dxJ ,
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and then apply Theorems 2 and 3 on the cone X to obtain the following operators:

Sσ
q(7

∗ω) :=
∑
|J |=q

ℵ̂J

2πi

∫
u∈C

fJ(7(ux))
uσ(uβJ ) dū ∧ du

ū(u − 1)
(26)

with

ℵ̂J =
∑

j∈J,K=J\{j}

βjx
βj
j

sgn(j,K)

[ ∏
k∈K

βkx
βk−1
k

]
dxK.

Alternatively, we may use Theorem 2 on the weighted homogeneous variety � so
as to get

Sσ
q(ω) :=

∑
|J |=q

ℵJ

2πi

∫
u∈C

fJ(u
β ∗ z)u

σ(uβJ ) dū ∧ du

ū(u − 1)
(27)

with

ℵJ =
∑

j∈J,K=J\{j}

βjzjdzK

sgn(j,K)
and βJ =

∑
j∈J

βj .

Here we can easily verify that 7∗Sσ
q(ω) is equal to Sσ

q(7
∗ω). The main problem

is that 7∗ω may not necessarily lie in Lp

0,q(X) for p < ∞.
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