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Wiener’s Positive Fourier Coefficients Theorem
in Variants of Lp Spaces

J. M. Ash, S . Tikhonov, & J. Tung

1. Introduction

In this paper we consider spaces that are “close” to Lp(T): Lp itself; the space
of functions f with positive Fourier coefficients that have |f |p integrable near 0;
the space of functions whose Fourier coefficients are in �p

′; the space of functions
whose Fourier coefficients {cn} satisfy

∑|cn|pnp−2 < ∞; and the mixed norm
spaces �p

′,2, 1 < p < 2. We shall describe several relationships between these
spaces.

Let T be the interval [−π,π]. For every 1 ≤ p <∞, we say that a measurable
function f is in Lp = Lp(T) if

‖f ‖pp = 1

2π

∫
T

|f(x)|p dx <∞.

Note that Lp ⊆ L1 for every p ≥ 1. For f ∈L1 and for every integer n, let

f̂ (n) = 1

2π

∫
T

f(x)e−inx dx (1.1)

be the nth Fourier coefficient of f and let
∑
f̂ (n)e inx be the Fourier series of f.

For each p > 1, let

L
p

loc+ =
{
f : all f̂ (n) ≥ 0 and

∫ δ

−δ
|f |p dx <∞ for some δ = δ(f ) > 0

}
.

An unpublished theorem of Norbert Wiener asserts that if f ∈ L2
loc+ then f ∈

L2(T). The short proof involves observing that, for each n, f̂ (n) ≤ a constant
times |ĥf (n)|, where

h(x) =
{

1 − |x/δ|, x ∈ [−δ, δ],

0, x ∈ T \ [−δ, δ],

so that hf ∈ L2(T). Thus
∑|ĥf (n)|2 < ∞,

∑|f̂ (n)|2 < ∞, and f ∈ L2(T) by
Parseval’s theorem. Much later, Stephen Wainger remarked that f ∈L2n

loc+ implies
f ∈ L2n

loc+ , n = 1, 2, 3, . . . , but gave examples showing that f ∈ Lploc+ does not
necessarily imply that f ∈Lp(T)when 1< p < 2. Next, Harold Shapiro showed
that if p ∈ (2, ∞) is not an even integer then f ∈Lploc+ does not necessarily imply
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that f ∈ Lp(T). Then in [ARV], a “replacement” for the potential Lploc+ ⇒ Lp

theorem disallowed by Wainger’s counterexamples was found—namely, that for
1 < p < 2, if f ∈ Lploc+ then f ∈ �p ′; that is,

∑|f̂ (n)|p ′
< ∞, where p ′ = p

p−1
is the conjugate of p.

We believe that in Theorem 1 (see Section 3) we have found a sufficiently gen-
eral setting for the appropriate theorem to fit Wiener’s proof. The spaces to which
Theorem 1 applies include:

(i) �p
′;

(ii) spaces that we will call HLp in honor of Hardy and Littlewood;
(iii) the mixed-norm spaces �p

′,2 for 1< p < 2; and
(iv) Lp for p = 2, 4, 6, . . . .

When 1 < p < 2, the spaces �p
′
are “close” to Lp in a sense made precise by

the Hausdorff–Young theorem (see Theorem A to follow). When 1< p <∞, we
define HLp to be the set of all L1 functions whose Fourier coefficients satisfy∑

n∈Z

|f̂ (n)|p(|n| + 1)p−2 <∞.

A result of Hardy and Littlewood connects HLp to Lp in the same way that the
Hausdorff–Young Theorem connects �p

′
to Lp (see Theorem B).

Another aim of this paper is to give a collection of counterexamples that make
explicit the relations between the spaces Lp, Lploc+ , �p

′
, and HLp. These results

are summarized in three Venn diagrams. In particular, standard examples show-
ing the sharpness of both sides of the Hausdorff–Young theorem have oscillating
coefficients; here these are replaced by examples with positive coefficients.

2. History

The following theorems give conditions for membership of a function in Lp in
terms of its Fourier coefficients (see [B; Z, Chap. XII, 2.3, 3.19]).

Theorem A (Hausdorff–Young). Let 1 < p < ∞, and let p ′ denote the conju-
gate index of p.

(i) For 1< p ≤ 2, if f ∈Lp then(∑
n∈Z

|f̂ (n)|p ′
)1/p ′

≤ ‖f ‖p.

(ii) For 2 ≤ p < ∞, if {cn} is a set of numbers such that
∑|cn|p ′

< ∞, then
there is an f ∈Lp with f̂ (n) = cn and

‖f ‖p ≤
(∑
n∈Z

|f̂ (n)|p ′
)1/p ′

.

Theorem B (Hardy–Littlewood).

(i) For 1< p ≤ 2, if f ∈Lp then(∑
n∈Z

|f̂ (n)|p(|n| + 1)p−2

)1/p

≤ C‖f ‖p.
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(ii) For 2 ≤ p < ∞, if {cn} is a set of numbers such that
∑|cn|pnp−2 < ∞,

then there is an f ∈Lp with f̂ (n) = cn and

‖f ‖p ≤ C
(∑
n∈Z

|cn|p(|n| + 1)p−2

)1/p

.

Theorem C (Wiener). Let f ∈ L1 be such that f̂ (n) ≥ 0 for every integer n,
and suppose there exists some δ > 0 such that∫ δ

−δ
|f(x)|2 dx <∞.

Then f ∈L2.

These theorems motivate the definitions of the following subclasses ofL1. For f ∈
L1, we say that f ∈ �p if ∑

n∈Z

|f̂ (n)|p <∞
and we say f ∈HLp if ∑

n∈Z

|f̂ (n)|p(|n| + 1)p−2 <∞.

Finally, we say that f ∈ Lploc+ if f̂ (n) ≥ 0 for every integer n and if, for some
δ > 0, ∫ δ

−δ
|f(x)|p dx <∞.

With these definitions, Theorems A, B, and C can be succinctly stated as follows.

Theorem A′ (Hausdorff–Young).

(i) For 1< p ≤ 2, Lp ⊂ �p ′
.

(ii) For 2 ≤ p <∞, �p
′ ⊂ Lp.

Theorem B′ (Hardy–Littlewood).

(i) For 1< p ≤ 2, Lp ⊂ HLp.
(ii) For 2 ≤ p <∞, HLp ⊂ Lp.
Theorem C ′ (Wiener). L2

loc+ ⊂ L2.

Note that for p = 2 we have this tidy state of affairs:

L2
loc+ ⊂ L2 = �2 = HL2. (2.1)

If p �= 2, then equality fails to hold in all cases. The purpose of this paper is
to explore the relationships between the various subclasses of L1 just defined, for
the cases p �= 2, and to provide explicit examples of functions with positive coef-
ficients in these spaces. We will treat the cases 1< p < 2 and p > 2 separately.

3. The Case p < 2

For 1 < p < 2, Wainger [W] proved the following theorem by constructing an
explicit example.
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Theorem D. For 1< p < 2,

L
p

loc+ �⊂ Lp.
For more positive results, Ash, Rains, and Vági [ARV] have shown that the con-
tainment holds.

Theorem E. For 1< p < 2,

L
p

loc+ ⊂ �p ′
.

The following theorem generalizes Theorems C and E. Recall that a space of func-
tionsX is called solid if it satisfies the following property: For every f = ∑

cne
inθ

in X, if another function g = ∑
dne

inθ satisfies |dn| ≤ |cn| for every n then g is
also in X.

Theorem 1. Let X be a space of functions. If Lp ⊂ X and if X is solid, then

L
p

loc+ ⊂ X.
Proof. Let f = ∑

cne
inθ ∈ Lploc+. Let h(θ) be the 2π -periodic function that for

|t | ≤ π is defined by

h(θ) =
{

1 − |θ |/δ, |θ | ≤ δ;
0, δ < |θ | ≤ π.

Then |hf | ≤ χ[−δ,δ]|f | ∈Lp, so that hf ∈Lp ⊂ X.
For every n we have

ĥf (n) =
∑
k+�=n

ĥ(k)c�,

where c� ≥ 0 by hypothesis and ĥ(k) ≥ 0 by direct calculation. Drop all terms
(except for the k = 0 term) from the right side of the last equation to obtain

cn ≤ ĥf (n)

ĥ(0)
= 2π

δ
ĥf (n).

Since X is solid, it follows that f ∈X.
Corollary 2. For 1< p < 2,

L
p

loc+ ⊂ HLp.
Proof. By Theorem B, we know that Lp ⊂ HLp for 1< p < 2. The definition of
HLp shows it is solid, and the corollary follows from Theorem 1.

Corollary 3. For 1< p < 2,

L
p

loc+ ⊂ �p ′,2.

Proof. We refer the reader to [K] for the precise definition of the mixed-norm
spaces �p

′,2, which shows that they are solid.

Remark 1. Combining Theorem 1 with Wainger’s theorem shows that Wainger’s
function is an example of a function with positive coefficients that shows the con-
verse of the Hardy–Littlewood theorem to be false. The same function shows that
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the converse of the Hausdorff–Young theorem is false when we combine Wainger’s
theorem and the result of [ARV].

Remark 2. Kellogg proved the following result:

Lp ⊂ �p ′,2.

Since �p
′,2 ⊂ �p ′

, Kellogg’s result is an improvement to Hausdorff–Young. Simi-
larly, Corollary 3 improves the result of Ash, Rains, and Vági.

We summarize the situation for 1 < p < 2 in Figure 1. Points on the diagram
above the line X correspond to Fourier series with positive coefficients; points
below X correspond to those series with some or all negative coefficients.

Figure 1

The goal now is to provide examples of functions with positive coefficients in
each labeled region of the diagram. Note that Wainger’s function is an example
in region IV. We first give examples of functions in regions I and II.

Theorem 4 (Example I and II). For 1 < p < 2, we have �p
′ �⊂ HLp and

HLp �⊂ �p ′
.

Proof. Let
αk = k−1/p ′

ln−1/p k, k = 2, 3, . . . ;
then 1

p
+ 1

p ′ = 1, p
′
p

= 1
p−1, and

∞∑
k=2

α
p ′
k =

∞∑
k=2

k−1 ln−1/(p−1) k <∞,

since 1
p−1 > 1 if and only if 2 > p. However,

∞∑
k=2

α
p

k k
p−2 =

∞∑
k=2

k−p+1kp−2 ln−1 k =
∞∑
k=2

k−1 ln−1 k = ∞.
Thus

�p
′ �⊂ HLp.

Conversely, let

βk =
{
j−1/p ′

, k = 2j;
0, k is not a power of 2.
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Then, since ∑
k

β
p ′
k =

∑
j

j−1 = ∞,

it follows that ∑
k

βk e
ikx /∈ �p ′;

however,∑
k

β
p

k (k + 1)p−2 =
∑
j

j−p/p ′
(2j + 1)p−2 <

∑
j

1

(22−p)j
<∞

so that
HLp �⊂ �p ′

.

Remark 3. Similar results have been observed for analytic functions in Fock
spaces (see [T]).

The following function is an example in region III of the figure.

Theorem 5 (Example III). There is a function with positive Fourier coefficients
in HLp ∩ �p ′

but not in Lploc+.

Proof. Let

g(θ) =
∞∑
n=1

ein
α

nγ
e inθ,

where γ and 0 < α < 1 are parameters to be determined. From [Z, V.5] we
know that

g(θ) = O
(
|θ | −1+γ+α/2

1−α
)

as |θ | → 0.
Because 1< p < 2, we can choose γ so that 1

p ′ < γ <
1
2 . Then the coefficients

an = einα/nγ satisfy ∑
|an|p ′ =

∑ 1

nγp
′ <∞,

so that g ∈ �p ′
. Similarly,∑

|an|pnp−2 =
∑ 1

n−p+2+γp <∞,

and we have g ∈HLp.
On the other hand, we can choose α sufficiently close to 1 so that

p

(−1 + γ + α/2

1 − α
)
< p

(
γ − 1/2

1 − α
)
< −1.

This shows that g is not locally integrable. We shall now construct another func-
tion with positive coefficients that is not in Lploc+.

With the parameters γ and α chosen as before, consider

g(θ) =
∞∑
n=1

cos nα

nγ
einθ +

∞∑
n=1

i sin nα

nγ
einθ = g1(θ)+ ig2(θ).

Since g is not locally integrable, it follows that either g1 or g2 is not locally inte-
grable. If g1 is not locally integrable, consider the series
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h(θ) =
∞∑
n=1

2

nγ
einθ + g1(θ) =

∞∑
n=1

2 + cos nα

nγ
einθ.

Since γ > 1
p ′ , the series

∑ 2
nγ
e inθ is in Lp [Z, Chap. V]. Thus h is not locally

integrable, has positive coefficients, and belongs to both �p
′
and HLp.

If g2 is not integrable, then the following function has the same desired prop-
erties:

k(θ) =
∞∑
n=1

2

nγ
einθ + g2(θ) =

∞∑
n=1

2 + sin nα

nγ
einθ.

4. The Case p > 2

For 2 < p < ∞, it can be easily shown that Lploc+ ⊂ Lp when p is an even inte-
ger. Thus we have Lp+ = Lploc+ , where Lp+ denotes Lp functions with nonnegative
coefficients. Figure 2 depicts the situation when p > 2 and p is even.

Figure 2

For p not an even integer, Shapiro [S] proved the following theorem.

Theorem F. Let 2 < p < ∞. If p is not even, then there is a function in Lploc+
that is not in Lp.

Thus we have Figure 3, which is similar to Figure 2 but has an added region VIII.
An example in region VIII has been found by Shapiro. We now give examples in
all remaining regions, beginning with regions V and VI.

Figure 3
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Theorem 6 (Example V and VI). For 2 < p < ∞, we have HLp �⊂ �p
′

and
�p

′ �⊂ HLp.
Proof. Let

ak = k−1/p ′
ln−1/2 k, k = 2, 3, . . . ;

then ∞∑
k=2

a
p ′
k =

∞∑
k=2

k−1 ln−p ′/2 k = ∞,

since p ′ < 2. However, from 1
p

+ 1
p ′ = 1 it follows from − p

p ′ = 1 − p and

∞∑
k=2

a
p

k k
p−2 =

∞∑
k=2

k1−pkp−2 ln−p/2 k =
∞∑
k=2

k−1 ln−p/2 k <∞.

Therefore,
�p

′ �⊂ HLp.
Conversely, let

bk =
{
j−2/p ′

, k = 2j;
0, k is not a power of 2.

Then, since ∑
k

b
p ′
k =

∑
j

j−2 <∞,

it follows that ∑
bk e

ikx ∈ �p ′;
however, ∑

k

b
p

k (k + 1)p−2 =
∑
j

j−2p/p ′
(2j + 1)p−2 = ∞

and so
HLp �⊂ �p ′

.

The next is an example in region VII.

Theorem 7. For 2 < p < ∞, there is a function with positive Fourier coeffi-
cients in Lp but not in HLp ∪ �p ′

.

Proof. Fix p > 2 so that 1
p ′ >

1
2 . Choose α with 1

2 < α <
1
p ′ . Consider the series

f(θ) =
∑
n∈Z

cne
inθ,

where

cn =
{

1/kα, n = ±2k for some integer k;
0, n �= ±2k.

For any α > 1
2 we have ∑

n∈Z

c2
n <∞,

so f ∈Lp (see [Z, (8.4)]).
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Observe that ∑
n∈Z

|cn|p ′ = ∞

and ∑
n∈Z

|cn|p|n|p−2 = 2
∞∑
n=1

1

kαp
2k(p−2) = ∞.

Thus we have shown that f is a function in Lp with positive coefficients yet
f /∈ lp ′ ∪HLp.
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