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Smoothings of Schemes with
Nonisolated Singularities

Nikolaos Tziolas

1. Introduction

The purpose of this paper is to describe the deformation and Q-Gorenstein defor-
mation theory of schemes defined over a field k with nonisolated singularities and
to obtain criteria for the existence of smoothings and Q-Gorenstein smoothings.
The motivation for doing so comes from many different problems. Two of the most
important ones are the compactification of the moduli space of surfaces of general
type (and its higher-dimensional analogues) and the minimal model program.

Let 0 ∈C be the germ of a smooth curve and let U = C − 0. It is well known
[A; KoSh] that any family fU : XU → U of smooth surfaces of general type over
U can be completed in a unique way to a family f : X → C such that ω[k]

X/C is in-
vertible and ample for some k > 0 and the central fiber X = f −1(0) is a stable
surface. A stable surface is a proper 2-dimensional reduced scheme X such that
X has only semi-log-canonical singularities and ω

[k]
X is locally free and ample for

some k > 0. Hence the moduli space of surfaces of general type can be compacti-
fied by adding the stable surfaces. Therefore, we should like to know which stable
surfaces are smoothable and which are not. For an overview of recent advances
in this area and the higher-dimensional analogues, see [A].

We would like to mention two applications from the minimal model program
that are related to the smoothability problem.

1. The outcome of the minimal model program starting with a smooth, n-
dimensional projective variety X is a terminal projective variety Y such that either
KY is nef or Y has a Mori fiber space structure, which means that there is a pro-
jective morphism f : Y → Z with −KY f -ample. Suppose that the second case
occurs and dimZ = 1. Let z ∈ Z and Yz = f −1(z). Then Yz is a Fano variety of
dimension n−1 and Y is a Q-Gorenstein smoothing Yz. In general, Yz has noniso-
lated singularities and may not even be normal. Hence the classification of Mori
fiber spaces in dimension n is directly related to the classification of smoothable
Fano varieties of dimension n− 1.

2. One of the two fundamental maps that appear in the context of the 3-dimen-
sional minimal model program is an extremal neighborhood. A 3-fold terminal
extremal neighborhood [KoMo] is a proper birational map � ⊂ Y

f−→ X �P such
thatY is the germ of a 3-fold along a proper curve�,�red = f −1(P ),Y is terminal,
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and −KY is f -ample. An extremal neighborhood is the local analogue of a flip-
ping contraction or a divisorial contraction that contracts a divisor onto a curve.
In this setting, then, Y is a 1-parameter Q-Gorenstein smoothing of the general
member H ∈ |OY |. The singularities of H are, in general, difficult to understand,
and H may even be nonnormal. Of course, there are natural higher-dimensional
analogues of the previous construction.

It is therefore of interest to study the deformation theory of schemes with non-
isolated singularities and to obtain criteria for a scheme X to be smoothable. The
case when X is a reduced scheme with normal crossing singularities has been ex-
tensively studied by Friedman [Fr]. In particular, he obtained a condition (called
d-semistability) in order for X to be smoothable with a smooth total space and
he studied the obstruction theory for a d-semistable scheme to be smoothable.
As an application of these methods, Friedman showed that any d-semistable K3
surface is smoothable. Pinkham and Persson [PiP] have studied the problem of
whether a d-semistable scheme is smoothable and derived examples showing that
this is not always so. Kawamata and Namikawa [KaNa] have defined and studied
the notion of logarithmic deformations of a normal crossing reduced scheme, ex-
tending Friedman’s result on the smoothability of normal crossing K3 surfaces to
higher-dimensional normal crossing Calabi–Yau varieties.

Typically, one first studies this problem locally and then globally. The local
problem is to study which singularities are smoothable and the global is to find
obstructions for the local smoothings to exist globally. If X has isolated singu-
larities only, then it is well known that H 2(TX) is an obstruction space for the
globalization of the local deformations. Hence, if X is locally smoothable and
H 2(TX) = 0, then X itself is smoothable. However, if the singular locus of X

has dimension greater than 1, then there are examples of locally smoothable vari-
eties whose obstruction in H 2(TX) is zero that are not globally smoothable [PiP].
The reason behind this is that, if the singularities are not isolated, then there are
many local automorphisms of deformations that do not lift to higher order. An-
other major difference between the cases of isolated and nonisolated singularities
is that Schlessinger’s cotangent cohomology sheaves T i(X) no longer have finite
support. Instead, they are sheaves supported on the singular locus of X and are,
in general, difficult to describe [Tz1].

In this paper we seek to present a systematic study of the deformation theory of
schemes with positive-dimensional singular locus and also write a few smootha-
bility and nonsmoothability criteria. Some of the results that we prove are already
known, but many others are (to our knowledge) new. We have tried to obtain the
most general results with the fewest possible restrictions on the singularities. We
hope this paper will be a useful reference to anyone using deformation theory.

The paper is organized as follows. In Section 3 we define the deformation func-
tors Def(Y,X) and Def qG(Y,X), where Y ⊂ X is a closed subscheme of a scheme
X defined over a field k. If Y = X then these are the usual deformation and Q-
Gorenstein deformation functors of X. If P ∈ X is an affine isolated singularity,
then Def(P,X) = Def(P ∈ X) is the functor of algebraic deformations of iso-
lated singularities defined by Artin [A, Def. 5.1]. More generally, if Y �= X then
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these are deformation functors of X̂, the formal completion of X along Y with
certain algebraizability conditions that are explained in Definition 3.2. They are
algebraic analogues of deformations of germs of analytic spaces. We also define
the local deformation functors Defloc(Y,X) and Def qG

loc (Y,X), which parameterize
the local deformations of Y ⊂ X. In almost all applications—and for the defor-
mation functors to have good properties—we assume that Y contains the singular
locus of X.

In Section 4 we describe the tangent spaces T1(Y,X) and T1
qG(Y,X)of Def(Y,X)

and Def qG(Y,X). Moreover, in Proposition 4.2 we obtain the local-to-global se-
quence for the functors Def(Y,X) and Def qG(Y,X), which is a generalization of
the usual local-to-global sequence for Def(X) [Se, Thm. 2.4.1].

In Section 5 we study the existence of a pro-representable hull for the de-
formation functors defined in Section 3. It is known that Def(Y,X) has a pro-
representable hull if its tangent space T1(Y,X) is finite dimensional [S]. In Theo-
rem 5.4 we show that this also holds for Def qG(Y,X) and in Theorem 5.5 we show
that, under some strong restrictions on the singularities of X, Def qG

loc (Y,X) and
Defloc(Y,X) have a hull, too. Finally, in Proposition 5.3 we exhibit some cases
where T1(Y,X) and T1

qG(Y,X) are finite dimensional over the base field k.

In Sections 6 and 7 we explain the main technical tool used to study the defor-
mation theory of X, Kawamata’s T 1-lifting property [Ka1; Ka2].

In Section 8 we use the T 1-lifting property to study the global deformation the-
ory of Y ⊂ X. In particular, in Theorem 8.1 we show that, if X is a pure and re-
duced scheme defined over a field of characteristic 0 and if X− Y is smooth, then
Ext2

X̂(�̂X, OX̂) is an obstruction space to lifting a deformationXn ∈Def(Y,X)(An)

to An+1, where X̂ is the formal completion of X along Y and An = k[t]/(t n+1).

Moreover, we exhibit an explicit obstruction element.
In Section 9 we study the problem of when local deformations of Y ⊂ X exist

globally. The main results are as follows.

(1) In Proposition 9.1 we show that, under very strong restrictions on the singu-
larities of X, the global-to-local map

π : Def(Y,X)→ Defloc(Y,X)

is smooth ifH 2(T̂X) = 0, where T̂X is the completion of TX along Y. However,
in general π may fail to be smooth. This is in contrast to the case of isolated
singularities, for which it is well known that the global-to-local map is always
smooth if H 2(TX) = 0.

(2) To get around the failure of π to be smooth, for any small extension

0 → J → B → A→ 0

and for any XA ∈ Def(Y,X)(A) we define the spaces Def(XA/A,B) and
Defloc(XA/A,B), parameterizing global and local liftings of XA to B with
certain local compatibility conditions that are explained in Definition 9.2. In
Theorem 9.4 we describe them and show that there is an exact sequence

0 −→ H1(T̂X ⊗ J )
α−→ Def(XA/A,B)

π−→ Defloc(XA/A,B)
∂−→ H 2(T̂X ⊗ J )
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generalizing the first-order global-to-local exact sequence. Moreover, we
show that there must be two successive obstructions in H 0(T 2(X)⊗ J ) and
H1(T 1(X) ⊗ J ) in order for Defloc(XA/A,B) �= ∅. If these obstructions
vanish, then there must be another obstruction in H 2(T̂X ⊗ J ) in order for
Def(XA/A,B) �= ∅—that is, for the local deformations to exist globally.
These obstruction spaces are well known if X = Y [H3].

In Section 10 we extend all results obtained for the functor Def(Y,X) to
Def qG(Y,X). We do this by using that, locally, any Q-Gorenstein deformation
of X is induced by a deformation of its index-1 cover [KoSh].

Let X be a scheme of finite type over a field k, and let f : X → S be a defor-
mation of X over the spectrum of a discrete valuation ring (R,m). In Section 11
we compare properties of the global deformation f with properties of the asso-
ciated formal deformation fn : Xn → Sn, where Sn = SpecR/mn+1 and Xn =
X ×S Sn. In particular, we obtain criteria on the associated formal deformation
in order for the global one to be a smoothing. This is important because the de-
formations obtained with our methods are only formal and are not necessarily
algebraic. But when they are algebraic it is of interest to know which properties
of the global deformation can be read from properties of the associated formal
deformation.

In Section 12 we apply the theory developed in the previous sections to give
some smoothing and nonsmoothing criteria for a pure and reduced scheme of fi-
nite type over a field k. The main results are as follows.

(1) Let D be either Def(X) or Def qG(X). In Theorem 12.3 we show that if at any
generic point of its singular locus X has normal crossing singularities and if

H 0(p(T 1
D(X))) = H1

Z(p(T
1
D(X))) = 0,

then X is not smoothable, where p(T 1
D(X)) is the quotient of T 1

D(X) by its
torsion and Z is the support of the torsion part. As a special case we get that
if X has normal crossing singularities and H 0(T 1(X)) = 0, then X is not
smoothable.

(2) In Theorem 12.5 we show that if X is a locally smoothable Q-Gorenstein
scheme such that the index-1 covers of all its singular points have complete
intersection singularities, T 1

qG(X) is finitely generated by its global sections,
and H1(T 1

qG(X)) = H 2(TX) = 0, then X has a formal Q-Gorenstein smooth-
ing. Various other more specialized smoothing criteria are also given.

In Section 13 we apply the theory developed earlier in order to give examples in
the context of the moduli of stable surfaces and the 3-dimensional minimal model
program. First we give two examples of nonsmoothable stable surfaces. The com-
ponents of the moduli space of stable surfaces to which these surfaces belong do
not contain any smooth surfaces of general type, so these are extra components
that appear by compactifying the moduli space of surfaces of general type. Then,
by deforming a particular nonnormal surface H, we construct a 3-dimensional di-
visorial extremal neighborhood f : Y → X such that H is the general member
of |OY |.
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2. Preliminaries

(1) All schemes in this paper are separated and Noetherian defined over a field k.

Additional properties will be stated as needed.
(2) We denote by Art(k) the category of Artin local k-algebras.
(3) For any coherent sheaf F on a scheme X, we denote F [n] = (F ⊗n)∗∗.
(4) Let F : Art(k) → Sets be a deformation functor. Then, following the nota-

tion introduced by Schlessinger [S], its tangent space is the set F(k[t]/(t 2))

and is denoted by T 1
F .

(5) A small extension of local Artin k-algebras is a square zero extension

0 → J → B → A→ 0

of local Artin k-algebras (A,mA) and (B,mB) such that J is a principal ideal
of B and mBJ = 0 (and therefore J ∼= k as a B-module).

(6) Let X → Y be a morphism of Noetherian separated schemes and F a co-
herent sheaf on X. Then by T i(X/Y, F ) we denote Schlessinger’s cotangent
cohomology sheaves [LiS].

(7) Let X be a scheme. A formal deformation of X is a flat morphism of formal
schemes f : X → S, where S = SpecfR, (R,mR) is a complete local ring,
and X ∼= X×S Specf(R/mR). Equivalently, a formal deformation of X over
(R,mR) is a collection of compatible deformations fn : Xn → SpecRn for
all n ∈ Z>0, where Rn = R/mn+1

R . Suppose that X is of finite type over a
field k. Then the formal deformation is called effective if and only if there is
a flat morphism of finite type f : X → S = SpecR of schemes with X =
X ×S Spec(R/mR) = X and such that X = X̂ , the formal completion of X
along X. In this case, f is called the associated formal deformation of f. If in
addition f is induced from a deformation f ′ : X ′ → SpecA, where (A,mA)

is a localization of a finitely generated k-algebra such that Â ∼= R, then the
deformation is said to be algebraic.

(8) A reduced scheme X is called Q-Gorenstein if and only if it is Cohen–
Macauley, it is Gorenstein in codimension 1, and there is an n ∈ Z>0 such
that ω[n]

X is invertible.
(9) A smoothing of a scheme X is a flat morphism f : X → T = SpecR, where

(R,m) is a discrete valuation ring such that X ×T Spec(R/m) ∼= X and the
generic fiber X ×T SpecK(R) is smooth over K(R). If in addition X is Q-
Gorenstein and there is an n ∈ Z>0 such that ω

[n]
X/T is invertible, then the

smoothing is called Q-Gorenstein. To avoid degenerate situations we will
assume either that X is a local scheme and f is a morphism of local schemes
or that X and f are proper and of finite type.

3. The Deformation Functors

First we recall the definition of an étale neighborhood of a closed subscheme Y of
a scheme X [C].
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Definition 3.1. Let X be a Noetherian scheme defined over a field k, and let
Y ⊂ X be a closed subscheme of X. An étale neighborhood of Y in X is an étale
morphism Z → X such that Z ×X Y ∼= Y.

Next we define the deformation functors that we shall study in this paper.

Definition 3.2. Let X be a Noetherian scheme defined over a field k, and let
Y ⊂ X be a closed subscheme of X. Let X̂ be the formal completion of X along Y.

Then Def(Y,X) : Art(k)→ Sets is the functor such that, for any finite local Artin
k-algebra A, Def(Y,X)(A) is the set of isomorphism classes of flat morphisms of
formal schemes f : X → SpecfA such that

(1) X ×SpecfA Specf k ∼= X̂ and
(2) there exist an open cover U i of X and flat morphisms of schemes fi : Ui →

SpecA such that:
(a) Ui ×SpecA Spec k is a local étale neighborhood of Y in X; and
(b) U i → SpecfA is the formal completion of Ui → SpecA along Y.

Next we define the notion of Q-Gorenstein deformations and the corresponding
deformation functor Def qG(Y,X). In order for this to make sense, it is necessary
to define the notion of relative dualizing sheaves for a formal family as in Defini-
tion 3.2.

Definition 3.3. Let X be a Cohen–Macauley scheme that is Gorenstein in co-
dimension 1 and defined over a field k, and let Y ⊂ X be a closed subscheme of
X. Let f : X → S = SpecfA be an element of Def(Y,X)(A), where A∈Art(k).
Let U i be an open cover of X as in Definition 3.2. Then the sheaves (ω[n]

Ui/A
)∧ glue

together to form a coherent sheaf on X , which we denote by ω
[n]
X/S . Note that the

construction is independent of the cover chosen.

Definition 3.4. Let X be a Q-Gorenstein scheme defined over a field k, and let
Y ⊂ X be a closed subscheme of X. The functor of Q-Gorenstein deformations
is the functor Def qG(Y,X) : Art(k) → Sets such that, for any finite local Artin
k-algebra A, Def qG(Y,X)(A) is the set of isomorphism classes of flat morphisms
X → S = SpecfA in Def(Y,X) such that the sheaf ω[n]

X/S is invertible for some
n∈Z>0.

It is not immediately clear whether Def qG(Y,X) as just defined is a functor. This
would be true if ωX/S being Q-Gorenstein is a stable property under base exten-
sion, which is known to be true [HasK, Lemma 2.6].

Remark 3.5.

(1) If Y = X, then the functors Def(X,X) and Def qG(X,X) are just the familiar
deformation functors Def(X) and Def qG(X).

(2) Let P ∈ X be an affine isolated singularity. Then it follows from the defini-
tions and from Theorem 11.1 [Ar1, Cor. 2.6] that Def(P,X) is the functor of
algebraic deformations of an isolated singularity [Ar2, Def. 5.1]. This functor
is usually denoted by Def(P ∈ X), and we will frequently use this notation.
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More generally, if X has isolated singularities and Y = Xsing = {P1, . . . ,Pk},
then Def(Y,X) =∏k

i=1 Def(Pi ∈X).

Moreover, as we shall see later, in order to obtain reasonable results about
Def(Y,X) or Def qG(Y,X) (in particular, existence of pro-representable hulls), we
will assume that Y is proper and that X − Y is smooth.

Remark 3.6. The functors Def(Y,X) and Def qG(Y,X) are an attempt to estab-
lish an algebraic analogue of deformations of germs of analytic spaces. A can-
didate for an algebraic germ is the formal neighborhood. However, completion
along a subscheme is not an algebraic construction. The algebraic analogues of
local analytic neighborhoods are étale neighborhoods. Ideally we would like to
define the notion of an algebraic germ in such a way such that (i) if two are isomor-
phic then they are at least locally étale equivalent and (ii) any morphism between
two algebraic germs comes, at least locally, from a morphism between étale neigh-
borhoods. It is known [C, Thm. 4] that if Y ⊂ X1, Y ⊂ X2 is an embedding of
a scheme Y into two schemes X1 and X2, and Xh

1
∼= Xh

2 , then—under relatively
mild hypotheses—the isomorphism is induced by a common étale neighborhood
of Y in X1 and X2. However, it is possible that X̂1

∼= X̂2 but Xh
1 �∼= Xh

2 , in which
case X1 and X2 are not étale equivalent around Y [C, Ex. 1]. For these reasons, the
correct definition of the algebraic germ of Y ⊂ X would be that of the henseliza-
tion Xh of X along Y instead of the completion X̂. However, owing to technical
difficulties of working with henselization, we work with the formal neighborhood
and impose a local algebraizability condition in order not to stray too far from the
geometry of Y ⊂ X. Moreover, in many cases the results of Artin [Ar1] allow us
to move between the formal and the algebraic case.

Notation 3.7. For the rest of this paper, whenever we speak of Def(Y,X) or
Def qG(Y,X), X is assumed to satisfy all the relevant properties stated in Defini-
tions 3.2 and 3.4.

One of the fundamental problems in deformation theory is to determine when a
given scheme X admits a smoothing. The natural approach is first to study the
problem locally (i.e., to determine which singularities are smoothable) and then to
globalize the local smoothings. If X has isolated singularities only, say P1, . . . ,Pk ,
then the globalization of the local deformations is achieved by studying the natural
transformation of functors

D(X)→
k∏

i=1

D(Pi,X), (3.1)

where D(X) is either Def(X) or Def qG(X) and D(Pi,X) is either Def(Pi,X) or
Def qG(Pi,X). If the singularities of X are not isolated, then the map (3.1) does
not exist. A kind of “sheafification” of the local deformation functors is more ap-
propriate in this case.

Definition 3.8. Let D(Y,X) be either Def(Y,X) or Def qG(Y,X). The functor
D(Y,X) is the functor
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D(Y,X) : Art(k)→ Sh(X)

defined as follows. For any finite local k-algebra A, D(Y,X)(A) is the sheaf asso-
ciated to the presheaf F defined by F(V ) = D(Y ∩V,V )(A) for any open set V.

Definition 3.9. Let D(Y,X) be either Def(Y,X) or Def qG(Y,X). The functor
of local deformations of D(Y,X) is the functor Dloc(Y,X) : Art(k) → Sets de-
fined by

Dloc(Y,X)(A) = H 0(D(Y,X)(A)).

For D(Y,X) as just defined, there is a natural transformation of functors

π : D(Y,X)→ Dloc(Y,X). (3.2)

We call this map the local-to-global map. If X has isolated singularities and if
Y = X, then π extends (3.1).

Remark 3.10. If X has isolated singularities and H 2(TX) = 0, then it is well
known that π is smooth. But π is not smooth in general because of its inability
to lift local automorphisms of deformations to higher order. Under some strong
conditions on the singularities of X, however, π is still smooth (Proposition 9.1).

4. The Tangent Space of Def(Y, X) and Def qG(Y, X)

Let Y ⊂ X be a closed subscheme of a scheme X. In this section we describe the
tangent spaces of the functors Def(Y,X) and Def qG(Y,X) as well as the local-to-
global map π (3.2) at the level of tangent spaces.

Definition 4.1. We denote by T1(Y,X), T 1(Y,X), T1
qG(Y,X), and T 1

qG(Y,X)

the tangent spaces of the functors

Def(Y,X), Def(Y,X), Def qG(Y,X), and Def qG(Y,X),

respectively.

It easily follows from the definitions of the deformation functors involved that
H 0(T 1(Y,X)) andH 0(T 1

qG(Y,X)) are the respective tangent spaces of Defloc(Y,X)

and Def qG

loc (Y,X). If X−Y is smooth, then T 1(Y,X) is just Schlessinger’s T 1(X)

sheaf and T 1
qG(Y,X) is the subsheaf T 1

qG(X) of T 1(X) defined as follows. For
any affine open subset U ⊂ X, T 1

qG(X)(U) is the OX(U)-module of isomorphism
classes of first-order Q-Gorenstein deformations of U.

The next proposition describes the global-to-local map at the level of tangent
spaces. If X = Y and D = Def(X), then this is just the familiar global-to-local
sequence of the functor Def(X) [Se, Thm. 2.4.1].

Proposition 4.2. Suppose that X is a reduced scheme and that Y ⊂ X a closed
subscheme. Then the following statements hold.

(1) There is a canonical injection

φ : T1(Y,X)→ ExtX̂(�̂X, OX̂)

that is an isomorphism if X − Y is smooth.
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(2) Let D be either Def(Y,X) or Def qG(Y,X). Then there is an exact sequence

0 → H1(T̂X)→ T1
D(Y,X)→ H 0(T̂ 1

D(X)).

If in addition X−Y is smooth, then T1
D(Y,X) = T1

D(X), T 1
D(Y,X) = T 1

D(X),
and there is an extended exact sequence

0 → H1(T̂X)→ T1
D(X)→ H 0(T 1

D(X))→ H 2(T̂X),

where X̂ is the formal completion of X along Y and where �̂X, T̂X, and T̂ 1
D(X)

are the corresponding completions of �X, TX, and T 1
D(X) along Y.

Proof. We first deal with the case D = Def(Y,X). The proof is based on the one
for ordinary schemes [Se, Thm. 2.4.1]. Let X1 → SpecfA1 be a first-order defor-
mation of X̂. Then by definition there is an open cover U i of X1 such that U i

∼= Ûi,
where Ui is a first-order deformation of a local étale neighborhood Vi of Y in X.

Then the extension
0 → k → A1 → k → 0

gives the extension
0 → OVi

→ OUi
→ OVi

→ 0,

and since X is assumed to be reduced, there is an exact sequence

0 → OVi
→ �Ui

⊗OVi
→ �Vi

→ 0

and consequently

0 → OV̂i
→ �̂Ui

⊗OV̂i
→ �̂Vi

→ 0.

Patching these all together yields the exact sequence

0 → OX̂ → �̂X ⊗OX̂ → �̂X → 0.

Hence we get a map
T1(Y,X)→ ExtX̂(�̂X, OX̂),

which is injective (as in the usual scheme case). Conversely, let

0 → OX̂ → E → �̂X → 0

be any extension in ExtX̂(�̂X, OX̂). Let d̂ : OX̂ → �̂X be the completion of the
universal derivation of X (for detailed definitions and properties of d̂ and �̂X for
any formal scheme X , see [TLóR]). Then, exactly as in the scheme case, this gives
a first-order deformation X of X̂. However, in general it may not be locally the
completion of a deformation of a local étale neighborhood of Y in X.

The standard local-to-global spectral sequence gives

0 → H1(T̂X)→ Ext1
X̂
(�̂X, OX̂)→ H 0(Ext1

X̂
(�̂X, OX̂))→ H 2(T̂X). (4.1)

Claim:
Ext1

X̂
(�̂X, OX̂)

∼= Ext1X(�X, OX)
∧.

In fact, we will show that

Ext1
X̂
(F̂, P̂) ∼= Ext1X(F, P)∧,
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where F and P are coherent OX-modules. This is a local result, so we may as-
sume that X = SpecA and Y = V(I ), where I ⊂ A is an ideal. Then, since F is
coherent, there is an exact sequence

0 → O k
X → Om

X → F → 0.

Applying HomX(·, P) and taking completions, we obtain the exact sequence

P̂m → P̂ k → Ext1X(F, P)∧ → 0.

Taking completions first and then applying HomX̂(·, P̂ ), we get the exact sequence

P̂m → P̂ k → Ext1
X̂
(�̂X, OX̂)→ 0.

The claim now follows immediately from the last two exact sequences.
Since X is reduced, it follows that T 1(X) = Ext1X(�X, OX). Thus from (4.1)

we obtain the exact sequence

0 → H1(T̂X)→ Ext1
X̂
(�̂X, OX̂)→ H 0(T̂ 1(X))→ H 2(T̂X). (4.2)

The space H1(T̂X) classifies the first-order locally trivial deformations of X̂ [Hal],
and T1(Y,X) ⊂ Ext1

X̂
(�̂X, OX̂). Hence there is an exact sequence

0 → H1(T̂X)→ T1(Y,X)→ H 0(T̂ 1(X))

as claimed. If in addition X − Y is smooth, then T 1(X) is supported on Y and so
T̂ 1(X) = T 1(X). Therefore, every first-order deformation X of X̂ arising from
an element of Ext1

X̂
(�̂X, OX̂) is locally the completion of a local deformation of

X, and hence in this case T1(Y,X) = Ext1
X̂
(�̂X, OX̂). This, together with the ex-

act sequence (4.2), gives the exact sequence claimed in the second part of the
proposition.

It remains to consider the Q-Gorenstein functor. Let

ψ : T1(Y,X)→ H 0(T 1(Y,X))

be the global-to-local map defined previously. Then

H 0(T 1
qG(Y,X)) ⊂ H 0(T 1(Y,X)) and T1

qG(Y,X) = ψ−1(H 0(T 1
qG(Y,X))).

This, together with the results just proven for the usual deformations case, yields
the corresponding results for the Q-Gorenstein case.

Remark 4.3. From Proposition 4.2 it follows that, in order to obtain reasonable
results concerning the tangent space of Def(Y,X) or Def qG(Y,X), X−Y must be
smooth. From now on we will always assume this.

5. Existence of Pro-representable Hulls

In this section we investigate the existence of pro-representable hulls [S] for all the
deformation functors defined in Section 3. To do so, we use the following result
of Schlessinger.
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Theorem 5.1 [S]. Let F : Art(k)→ Sets be a functor such that F(k) is a single
point. Let A′ → A and A′′ → A be morphisms in Art(k), and consider the map

F(A′ ×A A′′)→ F(A′)×F(A) F(A′′). (5.1)

Then the following statements hold.

(1) F has a pro-representable hull if and only if F has the following properties:
(H1) (5.1) is a surjection whenever A′′ → A is a small extension;
(H2) (5.1) is a bijection when A = k and A′′ = k[t]/(t 2);
(H3) dimk T

1
F <∞.

(2) F is pro-representable if and only if F has the following additional property:
(H 4) F(A′ ×A A′) → F(A′) ×F(A) F(A′) is an isomorphism for any small

extension A′ → A.

By using the criteria of the previous theorem, Schlessinger showed the following.

Proposition 5.2 [S]. Let X be a scheme defined over a field k. Then Def(X)

has a pro-representable hull if and only if dim T1(X) <∞.

The proof given by Schlessinger applies directly to Def(Y,X), so it follows that
Def(Y,X) has a pro-representable hull if and only if dimk T1(Y,X) <∞.

Next we present some cases where T1(Y,X) and T1
qG(Y,X) have finite dimen-

sion over k. Then we show that Def qG(Y,X) has a pro-representable hull if and
only if dimk T1

qG(Y,X) < ∞; and finally we show that, under some strong re-
strictions on the singularities of X, Defloc(Y,X) and Def qG

loc (Y,X) also have a pro-
representable hull.

Proposition 5.3. Let X be a reduced scheme, and let Y ⊂ X be a proper sub-
scheme of X. Then T1(Y,X) and T1

qG(Y,X) have finite dimension over the base
field k in any of the following cases.

(1) X = Y.

(2) Both X and Y are proper and smooth, and the normal bundle NY/X of Y in X

is ample.
(3) Y is contractible to an isolated singularity—in other words, there is a proper

morphism f : X→ Z such that f(Y ) is a point, X−Y ∼= Z−f(Y ),Z−f(Y )

is smooth, and Rif∗OX = 0 for all i ≥ 1.
(4) dimY = 1, X − Y is smooth, and IY/I

(2)
Y is ample, where I

(2)
Y is the second

symbolic power of the ideal sheaf IY of Y in X.

Proof. We use Proposition 4.2. Then the first part is immediate and the second
part was proved by Hartshorne [H2]. The third part is well known in the analytic
category, but owing to the lack of a reference we present a proof here. The result is
local around Y, so we may assume that Z = SpecA, where (A,m) is the localiza-
tion of a finitely generated k-algebra. Let f : X→ Z be the birational map in the
assumption. Now, since f is proper and birational, H1(TX) is a finitely generated
torsion A-module and hence H1(TX)

∧ = H1(TX), where H1(TX)
∧ is the m-adic

completion of H1(TX). Then, according to the formal functions theorem,
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H1(TX) ∼= H1(T̂X).

Dualizing the standard exact sequence

f ∗�Z → �X → �X/Z → 0

and taking into consideration that f is birational, we obtain the exact sequence

0 → TX → (f ∗�Z)
∗ → M → 0,

where M is a coherent OX-module supported on Y. Hence dimk H
1(TX) < ∞

if and only if dimk H
1((f ∗�Z)

∗) < ∞. Moreover, there is a natural map ψ :
f ∗TZ → (f ∗�Z)

∗, and the supports of both Ker(ψ) and Coker(ψ) are contained
in Y. It therefore suffices to show that dimk H

1(f ∗TZ) < ∞. Since Z is affine,
there is an exact sequence

0 → N → Om
Z → TZ → 0

and hence an exact sequence

0 → Q→ f ∗N → Om
X → f ∗TZ → 0,

where Q is supported on Y. This breaks into two short exact sequences:

0 → Q→ f ∗N → M → 0;
0 → M → Om

X → f ∗TZ → 0.

Thus, since R1f∗OX = 0, it now follows that

dimk H
1(f ∗TZ) <∞ ⇐⇒ dimk H

2(f ∗N) <∞.

If we repeat the above argument then the result follows by induction.
It remains to show the last part. So, assume that dimY = 1, that IY/I

(2)
Y is

ample, and that X − Y is smooth. Then, by Proposition 4.2, it suffices to show
that dimk H

1(T̂X) < ∞. The completion X̂ of X along Y can be calculated via
the ideal sheaves I

(n)
Y , so

H1(T̂X) = lim←−H1(TX ⊗OX/I
(n)
Y ).

The short exact sequence

0 → I
(n)
Y /I

(n+1)
Y → OX/I

(n+1)
Y → OX/I

(n)
Y → 0

gives the exact sequence

0 −→ Kn −→ I
(n)
Y /I

(n+1)
Y ⊗ TX −→ OX/I

(n+1)
Y ⊗ TX

αn−→ OX/I
(n)
Y ⊗ TX −→ 0.

We will show that H1(Ker(αn)) = 0 for n sufficiently large and hence, since
Y is proper, dimk H

1(T̂X) < ∞. Since dimY = 1, it follows that H 2(Kn) = 0
and so it suffices to show H1(I

(n)
Y /I

(n+1)
Y ⊗ TX) = 0 for n sufficiently large. The

natural map
S n(IY/I

(2)
Y )→ I

(n)
Y /I

(n+1)
Y
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is generically surjective along Y ; hence there exists an exact sequence

S n(IY/I
(2)
Y )⊗ TX → I

(n)
Y /I

(n+1)
Y ⊗ TX → Tn → 0,

where Tn has 0-dimensional support. Because IY/I
(2)
Y is ample, there must exist

an n0 ∈ Z such that H1(S n(IY/I
(2)
Y ) ⊗ TX) = 0 for all n ≥ n0. Therefore,

H1(I
(n)
Y /I

(n+1)
Y ⊗ TX) = 0 for all n ≥ n0 and hence dimk H

1(T̂X) < ∞ as
claimed.

Theorem 5.4. Let X be a Q-Gorenstein scheme, and let Y ⊂ X be a closed
subscheme of X. Assume also that dimk T1

qG(Y,X) < ∞ (this occurs, for ex-
ample, when Y ⊂ X satisfy the conditions of Proposition 5.3). Then the functor
Def qG(Y,X) has a pro-representable hull.

Proof. We only show the case X = Y ; the general case is similar. For conve-
nience, set D = Def qG(Y,X). We follow the general lines of the proof given by
Schlessinger for the usual deformation functor Def(X) [S, Prop. 3.10]. It suf-
fices to show that D satisfies Schlessinger’s conditions (H1), (H2), and (H3) (see
Theorem 5.1). Condition (H3) is satisfied by assumption, and (H2) will follow
from (H1) because it is satisfied for the usual deformation functor Def(Y,X). Let
A′′ → A and A′ → A be homomorphisms betweenArtin local k-algebras such that
A′′ → A is a small extension; that is, there exists a square zero extension

0 → k → A′′ → A→ 0.

We will show that the natural map

D(A′′ ×A A′)→ D(A′′)×D(A) D(A′)

is surjective (this is condition (H1)). Let XA′′ ∈ D(A′′), XA′ ∈ D(A′), and XA ∈
D(A) such thatXA′′⊗A′′A = XA′⊗A′A = XA. Then there are natural maps OXA′′ →
OXA

and OXA′ → OXA
. Let R = A′′ ×A A′ and let XR be the scheme (|X|, OXR

),
where |X| is the underlying topological space of X and OXR

= OXA′′ ×OXA
OXA′ .

Then OXR
is a flat R-algebra, OXR

⊗R A′′ = OXA′′ , and OXR
⊗R A′ = OXA′ [S]. To

conclude the proof we must show that XR is Q-Gorenstein (i.e., that it is Cohen–
Macauley), that XR is Gorenstein in codimension 1, and that there is an n∈Z such
that ω[n]

XR/R
is invertible. Because XR is a deformation of X over an Artin local ring

R, it is Cohen–Macauley and Gorenstein in codimension 1. Let n be the index of
X. Then there is a natural map

φ : ω[n]
XR/R

→ ω
[n]
XA′′ /A′′ ×ω

[n]
XA/A

ω
[n]
XA′ /A′ .

We will show that this map is an isomorphism. First observe that, since X is
Q-Gorenstein of index n and XA,XA′ ,XA′′ are also Q-Gorenstein, they also have
index n [KoSh] and hence the right-hand side is invertible. Since ω

[n]
XR/R

is reflex-
ive and XR is Cohen–Macauley, it suffices to show that φ is an isomorphism over
the Gorenstein locus. Let X 0 ⊂ X be the Gorenstein locus of X. Then there is a
commutative diagram
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ω
[n]
X0
R
/R

��

��

ω
[n]
X0
A′ /A

′

��

ω
[n]
X0
A′′ /A

′′ �� ω
[n]
X0
A
/A

and, moreover, since ω
[n]
X0
R
/R
= ω⊗n

X0
R
/R

and ω
[n]
X0
A′′ /A

′′ = ω⊗n

X0
A′′ /A

′′ are invertible,

ω
[n]
X0
R
/R
⊗R A′′ = ω

[n]
X0
A′′ /A

′′ .

Hence [S, Cor. 3.6]
ω

[n]
X0
R
/R
∼= ω

[n]
X0
A′′ /A

′′ ×ω
[n]

X 0
A
/A

ω
[n]
X0
A′ /A

′

as claimed and therefore XR is Q-Gorenstein.

The next proposition shows that, under some strong restrictions on the singular-
ities of X, the local deformation functors Defloc(Y,X) and Def qG

loc (Y,X) have a
hull, too. This is useful in the cases when Def(Y,X) and Def qG(Y,X) do not have
a hull, a deficiency that arises because they may not have finite-dimensional tan-
gent spaces. However, the tangent spaces of the local functors are H 0(T 1(Y,X))

and H 0(T 1
qG(Y,X)), and since T (Y,X), T 1

qG(Y,X) are coherent sheaves supported
on the singular locus of X, it follows that H 0(T 1(Y,X)) and H 0(T 1

qG(Y,X)) will
be finite-dimensional if the singular locus of X is proper and is contained in Y.

Theorem 5.5. Let X be a scheme, and let Y ⊂ X be a subscheme of X. Assume
that the singular locus Z of X is proper and that Z ⊂ Y. Let D be either Def(Y,X)

or Def qG(Y,X). Suppose that one of the following conditions are satisfied :

(1) with the exception of finitely many singular points, D locally satisfies Schles-
singer’s condition (H 4);

(2) the codimension of Z in X is at least 3 and depthP (OX,P) ≥ 3 for any point
P ∈Z (closed or not).

Then the local deformation functor Dloc has a pro-representable hull.

Proof. We prove the theorem only for Y = X. The proof of the general case is
similar.

It suffices to verify Schlessinger’s conditions (H1), (H2), and (H3). The tan-
gent space of Dloc is H 0(T 1

D(X)). Since T 1
D(X) is a coherent sheaf supported on

the singular locus of X, it follows that H 0(T 1
D(X)) is finite dimensional over the

base field k. So (H3) is satisfied.
Assume now that either one of the conditions in the statement is satisfied. If

the second one holds, then Def(X) = Def(X − Z) [Ar2] and, since X − Z is
smooth, it locally satisfies (H 4). Hence we need only assume that the first condi-
tion is satisfied.
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Let A′′ → A and A′ → A be homomorphisms between Artin local k-algebras
such that A′′ → A is a small extension. We will show (H1)—in other words, that
the natural map

Dloc(A
′′ ×A A′)→ Dloc(A

′′)×D loc(A) Dloc(A
′)

is surjective. By definition, Dloc(B) = H 0(D(B)) for any local finite k-algebra B.

Let s ′ ∈H 0(D(A′)) and s ′′ ∈H 0(D(A′′)) be such that they map to s ∈H 0(D(A))

under the natural maps λ′ : H 0(D(A′)) → H 0(D(A)) and λ′′ : H 0(D(A′′)) →
H 0(D(A)). Let {Ui} be an affine open cover of X, and let Uij = Ui ∩ Uj . Let X i

be any deformation of Ui over a ring B. In what follows we will use X ij to denote
the restriction of X ij on Uij .

The section s is equivalent to a collection of deformations X i of Ui over A

and A-isomorphisms φij : X ij → Xji . Similarly, s ′ is equivalent to a collection
of deformations X ′

i of Ui over A′ and A′-isomorphisms φ ′ij : X ′
ij → X ′

ji and s ′′ is
equivalent to a collection of deformations X ′′

i of Ui over A′′ and A′′-isomorphisms
φ ′′ij : X ′′

ij → X ′′
ji . Since λ′(s ′) = λ′′(s ′′) = s, there must exist A-isomorphisms

ψ ′
i : X ′

i ⊗A′ A→ X i and ψ ′′
i : X ′′

i ⊗A′′ A→ X i . Then OX ′
i
×OXi

OX ′′
i

is a defor-
mation of Ui over R = A′′ ×A A′. The collection {OX ′

i
×OXi

OX ′′
i
} forms a section

in H 0(D(R)) if and only if there are R-isomorphisms

λij : OX ′
ij
×OXij

OX ′′
ij
→ OX ′

ji
×OXji

OX ′′
ji
.

The natural candidate for such an isomorphism is

φ ′ij × φ ′′ij : OX ′
ij
×OX ′′

ij
→ OX ′

ji
×OX ′′

ji
.

This isomorphism induces an isomorphism of OX ′
ij
×OXij

OX ′′
ij

if and only if there
is a commutative diagram

OX ′
ij
⊗A′ A

φ ′
ij

��

ψ ′
ij

�����������
OX ′′

ij
⊗A′′ A

φ ′′
ij

��

ψ ′′
ij

�����������

OX ij

φij

��

OX ′
ji
⊗A′ A

ψ ′
ji

�����������
OX ′′

ji
⊗A′′ A

ψ ′
ji

�����������

OXji

By our assumption, we can refine the open cover in such a way that the Uij sat-
isfy (H 4). We can now modify the φij so that the left-hand side of the diagram
commutes and then, since the Uij satisfy (H 4), we lift them to X ′′

ij . Hence we get
a section and therefore Dloc satisfies (H1). Similarly, it also satisfies (H2) (note
that (H2) is satisfied without any restrictions on the singularities of X) and hence
Dloc has a hull.
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Next we present a simple case when Dloc has a hull.

Corollary 5.6. Assume that, with the exception of finitely many singular points,
the index-1 cover of any singular point of X is smooth and that the singular locus
of X is proper. Then Def qG

loc (Y,X) has a hull.

Proof. By Theorem 5.5 we need only show that, with the exception of finitely
many singular points, property (H 4) is satisfied. This is equivalent to showing that
local automorphisms of deformations lift to higher order. Since the result is lo-
cal, we may assume that X is affine. Then let π : X̃→ X be the index-1 cover of
X. Let XA be a Q-Gorenstein deformation of X over A. Let A → B be a finite
local A-algebra and let XB = XA ⊗A B. Let θ be a B-automorphism of XB. Let
X̃A → XA be the index-1 cover of XA. Then X̃A is a deformation of X̃ [KoSh] over
A and X̃A ⊗A B is the index-1 cover of XB. From the construction of the index-1
cover, θ lifts to an automorphism of X̃B that is smooth by assumption. This now
lifts to an automorphism of X̃A and hence to an automorphism of XA.

Remark 5.7. From the proof of Theorem 5.5, it is clear that the obstruction to
the local deformation functors having a hull is the presence of automorphisms. In
fact, the only time we were able to show existence of a hull is when there are no
automorphisms. In view of this, perhaps it would be better to consider the stack
of deformations instead.

6. The T 1-lifting Property

The main technical tool that we will use to study the deformation theory of a
scheme X is Kawamata’s T 1-lifting property [Ka1; Ka2]. We recall the basic def-
initions and properties.

Let D : Art(k)→ Sets be a deformation functor of some scheme X defined over
a field of characteristic 0—that is, a covariant functor that satisfies Schlessinger’s
conditions (H1) and (H2). Assume moreover that D has an obstruction space T 2

D.

For A∈Art(k), D(A) is the set of isomorphism classes of pairs (XA,φ0) consist-
ing of deformations XA of X and marking isomorphisms φ0 : XA⊗A k → X. The
class of (XA,φ0) will be denoted by [XA,φ0 ].

Let Bn = k[x, y]/(xn+1, y2) and Cn = k[x, y]/(xn+1, y2, xny). There are nat-
ural maps αn : An+1 → An, βn : Bn → An, γn : Bn → Cn, δn : Cn → Bn−1,
ζn : An → Cn, and εn : An+1 → Bn with βn(x) = t, βn(y) = 0, εn(t) = x + y,
and ζn(t) = x + y.

Definition 6.1. Let [Xn,φ0 ]∈D(An). Then we define:

(1) T1
D(Xn/An) to be the set of isomorphism classes of pairs (Yn,ψn) consisting of

deformations Yn of X over Bn and marking isomorphisms ψn : Yn ⊗Bn
An →

Xn; and
(2) T 1

D(Xn/An) to be the sheaf of sets on X associated to the presheaf F such that
F(U) = T1

D(Un/An) for any open U ⊂ X, where Un = Xn|U .
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IfD is Def(Y,X) or Def qG(Y,X) then we use the notation T1(Xn/An),T 1(Xn/An),
T1

qG(Xn/An), and T 1
qG(Xn/An), respectively.

Definition 6.2 [Ka1; Ka2]. We say that the deformation functor D satisfies the
T 1-lifting property if and only if, for any Xn ∈D(An), the natural map

φn : T1
D(Xn/An)→ T1

D(Xn−1/An−1)

is surjective, where Xn−1 = D(αn−1)(Xn).

Theorem 6.3 [Ka1, Thm. 1]. Let D be a deformation functor that satisfies the
T 1-lifting property. Then D is smooth. In particular, if D has a hull, then its hull
is smooth.

In fact, the proof of the previous theorem shows the following.

Theorem 6.4. LetD be a deformation functor, Xn∈D(An),Xn−1=D(αn)(Xn),
and Yn−1 = D(εn−1)(Xn)∈T1

D(Xn−1/An−1). Then Xn lifts to An+1 (i.e., is in the
image of D(An+1) → D(An)) if and only if Yn−1 is in the image of the natu-
ral map

φn : T1
D(Xn/An)→ T1

D(Xn−1/An−1).

The advantage of Theorem 6.4 is that it allows us to exhibit in the next section a
very explicit obstruction element to the lifting of Xn to An+1. The following result
is also useful.

Proposition 6.5. With assumptions as in Theorem 6.4, let Yn ∈ T1(Xn/An) be
a lifting of Yn−1; that is, φn(Yn) = Yn−1. Then there is a lifting Xn+1 of Xn over
An+1 such that Yn = D(εn)(Xn+1).

The proof of the proposition depends on the following result of Schlessinger.

Theorem 6.6 [S]. Let D : Art(k)→ Sets be a functor that satisfies (H2). Let

0 −→ J −→ B
α−→ A −→ 0

be a small extension of local Artin k-algebras, and let D(α) : D(B)→ D(A) be
the natural map. Then, for any ξA ∈ D(A), there is a natural action of the tan-
gent space tD of D on the set D(α)−1(ξA). Moreover, if D satisfies (H1), then the
action is transitive.

A careful look at the proof of the previous theorem reveals that the action described
satisfies the following functorial property.

Corollary 6.7. With assumptions as in Theorem 6.6, let

0 �� J

f

��

�� B

g

��

α �� A

h

��

�� 0

0 �� J ′ �� B ′
α ′ �� A′ �� 0
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be a commutative diagram of small extensions of local Artin k-algebras such that
f is a k-isomorphism. Let ξA ∈ D(A) and ξA′ = D(h)(ξA) ∈ D(A′). Then the
natural map D(α)−1(ξA)→ D(α ′)−1(ξA′) is tD-equivariant.

If f is not an isomorphism, then the previous result is not true.

Proof of Proposition 6.5. Let ζn : An → Cn be defined by ζn(t) = x + y, and let
δn : Cn → Bn−1 be the natural map. Then δnζn = εn−1. Consider the commuta-
tive diagram of small extensions

0 �� J

f

��

�� An+1

εn

��

�� An

ζn

��

�� 0

0 �� J ′ �� Bn
�� Cn

�� 0

where J = (t n+1), J ′ = (xy n), and f is the isomorphism given by sending t n+1

to xy n. This diagram induces the commutative diagram

D(An+1)
D(αn) ��

D(εn)

��

D(An)

D(ζn)

��

�� T 2
D ⊗ J

D(Bn)
D(γn) �� D(Cn) �� T 2

D ⊗ J ′

where T 2
D is an obstruction space for D. Let Zn = D(ζn)(Xn). Then the T 1-

lifting property implies that D(γn)(Yn) = Zn [Ka1; Ka2]. Let X ′
n+1 be a lifting

of Xn, which exists by the T 1-lifting property, and let Y ′n = D(ε)(X ′
n+1). Then

Yn,Y ′n ∈D(γn)
−1(Zn), which is a homogeneous tD-space by Theorem 6.6. Hence

there is a θ ∈ tD such that θ · Y ′n = Yn. Moreover, by Corollary 6.7, the natural
map D(αn)

−1(Xn)→ D(ζn)
−1(Zn) is tD-equivariant. Hence D(εn)(Xn+1) = Yn,

where Xn+1 = θ ·X ′
n+1.

Remark 6.8. The T 1-lifting property was originally introduced by Ran [Ra] in
order to study infinitesimal deformations of a complex manifold; it was later gener-
alized by Kawamata [Ka1; Ka2] to the case of an arbitrary deformation functor D.

Later, a stronger version of the T 1-lifting property was introduced by Fantechi and
Manetti [FM2]. According to their definition, a deformation functor D has the
T 1-lifting property if, for any n∈N, the natural map

D(Bn+1)→ D(Bn)×D(An) D(An+1)

is surjective; they show that if D has the T 1-lifting property and k has character-
istic 0, then D is smooth. Then, naturally, for any Xn ∈ D(An) one can define
T 1
D(Xn/An) = {Yn ∈D(Bn), D(βn)(Yn) = Xn}. Hence D has the new T 1-lifting

property if and only if the natural map T 1(Xn/An) → T 1(Xn−1/An−1) is surjec-
tive for any Xn ∈ D(An). This is a stronger condition because it depends only
on D and does not take into consideration any automorphisms of Xn. However,
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T 1(Xn/An) does not have any natural k-vector space structures even when D =
Def(X). For this reason we consider the weaker definition given by Kawamata:
it has the advantage that T1

D(Xn/An) has a natural k-vector space structure if D is
either Def(Y,X) or Def qG(Y,X), which are the cases of interest in this paper.

7. Description of TTT1(Xn/An) and T 1(Xn/An)

Let X be a pure and reduced scheme defined over a field of characteristic 0, and
let Y ⊂ X be a closed subscheme of X such that X − Y is smooth. Let Xn ∈
Def(Y,X)(An). In this section we describe the spaces T1(Xn/An) and the sheaves
T 1(Xn/An).

First we state a simple technical result that will be needed later.

Lemma 7.1. Let X be a pure scheme, and let XR be a deformation of X over a
local Artin k-algebra R. Then XR is also pure.

Proof. The proof will be by induction on the length l(R) of R. If l(R) = 1 then
XR = X, which by assumption is pure. Now, for any Artin ring R, the maximal
ideal m has a composition sequence (0) = I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ Ik = m such
that Ik/Ik+1

∼= R/m. Since I1 = A/m and since I1 → I1/I
2
1 is surjective, it fol-

lows that I 2
1 = 0. Hence there is a square zero extension

0 → k → R → B → 0,

which gives the square zero extension

0 −→ OX −→ OXR

p−→ OXB
−→ 0.

Let J ⊂ OXR
be an ideal sheaf such that dim Supp(J ) < dimX. Then, by induc-

tion, p(J ) = 0; hence J ⊂ OX and so J = 0 since X is pure.

Proposition 7.2. Suppose that X is a pure and reduced scheme, that Y ⊂ X is
a closed subscheme, and that X − Y is smooth. Let Xn ∈Def(Y,X)(An). Then

T1(Xn/An) ∼= Ext1Xn
(�̂Xn/An

, OXn
)

and
T 1(Xn/An) ∼= Ext1Xn

(�̂Xn/An
, OXn

).

Proof. The proof is similar to our proof of Proposition 4.2. We will show only the
first isomorphism; the proof of second is identical. Let {U i

n} be an open cover of
Xn such that U i

n = Û i
n , where U i

n is a deformation over An of a local étale neigh-
borhood V i of Y in X. Let also Yn ∈ D(Bn) and let {W i

n} be the corresponding
open cover such that W i

n = Ŵ i
n , where Wi

n is a deformation over Bn of a local étale
neighborhood Zi of Y in X. By Lemma 7.1, U i

n , V i, Wi
n , and Zi are also pure.

We know that Bn is the trivial square zero extension of An by An. Therefore,
the trivial extension

0 → An → Bn → An → 0
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gives the extension (not necessarily trivial) of An-algebras

0 → OWi
n
⊗Bn

An → OWi
n
→ OWi

n
⊗Bn

An → 0.

There is a right exact sequence

OWi
n
⊗Bn

An

αn−→ �Wi
n/An

⊗Bn
An −→ �Wi

n⊗BnAn/An
−→ 0.

Since X is pure and reduced, it follows that Wi
n ⊗Bn

An is pure and hence αn is
injective. Taking completions, we obtain the exact sequence

0 → OU i
→ (�Wi

n/An
⊗Bn

An)
∧ → (�Wi

n⊗BnAn/An
)∧ → 0.

Now if (A,m) is a local k-algebra, then �̂A/k
∼= �̂Â/k , where Â is the m-adic com-

pletion of A [TLóR]. Therefore, and patching the preceding sequences together,
it follows that there is an exact sequence

0 → OXn
→ �̂Yn/An

⊗Bn
An → �̂Xn

→ 0.

Hence we have a map

T1
D(Xn/An)→ Ext1Xn

(�̂Xn/An
, OXn

),

which (as in the usual scheme case) is injective. We will show that it is also
surjective.

Let
0 → OXn

→ E → �̂Xn
→ 0

be an element of Ext1Xn
(�̂Xn/An

, OXn
). Let

d̂ : OXn
→ �̂Xn/An

be the completion of the universal derivation [TLóR]. Then, again as in the usual
scheme case, we get a square zero extension of An-algebras

0 −→ OXn

σ−→ OYn
−→ OXn

−→ 0. (7.1)

Moreover, if we argue exactly as in the proof of Proposition 4.2, it follows that
the extension (7.1) is locally the completion of an extension of U i

n by U i
n . To com-

plete the proof we need to show that OYn
admits the structure of a flat Bn-algebra

and that Yn ⊗Bn
An = Xn. The algebra OYn

is already an An-algebra, and it can
be made into an A1-algebra via λ : k[t]/(t 2) → OYn

by setting λ(t) = σ(1). In
this way, OYn

becomes a Bn = (A1⊗An)-algebra. The flatness is a consequence
of the following straightforward generalization of [Se, Lemma A.9].

Lemma 7.3. Let (B,mB) be a local ring, A a B-algebra, and M a finitely gen-
erated A-module. Let

0 → M → A′ → A→ 0 (7.2)

be a square zero extension of A by M. Let R be an A′-algebra. Then R is a flat
A′-algebra if and only if the sequence (7.2) ⊗A′ R is exact and R ⊗A′ A is a flat
A-algebra.
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From the construction of the Bn-algebra structure on OYn
we have OYn

⊗Bn
An =

OXn
. Furthermore, since X − Y is smooth, (7.1) ⊗Bn

An is exact on X − Y and,
since X is pure, it follows that (7.1) ⊗Bn

An is, in fact, exact. Hence OYn
is flat

over Bn.

Remark 7.4. If X = Y then Proposition 7.2 says simply that

T1(Xn/An) ∼= Ext1Xn
(�Xn/An

, OXn
)

and
T 1(Xn/An) ∼= Ext1Xn

(�Xn/An
, OXn

),

where Xn ∈Def(X)(An).

Remark 7.5. Proposition 7.2 was proved by Namikawa [Na] for the case X= Y.

As a corollary of Proposition 7.2, the spectral sequence relating the functors Ext
and Ext gives the local-to-global sequence for T 1.

Corollary 7.6. Given the assumptions in Proposition 7.2, there exists an exact
sequence

0 → H1(T̂Xn/An
)→ T1(Xn/An)→ H 0(T 1(Xn/An))→ H 2(T̂Xn/An

).

The next technical lemma will be needed in the sequel.

Lemma 7.7. Let X be a pure and reduced scheme, and let XA be a deformation
of X over a local Artin k-algebra A. Let FA be a coherent sheaf on XA for which
there is a nonempty open subset UA ⊂ XA such that the restriction FA|UA is flat
over A. Let A→ B be a homomorphism of finite Artin local k-algebras, and let
XB = XA ⊗A B. Let i : XB → XA be the inclusion, and let GB be a coherent
OXB

-module. Then, for all k ≥ 0,

Ext kXA
(FA, i∗GB) ∼= Ext kXB

(i∗FA,GB)

and
Ext kXA

(FA, i∗GB) ∼= Ext kXB
(i∗FA,GB).

Proof. For any k there are natural maps

φk
F : Ext kXB

(i∗FA,GB)→ Ext kXA
(FA, i∗GB),

ψk
F : Ext kXB

(i∗FA,GB)→ Ext kXA
(FA, i∗GB)

defined as follows. Let [EB] be an element of Ext kXB
(i∗FA,GB). This is represented

by an extension

0 → GB → E1 → E2 → · · · → Ek → i∗FA → 0.

Moreover, there is a natural map λA : FA → i∗ i∗FA. We define φk
F ([EA]) ∈

Ext kXA
(FA, i∗GB) to be the extension obtained by pulling back [EA] with λ, and

similarly for ψk
F .
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Let i∗ : Coh(XB)→ Coh(XA) be the induced map between the corresponding
categories of coherent sheaves. Let G be either the HomXA

(FA, ·) or HomXA
(FA, ·)

functor. Since i∗ is exact, to prove the lemma it suffices to show that i∗ sends in-
jectives to G-acyclics. First we show this in the case when G = HomXA

(FA, ·).
Let IB be an injective OXB

-module. We will show that

Ext kXA
(FA, IB) = 0;

this is local, so we may assume that X (and hence XA) is affine. Then XA has
enough locally free sheaves. So we may write

0 → PA → EA → FA → 0,

where EA is locally free. Hence

Ext kXA
(FA, IB) = Ext k−1

XA
(PA, IB).

Furthermore, since X is pure it follows that XA is pure as well. Therefore, EA is
pure and hence PA is also pure and its restriction on UA is flat over A. Continuing
similarly, we find that

Ext kXA
(FA, IB) = Ext1XA

(NA, IB),

where NA is also pure and its restriction on UA is flat over A. Now consider the
exact sequence

0 → QA → MA → NA → 0,

where MA is locally free. Then, as before, QA is pure and thus, since NA is flat
over UA, it follows that

0 → i∗QA → i∗MA → i∗NA → 0

is exact, too. Hence there is a commutative diagram

HomXA
(NA, i∗IB) ��

f1��

HomXA
(MA, i∗IB) ��

f2��

HomXA
(QA, i∗IB) ��

f3��

Ext1
XA
(NA, i∗IB) ��

f4
��

0

HomXB
(i∗NA, IB) �� HomXB

(i∗MA, IB) �� HomXB
(i∗QA, IB) �� Ext1

XA
(i∗NA, IB) �� 0

where f1, f2, and f3 are clearly isomorphisms. Consequently, f4 is also an iso-
morphism. But since IB is an injective OXB

-module, we have

Ext1XA
(GA, i∗IB) = Ext1XB

(i∗GA, IB) = 0

and hence
Ext kXA

(FA, i∗IB) = 0

for all k ≥ 1, as claimed. Next we show the corresponding statement for the global
Ext. The spectral sequence relating the local and global Ext functors show that

Ext kXA
(FA, i∗IB) = H k(HomXA

(FA, i∗IB))

= H k(HomXB
(i∗FA, IB)) = Ext kXB

(i∗FA, IB) = 0.

The argument about the Ext sheaves cannot be directly applied to the global Ext
functor because there may not be enough locally free sheaves on XA.

Next we give a version of the previous results in the case of formal schemes.
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Corollary 7.8. With assumptions as in Lemma 7.7, let XA ∈Def(Y,X)(A) and
XB = XA ⊗A B. Let FA be a coherent sheaf on XA for which there is an open
UA ⊂ XA such that FA|UA

is flat over A. Let GB be a coherent sheaf on XB and
let i : XB → XA be the inclusion. Then

Ext iXA
(FA, i∗GB) ∼= Ext iXB

(i∗FA, GB)

and
Ext iXA

(FA, i∗GB) ∼= Ext iXB
(i∗FA, GB).

Proof. The natural map φi
F defined in Lemma 7.7 exists in this case, too. Then

the proof proceeds similarly and it is local. Locally XA
∼= V̂A, where VA is a de-

formation over A of a local étale neighborhood V of Y in X. So we may assume
that FA = F̂A and GB = ĜB , where FA,GB are coherent sheaves on VA,VB. But
then, as we have already seen in Proposition 4.2,

Ext i
V̂A
(F̂A, ĜB) = (Ext iVA(FA,GB))

∧.

Moreover, if IB is an injective OXB
-module then IB = ÎB , where IB is an injec-

tive OVB -module. Now the proof proceeds exactly as the proof of Lemma 7.7.

We next state the key result that will enable us to obtain obstructions to lift a de-
formation Xn ∈Def(Y,X)(An) to An+1.

Proposition 7.9. Let X be a pure and reduced scheme defined over a field k of
characteristic 0, and let Y ⊂ X be a closed subscheme of X such that X − Y is
smooth. Let Xn ∈Def(Y,X)(An). Then there are exact sequences

0 −→ T̂X −→ T̂Xn/An
−→ T̂Xn−1/An−1 −→ T 1(Y,X) −→ T 1(Xn/An)

−→ T 1(Xn−1/An−1)
θ−→ Ext 2

X̂
(�̂X, OX̂)

and

0 −→ H 0(T̂X) −→ H 0(T̂Xn/An
) −→ H 0(T̂Xn−1/An−1) −→ T1(Y,X)

−→ T1(Xn/An) −→ T1(Xn−1/An−1)
B−→ Ext2

X̂
(�̂X, OX̂).

Note that, since X − Y is assumed to be smooth, it follows from Proposition 4.2
that T 1(Y,X) = T 1(X).

Proof of Proposition 7.9. Apply HomXn
(�̂Xn/An

, ·) and HomXn
(�̂Xn/An

, ·) on the
square zero extension

0 −→ OX̂ −→ OXn
−→ OXn−1 −→ 0

and then use Proposition 7.2 and Lemma 7.7.

8. Global Lifting of Deformations

Let Xn ∈ Def(Y,X)(An). In this section we obtain obstructions to the lifting of
Xn to An+1. Let Yn−1 = Def(Y,X)(εn−1)(Xn) ∈ T1(Xn−1/An−1). According to
Theorem 6.4, Xn lifts to An+1 if and only if Yn−1 is in the image of the natural map
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T1(Xn/An)
τn−→ T1(Xn−1/An−1).

According to Proposition 7.9, there is an exact sequence

T1(Xn/An)
τn−→ T1(Xn−1/An−1)

B−→ Ext2
X̂
(�̂X, OX̂).

Identifying T1(Xn−1/An−1) with

Ext1Xn
(�̂Xn/An

, OXn−1) = Ext1Xn−1
(�̂Xn−1/An−1, OXn−1)

and identifying T1(Xn/An) with Ext1Xn
(�̂Xn/An

, OXn
), we see that Yn−1 is repre-

sented by the extension

0 → OXn−1 → E → �̂Xn/An
→ 0,

which is the pullback of the extension

0 → OXn−1 → �̂Yn−1/An−1 ⊗Bn−1 An−1 → �̂Xn−1/An−1 → 0

under the natural map �̂Xn/An
→ �̂Xn−1/An−1. Hence

E = (�̂Yn−1/An−1 ⊗Bn−1 An−1)×�̂Xn−1/An−1
�̂Xn/An

.

Then B(Yn−1) ∈ Ext2
Xn
(�̂Xn/An

, OX̂) = Ext2
X̂
(�̂X, OX̂) is represented by the two-

term extension
0 → OX̂ → OXn

→ E → �̂Xn/An
→ 0.

We can therefore use Theorem 6.4 to obtain the following result.

Theorem 8.1. With assumptions as in Proposition 7.9, let

Yn−1 = Def(Y,X)(εn−1)(Xn).

Then the obstruction to lifting Xn to a deformation Xn+1 over An+1 is the element
ob(Xn)∈Ext2

Xn
(�̂Xn/An

, OX̂) = Ext2
X̂
(�̂X, OX̂) represented by the extension

0 → OX̂ → OXn
→ E → �̂Xn/An

→ 0,

where
E = (�̂Yn−1/An−1 ⊗Bn−1 An−1)×�̂Xn−1/An−1

�̂Xn/An
.

Therefore, if Ext2
X̂
(�̂X, OX̂) = 0 and if Y and X satisfy the conditions of Propo-

sition 5.3, then the hull of Def(Y,X) is smooth.

In practice it is easier to verify vanishing for cohomology than for the Ext
groups. Next we shall give some cohomological conditions for the vanishing of
Ext2

X̂
(�̂X, OX̂), but first we give a definition.

Definition 8.2. Let X be a pure scheme, and let Y ⊂ X be a closed subscheme
of X such that X − Y is smooth. Then we denote by Ob3(X) the cokernel of the
local-to-global obstruction map H 0(T 1(X))→ H 2(T̂X) of Proposition 4.2.

Corollary 8.3. There are three successive obstructions in H 0(Ext 2
X̂
(�̂X, OX̂)),

H1(T 1(X)), and Ob3(X) to the lifting of Xn to An+1. Therefore, if
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H 0(Ext 2
X̂
(�̂X, OX̂)) = H1(T 1(X)) = Ob3(X) = 0

and if DefY (X) has a hull, then its hull is smooth and of dimension

h1(T̂X)+ h0(T 1(X))− h2(T̂X).

Proof. Consider the Leray spectral sequence

E
p,q

2 = Hp(Ext q
X̂
(�̂X, OX̂)) �⇒ Ep+q = Extp+q

X̂
(�̂X, OX̂)).

Then there are exact sequences

0 → E 2
1 → E 2 → E

0,2
2 ,

0 → E
1,0
2 → E1 → E

0,1
2 → E

2,0
2 → E 2

1 → E
1,1
2 → E

3,0
2 .

The claim now follows once we consider that E 2 = Extp+q

X̂
(�̂X, OX̂)), E

0,2
2 =

H 0(Ext 2
X̂
(�̂X, OX̂)), and E

2,0
2 = H 2(T̂X).

Corollary 8.4. Suppose that Def(Y,X) has a hull and that

H 0(Ext 2
X̂
(�̂X, OX̂)) = H1(T 1(X)) = H 2(T̂X) = H 0(T 1(X)) = 0.

Then every deformation of X is formally locally trivial.

The conclusion follows because, by Corollary 8.3, the hull of Def(Y,X) is smooth
and is the same as the hull of the locally trivial deformations Def ′(Y,X).

Remark 8.5. The simplest case if Ob3(X) = 0 is when H 2(T̂X) = 0. This hap-
pens in particular when there is a morphism f : X → S, where S is affine, f is
proper with fibers of dimension ≤ 1, and Y = f −1(s) for some s ∈ S. Then, by
the formal functions theorem, H 2(T̂X) = 0. This is the case of 3-fold flips and
divisorial contractions with at most 1-dimensional fibers.

9. Local to Global

Let X be a scheme, and let Y ⊂ X be a closed subscheme of X such that X− Y is
smooth. In Section 8 we obtained obstructions to the lifting of a deformation Xn ∈
Def(Y,X)(An) to a deformation Xn+1∈Def(Y,X)(An+1) for the case where X is
pure and reduced. However, our methods were global and did not yield any infor-
mation about the local structure of Xn+1. In this section we will study the problem
of when local liftings of Xn globalize to give a deformation Xn+1 of X over An+1

or, more generally, when local deformations of X exist globally.
Ideally one should study the local-to-global mapπ : Def(Y,X)→ Defloc(Y,X).

If X = Y, X has isolated singularities, and H 2(TX) = 0, then π is known to be
smooth. This is no longer necessarily true if X has positive-dimensional singu-
lar locus. The reason is the same as that given for the failure of Defloc(Y,X) to
have a hull: the presence of local automorphisms that do not lift to higher order.
However, under strong restrictions on the singularities of X, π is smooth.

Proposition 9.1. Suppose the assumptions in Theorem 5.5 hold, and suppose
also that H 2(T̂X) = 0. Then π is smooth.
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Proof. As before, we demonstrate the case X = Y (the general case is proved sim-
ilarly). For convenience, set D = Defloc(Y,X) and Dloc = Defloc(Y,X). Then it
suffices to show that, for any small extension

0 −→ J −→ B
g−→ A −→ 0,

the natural map
D(B)→ D(A)×D loc(A) Dloc(B)

is surjective.
Let XA ∈ D(A), sA = π(XA) ∈ Dloc(A), and sB ∈ Dloc(B) be such that

Dloc(g)(sB) = sA. By the definition of D loc, sB and sA are equivalent to an open
cover {Ui} of X, a collection of deformations UB

i and UA
i of Ui over B and A

(respectively) for which UB
i ⊗B A ∼= UA

i , B-isomorphisms φB
ij : UB

i |Ui
∩ Uj →

UB
j |Uj∩Ui

, and A-isomorphisms φA
ij : UA

i |Ui∩Uj → UA
j |Uj∩Ui

such that, for any
i, j, k, φA

ij φ
A
jkφ

A
ki is the identity automorphism of UA

ijk = UA
i ∩ UA

j ∩ UA
k .

By assumption, we may take Ui in such a way that Ui ∩Uj satisfies (H 4). Hence
we may take the φB

ij such that, on Uijk = Ui ∩ Uj ∩ Uk , the restriction of φB
ijk =

φB
ij φ

B
jkφ

B
ki on UA

ijk is the identity automorphism of UA
ijk. Hence φB

ijk corresponds to
a B-derivation dijk ∈HomUB

i
(�UB

i
/B , OUi

) = HomUi
(�Ui

, OUi
). On the 4-fold in-

tersections Uijks = Ui∩Uj ∩Uk∩Us , the φB
ijk satisfy a cocycle condition and hence

we get an element of H 2(HomX(�X, OX)) = H 2(TX). If this element vanishes,
then the φB

ij can be modified in such a way that φB
ij φ

B
jkφ

B
ki is the identity automor-

phism of UB
i ∩ UB

j ∩ UB
k and hence the UB

i glue to a global deformation XB.

In order to circumvent the failure of the local-to-global map π : Def(Y,X) →
Defloc(Y,X) to be smooth, we must gain some control of the automorphisms of
deformations. Bearing this in mind, and following the ideas of Lichtenbaum and
Schlessinger [LiS], we establish the following definitions.

Definition 9.2. Let
0 → J → B → A→ 0 (9.1)

be a small extension of Artin rings, and let XA ∈Def(Y,X)(A). Let (Xi
B ,φi), i =

1, 2, be pairs, where Xi
B ∈Def(Y,X)(B) and the φi : XA → Xi

B ⊗B A are isomor-
phisms. We say that the pair (X1

B ,φ1) is isomorphic to the pair (X2
B ,φ2) if and

only if there is a B-isomorphism ψ : X1
B → X2

B such that ψφ1 = φ2.

(1) We define Def(XA/A,B) to be the set of isomorphism classes of pairs [XB ,φ]
of deformations XB ∈ Def(Y,X)(B) and marking isomorphisms φ : XA →
XB ⊗B A.

(2) Let Def(XA/A,B) be the sheaf of sets associated to the presheaf F on X such
that F(U) = Def(UA/A,B), where UA = XA|U . Then we define

Defloc(XA/A,B) = H 0(Def(XA/A,B)).

Note that there is a natural map

π : Def(XA/A,B)→ Defloc(XA/A,B).
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Note also that, since any square zero extension of local Artin k-algebras can be
obtained by a sequence of successive small extensions, we do not lose anything
by working only with small extensions.

Remark 9.3. Let Xn ∈ Def(Y,X)(An). Then, in the notation of Section 6,
T1(Xn/An) = Def(Xn/An,Bn+1) and T 1(Xn/An) = Defloc(Xn/An,Bn+1).

Theorem 9.4. Let X be a scheme defined over a field k, and let Y ⊂ X be a
closed subscheme of X such that X − Y is smooth. Let

0 → J → B → A→ 0

be a small extension of local Artin k-algebras, and let XA ∈Def(Y,X)(A). Then
the following statements hold.

(1) Def(XA/A,B) and Defloc(XA/A,B) are T1(Y,X)⊗ J and H 0(T 1(X)⊗ J )

homogeneous spaces, respectively.
(2) Let sB ∈ Defloc(XA/A,B). Then the set π−1(sB) is a homogeneous space

over H1(T̂X ⊗ J ).

(3) There is a sequence

0 −→ H1(T̂X ⊗ J )
α−→ Def(XA/A,B)

π−→ Defloc(XA/A,B)
∂−→ H 2(T̂X ⊗ J )

that is exact in the following sense. Let sB ∈Defloc(XA/A,B). Then sB is in the
image of π if and only if ∂(sB) = 0. Moreover, let XB ,X ′

B ∈Def(XA/A,B)

such that π(XA) = π(X ′
A). Then there is a γ ∈H1(T̂X ⊗ J ) such that X ′

A =
γ ·XA, where by “·” we denote the action of H1(T̂X ⊗ J ) on π−1(sB).

Proof. We will prove the theorem only for the case X = Y. The local algebraiz-
ability conditions embedded in the definition of Def(Y,X) ensure that, with some
effort, all steps of the proof can be carried out in the case when Y �= X and X−Y

is smooth. The proof of the theorem proceeds in two steps.

Step1. In this step we obtain descriptions of Def(XA/A,B) and Defloc(XA/A,B)

using cotangent sheaf cohomology and spaces of infinitesimal extensions, which
we describe next. Let X be an S-scheme and F an OX-module. We denote by
Ex(X/S, F ) the space of square zero extensions

0 → F → OX ′ → OX → 0

of S-schemes [Gr1]. Note that there is always a natural map

Ex(X/S, F )→ H 0(T 1(X/S, F )),

where T 1(X/S, F ) is the first cotangent cohomology sheaf of Schlessinger [LiS].
This map is an isomorphism if X and S are affine.

The sequence B → A→ OXA
gives the exact sequences

0 −→ T 1(XA/A, J ⊗A OXA
) −→ T 1(XA/B, J ⊗A OXA

)

ν−→ T 1(A/B, J ⊗A OXA
) −→ T 2(XA/A, J ⊗A OXA

) (9.2)
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and

0 −→ Ex(XA/A, J ⊗A OXA
) −→ Ex(XA/B, J ⊗A OXA

)

µ−→ Ex(A/B, J ⊗A OXA
) (9.3)

(see [Gr1; LiS]). After taking global sections on sequence (9.2) we have

0 −→ H 0(T 1(XA/A, J ⊗A OXA
)) −→ H 0(T 1(XA/B, J ⊗A OXA

))

λ−→ H 0(T 1(A/B, J ⊗A OXA
)). (9.4)

By a slight abuse of notation, we shall use [I ] to denote both the elements of
Ex(A/B, J ⊗A OXA

) and of H 0(T 1(A/B, J ⊗A OXA
)) corresponding to the square

zero extension
0 −→ J ⊗A OXA

−→ B −→ A −→ 0.

We now claim that

(1) Defloc(XA/A,B) = λ−1([I ]) and
(2) Def(XA/A,B) = µ−1([I ]).

Indeed, an element of Defloc(XA/A,B) is equivalent to an open cover {Ui}
of X and pairs [U i

B ,φi
A] ∈ Def(U i

A/A,B), where U i
A = XA|Ui

, such that
[U i

B |Ui∩Uj ,φi
A|Ui∩Uj ] = [UJ

B |Ui∩Uj ,φJ
A |Ui∩Uj ] for any i, j. These give square zero

extensions [ei]∈ T 1(U i
A/B, J ⊗A OU i

A
) and

0 → J ⊗A OU i
A
→ OU i

B
→ OU i

A
→ 0,

which are isomorphic on the overlaps Ui ∩ Uj and hence glue to an element
[e] ∈ H 0(T 1(XA/B, J ⊗A OXA

)). Moreover, the facts that U i
B is flat over B and

U i
B ⊗B A = U i

A imply that λ([e]) = [I ] [LiS]. Therefore, Defloc(XA/A,B) =
λ−1([I ]). A similar argument shows also that Def(XA/A,B) = µ−1([I ]).

Step 2. This is the main part of the proof of the theorem. Combining the results
of the claim and the exact sequences (9.3) and (9.4), it follows that Defloc(XA/A,B)

and Def(XA/A,B) are H 0(T 1(XA/A, J ⊗A OXA
)) = H 0(T 1(X)⊗ J ) [LiS] and

Ex(XA/A, J ⊗A OXA
) = T1(X)⊗J [Gr1] homogeneous spaces. This shows The-

orem 9.4(1).
We proceed to show part (2) of the theorem. In what follows we use the follow-

ing notation. Let {Ui}i∈I be an open cover of X. Then, for any choice of indices
i1, . . . , ik , we set Ui1i2··· ik = Ui1 ∩ · · · ∩Uik . Also if XR is a deformation of X over
an Artin ring R, we set Xi1··· ik

R = XR|Ui1∩··· ∩Uik
.

Let sB ∈ Defloc(XA/A,B). First we exhibit the action of H1(TX ⊗ J ) =
H1(HomXA

(�XA/A, J ⊗A OXA
)) on π−1(sB). Let [XB ,φ] ∈ π−1(sB) and γ ∈

H1(HomXA
(�XA/A, J ⊗A OXA

)). The element sB is equivalent to giving an open
cover {Ui}i∈I of X; elements [U i

B ,φi] ∈ Def(U i
A/A,B); and, for all i, j, iso-

morphisms φij : U i
B |Ui∩Uj → U

j

B |Ui∩Uj such that φijφi = φj on Ui ∩ Uj . The
element [XB ,φ] ∈ Def(XA/A,B) is equivalent to giving elements [U i

B ,ψi] ∈
Def(U i

A/A,B) for all i and, for all i, j, isomorphisms ψij : U i
B |Ui∩Uj → U

j

B |Ui∩Uj
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such that ψijψ i = ψj on Ui ∩ Uj and ψjkψ ij = ψik on the triple intersec-
tions Ui ∩ Uj ∩ Uk. The cohomology class γ is equivalent to a collection γij ∈
Hom

X
ij

A

(�
X

ij

A
/A

, J ⊗O
X

ij

A

) = Hom
U

ij

B

(�
U

ij

B
/B

, J ⊗O
X

ij

A

), where U
ij

B = U i
B |Ui∩Uj ,

that satisfies the cocycle condition on the triple intersections. Therefore, γ is
equivalent to a collection of B-derivations dij : O

U
ij

B

→ J ⊗ O
X

ij

A

satisfying the

cocycle condition on the triple intersections. Then we define γ · [XB ,φ] to be the
element of π−1(sB) that is defined by the data [U i

B ,ψi] and glueing isomorphisms
ψij + dij : U i

B |Ui∩Uj → U
j

B |Ui∩Uj .
It remains to show that π−1(sB) is an H1(TX ⊗ J )-homogeneous space—in

other words, thatH1(TX⊗J ) acts transitively onπ−1(sB). Let [XB ,ψ], [X ′
B ,ψ ′ ]∈

π−1(sB). Then there exist an open cover {Ui}i∈I of X and isomorphisms
λi : XB |Ui

→ X ′
B |Ui

, for all i ∈ I, such that λiψ = ψ ′ on Ui. Then, on Uij ,
λij = λ−1

j λi is an automorphism of X
ij

B over X
ij

A . Therefore, λij corresponds
to a B-derivation dij ∈ DerB(OX

ij

B

, J ⊗ O
X

ij

A

) = Hom
X

ij

B

(�
X

ij

B
/B

, J ⊗ O
X

ij

A

) =
Hom

X
ij

A

(�
X

ij

A
/A

, J ⊗ O
X

ij

A

). These satisfy the cocycle condition on triple inter-

sections and hence give an element γ ∈ H1(HomXA
(�XA/A, J ⊗A OXA

)) =
H1(TX ⊗ J ). Now, from the definition of the action of H1(TX ⊗ J ) on π−1(sB),
it is clear that γ · [XB ,ψ] = [X ′

B ,ψ ′ ]; therefore, the action is transitive.
Now we show part (3). Taking into consideration the previous two parts, it

suffices to construct the map ∂ and to show that Ker(∂) ⊂ Im(π). Let sB ∈
Defloc(XA/A,B) as before. Then, for any i, j, k ∈ I, φijk = φkiφjkφij is a B-
automorphism of U i

B |Uijk
over Xijk

A . Therefore, φijk corresponds to a B-derivation
dijk ∈ DerB(OU i

B
|Uijk

, J ⊗ O
X

ijk

A

) = Hom
X

ijk

A

(�
X

ijk

A
/A

, J ⊗ O
X

ijk

A

). These satisfy

the cocycle condition on the 4-fold intersections and thus give an element of
H 2(HomXA

(�XA/A, J⊗AOXA
)) = H 2(TX⊗J ). This defines the map ∂. If ∂(sB) =

0, then the isomorphisms φij can be modified so that φijk is the identity automor-
phism of U i

B |Uijk
and therefore the U i

B and φi glue to a global deformation XB and
the isomorphism φ : XA → XB ⊗B A. Hence sB = π([XB ,φ]), as claimed.

Corollary 9.5. With assumptions as in Theorem 9.4, there are two successive
obstructions in H 0(T 2(X)⊗ J ) and H1(T 1(X)⊗ J ) in order for

Defloc(XA/A,B) �= ∅
(i.e., for XA to lift locally to B). If these obstructions vanish then there is another
obstruction in H 2(T̂X ⊗ J ) in order for Def(XA/A,B) �= ∅ (i.e., for the local
deformations to globalize).

Proof. We show only the case X = Y ; the general case is similar. Let Q =
Im(ν), where ν is the map in the long exact sequence (9.2). Then there are two
exact sequences,

0 −→ H 0(T 1(XA/A, J ⊗OXA
)) −→ H 0(T 1(XA/B, J ⊗OXA

))

α−→ H 0(Q)
β−→ H1(T 1(XA/A, J ⊗OXA

)) (9.5)
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and

0 −→ H 0(Q) −→ H 0(T 1(A/B, J ⊗OXA
)) −→ H 0(T 2(XA/A, J ⊗OXA

)). (9.6)

By Step 1 of the proof of Theorem 9.4, Defloc(XA/A,B) = λ−1([I ]), where
λ = βα. It is now clear from the preceding exact sequences that there are two
successive obstructions in H 0(T 2(XA/A, J ⊗ OXA

)) = H 0(T 2(X) ⊗ J ) and
H1(T 1(XA/A, J ⊗ OXA

)) = H1(T 1(X) ⊗ J ) so that λ−1([I ]) �= ∅. If these ob-
structions vanish, then by Theorem 9.4(3) it follows that there is another obstruc-
tion in H 2(TX ⊗ J ) so that Def(XA/A,B) �= ∅.
The spaces Def(XA/A,B) and Defloc(XA/A,B) do not, in general, have any vec-
tor space structures over the ground field k. This complicates any calculation in-
volving them. However, if B is the trivial extension of A by J, then these spaces
do have natural k-vector space structures.

Remark 9.6. A variant of Theorem 9.4 is already known in the case X = Y, and
the obstructions in Corollary 9.5 are also well known [H3; LiS]. However, to our
knowledge, the Defloc space and the global-to-local sequence of Theorem 9.4(3)
have not been considered earlier, and this distinguishes our statement from those
already found in the literature.

Remark 9.7. Theorem 9.4 establishes a relation between the local and global de-
formation spaces Def(XA/A,B) and Defloc(XA/A,B). However, the obstructions
obtained in Corollary 9.5 are not satisfactory in many ways. We explain why. Re-
call quickly how the obstructions work. In the notation of the corollary, given a
deformation XA of X over A, if the obstruction in H 0(T 2(X)) vanishes then we
can lift XA locally to B—in other words, there exist an open cover {U i} of X and
liftings U i

B of XA|U i over B. Then, if the second obstruction in H1(T 1(X)) van-
ishes, the local liftings can be modified in order to agree on overlaps. This does
allow us to find obstructions in order for Defloc(XA/A,B) �= ∅, but we lose all
local information about the liftings. To gain some control over the singularities of
a lifting of XA, we would like to choose a particular lifting U i

B of XA|U i and then
find obstructions to globalize it. This requires more careful study, and additional
obstructions will appear. For general choice of the rings A and B the method is
probably quite tricky, but for the purposes of this paper (where mainly 1-parameter
deformations are studied) we will consider only deformations over the rings An.

Our main tool is again the T 1-lifting property.

9.1. Local to Global and the T 1-lifting Property

Let Xn be a deformation of X over An. Here we present a method of lifting Xn

to a deformation Xn+1 of X over An+1 that allows us to control the singularities
of Xn+1.

Let Xn−1 = Xn ⊗An
An−1 and Yn−1 = Xn ⊗An

Bn−1 ∈ T1(Xn−1/An−1), where
Bn−1 is an An-algebra via the map εn−1 : An → Bn−1 defined in Section 6. Then,
according to the T 1-lifting property (Theorem 6.4), Xn lifts to An+1 if and only
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if Yn−1 is in the image of the natural map τn : T1
D(Xn/An) → T1

D(Xn−1/An−1).

Theorem 8.1 obtained an explicit obstruction element for this to occur; however,
as mentioned earlier, it does not offer any local information about the possible lift-
ings. Local information is carried by the sheaves T 1(Xn/An). These are related
to T1(Xn/An) by the following natural commutative diagram:

T1
D(Xn/An)

τn

��

φn �� H 0(T 1
D(Xn/An))

σn

��

T1
D(Xn−1/An−1)

φn−1
�� H 0(T 1

D(Xn−1/An−1))

(9.7)

The idea is as follows. Let sn−1 = φn−1(Yn−1). Instead of lifting Yn−1 di-
rectly through τn, we will obtain obstructions in order for sn−1 to be in the image
of σn. If these obstructions vanish, then we choose a particular element sn ∈
H 0(T 1(Xn/An)) such that σn(sn) = sn−1 and so obtain obstructions for the ex-
istence of a global Yn ∈ T1(Xn/An) such that φn(Yn) = sn. In this way we can
control the local structure of Yn. Then, according to Proposition 6.5, there is a lift-
ing Xn+1 of Xn over An+1 such that Xn+1 ⊗An+1 Bn = Yn, where again Bn is an
An+1-algebra via εn : An+1 → Bn. Now suppose that by this process we have ob-
tained a formal deformation fn : Xn → Spec(An) for n. Suppose that it is induced
by an algebraic deformation f : X → SpecA. We will see next that the sections
sn carry a lot of information about the singularities of X . In particular, smoothings
can be detected by them, as shown by the next two propositions.

Proposition 9.8. Letf : X → � be a deformation of a pure and reduced scheme
X over the spectrum of a discrete valuation ring (A,mA). Let fn : Xn → SpecAn

be the associated formal deformation and let Yn = Xn+1⊗An+1 Bn ∈ T1(Xn/An).

Moreover, let e ∈T1(X/�) be the element that is represented by the extension

0 → OX = f ∗ω� → �X → �X/� → 0. (9.8)

Then en = Yn in T1(Xn/An), where en = e ⊗A An.

Proof. By Proposition 7.2, T1(Xn/An) = Ext1Xn
(�Xn/An

, OXn
) and T1(X/�) =

Ext1X (�X/�, OX ). It follows from their definition that Yn and en are represented
by the extensions

0 −→ OXn

α−→ (�Xn+1⊗An+1Bn/An
)⊗Bn

An → �Xn/An
→ 0

and

0 −→ OXn

β−→ �X ⊗A An −→ �Xn/An
−→ 0,

respectively, where α(1) = d(1⊗x)⊗1 and β(1) = dt⊗1 for t a generator of the
maximal ideal of mR. It is now easy to see that the two extensions are isomorphic
via the mapping

G : �X ⊗A An → (�Xn+1⊗An+1Bn/An
)⊗Bn

An
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defined by G(dz⊗ a) = d(z̄⊗ 1)⊗ a, where z∈OX , a ∈A, and z̄ is the class of
z in OXn

.

Proposition 9.9. With assumptions as in Proposition 9.8, assume in addition
that X has complete intersection singularities. Then f is a smoothing of X if and
only if there are k, n∈Z>0, k < n, such that

t kT 1(Xn/An) ⊂ OXn
· sn.

Proof. Dualizing the exact sequence (9.8) yields the exact sequence

OX
α−→ T 1(X/�) −→ T 1(X ) −→ 0,

where α(1) = e. Therefore, T 1(X ) = Coker(α) = T 1(X/�)/OX · e.
Suppose that f is a smoothing. Then T 1(X ) is supported over mA and hence

there is a k ∈Z>0 such that t k(T 1(X/�)/OX · e) = 0. Reducing it modulo mn
A and

using Proposition 9.8, we get the claim.
Conversely, suppose there exist k, n ∈ Z>0 such that t kT 1(Xn/An) ⊂ OXn

· sn.
Let F = T 1(X/�)/OX · e and Fn = T 1(Xn/An)/OXn

· sn. Then, by Lemma 12.2
and Proposition 9.8, it follows that F/t n+1F = Fn, where t is a generator of the
maximal ideal mA of A. Now, by assumption, t k(F/t n+1F ) = 0 and hence t kF =
t n+1F = Fn; therefore, by Nakayama’s lemma, t kF = 0. Hence T 1(X ) is sup-
ported over mA and so, by Lemma 11.9, f is a smoothing.

Even though our previous discussion was for the case when X = Y, it is also valid
in the general case.

9.2. The Maps σn and φn

Here we study the maps σn and φn in diagram (9.7). In particular we obtain con-
ditions under which they are surjective.

Proposition 9.10. With assumptions as in Proposition 7.9, there are canonical
exact sequences

0 −→ H 0(T 1(X)/Fn) −→ H 0(T 1(Xn/An))

σn−→ H 0(T 1(Xn−1/An−1)) −→ Qn −→ 0,

0 −→ Ln −→ Qn −→ H 0(Ext 2
X̂
(�̂X, OX̂)), and

0 −→ Ln −→ H1(T 1(X)/Fn) −→ H1(T 1(Xn/An))

as well as a noncanonical sequence

0 −→ H 0(T 1(X)/Fn) −→ H 0(T 1(Xn/An))
σn−→ H 0(T 1(Xn−1/An−1))

−→ H1(T 1(X)/Fn)⊕H 0(ExtX̂(�̂X, OX̂)),

where Fn ⊂ T 1(X) is the cokernel of the map

T̂Xn/An
−→ T̂Xn−1/An−1.

Proof. By Proposition 7.9 there exists an exact sequence

0 −→ T 1(X)/Fn −→ T 1(Xn/An)
hn−→ T 1(Xn−1/An−1)

µn−→ T 2(Y,X).
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Let Mn = Ker(µn). Then this sequence breaks into two short exact sequences:

0 −→ T 1(X)/Fn −→ T 1(Xn/An)
hn−→ Mn −→ 0;

0 −→ Mn −→ T 1(Xn−1/An−1)
µn−→ T 2(Y,X).

Then we obtain the following exact sequences in cohomology:

0 −→ H 0(T 1(X)/Fn)
f1−→ H 0(T 1(Xn/An))

f2−→ H 0(Mn)

f3−→ H1(T 1(X)/Fn)
f4−→ H1(T 1(Xn/An));

0 −→ H 0(Mn)
g1−→ H 0(T 1(Xn−1/An−1))

g2−→ H 0(T 2(Y,X)).

We wish to understand the kernel and Cokernel of the map σn = g1 ! f2. Con-
sider the commutative diagram

0 �� H 0(T 1(X)/Fn)
f1 ��

��

H 0(T 1(Xn/An))
f2 ��

φn

��

Im(f2) ��

β

��

0

0 �� 0 �� H 0(T 1(Xn−1/An−1)) H 0(T 1(Xn−1/An−1))
�� 0

where β is the restriction of g1 on Im(f2). The snake lemma now gives that
ker(µn) = H 0(T 1(X)/Fn) and Coker(β) = Coker(h). Hence there is an exact
sequence

0 → H 0(T 1(X)/Fn)→ H 0(T 1(Xn/An))

→ H 0(T 1(Xn−1/An−1))→ Qn → 0, (9.9)

where Qn = Coker(β). Now the diagram

0 �� Im(f2)

��

Im(f2) ��

β

��

0 ��

��

0

0 �� H 0(Mn)
�� H 0(T 1(Xn−1/An−1))

�� H 0(T 2(Y,X)) �� 0

implies that there is an exact sequence

0 → Ln → Qn → H 0(T 2(Y,X)) (9.10)

with Ln = Coker[Im(f2)→ H 0(Mn) and thus there is another exact sequence

0 → Ln → H1(T 1(X)/Fn)→ H1(T 1(Xn/An)). (9.11)

The proposition now follows from (9.9), (9.10), and (9.11).

Corollary 9.11. There are two successive obstructions in H 0(Ext 2
X̂
(�̂X, OX̂))

and H1(T 1(X)/Fn) to an element sn−1 of H 0(T 1(Xn−1/An−1)) being in the image
of σn.

The exact sequences in Proposition 9.10 are not very enlightening in general.
However, if X has local complete intersection singularities, then they are greatly
simplified.
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Corollary 9.12. Suppose that X has local complete intersection singularities
or, more generally, that H 0(Ext 2

X(�X, OX)) = 0. Then there is an exact sequence

0 −→ H 0(T 1(X)/Fn) −→ H 0(T 1(Xn/An))

σn−→ H 0(T 1(Xn−1/An−1))
∂−→ H1(T 1(X)/Fn).

Next we study the local-to-global map φn. If X is pure and reduced, then the dia-
gram (9.7) is part of the commutative diagram with exact rows

H1(T̂Xn/An
)

ψn ��

µn

��

T1(Xn/An)

τn

��

φn �� H 0(T 1(Xn/An))

σn

��

∂n �� H 2(T̂Xn/An
)

λn

��

H1(T̂Xn−1/An−1)
ψn−1

�� T1(Xn−1/An−1)
φn−1

�� H 0(T 1(Xn−1/An−1))
∂n−1

�� H 2(T̂Xn−1/An−1)

(9.12)

where ψn and ψn−1 are injective. Hence the obstruction for an element sn ∈
H 0(T 1(Xn/An)) to being in the image of φn is the element ∂n(sn) ∈H 2(T̂Xn/An

).

IfX has isolated singularities then it is well known that there are successive obstruc-
tions in H 2(T̂X) in order for ∂n(sn) to be zero. However, in the general case this is
not so, and once more the reason is the inability to lift local automorphisms. The
best that we can do in this case is to find conditions for the map φn to be surjective.

Proposition 9.13. Let X be a pure and reduced scheme over a field k, and
let Y ⊂ X be a closed subscheme of X such that X − Y is smooth. Let Xn ∈
Def(Y,X)(An), and let Fk = Coker[T̂Xk/Ak

→ T̂Xk−1/Ak−1]⊂ T 1(X). If H 2(T̂X)=
H1(Fk) = 0 for all k ≤ n, then φn is surjective.

Note that, if the singularities of X are isolated, then H1(Fk) = 0 and the propo-
sition is the familiar result about isolated singularities. Admittedly it is not easy
to check the conditions of the proposition, but at least the sheaves Fk are all sub-
sheaves of T 1(X), which depends only on X.

Proof of Proposition 9.13. The long exact sequence described in Proposition 7.9
gives the following short exact sequences:

0 → T̂X → T̂Xn/An
→ Qn → 0;

0 → Qn → T̂Xn−1/An−1 → Fn → 0.

These give the exact sequences

· · · → H 2(T̂X)→ H 2(T̂Xn/An
)→ H 2(Qn)→ · · · ,

· · · → H1(Fn)→ H 2(Qn)→ H 2(T̂Xn−1/An−1)→ · · · .
The claim now follows by induction on n.

So far we have found conditions in order for φn and σn to be surjective. Return-
ing to our original problem and starting with a deformation Xn of X over An, we
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want to lift Yn−1 = Xn⊗An
Bn−1 to a Yn in T1(Xn/An). Let sn−1 = φn−1(Yn−1). If

the obstructions in Corollary 9.12 and Proposition 9.13 vanish, then there is a Y ′n∈
T1(Xn/An) such that φn−1(τn(Y

′
n)− Yn−1) = 0. Hence, in order to obtain a lifting

Yn of Yn−1, we need to lift the locally trivial deformation Zn−1 = τn(Y
′
n) − Yn−1.

It is well known that if X has isolated singularities then the obstruction to lifting
Zn−1 to a locally trivial deformation Zn over An is in H 2(TX) (this also follows
immediately from the next proposition). In general, though, this is not true. Again
the best that we can do is to find conditions for τn to be surjective.

Proposition 9.14. With assumptions as in Proposition 9.13, if

H1(Fn) = H 2(T̂X) = 0

then every locally trivial lifting Zn−1 of Xn−1 over Bn−1 lifts to a locally trivial
lifting Zn of Xn over Bn.

Proof. From diagram (9.7) it follows that the isomorphism classes of locally trivial
liftings of Xk over Bk are in one-to-one correspondence with H1(T̂Xk/Ak

). Hence
the statement of the proposition is equivalent to saying that ifH1(Fn) = H 2(T̂X) =
0 then the natural map

µn : H1(T̂Xn/An
)→ H1(T̂Xn−1/An−1)

is surjective. This follows from arguments that are similar to those used in the
proof of Proposition 9.13.

The previous discussion suggests that we must study the sheaves Fn and the quo-
tients T 1(X)/Fn. There are two main cases. The first is when T 1(X)/Fn has finite
support for all n (and hence no higher cohomology) and σn is surjective for all n.
Here the only obstruction to the lifting of Xn to An+1 is in H 2(T̂X). This case is
treated in Lemma 12.2.

The second case is when we know that H 2(Fn) = 0 for all n. The simplest cases
of this occurring are when the singular locus of X is 1-dimensional and when there
is a proper morphism f : X→ Z with 1-dimensional fibers and Z affine (e.g., the
cases of flipping, flopping, and divisorial contractions with 1-dimensional fibers).
In this case we will show that H1(T 1(X)/Fn) is a quotient of H1(T 1(X)) and
hence we can at least find a uniform bound for its dimension, which is finite if X
has proper singular locus. Indeed, there is an exact sequence

0 → Fn → T 1(X)→ T 1(X)/Fn → 0

that induces the exact sequence

H1(Fn)→ H1(T 1(X))→ H1(T 1(X)/Fn)→ H 2(Fn).

Since H 2(Fn) = 0, it follows that H1(Fn) is a quotient of H1(T 1(X)).

Thus we have shown the following result.

Corollary 9.15. Suppose that the singular locus of X is 1-dimensional or that
there is a proper morphism f : X → Z with 1-dimensional fibers and Z affine.
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If H1(T 1(X)) = 0, then the map σn : H 0(T 1(Xn/An)) → H 0(T 1(Xn−1/An−1) is
surjective for all n.

10. QQQ-Gorenstein Deformations

Let X be a Q-Gorenstein scheme, and let Y ⊂ X be a closed subscheme of X

such that X − Y is smooth. In this section we extend the results obtained in the
previous sections regarding the usual deformation functor Def(Y,X) to the case
of the Q-Gorenstein deformation functor Def qG(Y,X). Toward this end, we will
locally compare the Q-Gorenstein deformations of X to the deformations of its
index-1 cover X̃. The key property that enables us to do so is that locally every
Q-Gorenstein deformation of X lifts to a deformation of X̃ [KoSh].

Let
0 → J → B → A→ 0

be a small extension ofArtin rings and letXA ∈Def qG(Y,X)(A). Then, in complete
analogy with the case of Def(Y,X) (Definition 9.2), we define Def qG(XA/A,B),
DefqG(XA/A,B), and Def qG

loc (XA/A,B) = H 0(Def(XA/A,B)).

We need the following technical result.

Lemma 10.1. Let B be an A-algebra, M a B-module, and G a group acting on
them compatibly with the algebra structure; in other words, for any g ∈G, the map
φg : B → B defined by φg(b) = g ·b is an A-algebra isomorphism and g · (bm) =
(g·b)(g·m) for any b ∈B andm∈M. Then there is an action ofG onT i(B/A,M),
i = 0,1, 2. If A = k is a field, then G also acts on

⋃
C∈Art(k) Def(B)(C), where

Def(B)(C) is the set of all deformations of B over C.

Proof. For any g ∈G, there is an induced isomorphism φg : B → B of B given
by φg(b) = g−1 · b for any b ∈B. This yields an isomorphism

φ∗g : T i(B/A,M)→ T i(B/A,M ∗),

where M ∗ is M as an abelian group but where the B-module structure is given
by b · m = (g−1 · b)m. The map ψg : M ∗ → M given by ψg(m) = g · m is a
B-module homomorphism inducing an isomorphism

ψ∗g : T i(B/A,M ∗)→ T i(B/A,M).

Now the map fg = ψ∗g ! φ∗g : T i(B/A,M)→ T i(B/A,M) gives the G-action on
T i(B/A,M).

We can describe T i(B/A,M), i = 1, 2, as the spaces of infinitesimal one- and
two-term extensions of B by M, respectively. It is useful to describe the action of
G on T i(B/A,M) when the latter is viewed this way.

Let (E) be a one-term infinitesimal extension

0 → M → C → B → 0

of B by M. Then, for any g ∈G, let (E ′) be the pullback extension
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0 �� M �� C ′

��

�� B

φg

��

�� 0

0 �� M �� C �� B �� 0

and let (E ′′) be the pushout extension

0 �� M

ψg

��

�� C ′

��

�� B �� 0

0 �� M �� C ′′ �� B �� 0

Then g ·[E ] = [E ′′ ] in T 1(B/A,M). The action on two-term extensions is defined
exactly analogously. Next we will show that G acts on

⋃
C∈Art(k) Def(B)(C). So

let C ∈Art(k) be a finite local Artin k-algebra and RC a deformation of B over
C. We proceed by induction on the length of C. If length(C) = 1, then RC ∈
T 1(B/k,B) and the action is already defined. Now any C appears as an extension

0 → k → C → C ′ → 0.

Let RC ′ = RC⊗C C ′. Then, by induction, g ·RC ′ is defined and there is an isomor-
phism g · RC ′ → RC ′ (not over C ′ in general). Define g · RC to be the extension
obtained by pulling back

0 → B → RC → RC ′ → 0

via the map g · RC ′ → RC ′ .

Construction of the Sheaves T i
qG(XA/B, F )

Let XA → SpecA→ SpecB be morphisms of schemes such that XA is a Cohen–
Macauley and relatively Gorenstein in codimension 1 and such that there is an
n∈Z with ω

[n]
XA/A

invertible. Let F be a coherent sheaf on XA. Next we will define
coherent sheaves T i

qG(XA/B, F ).

Let XA = ⋃
i Ui be an affine cover of XA, and let πi : Ũi → Ui be the index-1

cover of Ui. Let ri be the index of Ui and let Fi = F |Ui
. Then πi is Galois

with Galois group the group of ri roots of unity µri . Hence, by Lemma 10.1, µi

acts on T k(Ũi,π∗i Fi ), k ≥ 0. Let T k
qG(Ui/B, Fi ) = (T k(Ũi/B,π∗i Fi ))

µi. This is
a coherent sheaf on Ui. We will show that these sheaves glue to a coherent sheaf
T k
qG(XA/B, F ). It suffices to show that there are isomorphisms

φij : T k
qG(Ui/B, Fi )|Uij

→ T k
qG(Uj/B, Fi )|Uij

,

where Uij = Ui ∩ Uj . Let rij be the index of Uij . Then rij |rj and rij |ri . Let
πij : Ũij → Uij be the index-1 cover of Uij . Then, from the uniqueness and the
construction of the index-1 cover it follows that there are factorizations
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π−1
i (Uij )

πi

��
��

��
��

��
��

��
��

��
�

φij

����
��

��
��

�
π−1
j (Uij )

πj

����
��

��
��

��
��

��
��φji

����
��

��
��

�

Ũij

πij

��

Uij

where φij and φji are étale of degrees sij = ri/rij and sji = rj/rij , respectively.
Then

T k(π−1
i (Uij )/Y,π∗i Fi ) = φ∗ijT

k(Ũij/Y,π∗ijFi )

and therefore

(T k(π−1
i (Uij )/Y,π∗i Fi ))

µsij = T k(Ũij/Y,π∗ijFi ).

Hence

(T k(π−1
i (Uij )/Y,π∗i Fi ))

µri = ((T k(π−1
i (Uij ),π

∗
i Fi ))

µsij )µrij

= (T k(Ũij )/Y,π∗ijFij )
µrij .

Similarly, it follows that

(T k(π−1
j (Uij )/Y,π∗j Fj ))

µrj = (T k(Ũij )/Y,π∗ijFij )
µrij

and hence
T k
qG(Ui/B, Fi )|Uij

= T k
qG(Uj/B, Fj )|Uij

.

Therefore, the sheaves T k
qG(Ui/B, Fi ) glue to a global sheaf T k

qG(XA/B, F ).

The next proposition shows that T 0
qG and T 0 agree under certain conditions.

Proposition 10.2. Suppose that F is a locally free coherent sheaf on XA. Then

T 0
qG(XA/B, F ) ∼= T 0(XA/B, F ).

Proof. Let {Ui} be an affine cover of XA and let Fi = F |Ui
. Let πi : Ũi → Ui be

the index-1 cover and Gi the corresponding Galois group. Then T 0
qG(Ui/B, Fi ) =

T 0(Ũi/B, Fi )
Gi and, moreover, T 0(Ũi/B, Fi ) = HomŨi

(�Ũi/B
,π∗i Fi )˜. The Gi-

action is given as follows. Let g ∈Gi and f ∈HomŨi
(�Ũi/B

,π∗i Fi ). Then g · f is

the OŨi
-sheaf homomorphism defined by (g · f )(x) = g−1 · f(g · x). The natural

map π∗i �Ui/B → �Ũi/B
induces a homomorphism

φ : HomŨi
(�Ũi/B

,π∗i Fi )

→ HomŨi
(π∗�Ui/B ,π∗i Fi ) = HomUi

(�Ui/B ,π∗i Fi ). (10.1)

Now, since F is assumed to be locally free, it follows that both modules in the se-
quence (10.1) are reflexive. Furthermore, since XA is Gorenstein in codimension 1,
it follows that πi is étale in codimension 1 and therefore φ is an isomorphism.
Hence, taking Gi-invariants, we get an isomorphism

T 0
qG(Ui/B, Fi )→ (HomUi

(�Ui/B ,π∗i Fi )
Gi )˜.



Smoothings of Schemes with Nonisolated Singularities 63

We now claim that HomUi
(�Ui/B ,π∗i Fi )

Gi = HomUi
(�Ui/B , Fi ). The natural

injection Fi → π∗i Fi gives a natural injection

ψ : HomUi
(�Ui/B , Fi )→ HomUi

(�Ui/B ,π∗i Fi )
Gi.

Now let f ∈ HomUi
(�Ui/B ,π∗i Fi )

Gi. The definition of the Gi-action shows that
Im(f ) ⊂ (π∗i Fi )

Gi = Fi . Hence ψ is surjective and thus is an isomorphism. As
a result, for any Ui we have an isomorphism

gi : T 0
qG(Ui/B, Fi )→ T 0(Ui/B/Fi ).

Following the construction of the sheaves T i
qG, we see that these isomorphisms

glue to a global isomorphism

g : T 0
qG(XA/B, F )→ T 0(XA/B, F )

as claimed.

Proposition 10.3. Let X be a Q-Gorenstein scheme defined over a field k. Let
XA → SpecA be a Q-Gorenstein deformation of X over a finite local Artin k-
algebra A. Let

0 → J → B → A→ 0

be an extension of finite local Artin k-algebras with J 2 = 0. Then there is a
k-isomorphism

T 1
qG(XA/B, J ⊗OXA

)→ Def qG(XA/A,B),

where Def qG(XA/A,B) is the space of isomorphism classes of Q-Gorenstein lift-
ings XB of XA over B.

Proof. Let r be the index of X, πA : X̃A → XA the index-1 cover of XA, and
π : X̃ → X the index-1 cover of X. Then X̃A is a deformation of X̃ over A.

An element of T 1
qG(XA/B, J ⊗ OXA

) corresponds to a µr -invariant square zero
extension

0 → J ⊗OX̃A
→ OX̃B

→ OX̃A
→ 0. (10.2)

Taking invariants yields an extension

0 → J ⊗OXA
→ OXB

→ OXA
→ 0 (10.3)

and hence a Q-Gorenstein lifting XB of XA over B. This defines a map

φ : T 1
qG(XA/B, J ⊗OXA

)→ Def qG(XA/A,B).

Next we show that φ is surjective. Indeed, let XB be a Q-Gorenstein lifting of
XA over B. Then there is a square zero extension as in (10.3). Let πB : X̃B → XB

be the index-1 cover of XB. As before, this is a lifting of X̃A over B. Hence there
is a µr -invariant extension as in (10.2), and therefore φ is surjective.

It remains to show that φ is injective. Since X is Gorenstein in codimension 1,
it follows that π : X̃→ X is étale in codimension 1. Let U ⊂ X be the Gorenstein
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locus. Then π−1(U) → U is étale and codim(X̃ − π−1(U), X̃) ≥ 2. Therefore,
the natural map

Def(X̃)→ Def(π−1(U))

is injective [Ar2, Lemma 9.1] and hence φ is injective, too.

The next corollary is an immediate consequence of Proposition 10.3.

Corollary 10.4. Let X be a Q-Gorenstein scheme defined over a field k, and
let Y ⊂ X be a closed subscheme of X such that X − Y is smooth. Let Xn ∈
Def qG

Y (X)(An). Then

(1) T 1
qG(Y,X) = T 1

qG(X/k, OX) and
(2) T 1

qG(Xn/An) = T 1
qG(Xn/An, OXn

).

Most of the functorial properties of the usual T i sheaves hold for the T i
qG as well.

Next we present a few that are of interest to us.

Proposition 10.5. Let X be a Q-Gorenstein scheme defined over a field k. Let
A∈Art(k) and let XA → Spec(A) be a Q-Gorenstein deformation of X over A.

Then the following statements hold.

(1) Let A → B be a morphism of Artin local k-algebras, XB = XA ×Spec(A)

Spec(B) the fiber product, and FB an OXB
-module. Then there are natural

isomorphisms
T i
qG(XB/B, FB) ∼= T i

qG(XA/A, j∗FB),

where j : XB → XA is the projection map.
(2) Let C → B → A be a sequence of ring homomorphisms, and let F be an

OXA
-module. Then there is an exact sequence

· · · → T i
qG(XA/B, F )→ T i

qG(XA/C, F )

→ T i(B/C, F )→ T i+1
qG (XA/B, F )→ · · · .

(3) Let
0 → J → B → A→ 0

be a square zero extension of Artin local k-algebras, and let XB be a Q-
Gorenstein lifting of XA over B. Then there is an exact sequence

· · · → T i
qG(XA/A, J ⊗A OXA

)→ T i
qG(XB/B, OXB

)

→ T i
qG(XA/A, OXA

)→ T i+1
qG (XA/A, J ⊗A OXA

)→ · · · .
The proof of the proposition follows immediately from the corresponding state-
ments for the usual T i after passing, as before, to the index-1 covers.

Next we show that T 2
qG(X) = T 2

qG(X/k, OX) is an obstruction sheaf for
Def qG

Y (X) if X − Y is smooth. For the sake of simplicity we only present the
case X = Y.

Proposition 10.6. Let X be a Q-Gorenstein scheme defined over a field k. Let

0 → J → B → A→ 0
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be a square zero extension of finite Artin local k-algebras such that mBJ = 0 and
XA ∈ Def qG(X)(A). Then there is a section ob(XA) ∈ H 0(T 2

qG(X)) ⊗k J such
that, for any affine open UA ⊂ XA, ob(XA)|U ∈ T 2

qG(U)⊗k J is the obstruction to
lifting UA to a Q-Gorenstein deformation UB of U over B, where U = UA ⊗A k.

Proof. This a local result, so we may assume that X is affine of index r. Let
π : X̃→ X be the index-1 cover of X. Then T 2

qG(X) = (T 2(X̃))µr . Let

0 → J → B → A→ 0

be an extension of finite local Artin algebras, and let XA be a Q-Gorenstein de-
formation of X over A. Let πA : X̃A → XA be the index-1 cover. Then X̃A is a
deformation of X̃ over A [KoSh] and, by Lemma 10.1, the obstruction ob(X̃A) ∈
T 2(X̃) ⊗k J is µr -invariant and hence it is, in fact, in T 2

qG(X) ⊗k J. Thus, if
ob(X̃A) = 0, then there is a deformation X̃ ′

B of X̃ over B that lifts X̃A. This de-
formation may not be µr -invariant, but X̃B = 1

r

∑r−1
i=0 ζ

i · X̃ ′
B is, where ζ is a

primitive r-root of unity. Then XB = X̃B/µr is a lifting of XA over B.

Having developed the theory of Q-Gorenstein cotangent sheaves T i
qG(X), we can

now repeat most of the arguments verbatim for the usual deformation functor
Def(Y,X) in Section 9. In particular we have the following.

Theorem 10.7. Let X be a Q-Gorenstein scheme defined over a field k, and let
Y ⊂ X be a closed subscheme of X such that X − Y is smooth. Let

0 → J → B → A→ 0

be a small extension of local Artin k-algebras and let XA ∈Def qG(Y,X)(A). Then
the following statements hold.

(1) The spaces Def qG(XA/A,B) and Def qG

loc (XA/A,B) are T1
qG(Y,X) ⊗ J and

H 0(T 1
qG(X)⊗ J ) homogeneous spaces, respectively.

(2) Let sB ∈Def qG

loc (XA/A,B). Then the set π−1(sB) is a homogeneous space over
H1(T̂X ⊗ J ).

(3) There is a sequence

0 −→ H1(T̂X ⊗ J )
α−→ Def qG(XA/A,B)

π−→ Def qG

loc (XA/A,B)
∂−→ H 2(T̂X ⊗ J )

that is exact in the following sense. Let sB ∈Def qG

loc (XA/A,B). Then sB is in the
image of π if and only if ∂(sB) = 0. Moreover, letXB ,X ′

B ∈Def qG(XA/A,B)

be such that π(XA) = π(X ′
A). Then there is a γ ∈ H1(T̂X ⊗ J ) such that

X ′
A = γ ·XA, where by “·” we denote the action of H1(T̂X ⊗ J ) on π−1(sB).

Corollary 10.8. With assumptions as in Theorem 10.7, there are two suc-
cessive obstructions in H 0(T 2

qG(X) ⊗ J ) and H1(T 1
qG(X) ⊗ J ) in order for

Def qG

loc (XA/A,B) �= ∅ (i.e., for XA to lift locally to B). If these obstructions van-
ish, then there is another obstruction in H 2(T̂X⊗J ) in order for Def(XA/A,B) �=
∅ (i.e., for the local obstructions to globalize).
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The local lifting method and the results that were described in Section 9.1 apply
immediately to the Q-Gorenstein case as well. For the convenience of the reader,
we state the main technical tools needed to apply it.

Proposition 10.9. Let X be a Q-Gorenstein scheme defined over a field k, and
let Y ⊂ X be a closed subscheme of X such that X − Y is smooth. Let Xn ∈
Def qG

Y (X)(An) and Xn−1 = Xn ⊗An
An−1. Then there is an exact sequence

0 → T̂X → T̂Xn/An
→ T̂Xn−1/An−1

→ T 1
qG(X)→ T 1

qG(Xn/An)→ T 1
qG(Xn−1/An−1)→ T 2

qG(X).

Proof. Use Proposition 10.5 and Proposition 10.2 on the extension

0 → k → An → An−1 → 0.

Proposition 10.10. With assumptions as in Proposition 10.9, there are canoni-
cal exact sequences

0 → H 0(T 1
qG(X)/Fn)→ H 0(T 1

qG(Xn/An))

→ H 0(T 1
qG(Xn−1/An−1))→ Qn → 0,

0 → Ln → Qn → H 0(T 2
qG(X)), and

0 → Ln → H1(T 1
qG(X)/Fn)→ H1(T 1

qG(Xn/An))

in addition to a noncanonical sequence

0 −→ H 0(T 1
qG(X)/Fn) −→ H 0(T 1

qG(Xn/An))
φn−→ H 0(T 1

qG(Xn−1/An−1))

−→ H1(T 1
qG(X)/Fn)⊕H 0(T 2

qG(X)),

where Fn ⊂ T 1
qG(X) is the cokernel of the map T̂Xn/An

→ T̂Xn−1/An−1.

Corollary 10.11. Suppose that the index-1 cover of every singular point of X
has local complete intersection singularities. Then there is an exact sequence

0 −→ H 0(T 1
qG(X)/Fn) −→ H 0(T 1

qG(Xn/An))

σn−→ H 0(T 1
qG(Xn−1/An−1))

∂−→ H1(T 1
qG(X)/Fn).

11. From Formal to Algebraic

For geometric applications we are interested in algebraic deformations f : X → S

of a scheme X of finite type over a field k. However, the methods of this paper
are formal and so produce only formal deformations of X. It is therefore of in-
terest to know under what conditions a formal deformation is algebraic as well
as which properties of an algebraic deformation can be read from the associated
formal deformation.
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The problem of whether a formal deformation is algebraic is a difficult one.
An affirmative answer is known for the cases where X is affine with isolated sin-
gularities [Ar2, Thm. 5.1] and where X is projective with H 2(X, OX) = 0 ([Se,
Thm. 2.5.13]; see also [Gr2]). This problem is extensively studied in [Ar1].

In general it is difficult to compare the properties of an algebraic deformation
and its associated formal deformation. For example, it is possible that the formal
deformation is trivial but the global one is not [Se, Ex. 1.2.5]. In this section we
state criteria for recognizing the properties of being locally trivial and smoothing
from certain properties of the corresponding formal deformation. Then we define
the notion of formal smoothing, which we will use in Section 12.

The next theorem by Artin is the key to the relation between locally formally
trivial and locally trivial deformations.

Theorem 11.1 [Ar1, Cor. 2.6]. Let X1 and X2 be S-schemes of finite type, and let
xi ∈Xi be points, i = 1, 2. If the complete local rings ÔXi,xi are OS-isomorphic,
then X1 and X2 are locally isomorphic for the étale topology.

Corollary 11.2. Let f : X → S be a flat morphism of schemes of finite type.
Moreover, assume that f is either proper or a morphism of local schemes. Let
s ∈ S and suppose that the corresponding formal deformation Xn → Sn, where
Xn = X ×S Sn and Sn = Spec(OS,s/m

n+1
s ), is locally trivial. Then there exist a

neighborhood s ∈ U ⊂ S and an étale cover {Vi} of f −1U such that Vi → U is
trivial.

In particular, with assumptions as in the previous theorem, if the fiber over s

(i.e., Xs) is singular then the general fiber is singular, too, and hence f is not a
smoothing.

Proof. If f is a flat family of local schemes, then the corollary follows immedi-
ately from Theorem 11.1. Now suppose that f is proper. Let Xs = X ×S Spec k(s)
and let X̂ be the formal completion of X along Xs. Then the assumptions imply
that X̂ is locally trivial. In particular, it follows that ÔX,P

∼= ÔY,P , where Y =
Xs × S, P ∈Xs , and ÔX,P , ÔY,P are the completions of OX,P , OY,P at the max-
imal ideals mX,P ,mY,P of OX,P , OY,P . Hence, by Theorem 11.1 there is an étale
cover {Vi} of Xs in X such that Vi → S is trivial. Let Z = X −⋃

iVi . Then,
since f is proper, Y = f(Z) is closed in S and U = S − Y has the required
properties.

Let f : X → S be a deformation of a scheme X over the spectrum of a discrete
valuation ring. Next we will obtain criteria on the corresponding formal defor-
mation fn : Xn → SpecAn in order for f to be a smoothing. First we define the
relative differentials of a morphism of formal schemes.

Definition 11.3 [LNSa]. Let f : X → S be a morphism of formal schemes.
Let I, J be ideals of definition of X, S (respectively) such that f∗J ·OX ⊂ I. Let
Xn = (X, OX/I

n+1) and Sn = (S, OS/Jn+1) be the corresponding schemes, and
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let fn : Xn → Sn be the corresponding morphism. Then lim←−�Xn/Sn
and lim←−ωXn/Sn

are sheaves of OX = lim←−OXn
-modules, and we define the sheaf of formal relative

differentials
�X/S = lim←−�Xn/Sn

and the formal dualizing sheaf

ωX/S = lim←−ωXn/Sn
.

If f is of pseudo-finite type, then both are coherent. In this case we also define

T 1(X/S) = Ext1X(�X/S, OX),

the first-order formal relative cotangent sheaf. For the basic properties of �X/S,
see [TLóR].

Next we define the notion of a formal Q-Gorenstein deformation f : X → S and
the corresponding sheaf T 1

qG(X/S).

Definition 11.4. Let f : X→ S be a flat morphism of formal schemes.

(1) We say that f is a formal Q-Gorenstein deformation if there are ideals of defi-
nition I, J of X, S (respectively) such that f∗J·OX ⊂ I and the corresponding
deformations of schemes fn : Xn → Sn, where Xn = (X, OX/I

n+1) and Sn =
(S, OS/Jn+1) are Q-Gorenstein.

(2) Suppose that f is a formal Q-Gorenstein deformation. Then, with notation
as in (1), let {Ui} be an affine open cover of X and let Xi,n = Xn|Ui

. Then
the deformation Xi,n → Sn is induced by a deformation X̃i,n → Sn, where
πi,n : X̃i,n → Xi,n is the index-1 cover [KoSh]. These form an inverse system,
and setting X̃i = lim←− X̃i,n yields a map of formal schemes πi : X̃i → X|Ui

,
which we call the formal index-1 cover. Then, as in the usual scheme case,
the covering groups Gi act on T 1(Xi/S) and we define T 1

qG(Xi, S) =
T 1(Xi/S)Gi. These glue together to form a coherent sheaf T 1

qG(X/S) on X.

Notation 11.5. Let F be a coherent sheaf on a formal scheme X. We denote by
Fittk(F) ⊂ OX the k-fitting ideal of F. These ideals measure the obstruction for
F to be locally generated by k elements. In fact, F is locally generated by k ele-
ments if and only if Fittk(F) = OX. Moreover, fitting ideals commute with base
change and completion [E, Prop. 20.6].

Next we define the notion of a formal smoothing.

Definition 11.6. Let X be a proper equidimensional scheme of finite type over
a separable field k. Then a formal deformation f : X → S for S = Specf k[[t]]
is called a formal smoothing of X if and only if there is a k ∈Z>0 such that Ik ⊂
Fittn(�X/S), where I ⊂ OX is an ideal of definition of X and n = dimX.

Remark 11.7. In the previous definition we required that X be equidimensional
in order to control the dimension of the components of the general fiber. However,
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it is not a very restrictive condition because almost all singularities of interest in ap-
plications (e.g., moduli of canonically polarized varieties and the minimal model
program) are Cohen–Macauley and hence equidimensional.

The next proposition shows that formal smoothness implies smoothness in the case
of algebraic deformations.

Proposition 11.8. Let X be a proper equidimensional scheme of dimension n

that is of finite type over a separable field k. Let f : X → S be a deformation of
X over the spectrum of a discrete valuation ring (A,m), and let f : X→ S be the
associated formal deformation. Then f is a smoothing of X if and only if f is a
formal smoothing of X.

Proof. Since f is proper, it follows that the general fiber Xg = X ×S SpecK(A) is
equidimensional of dimension n. Assume that f is formally smooth. Then—since
Fittn(�X/S) = Fittn(�X/S)∧, the formal completion of Fittn(�X/S) alongX—the
assumption implies that OX /Fittn(�X/S) is supported on the central fiber. There-
fore, Fittn(�Xg

) = OXg
and hence �Xg/K(A) is locally generated by n elements.

Let X n
g be an irreducible component of Xg and let P ∈ Xg be a closed point.

Then, since Xg is Noetherian, we have dim OXg,P = n. Let mP ⊂ OXg,P = n be
the maximal ideal. Then there is an exact sequence

mP/m
2
P → �Xg/K(A) ⊗ (OXg,P/mP)→ �K(OXg,P )/K(A) → 0,

which is exact on the left as well because k is separable. Therefore, dim(mP/m
2
P) =

dim OXg,P and hence OXg,P is regular. In fact, the proof shows that it is geometri-
cally regular and therefore OXg,P is smooth. Hence Xg is smooth and irreducible.
The converse is proved similarly.

If X has complete intersection singularities or if X is Q-Gorenstein and the index-1
cover of any of its singular points has complete intersection singularities, then it
is possible to give simpler criteria, which we will use in Section 12.

We will need the next easy lemma.

Lemma 11.9. Let X be a local complete intersection scheme of finite type over a
field k. Then, if Ext1X(�X, OX) = 0, X is smooth.

Proof. We may assume that X is affine. Then, since it is complete intersection,
there exists an exact sequence

0 → O k
X → Om

X → �X → 0

such that m− k = dimX. Since Ext1X(�X, OX) = 0, it follows that the previous
sequence is split exact. Hence

Om
X = O k

X ⊕�X

and therefore �X is free and of rank equal to the dimension of X. Hence X is
smooth.
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Proposition 11.10. Let X be a local complete intersection scheme, and let
f : X → S be a deformation of X over the spectrum of a discrete valuation
ring (A,mA). Let f : X → S be the corresponding formal deformation. Assume
that f is proper and of finite type. Let I ⊂ OX be an ideal of definition of X.

Then the following statements are equivalent :

(1) the family f : X → S is a smoothing of X;
(2) there is an m∈N such that ImT 1(X/S) = 0;
(3) there is a k ∈N such that, for all n ≥ k,

T 1(Xn+1/An+1) = T 1(Xn/An),

where Xn = X ×S Sn, Sn = SpecAn, and An = A/mn+1
A .

Proof. First we show that (1) implies (2). In this case, X = X̂ is the completion
of X along X. Then �X/S = �̂X/S [TLóR] and hence

T 1(X/S) = Ext1X(�X/S, OX) = Ext1X (�X/S , OX )∧ = T 1(X/S)∧.

Now, by Lemma 11.9, X → S is a smoothing if and only if T 1(X/S) is supported
on X. Since T 1(X/S) is a coherent OX -module, this is equivalent to saying that
there is an m ∈ N such that ImT 1(X/S) = 0, where I is the ideal sheaf of X in
X . Hence ImT 1(X/S) = 0, where I = Î. Conversely, if ImT 1(X/S) = 0 for
some m and some ideal of definition I, then it also holds for all ideals of defini-
tion and in particular for I = Î. Hence (ImT 1(X/S))∧ = 0 and thus there is an
X ⊂ U ⊂ X (an open neighborhood of X in X ) such that ImT 1(X/S)|U = 0;
therefore, since f is proper and S is local, ImT 1(X/S) = 0. Hence T 1(X/S) is
supported on X and so f is a smoothing.

Next we show that (1) is equivalent to (3). Let t be a generator of the maximal
ideal of R. Then the exact sequence

0 −→ OX
t n+1−−→ OX −→ OXn

−→ 0

gives the exact sequence

0 −→ TX/�
t n+1−−→ TX/� −→ TXn/An

−→ T 1(X/�)

t n+1−−→ T 1(X/�) −→ T 1(Xn/An) −→ 0.

Thus f is a smoothing if and only if T 1(X/S) is supported on X and hence if and
only if there is a k ∈N such that t kT 1(X/S) = 0. Now it follows from the previous
exact sequence that this is equivalent to saying that T 1(Xn+1/An+1) = T 1(Xn/An)

for all n ≥ k.

Proposition 11.11. Let X be a Q-Gorenstein scheme such that the index-1 cover
of its singular points has complete intersection singularities only. Let f : X → S

be a Q-Gorenstein deformation of X over the spectrum of a discrete valuation
ring (A,mA), and let f : X → S be the corresponding formal deformation. As-
sume that f is proper and of finite type. Let I ⊂ OX be an ideal of definition of
X. Then the following statements are equivalent :
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(1) the family f : X → S is a smoothing of X;
(2) there is an m∈N such that ImT 1

qG(X/S) = 0 and Im ⊂ Fitt1(ωX/S);
(3) there is a k ∈N such that, for all n ≥ k, Im ⊂ Fitt1(ωX/S) and

T 1
qG(Xn+1/An+1) = T 1

qG(Xn/An),

where Xn = X ×S Sn, Sn = SpecAn, and An = A/mn+1
A .

Proof. The proof follows the lines of that for Proposition 11.10 with a few differ-
ences that we explain next. The condition Im ⊂ Fitt1(ωX/S) means that, generi-
cally over S, ωX/S is generated by one element and hence is a line bundle. There-
fore, the general fiber of f is Gorenstein. Hence the index-1 cover of any singu-
larity of X is étale away from the central fiber. Now, since the index-1 cover of
any singular point of X is assumed to be complete intersection, it follows that the
general fiber of f is also complete intersection. Now applying the arguments of
the proof of Proposition 11.10 yields the claimed result.

12. Smoothing Criteria

Let X be a proper pure and reduced scheme of finite type over a field k. Moreover,
assume that the singular points of X are either complete intersection or Q-Goren-
stein with complete intersection index-1 covers. In this section we give some
smoothing and nonsmoothing criteria for such schemes X. Following the method-
ology of this section and the methods developed in previous sections, one could
also give similar criteria for algebraic germs Y ⊂ X. However, for the sake of
simplicity we will only consider the case X = Y.

In what follows we denote by D either Def(X) or Def qG(X) and by T i
D(X)

either T i(X) or T i
qG(X).

The sheaves T i
D(X) are fundamental in the study of the deformation theory of

X. However, they can be extremely complicated. The reduced part of their support
is contained in the singular locus of X, but it may have embedded components.
This happens even in the simplest cases. For example, if X is the pinch point given
by x 2 − y2z = 0, then T 1(X) = k[x, y, z]/(x, y2, yz) and has an embedded point
over the pinch point. This makes any calculation involving T i

D(X) most difficult.
So it is better to consider instead the pure part of T i

D(X), which we define next. It
is simply a generalization of the notion of torsion free.

Definition 12.1. Let X be a pure and reduced scheme, and let F be a coher-
ent sheaf on X of dimension d. Let Fd−1 ⊂ F be the maximal subsheaf of F of
dimension at most d − 1. Then we define:

(1) the support of the torsion part of F to be the support of Fd−1;
(2) the rank of F , rk(F ), by

rk(F ) = maxξ {length(Fξ ), where ξ is a generic point of the support of F };
(3) the pure part of F, p(F ), to be the quotient F/Fd−1 (this is pure of dimen-

sion d).
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Let Xn → SpecAn be a deformation of X over An, and let Xn−1 = Xn ⊗An−1 An.

Then, from our discussion in Sections 9 and 10, it follows that—in order to under-
stand the obstructions to lifting Xn to a deformation Xn+1 over An+1—it is impor-
tant to study the sheaves Fn and T 1

D(X)/Fn, where Fn ⊂ T 1
D(X) is the cokernel

of the natural map TXn/An
→ TXn−1/An−1. The next lemma does this in some cases.

Lemma 12.2. Let X → � = Spec(R) be a deformation of X, where (R,m) is
a discrete valuation ring. Let Xn = X ⊗R R/mn+1, and (as in Proposition 9.10)
let Fn ⊂ T 1

D(X) be the cokernel of the natural map TXn/An
→ TXn−1/An−1, where

An = R/mn+1. Then the following statements hold.

(1) There is an injective map

φ : T̂ 1
D(X/�)→ lim←−

n

T 1
D(Xn/An),

where T̂ 1
D(X/�) is the m-adic completion of T 1

D(X/�). Moreover, φ is an
isomorphism at any local complete intersection point of X.

(2) Suppose that X is unobstructed at any generic point of its singular locus and
that X is a smoothing. Then there is an n0 ∈Z such that
(a) rk(T 1

D(X)/Fn) = 0 if n ≥ n0 and
(b) 0 < rk(T 1

D(X)/Fn) ≤ rk(T 1
D(X)) for all n < n0.

(c) Suppose that, at any generic point ξ of the singular locus of X, X is a
hypersurface singularity (f = 0) ⊂ Cn with µ(f ) = τ(f ), where µ(f )

and τ(f ) are (respectively) the Milnor and Tjurina numbers of f. If X
is smooth at ξ, then rk(T 1

D(X)/Fn) = 0 for all n.

Proof. Let t be a generator of the maximal ideal of R. Then the exact sequence

0 −→ OX
t n+1−−→ OX −→ OXn

−→ 0

gives the exact sequence

0 −→ TX/�
t n+1−−→ TX/� −→ TXn/An

−→ T 1
D(X/�)

tn+1−−→ T 1
D(X/�) −→ T 1

D(Xn/An) −→ T 2
D(X/�), (12.1)

where T 2
D(X/�) is a sheaf supported on the noncomplete intersection singular

points of X. Then it follows that there are injections

φn : T 1
D(X/�)/t n+1T 1

D(X/�)→ T 1
D(Xn/An).

Passing to the inverse limits yields the claimed map φ. Furthermore, since the φn

are isomorphisms at any complete intersection point of X, we know that φ is an
isomorphism, too.

Suppose that X is a smoothing and that, at any generic point of its singular
locus, X is unobstructed. Then, at any generic point ξ of the singular locus of
X, T 2

D(X/�)ξ = 0 and the argument of the proof of Proposition 11.10 shows that
there is an n0 ∈ Z such that T 1

D(Xn/An)ξ = T 1
D(Xn−1/An−1)ξ for all n ≥ n0. In
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fact, something stronger holds. Suppose there is a k ∈Z such that T 1
D(Xk/Ak)ξ =

T 1
D(Xk−1/Ak−1)ξ . Then we will show that T 1

D(Xn/An)ξ = T 1
D(Xn−1/An−1)ξ for all

n ≥ k. From (12.1) it follows that

T 1
D(Xn/An)ξ = T 1

D(X/�)ξ/t
n+1T 1

D(X/�)ξ

for all n and hence, since T 1
D(Xk/Ak)ξ = T 1

D(Xk−1/Ak−1)ξ ,

t k+1T 1
D(X/�)ξ = t kT 1

D(X/�)ξ ;
consequently,

t n+1T 1
D(X/�)ξ = t nT 1

D(X/�)ξ

for all n ≥ k. Hence T 1
D(Xn/An)ξ = T 1

D(Xn−1/An−1)ξ for all n ≥ k.

Moreover, by Proposition 9.10 and Proposition 10.10, there is an exact sequence

0 −→ T 1
D(X)/Fn −→ T 1

D(Xn/An)
φn−→ T 1

D(Xn−1/An−1); (12.2)

hence it follows that there is an n0 ∈ Z such that, generically along the singular-
ities of X, φn is an isomorphism for all n ≥ n0 but not if n < n0. Therefore,
rk(T 1

D(X)/Fn) = 0 if n ≥ n0 and 0 < rk(T 1
D(X)/Fn) ≤ rk(T 1

D(X)) if n < n0, as
claimed.

Let ξ ∈ X be a generic point of the singular locus of X and let K = k(OX,ξ ).

Suppose that, at ξ, X is a hypersurface singularity given by (f = 0) ⊂ Cn

and µ(f ) = τ(f ). If X is smooth at ξ, then dimK T 1
D(X/�) = µ(f ). But

since µ(f ) = τ(f ) = dimK T 1
D(X) by assumption, it follows from (12.1) that

T 1
D(X/�) = T 1

D(X) and hence tT 1
D(X/�) = 0. Therefore, t nT 1

D(X/�) = 0 for
all n, so

T 1
D(Xn/An) = T 1

D(Xn−1/An−1) = T 1
D(X/�)

for all n. Hence from (12.2) it follows that rk(T 1
D(X)/Fn) = 0 for all n, as claimed.

The next theorem gives some conditions under which X is not smoothable.

Theorem 12.3. Suppose that H 0(p(T 1
D(X))) = 0 and that, at any generic point

of the singular locus of X, X is complete intersection. Let Z be the support of the
torsion part of T 1

D(X), and let f : X → � be a 1-parameter deformation of X.

Then

(1) Xsing ⊂ X sing, where Xsing and X sing are the singular parts of X and X ; in
particular, X is not smooth.

(2) Suppose also that H1
Z(p(T

1
D(X))) = 0 and that, at any generic point ξ of the

singular locus of X, X is analytically isomorphic to (x 2
1 + · · · + x 2

k = 0) ⊂
Cn. Then there is a proper closed subset W of the singular locus of X such
that X −W is locally trivial. In particular, the general fiber Xg of f is sin-
gular and hence X is not smoothable.

Corollary 12.4. Suppose that T 1
D(X) is pure and that H 0(T 1

D(X)) = 0. Sup-
pose also that the general singularity of X is analytically isomorphic to

(x 2
1 + · · · + x 2

k = 0) ⊂ Cn.

Then X is not smoothable.
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Corollary 12.4 applies in particular to schemes with only normal crossing singu-
larities.

Proof of Theorem 12.3. Let X → � be a deformation of X over � = Spec(R),
where (R,m) is a discrete valuation ring. Suppose that X is not trivial at any
generic point of the singular locus of X. Let Xn = X ×� Spec(R/mn). By our as-
sumptions, every section of T 1

D(X) vanishes generically along the singularities of
X. The theorem will follow if we show that:

(1) T 1
D(X/�) has a section s that does not vanish generically along the singular

locus of X; and
(2) any section of T 1

D(Xn/An) vanishes generically along the singular locus of X
for any n.

Indeed, if there is a smoothing X , then by (1) there is a section s of T 1
D(X/�)

that does not vanish at any generic point of the singular locus of X. But then, by
Lemma 12.2(1), there is an n ∈ Z such that the image sn of s in T 1

D(Xn/An) does
not vanish at any generic point of the singular locus of X. But this is impossible
by (2).

Next we show (1). Since X is complete intersection at any generic point of the
singular locus X, it follows that there is an exact sequence

0 → f ∗ω� = OX → �X → �X/� → 0. (12.3)

This gives a section s of Ext1X (�X/�, OX ) = T 1(X/�). If X is also Q-Gorenstein,
then this gives an element of T 1

qG(X/�). Since X is pure, Xn is also pure and hence
there is an exact sequence

0 → OXn
→ �X ⊗OX OXn

→ �Xn/An
→ 0 (12.4)

that gives an element of T 1(Xn/An) = Ext1Xn
(�Xn/An

, OXn
). If X is also Q-

Gorenstein, then this gives an element of T 1
qG(Xn/An). Next we claim that the

extension (12.3) is not split—nor even generically split along the singular locus
of X.

Case 1. Suppose that X is smooth and that (12.3) is generically split along the
singular locus of X. Then �X ∼= �X/�⊕OX and hence �X/� is free and so �X is
free, which of course is not true. Hence, in this case (12.3) is not even generically
split.

Case 2. Suppose that the general singularity of X is analytically isomorphic to

(x 2
1 + · · · + x 2

k = 0) ⊂ Cn. (12.5)

Hence if (12.3) were generically split then, generically over the singular locus
of X,

Ext1X (�X , OX ) ∼= Ext1X (�X/�, OX ). (12.6)

Around the generic point ξ of the singular locus of X we may assume that X is
the singularity given by (12.5). Thus all Ext spaces involved are now finite di-
mensional over K = k(OX,ξ ). We will show by direct computation that (12.6) is
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impossible. In suitable local analytic coordinates, X is given by (12.5); if we use
the Weierstrass preparation theorem, then X is given by

x 2
1 + · · · + x 2

k + t sg(xk+1, . . . , xn, t) = 0,

where g �= 0 and t does not divide g. Straightforward calculations show that

Ext1X (�X , OX ) = k[x1, . . . , xn, t]

(x1, . . . , xk , t s∂g/∂xk+1, . . . , t s∂g/∂xn, st s−1g + t s∂g/∂t, t sg)

and similarly

Ext1X (�X/�, OX ) = k[x1, . . . , xn, t]

(x1, . . . , xk , t s∂g/∂xk+1, . . . , t s∂g/∂xn, t sg)
.

If Ext1X (�X , OX ) ∼= Ext1X (�X/�, OX ), then

st s−1g + t s∂g/∂t ∈ (x1, . . . , xk , t s∂g/∂xk+1, . . . , t
s∂g/∂xn, t sg);

hence there are polynomials hi,h∈ k[x1, . . . , xn, t] such that

st s−1g + t s
∂g

∂t
=

n∑

i=s+1

hit
s ∂g

∂xi

+ ht sg

and therefore t divides g, which is impossible. This shows part (1) of the claim.
Now we show (2), proceeding by induction on n. By assumption, n = 1 is

true. By Lemma 12.2, there is an n0 ∈ Z such that rk((T 1
D(X)/Fn) = 0 for all

n ≥ n0 and, since rk(T 1
D(X)) = 1, rk((T 1

D(X)/Fn) = 1 for all n < n0. Hence
p(T 1

D(X)/Fn) = p(T 1
D(X)) for all n < n0.

Suppose that n < n0 and construct the pushout diagram

0 �� T 1
D(X)/Fn

αn ��

βn

��

T 1(Xn/An)
��

γn

��

T 1(Xn−1/An−1)

0 �� p(T 1
D(X)/Fn) �� Qn

�� T 1(Xn−1/An−1)

with Ker(βn) = Ker(γn) supported on Z. Let Mn = Coker(αn). Then there is a
commutative diagram

0 �� 0 = H 0
Z(p(T

1
D(X))) ��

f1

��

H 0
Z(Qn) ��

f2

��

H 0
Z(Mn) ��

f3

��

H1
Z(p(T

1
D(X)))

f4

��

0 �� 0 = H 0(p(T 1
D(X))) �� H 0(Qn)

�� H 0(Mn)
�� H1(p(T 1

D(X)))

Now f3 is an isomorphism by induction and H1
Z(p(T

1
D(X))) = 0 by assumption.

Hence, by the five lemma, f2 is also an isomorphism and therefore all sections of
Qn are supported on Z.

Now there is an exact sequence

0 → Ker(γn)→ T 1(Xn/An)→ Qn → 0,
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and, since Ker(βn) = Ker(γn), we know that Ker(γn) is supported on Z. Let
U = X − Z. Then T 1(Xn/An)|U = Qn|U and hence, since the sections of Qn

are supported on Z, the sections of T 1(Xn/An) are also supported on Z. Thus,
for all n < n0, the sections of T 1(Xn/An) are supported on Z. If n ≥ n0, then
rk(T 1

D(X)/Fn) = 0 and hence Z ′n = Supp(T 1
D(X)/Fn) is a proper subset of Xsing.

By induction, all sections of T 1(Xn−1/An−1) are supported on a proper subset
Zn−1 of Xsing. Let Zn = Z ′n ∪ Zn−1 and Un = X − Zn. Then T 1(Xn/An)|Un

=
T 1(Xn−1/An−1)|Un

and hence all sections of T 1(Xn/An) are supported on Zn. This
shows (2).

It remains to show part (1) of the theorem. This is a local result, so we may as-
sume that X is affine and X is smooth. Then, by Lemma 12.2, rk((T 1

D(X)/Fn) =
0 for all n. The previous proof now shows that the sections of T 1

D(Xn/An) van-
ish at any generic point of the singular locus of X for all n, and part (1) follows as
before.

Next we present some smoothing criteria.

Theorem 12.5. Let X be a proper pure and reduced scheme of finite type over a
field k of characteristic 0. Let D be either Def(X) or Def qG(X). Assume that :

(1) X has complete intersection singularities if D = Def(X); or
(2) X is locally smoothable, and the index-1 cover of any singularity of X has

complete intersection singularities, if D = Def qG(X).

Then, if T 1
D(X) is finitely generated by its global sections and if H1(T 1

D(X)) =
H 2(TX) = 0, X is D-formally smoothable.

Corollary12.6. If every deformation of X is effective, thenX isD-smoothable.

Remark 12.7.

(1) The requirement that X be proper can be replaced by the more general require-
ment that Def(X) have a hull.

(2) The conditions of the theorem on the vanishing of the obstructions are rather
restrictive, but there are some cases when they are satisfied. We mention two
of them. The first is when there is a proper morphism f : X → SpecA such
that dim f −1(s) ≤ 1 for all s ∈ SpecA. Then, by the formal functions theo-
rem, H 2(TX) = 0. This is, for example, the case of birational maps with at
most 1-dimensional fibers. The second case is when X is a Fano variety with
only double-point normal crossing singularities such that T 1(X) is finitely
generated by its global sections. Then H1(T 1(X)) = H 2(TX) = 0 [Tz2].

Proof of Theorem 12.5. For simplicity we show only the case D = Def(X). The
Q-Gorenstein case is analogous; one need only lift the following argument to the
index-1 covers.

The conditions of the theorem imply that Def(X) exists and is smooth. Let
s1, . . . , sk ∈ H 0(T 1(X)) be sections that generate T 1(X). Because Def(X) is
smooth, the sections s1, . . . , sk lift to a formal deformation fn : Yn → Sn of X over
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Sn = Spec(S/mn+1
S ), where S = k[[t1, . . . , tk]] and mS is its maximal ideal. Let

f : Y → S be the corresponding morphism of formal schemes. We will show that
Y is smooth over SpecfK(S). Let U ⊂ X be the smooth locus of X. Then f |U is
smooth and hence, since X is pure, it follows that there is an exact sequence

0 → f ∗�̂S → �̂Y → �̂Y/S → 0 (12.7)

[TLóR]. Moreover, �̂S = �̂
#
R
∼= O k

S , where R = k[t1, . . . , tk]. Hence f ∗�̂S =
O k

Y , and dualizing the previous sequence yields

HomY(�̂Y , OY) −→ O k
Y

φ−→ T 1(Y/S ) −→ T 1(Y ) −→ 0. (12.8)

By construction, however, φ is surjective and therefore

T 1(Y ) = Ext1Y(�̂Y , OY) = 0.

Claim: OY and OY ⊗S K(S) have smooth local rings.
The result is local and hence we may assume that X is affine and given by

OX = k[x1, . . . , xm]/(f ), where (f ) = (f1, . . . , fs) is a complete intersection.
Then OXn

= Sn[x1, . . . , xm]/(fn), where (fn) is a lifting of (f ) on Sn[x1, . . . , xm]
and so

OY = lim←−OXn
= S [x1, . . . , xm]∧

(f̄1, . . . , f̄s)
, (12.9)

whereS [x1, . . . , xm]∧ is themS-adic completion ofS [x1, . . . , xm] and f̄i = lim←− f
(n)
i .

Let
0 → O r

X → Om
X → �X → 0

be a presentation of �X, where m − r = dim OX. Then this exact sequence lifts
to compatible exact sequences

0 → O r
Xn
→ Om

Xn
→ �Xn

→ 0.

Furthermore, OY = lim←−OXn
and hence, taking inverse limits and taking into con-

sideration that �̂Y = lim←−�OXn
[TLóR], we obtain an exact sequence

0 → O r
Y → Om

Y → �̂Y → 0.

This extension is trivial because Ext1Y(�̂Y , OY) = 0. Hence

Om
Y ∼= O r

Y ⊕ �̂Y

and so �̂Y is locally free and of the rank claimed. This implies that OY has geo-
metrically regular local rings. Indeed, let P ∈X be a point and mP the maximal
ideal of OY,P . Then, since k is perfect, it follows that

mp/m
2
P
∼= �̂Y ⊗ k(P )

[E] and therefore dimk(P ) mP/m
2
P = dim OY,P ; hence OY,P is geometrically reg-

ular and therefore smooth. Because any localization of OY is a localization of
OY,P for some P ∈ X, it follows that OY has smooth local rings. In particular,
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since any localization of OY ⊗S K(S) is a localization of OY , OY ⊗S K(S) is
smooth.

Since �̂Y ∼= Od
Y , where d = dimX, the sequence (12.8) becomes

Od
Y

ψ−→ O k
Y

φ−→ T 1(Y/S ) −→ T 1(Y ) −→ 0;
as in the usual scheme case, ψ is given by the Jacobian matrix J = (∂f̄i/xj ). Since
OY ⊗S K(S) is smooth, it follows that J has maximum rank at all localizations of
OY ⊗S K(S). Therefore, ψ ⊗S K(S) is surjective and hence T 1(Y/S ) is torsion
over S. Thus there is a formal arc � = Specf k[[t]] → Spec S such that, in the
fiber X = Y ×Specf S Specf k[[t]], T 1(X/�) is torsion over k[[t]]; hence there is
an l ∈ N such that t lT 1(X/�) = 0 and therefore X → � is a formal smoothing
of X.

The preceding proof also shows the following.

Corollary 12.8. With assumptions as in Corollary 12.6, suppose that T 1
D(X) =

OZ , where Z is the singular locus of X. Then there is a smoothing f : X → � of
X such that

(1) X is smooth if D = Def(X) and
(2) the singularities of X are smooth quotients if D = Def qG(X).

There is one nice and simple case when T 1(X) is finitely generated by its global
sections.

Corollary 12.9. Let X be a projective local complete intersection field over a
field k of characteristic 0. LetX ⊂ Y be an embedding such that Y is smooth. Sup-
pose that NX/Y is finitely generated by its global sections and that H1(T 1(X)) =
H 2(TX) = 0. Then X is formally smoothable.

Proof. Dualizing the conormal sequence for X ⊂ Y yields a surjection

NX/Y → T 1(X)→ 0.

Hence T 1(X) is finitely generated by its global sections, too, and so X is formally
smoothable.

Next we give a similar criterion for Q-Gorenstein deformations.

Corollary 12.10. Let X be a projective Q-Gorenstein scheme defined over a
field k of characteristic 0. Suppose that its Gorenstein points are complete inter-
sections and that the high-index points are complete intersection quotients. Let
X ⊂ Y be an embedding such that, locally around any point P ∈ X, P ∈ Y is
a general deformation of P ∈ X. Suppose that NX/Y is finitely generated by its
global sections and thatH1(T 1

qG(X)) = H 2(TX) = 0. ThenX has a Q-Gorenstein
smoothing.
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Proof. Dualizing the conormal sequence for X ⊂ Y, we obtain a sequence

NX/Y

φ−→ T 1(X) −→ Ext1X(�Y ⊗OX, OX) −→ 0.

We claim that Im(φ) = T 1
qG(X) and hence if NX/Y is generated by global sections

then so is T 1
qG(X). The claim is local at the singularities of Y, so we may assume

that Y is affine. By assumption, Y is smooth at any index-1 point, and in this case
we are done. Asssume then that Y has index r > 1. Let π : Ỹ → Y be the index-1
cover; then X̃ = π−1(X) is the index-1 cover of X. Moreover, since Y is the gen-
eral deformation of X by assumption, it follows that Ỹ is smooth and hence there
is a surjection

NX̃/Ỹ → T 1(X̃)→ 0.

Let G be the Galois group of the π. Then taking invariants yields

N G

X̃/Ỹ
= NX/Y → T 1

qG(X)→ 0

as claimed.

In general, if X ⊂ Y and if NX/Y is finitely generated by its global sections (or,
even better, is ample), then X has nice deformation properties. Considering cases
with respect to the singularities of X (like normal crossings) and the shape of the
singular locus of X, one can derive various kinds of criteria—similar to the pre-
vious corollary for the smoothability of X—without even referring to T 1(X). Let
Z be the singular locus of X. In general, T 1(X) is not a sheaf of OZ-modules. It
usually has an embedded part; in fact, sometimes even Z is an embedded com-
ponent of its support (this happens, for instance, if X is given by xy + zn = 0
in C4, n ≥ 3). So it is rather difficult to describe T 1(X) directly and to check
whether it is generated by its global sections. However, if the singular locus of
X is 1-dimensional, then it is possible to give criteria for the finite generation of
T 1(X) without any reference to its embedded part.

Theorem 12.11. Let X be a projective scheme with singularities as in Theo-
rem 12.5, and let Z be its reduced singular locus. Suppose that dimZ = 1 and
that :

(1) p(I k
ZT

1
D(X)/I k+1

Z T 1
D(X)) is generated by its global sections for all k ≥ 0;

(2) H1(p(I k
ZT

1
D(X)/I k+1

Z T 1
D(X))) = 0 for all k ≥ 0;

(3) H1(p(T 1
D(X)⊗OZ)) = H 2(TX) = 0.

Then X is D-formally smoothable.

Proof. Let Fk ⊂ I k
ZT

1
D(X)/I k+1

Z T 1
D(X) be the maximal 0-dimensional subsheaf

of I k
ZT

1
D(X)/I k+1

Z T 1
D(X). Then there is an exact sequence

0 → H 0(Fk)→ H 0(I k
ZT

1
D(X)/I k+1

Z T 1
D(X))

→ H 0(p(I k
ZT

1
D(X)/I k+1

Z T 1
D(X)))→ 0.
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Hence, if p(I k
ZT

1
D(X)/I k+1

Z T 1
D(X)) is generated by its global sections, then so is

I k
ZT

1
D(X)/I k+1

Z T 1
D(X). There are also exact sequences

0 → I k
ZT

1
D(X)/I k+1

Z T 1
D(X)→ T 1

D(X)/I k+1
Z T 1

D(X)→ T 1
D(X)/I k

ZT
1
D(X)→ 0

for all k ≥ 0. By induction, then, T 1
D(X)/I k

ZT
1
D(X) is finitely generated by its

global sections for all k. But since T 1
D(X) is supported on Z, it follows that

Im
Z T 1

D(X) = 0 for m sufficiently large. Hence T 1
D(X) is finitely generated by its

global sections and so, by Theorem 12.5, X is D-smoothable.

If X has normal crossing singularities at any generic point of its singular locus,
then p(T 1(X)) is an OZ-module and hence one need only take k = 0 in the con-
ditions of the theorem.

Corollary 12.12. With assumptions as in the previous theorem, suppose in
addition that X has normal crossing singularities at any generic point of its sin-
gular locus, that p(T 1

D(X)) is finitely generated by its global sections, and that
H1(p(T 1

D(X))) = H 2(TX) = 0. Then X is smoothable.

13. Examples

In this section we apply the theory developed in the previous parts of the paper to
give some examples from the theory of moduli spaces of stable surfaces and the
3-dimensional minimal model program.

1. In this example we construct a few classes of locally but not globally smooth-
able stable surfaces with normal crossing singularities. This means that the irre-
ducible components of the moduli space of stable surfaces that they belong to do
not contain any smooth surfaces of general type. Hence these are extra compo-
nents that appear after the moduli space of surfaces of general type is compactified
by adding the stable surfaces.

1.1. Let X be a projective surface with exactly one singular point P such that:

a. KX = kA, where A is very ample and k ≥ 2 is an integer;
b. P ∈ X is analytically isomorphic to the cone over a smooth projective plane

curve of degree 4.

Note that such surfaces do exist—for example, X ⊂ P3 given by (x 2
0 + x 2

3 )x
4
0 +

(x 2
1 + x 2

3 )x
4
1 + (x 2

2 + x 2
3 )x

4
2 = 0.

Let f : Y → X be the blowup of X along P. Then Y is smooth and the f -
exceptional divisor is a smooth curve E ⊂ P2 of degree 4 such that NE/Y =
OE(−1) and hence E 2 = −4. Moreover, a straightforward calculation shows that

KY = f ∗KX − 2E.

Let Z be obtained by glueing two copies of Y along E. This is a surface with nor-
mal crossing singularities, and we claim that KZ is ample and Z is not smoothable.

By [Fr] or [Tz1], T 1(Z) = NE/Y ⊗NE/Y = OE(−2) and so H 0(T 1(X)) = 0.
Hence, by Theorem 12.3, Z is not smoothable.
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Next we show that KZ is ample. For this it suffices to show that KZ|Zi
, i = 1, 2,

is ample, where Zi
∼= Y are the irreducible components of Z. It is not difficult to

see that
KZ|Zi

= KY + E = f ∗KX − E.

This is ample if and only if (f ∗KX − E)2 > 0 and (f ∗KX − E) ·D > 0 for any
irreducible curve D ⊂ Y. Now

(f ∗KX − E)2 = K2
X − 4 = k2A2 − 4 > 0,

since k ≥ 2 and A is very ample; therefore, A2 > 1. Let D ⊂ Y be an irreducible
curve and let C = f∗D. Then

(f ∗KX − E) ·D = KX · C − E ·D = kA · C −mP (C) = k deg(C)−mP (C),

where mP (C) is the multiplicity of C at P and degC is the degree of C with re-
spect to the embedding defined by A. Then deg(C) ≥ mP (C) and hence, since
k ≥ 2, it follows that

(f ∗KX − E) ·D > 0.

Therefore, KZ is ample as claimed.
1.2. Let X be a smooth projective surface with KX ample. Suppose that X con-

tains a smooth curve C with pa(C) ≥ 2 and KX · C > 2(pa(C)− 1).
Such surfaces do exist. For example, let C ⊂ P3 be a smooth plane curve of

degree k ≥ 4 given by fk(x, y, z) = t = 0, where fk(x, y, z) is a homogeneous
polynomial of degree k ≥ 4, and let X ⊂ P3 be the hypersurface of degree d >

k + 1 given by

gd−k(x, y, z, t)fk(x, y, z)+ thd−1(x, y, z, t) = 0,

where gd−k(x, y, z, t) and hd−1(x, y, z, t) are homogeneous polynomials of de-
grees d − k and d − 1, respectively. For general choice of gd−k(x, y, z, t) and
hd−1(x, y, z, t), X is a smooth surface containing C. Furthermore, OX(KX) =
OX(d − 4) and hence

KX · C = deg OC(d − 4) = (d − 4)k > k2 − 3k = 2(pa(C)− 1),

since d > k + 1 and k ≥ 4. Moreover, KX is ample.
LetZ be obtained by glueing two copies ofX alongC. This is a surface with nor-

mal crossing singularities, and we claim that KZ is ample and Z is not smoothable.
Let Z1,Z2 be the two irreducible components of Z. By construction, Zi

∼= Z,
i = 1, 2. Then KZ is ample if and only if KZ|Zi

is ample, i = 1, 2. As in the pre-
vious example, KZ|Zi

= KX + C. By construction, KZ + C is ample and hence
KZ is ample.

By adjunction, NC/X = ωC ⊗ ω−1
X and therefore

deg NC/X = 2pa(C)− 2−KX · C < 0,

by assumption. As in the previous example, T 1(X) = NC/X ⊗ NC/X. Hence
T 1(X) is a line bundle on C of negative degree. Therefore, H 0(T 1(X)) = 0 and,
by Theorem 12.3, X is not smoothable.
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2. In this example we construct a terminal 3-fold divisorial extremal neighbor-
hood f : Y → X such that the general member of |OY | is not normal.

Let U be the germ of a smooth surface around the configuration of rational
curves

◦−2 ◦−2 ◦−2 ◦−3 •−2 ◦−3 •−1 ◦−2 ◦−5

Let h : U → Z̃ be the contraction of all the curves except for those marked by a
solid circle. Then (i) we get a map f̃ : Z̃ → T contracting two smooth rational
curves C1 and C2 to a point 0∈ T such that 0∈ T is an A5 singularity and (ii) Z̃ has
exactly three singular points P1∈C1, P2 ∈C2, and Q = C1∩C2. It is easy to see
that (P1∈ Z̃) ∼= 1/9(1, 5), (P2 ∈ Z̃) ∼= 1/9(1,−5), and (Q∈ Z̄) ∼= 1/3(1,1). Let
Z be obtained from Z̃ by identifying C1 and C2 via an involution of C1+ C2 tak-
ing P1 to P2 and leaving Q fixed. Let π : Z̃ → Z be the quotient map. Then the
singular locus of Z is a smooth rational curve C; π−1(C) = C1+ C2; and Z has
one singularity analytically isomorphic to (xy = 0)/Z(5,−5,1), has one degener-
ate cusp analytically isomorphic to x3 + y3 + xyz = 0, and has normal crossing
singularities at all other singular points. Moreover, Z̃ is the normalization of Z,
and there is a natural morphism f : Z → T contracting C to 0∈ T.

Straightforward calculations show that KZ · C = −1/9 < 0. Also, since U is
the minimal log-resolution of C ⊂ Z, it follows from [Tz1] that degp(T 1

qG(Z)) =
−2 − 1+ 1+ 3 = 1 and hence we have p(T 1

qG(Z)) = OP1(1). Thus, by Corol-
lary 12.12, there exists a Q-Gorenstein smoothing Y → � of Z. Then f extends
to a morphism g : Y → X over �, where X is a deformation of T [KoMo]. Now
g : Y → X is a 3-fold extremal neighborhood and Z ∈ |OY | is the general mem-
ber. Moreover, the neighborhood is divisorial because X is Gorenstein.

Finally, observe that the method of producing 3-fold extremal neighborhoods by
deforming birational surface morphisms f : Z → T is fundamental in the classifi-
cation of flips by Kollár and Mori [KoMo]. In principle, it could be used in higher
dimensions to understand higher-dimensional flips and divisorial contractions.
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