
Michigan Math. J. 59 (2010), 3–24

Topological Aspects of Poset Spaces

Carl Mummert & Frank Stephan

1. Introduction

Recent work in mathematical logic [10; 11; 12] has led to an interest in certain topo-
logical spaces formed from filters on partially ordered sets. This paper describes
the general topology of these poset spaces.

The results of the paper are divided as follows. In Section 2 we define two classes
of spaces, MF spaces and UF spaces. Together these spaces form the class of poset
spaces. We show that many familiar spaces are homeomorphic to poset spaces.
In Section 3, we characterize the separation properties of poset spaces and show
that any second-countable poset space is homeomorphic to a space of the same
kind formed from a countable poset. In Section 4, we show that the class of MF
spaces are closed under arbitrary topological products and that any Gδ subspace
of an MF space is again an MF space. We show that UF spaces are closed under
the action of taking Gδ subspaces but not closed under binary products. In Sec-
tion 5, we establish that poset spaces are of the second Baire category and possess
the strong Choquet property. We give a characterization of the class of countably
based MF spaces as the class of second-countable T1 spaces with the strong Cho-
quet property. In Section 6, we apply the results of Section 5 to domain theory,
giving a complete characterization of the second-countable topological spaces that
have a domain representation. Section 7 contains results on the relationship be-
tween MF spaces (not necessarily countably based) and semi-topogenous orders.
We use semi-topogenous orders to establish a sufficient condition for an arbitrary
space to be homeomorphic to an MF space. In Section 8, we show that every
second-countable poset space either is countable or contains a perfect closed set.

2. Poset Spaces

Our goal in this section is to define the class of poset spaces and show that this class
includes all complete metric spaces and all locally compact Hausdorff spaces. We
first review some basic definitions about partially ordered sets.
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A poset is a set P with an reflexive, antisymmetric, transitive relation � . That
is, the following conditions hold for all p, q, and r in P :

• p � p;
• if p � q and q � p then q = p;
• if p � q and q � r then p � r.

We write p ≺ q if p � q and p �= q. If there is no r such that r � p and r � q,
we write p ⊥ q.

A filter is a subset F of a poset P that satisfies the following two conditions:

(1) for every p, q ∈F, there is an r ∈F such that r � p and r � q;
(2) for every p ∈F and q ∈P, if p � q then q ∈F.

A filter F is unbounded if there is no r ∈ P such that r ≺ q for every q ∈ F.

Furthermore, F is maximal if there is no strictly larger filter containing F. Every
maximal filter is unbounded, but in general not every unbounded filter is maximal.

For any poset P, we let UF(P ) denote the set of unbounded filters on P and
let MF(P ) denote the set of maximal filters on P. We topologize UF(P ) with the
basis {Np | p ∈P }, where

Np = {F ∈UF(P ) | p ∈F }.
We give MF(P ) the topology it inherits as a subset of UF(P );when we work with
spaces of maximal filters we may write Np to denote the set of maximal filters con-
taining p. To facilitate the exposition, we sometimes identify p ∈P with the open
set Np and identify a subset U of P with the open set

⋃
p∈U Np.

A UF space is a space of the form UF(P ), and an MF space is a space of the form
MF(P ); UF spaces and MF spaces are collectively referred to as poset spaces. A
poset space is countably based if it is formed from a countable poset. It is possi-
ble that P is uncountable but MF(P ) or UF(P ) is a second-countable space (an
example is provided after Theorem 2.3). We shall demonstrate that every second-
countable poset space is homeomorphic to a countably based poset space. This
result justifies our terminology.

Remark 2.1. It is sometimes convenient to work with strict partial orders instead
of the nonstrict partial orders defined previously. A strict partial order is a set P
with an irreflexive, transitive relation≺ . Every strict partial order 〈P,≺〉 is canon-
ically associated to nonstrict partial order 〈P,�〉 in which p � q if and only if
p ≺ q or p = q, and every nonstrict partial order arises in this way. A filter on
a strict partial order 〈P,≺〉 is a set F ⊆ P that is upward closed and such that if
p, q ∈F then there is an r ∈F with r � p and r � q.

It follows immediately from these definitions that if 〈P,≺〉 is a strict partial
order, 〈P,�〉 is the corresponding nonstrict partial order, and F ⊆ P, then F is a
filter in 〈P,≺〉 if and only if F is a filter in 〈P,�〉, and vice versa. Moreover, F
is a maximal (resp. unbounded) filter in either of these partial orders if and only if
it is maximal (resp. unbounded) in the other partial order.

A topology on the set of maximal (resp. unbounded) filters of a strict partial
order is defined in the same way as for a nonstrict partial order. Once this defi-
nition is made, it is immediate that, for any strict poset 〈P,≺〉 and corresponding
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nonstrict poset 〈P,�〉, the identity map P → P induces a homeomorphism of the
topological spaces of maximal (resp. unbounded) filters of these posets. For this
reason, we may for convenience prove results using strict partial orders instead of
nonstrict partial orders. This technique is sound because any example of a poset
space obtained from a strict partial order can be converted to a homeomorphic ex-
ample obtained from a nonstrict poset space, and vice versa.

We now present two examples showing that many familiar spaces are homeo-
morphic to poset spaces.

Theorem 2.2. Every locally compact Hausdorff space is homeomorphic to an
MF space.

Proof. Let X be a locally compact Hausdorff space, and let P be the set of all
nonempty precompact open subsets of X. For U,V ∈P we put U � V if U = V

or if the closure of U is contained in V. If F is a filter and U ∈F then, because U

is precompact, ⋂
F =

⋂
{V̄ | V̄ ⊆ U, V ∈F }

is the filtered intersection of nonempty compact sets and hence is nonempty and
compact. Since X is Hausdorff, any two points of X have open neighborhoods
whose closures are disjoint. If F is a a maximal filter, then at most one of these
neighborhoods can be in F, which implies that

⋂
F is a singleton. Finally, the

mapping φ : MF(P )→ X given by F �→ ⋂
F has as its inverse the mapping

φ−1 : x �→ {p ∈P | x ∈Np}.
To prove that φ is continuous, fix x ∈ MF(P ) and let U be any open neighbor-
hood of φ(x) in X. Because X is locally compact, we may assume without loss
of generality that U is precompact, because the precompact sets form a basis for
the topology. Thus we assume U = Np for some p ∈P. Now, since φ(x)∈U, we
have p ∈ x and so x ∈Np. Moreover, for any F ∈Np in MF(P ) we have φ(F ) =⋂

F ∈U. This shows that φ is continuous.
To prove that φ−1 is continuous, let y ∈X be fixed and let V be any open neigh-

borhood of φ−1(y) in MF(P ). Without loss of generality, we may assume that
V = Np for some p ∈ P. Now p itself is some precompact open subset U of X,
and for any y ′ ∈ U we have p ∈ φ−1(y ′). Thus φ−1(U) ⊆ V, which shows that
φ−1 is continuous.

Because there exist both non–locally compact complete separable metric spaces
and locally compact Hausdorff nonmetrizable spaces, the next theorem is inde-
pendent of Theorem 2.2. A construction similar to that in Theorem 2.3 was used
by Lawson [7] to represent complete separable metric spaces in the context of do-
main theory (see Section 6).

Theorem 2.3. For every complete metric space X there is a poset P such that
X ∼= UF(P ) and UF(P ) = MF(P ). Moreover, if X is infinite then we may take
the cardinality of P to be that of any dense subset of X.
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Proof. Let X be a complete metric space; we write B(x, ε) for the open metric
ball of radius ε > 0 around a point x ∈ X. Let A be a dense subset of X. The
poset P is the set of all open balls B(a, r), where r is a positive rational number
and a ∈ A. For p = B(a, r) and p ′ = B(a ′, r ′) in P, we let p ≺ p ′ if and only
if d(a, a ′)+ r < r ′. An argument similar to the one in the proof of Theorem 2.2
shows that any unbounded filter on P has a unique point in its intersection. The
resulting mapping φ : F �→ ⋂

F from UF(P ) to X has as its inverse the mapping

x �→ {B(a, r) | x ∈B(a, r), a ∈A, r ∈Q+}.
We can show that each of these mappings is continuous by using the same method
as the proof of Theorem 2.2 and the fact that the open balls included in P form a
basis for X. Finally, since X is a complete metric space, every unbounded filter is
maximal (see Theorem 3.1 for details).

If Theorem 2.3 is applied to the real line using the line itself as the dense sub-
set, then the resulting poset P will be uncountable but MF(P ) = UF(P ) will be
homeomorphic to the real line.

There are also second-countable nonmetrizable Hausdorff MF spaces. One ex-
ample is the Gandy–Harrington space from modern descriptive set theory (see [11]).

3. Separation and Countability Properties

In this section, we determine the separation properties that a poset space must sat-
isfy. We then show that every second countable poset space is homeomorphic to
a poset space obtained from a countable poset. In Section 8 we will show that a
countably based poset space either is countable or contains a perfect closed set.

Theorem 3.1. (i) Every UF space is T0.

(ii) Every MF space is T1.

(iii) If UF(P ) is T1, then every unbounded filter on P is maximal and thus
UF(P ) = MF(P ).

Proof. Part (i) follows from the fact that distinct filters are distinct as subsets of P.

Part (ii) follows from the fact that no maximal filter can properly contain another
maximal filter. To prove (iii), suppose UF(P ) is T1 and let F be an unbounded
filter on P. Let G be a filter on P such that F ⊆ G. Clearly, G is unbounded. If
F �= G then there must be a p ∈P such that F ∈Np and G /∈Np. This means p ∈
(F \G), which is impossible. Thus F = G, which shows that F is maximal.

Theorem 3.2. Suppose that P is a poset such that MF(P ) is second countable.
Then there is a countable subposet R of P such that the map F �→ R ∩ F is a
homeomorphism from MF(P ) to MF(R).

Proof. Suppose that MF(P ) is second countable; thus P contains a countable sub-
set Q0 such that {Nq : q ∈Q0} is a basis for the topology, because every basis of
a second-countable topology contains a countable subclass that is also a basis.
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For n = 0,1, 2, . . . , we construct inductively a set Qn+1 that satisfies the following
conditions:

• Qn+1 is countable;
• Qn ⊆ Qn+1 ⊆ P ;
• for every F ∈MF(P ) and every finite subset D ⊆ Qn ∩ F, there is a q ∈Qn+1

such that q � d for all d ∈D.

In order to see that Qn+1 can be taken as countable, suppose D is a finite subset
of Qn with nonempty intersection. Let ED be the set of all p ∈P such that p � d

for every d ∈D. For every filter F ∈MF(P ) with D ⊆ F there is an element p ∈
ED ∩F ; thus {Ne : e ∈ED} is an open cover of the intersection of all open sets Nd

with d ∈D. Since the given space is second countable, there is a countable sub-
set FD of ED covering the same set of maximal filters (if some finite subset D of
Qn is not contained in any filter, then let FD be empty). Now take Qn+1 to be the
union of all FD , where D ⊆ Qn and D is finite; observe that Qn+1 is also at most
countable.

Let R = ⋃
i Qi. Note that R is countable and {Nr | r ∈R} is a basis for MF(P ).

For F ⊆ P we write φ(F ) for F ∩ R. It is straightforward to verify, by the con-
struction of R, that φ(F ) is a filter for every F ∈MF(P ). Because R ⊆ P, every
F ∈MF(R) extends to some F ′ ∈MF(P ); hence φ(F ′) = F. This shows that φ
determines a surjective map " from MF(P ) to MF(R).

In order to prove that " is injective, it suffices to prove the following statement.
For maximal filters V,W on P we have V ⊆ W if and only if φ(V ) ⊆ φ(W ).

Suppose p ∈V \W. Then W /∈Np and thus W /∈Nq for all q with Nq ⊆ Np. On
the other hand, R is a basis and Np is the union of basic open sets. Since V ∈Np

there is an r ∈ R with Nr ⊆ Np and V ∈ Nr. It follows that r ∈ φ(V ) \ φ(W ).

The other direction of the implication is trivial.
This shows that φ is a bijection from MF(P ) to MF(R). To see that φ is con-

tinuous, let x ∈ MF(P ) be fixed and let U be an open neighborhood of φ(x) =
x ∩R in MF(R). Without loss of generality, we may assume that U is of the form
Nr for some r ∈ R. Let V = {y ∈ MF(P ) | r ∈ y} be the basic open set deter-
mined by r in MF(P ). Now, because r ∈ φ(x) = x∩R, we see that r ∈ x and thus
x ∈V. Moreover, for any x ′ ∈V, we have r ∈ x ′ and so r ∈ x ′ ∩ R, which means
that φ(x ′)∈U. Thus φ is continuous.

To see that φ−1 is continuous, letV be any open subset of MF(P ) and let φ−1(y)

be in V. Because {Nr ⊆ MF(P ) | r ∈ R} is a basis for MF(P ), there exists an
r ∈R with φ−1(y)∈Nr ⊆ Np. Moreover, any y ′ ∈MF(R) with r ∈ y ′ will satisfy
r ∈ φ−1(y ′). Thus, for U = {y ∈MF(R) | r ∈ y}, we have y ∈U and φ−1(U) ⊆ V.

This shows that φ−1 is continuous.

Corollary 3.3. An MF space is homeomorphic to a countably based MF space
if and only if it is second countable.

Corollary 3.4. A UF space is homeomorphic to a countably based UF space
if and only if it is second countable.
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Proof. Let X = UF(P ) be second countable. Construct a poset R and a map φ

in a manner analogous to the proof of Theorem 3.2. We show that φ is a homeo-
morphism from UF(P ) to UF(R). It is clear that if F ∈ UF(P ) then φ(F ) ∈
UF(R). Every G ∈UF(R) extends to some G′ ∈UF(P ), so φ(G′) = G. Thus φ

is well-defined and surjective as a map from UF(P ) to UF(R). To see that φ is
injective, suppose that F �= G are unbounded filters on P. Without loss of gener-
ality we may assume there is some p ∈G \F. Hence there is an r ∈R ∩ (G \F ),
because R is a basis. But r ∈R ∩ (G \F ) implies r ∈ φ(G) \ φ(F ), which shows
that φ(G) �= φ(F ). Thus φ is a bijection from UF(P ) to UF(R). The proof that
φ is a homeomorphism is the same as in the proof of Theorem 3.2.

4. Product and Subspace Properties

In this section, we show that the class of MF spaces is closed under taking Gδ sub-
sets and arbitrary topological products. The class of UF spaces is closed under
taking Gδ subspaces, but it is not closed under even finite products.

Theorem 4.1. The class of MF spaces is closed under arbitrary topological
products.

Proof. Let 〈〈Pi,�i〉 | i ∈ I 〉 be a collection of posets. We may assume without
loss of generality that each poset has a greatest element, which we denote by pi.

We form a poset P consisting of those functions f from I to
⋃

i∈I Pi such that
f(i)∈Pi for all i and f(i) = pi for all but finitely many i. For f , g ∈P we write
f � g if f(i) �i g(i) for all i.

We define a map φ from
∏

i MF(Pi) to MF(P ) by sending
∏

i Fi to the set of
all functions f ∈P such that f(i)∈Fi for all i. The inverse of φ takes x ∈MF(P )

and returns
∏

i xi, where

xi = {p ∈Pi | q(i) = p for some q ∈ x}.
To see that φ is continuous, let x ∈∏

i MF(Pi) be fixed and let U be a basic open
neighborhood of φ(x), so that U is of the form Np for some p ∈P. Now p is rep-
resented by a function f : I → ⋃

i Pi that returns the maximal element of Pi for
all but finitely many i ∈ I. Thus f determines a basic open set V in the product
topology

∏
i MF(Pi) such thatV is equal, in each coordinate i ∈ I, to the open set

determined by f(i). Then x ∈V. Suppose x ′ = ∏
i x

′
i is any point of

∏
i MF(Pi)

that is inV, which means that f(i)∈ x ′i for all i ∈ I. Then φ(x ′) will have the prop-
erty that pi ∈ x ′i for each i ∈ I, which means φ(x ′)∈Np. Thus φ is continuous.

To see that φ−1 is continuous, let y ∈MF(P ) be fixed and let V be any neigh-
borhood of φ−1(y) in

∏
i MF(Pi). By the definition of the product topology, there

is a basic open neighborhood of φ−1(y), obtained as a product
∏

i Vi of open sets
Vi ⊆ MF(Pi), such thatVi = MF(Pi) for all but finitely many i ∈ I. Moreover, in
the finitely many coordinates where Vi is a proper subset of MF(Pi), we can find
a basic open subset Nr(i) ⊆ Vi such that the projection of φ−1(y) to coordinate i

is in Nr(i). For all i where Vi = MF(Pi) we let r(i) be the greatest element of Pi.
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Now let f be the element of P such that f(i) = r(i) for all i ∈ I. Then y ∈ Nf

(in MF(P )), and any y ′ ∈Nf will satisfy φ−1(y)∈V. Thus φ−1 is continuous.

Corollary 4.2. Every topological product of countably many countably based
MF spaces is homeomorphic to a countably based MF space.

Proof. Under these hypotheses, the poset constructed in Theorem 4.1 is countable.

Theorem 4.3. The class of MF spaces is closed under taking Gδ subspaces.

Proof. Suppose that 〈Ui | i ∈N〉 is a sequence of open subsets of MF(P ) and that
U = ⋂

i Ui is nonempty. We form a poset Q of pairs 〈n,p〉 such that n ∈ N and
Np ⊆ ⋂

i<n Ui, declaring 〈n,p〉 ≺ 〈n′,p ′ 〉 if n > n′ and p � p ′. We define a map
φ from

⋂
i Ui to MF(Q) by sending a maximal filter F to the set of all 〈n,p〉 in

Q such that F ∈ Np. The inverse ψ of φ takes a maximal filter G ∈MF(Q) and
returns the set

ψ(G) = {p ∈P | 〈n,p〉 ∈G for some n∈N}.
To see that ψ(G) is a filter, note that if 〈n,p〉 ∈ G and 〈m, q〉 ∈ G then there is
some common extension 〈o, r〉 ∈G, and thus r is a common extension of p and q

in ψ(G).

To see that ψ(G) is maximal, note that if
⋂{p | p ∈ ψ(G)} contained more

than one point of U, then at least one of the points of the intersection would have
a basic open neighborhood Nq that does not contain one other point of the inter-
section. It would then be possible to adjoin Nq to G and extend this to a filter,
contradicting the maximality of G.

To see that φ is continuous, note that if φ(F ) ∈ 〈n,p〉 then for every F ′ ∈
MF(P )∩Np we have φ(F )∈ 〈n,p〉. Conversely, if ψ(G)∈Np ∩U then ψ(G)∈
U1 and thus every G′ ∈N〈1,p〉 ⊆ MF(Q) will have ψ(G′)∈Np.

Theorem 4.3 gives an optimal result. We will show in what follows that all poset
spaces have the property of Baire. The real line is homeomorphic to a UF space,
but the Fσ subset of rational numbers does not have the property of Baire and
therefore is not homeomorphic to a poset space.

The class of UF spaces does not possess the closure properties enjoyed by the
class of MF spaces. We now give an example showing that the class of UF spaces
is not closed under finite products.

Example 4.4. There are two posets P,Q such that MF(P ) = UF(P ) and
MF(Q) = UF(Q) yet the topological product MF(P ) × MF(Q) is not homeo-
morphic to any UF space.

Proof. Let ω denote the least infinite countable ordinal and let ω1 denote the least
uncountable ordinal. We define P as the set of functions from finite initial seg-
ments of ω to {0,1} and Q as the set of functions from countable initial segments
of ω1 to {0,1}. For both posets, the relation � is given by extension: p � q if, for
all α in the domain of q, p(α) is defined and takes the value q(α).



10 Carl Mummert & Frank Stephan

We first show that MF(P ) = UF(P ) and MF(Q) = UF(Q). Assume that F is
an unbounded filter on P (the argument for Q is parallel). Then all functions in F

are compatible; that is, they do not contradict each other on any value in the inter-
section of their domains. There is thus a total limit function f , because otherwise
there would be a first ordinal α where f is undefined and the function extending
f that maps α to 0 would define an element of P that would be a lower bound
for the filter F. Since f is total, all functions mapping the ordinals up to some α

in the domain of f to the corresponding value of f are in the filter. One can see
that this filter is already maximal, because any element outside it but still in P is
incompatible with this function and adding it would destroy the filter property.

Assume now, by way of contradiction, that UF(P )×UF(Q) is homeomorphic
to a space UF(R). We denote by πP and πQ the continuous open projection maps
from UF(R) to its factor spaces. There is a filter F in UF(R) such that πP (F )

and πQ(F ) are the filters generated by the set of all functions in P and Q, respec-
tively, that map all inputs to 0. Now one can select an infinite sequence r0, r1, . . .
in F such that, for each n: (a) the projection πP (Nrn) consists only of functions
mapping the first n numbers to 0 and (b) rn+1 � rn. The sequence 〈ri〉 generates
a subfilter G ⊆ F. There is no lower bound r for G, because otherwise πP (Nr)

would be an open set containing some basic open set Np such that Np ⊆ πP (Nrn)

for all n; by construction, such a p cannot exist.
On the other hand, there is a functionf contained in all the open setsπQ(Nrn) and

there are basic open neighborhoods of f generated by q0, q1, . . . such that Nqn ⊆
πQ(Nrn) for each n. The basic open sets Nq0 ,Nq1, . . . fix f only on countably
many ordinals and thus their intersection is also a basic open set. Hence πQ(G) is
bounded while πQ(F ) is not, so G ⊂ F. It follows that UF(R) is not a T1 space—
contradicting the assumption that UF(R) is homeomorphic to MF(P )×MF(Q).

We note that the preceding example is not second countable and that the failure of
second countability was important to the proof.

Question 4.5. Is the class of countably based UF spaces closed under taking
finite (or arbitrary) topological products?

We end the section by showing that the class of UF spaces is closed under taking
Gδ subspaces. As with the class of MF spaces, this result cannot be extended to
include Fσ subspaces. We first show the result for open subspaces, which has a
much simpler proof.

Theorem 4.6. The class of UF spaces is closed under taking open subspaces.

Proof. Let P be a poset, and let U be an open subset of UF(P ). Let R be the set
of all r ∈P such that Nr ⊆ U ;we regard R as a subposet of P. Then any x∈U has
a neighborhood Nr ⊆ U, where r ∈ R. Thus the restriction map φ : x �→ x ∩ R

sends each element of U to a filter on R. Note that if this filter were not unbounded
as a subset of R then it would have a lower bound in R and therefore would not
be unbounded in P.
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The inverse map of φ sends each maximal filter on R to its upward closure
in P. If φ(G) were bounded below by p ∈ P, then in particular p � r for some
r ∈R. Thus Np ⊆ Nr ⊆ R, which means that p ∈R and G /∈UF(R).

To see that φ and its inverse are continuous, note that

{NP
r = {F ∈MF(P ) | r ∈F } | r ∈R}

is a basis for the restriction of MF(P ) to the subspace U, that

{NR
r = {F ∈MF(R) | r ∈F } | r ∈R}

is likewise a basis for MF(R), and that a point x ∈ U ⊆ MF(P ) is in NP
r if and

only if φ(x) is in NR
r .

Theorem 4.7. The class of UF spaces is closed under taking Gδ subspaces.

Proof. Let G0 be the space UF(P ) for some poset P with order≺P , and let G be a
Gδ subset of G0. Thus there is a descending sequence G1,G2, . . . of open subsets
of G0 such that G0 ⊇ G1 ⊇ G2 ⊇ · · · and G = ⋂

n Gn. Define

R = {p ∈P | p ∈F for some F ∈UF(P ) ∩G}.
For each p ∈R let g(p) = sup{n ∈N | Np ⊆ Gn}, where g(p) = ∞ if Np ⊆ G.

Define an order relation ≺R on R by putting p ≺R q if p ≺P q and either g(q) <
g(p) ≤ ∞ or g(q) = g(p) = ∞. We will show that the unbounded filters on
(R, �R) are precisely the unbounded filters on P that are in G. We proceed by
demonstrating four claims as follows.

Claim 1: Let F ∈G ⊆ UF(P ); then F is an unbounded filter in R under �R.

By definition of R, F ⊆ R. To show that F is a filter on R, fix p, q ∈F. If either
g(p) or g(q) is infinite, then p and q have a common extension r under �P with
g(r) = ∞. Thus r is a common extension of p and q under �R. Otherwise, be-
cause F ∈ G, there is an r ∈ F with r �P p, r �P q, and Nr ⊆ Gg(p)+g(q)+1.

Then g(r) > g(p)+g(q), r ≺R p, and r ≺R q. Since�R is a restriction of�P , it
follows that F is upward closed under�R and that F is a filter in R. Furthermore,
F must be unbounded in R because a bound in R would also be in a bound P.

Claim 2: Let F ⊆ R be a filter in R; then either sup{g(p) | p ∈ F } = ∞
or F is bounded. Suppose the supremum is n < ∞ instead. There can only be
one r ∈F with g(r) = n, because F is a filter on R. Since r ∈R, there is an F ′ ∈
UF(P ) with r ∈ F ′ and F ′ ∈G. Hence there is an r ′ ∈ F ′ with g(r ′) > g(r) and
r ′ ≺P r; this means r ′ ≺R r, which shows that F is bounded in R.

Claim 3: Let F be a bounded filter of P that is also a filter in R; then F is
bounded in R. Let r ∈ P be a lower bound for F. If Nr �⊆ Gn for some n, then
sup{g(p) | p ∈ F } < n and F is bounded in R by Claim 2. Otherwise Nr ⊆ G,
in which case r ∈R and F is again bounded as a subset of R.

Claim 4: Let F be an unbounded filter in R; then F is also an unbounded filter
in P. To see this, consider the upward closure F ′ of F in P. By Claim 3, F ′ is un-
bounded in P. Claim 2 shows that F ′ ∈G; thus F ′ ⊆ R. By the definition of F ′
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we have F ⊆ F ′. Fix r ∈F ′; then there must be a p ∈F with p �P r. If g(p) =
∞ then p �R r and so r ∈ F. Otherwise there must be a q ∈ F with q �P p and
g(q) > g(r). Then it follows from transitivity of�P and the definition of≺R that
q ≺P r, q ≺R r, and r ∈F. This shows F ′ = F.

Claims 1 and 4 show that the unbounded filters on R are exactly those unbounded
filters on P that are in G. Hence, by Claim 4, the identity map φ : UF(P )∩G→
UF(R) is surjective. This map is invertible because it is (trivially) injective. To
see that φ and φ−1 are continuous, let x ∈UF(P ) ∩G be fixed. For any r ∈R we
have r ∈ x if and only if r ∈ φ(x), because φ is the identity map on filters. Thus
φ(x) is in the basic open neighborhood of UF(R) determined by r if and only if
x is in the basic open neighborhood of UF(P ) ∩G determined by r.

5. Completeness Properties

In this section, we establish that every poset space has the a completeness property
known as the strong Choquet property. We then characterize the class of count-
ably based MF spaces as precisely the class of second-countable T1 spaces with
the strong Choquet property. We first establish a weaker property.

Theorem 5.1. Every poset space has the property of Baire.

Proof. Let X be MF(P ) or UF(P ). Suppose that 〈Ui | i ∈ N〉 is a sequence of
dense open subsets of the space X and that V is a fixed open set. We construct
a sequence 〈pi | i ∈ N〉 of elements of P. Let p0 be such that Np0 ⊆ V ∩ U0.

Given pi, there is an unbounded or maximal filter in Npi
∩ Ui+1. Choose pi+1

such that Npi+1 ⊆ Ui+1 ∩ Npi
and pi+1 � pi. In the end, F = 〈pi〉 is a linearly

ordered subset of P. Thus F extends to an element of X. Clearly this element is
in V ∩⋂

i Ui.

We will now show that every poset space has the strong Choquet property, which
is defined using a certain game first introduced by Choquet [1]. Let X be an arbi-
trary topological space. The strong Choquet game is the Gale–Stewart game (see
[4; 6]) defined as follows. The stages of play are numbered 0,1, 2, . . . , and both
players make a move in each stage. In stage i, player I plays an open set Ui and a
point xi such that xi ∈ Ui and if i > 0 then Ui ⊆ Vi−1. Next, player II plays an
open set Vi such that xi ∈Vi and Vi ⊆ Ui. At the end of the game, player I wins
if

⋂
i Ui is empty

(
or, equivalently, if

⋂
iVi is empty

); player II wins if
⋂

i Ui is
nonempty. A position in the game is a finite (possibly empty) sequence

〈〈U0, x0〉,V0, 〈U1, x1〉, . . . 〉,
which is an initial segment of an infinite play of the game following the rules just
described.

A space X has the strong Choquet property if player II has a winning strategy
for the strong Choquet game on X. A “winning strategy” is a function that takes
as input a position of the game just after player I has played, and returns an open
set for player II to play, such that if player II follows the strategy then player II
will win the game regardless of what moves are made by player I.
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The strong Choquet property is strictly stronger than the property of Baire.
Moreover, the class of topological spaces with the strong Choquet property is
closed under taking Gδ subspaces and arbitrary topological products. It is known
that the class of topological spaces with the property of Baire is not closed under
binary products (an example is provided in [3]).

Theorem 5.2. Every poset space has the strong Choquet property.

Proof. We describe informally the strategy for player II. At the start of the game,
player I plays an open set U0 and a point x0. Player II translates the point x0 into
a filter on P before finding a basic neighborhood q0 of x such that Nq0 ⊆ U0.

Player II then plays Nq0 . Now given 〈x1,U1〉 with x1 ∈ Nq0 , Player II translates
x1 to a filter on P before finding a neighborhood q1 of x1 such that q1 �P q0

and Nq1 ⊆ U1. Player II then plays Nq1. Player II continues this strategy, always
choosing qi+1 �P qi. At the end of the game, player II has determined {qi | i ∈N},
a descending sequence of elements of P. This sequence extends to an element of
X that is in

⋂
Nqi , so player II has won the game.

We use the strong Choquet property to obtain the following characterization of
countably based MF spaces.

Theorem 5.3. A topological space is homeomorphic to a countably based MF
space if and only if it is second countable, is T1, and has the strong Choquet
property.

We postpone the proof of this theorem in order to comment on the hypotheses
involved. Clearly, any space X that is homeomorphic to a countably based MF
space must be T1 and second countable. We have already shown that X must also
have the strong Choquet property. Thus the new content of Theorem 5.3 is that the
strong Choquet property is sufficient for a T1 second-countable space to be homeo-
morphic to a countably based MF space. In the non–second-countable setting, the
strong Choquet property is not sufficient for a T1 space to be homeomorphic to an
MF space.

Example 5.4. There is a Hausdorff strong Choquet space that is not homeo-
morphic to any MF space.

Proof. The space X consists of certain functions from ω1 to {0,1}. We put a func-
tion f in X if and only if there is an ordinal α < ω1 such that f(β) = 0 for all
β > α. For each f ∈X and each α < ω1, the set

{g ∈X | f(β) = g(β) for all β < α}
is declared to be an open set. The topology on X is the one generated by these
open sets. It is clear that X is a Hausdorff space.

It is easy to show that X has the strong Choquet property, as follows. All that
player II has to do is play any basic open subset of the open set played by player I
that also contains the point given by player I. In the end, the open sets played by
player I in each round will fix countably many coordinates of a function in X. In
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the limit, countably many coordinates are fixed and we can find a point in the in-
tersection of the sets played by I by forcing the remaining coordinates to map to 0.

We now show that X is not homeomorphic to any MF space. Suppose, by way of
contradiction, that X ∼= MF(P ). We construct inductively a transfinite sequence
〈pα | α < ω1〉 inductively. Let p0 be any basic open neighborhood of the con-
stant 0 function. Given 〈pα | α < β〉, there is a first coordinate γ < ω1 that is
not fixed by any pα; let f be the function that is 0 except at γ, and let f(γ ) = 1.
Observe that any intersection of countably many open sets in X is open. Thus
we may choose pβ ∈ P such that pβ � pα for all α < β and f ∈ Npβ

. Choose
any such pβ. At the end of this construction, 〈pα | α < ω1〉 is linearly ordered
and thus extends to a maximal filter F. Now the element of X corresponding to F

sends uncountably many ordinals to 1, which is impossible.

We now return to the proof of Theorem 5.3, which will occupy the remainder of
this section. Let X be a fixed T1 space with a fixed countable basis and a fixed
winning strategy for player II in the strong Choquet game. Our first step is to de-
fine a poset P. The elements of P are called conditions. A condition is a finite list
of the form

〈A,π1,π2, . . . ,πk〉
that satisfies the following requirements.

(1) The set A is a nonempty basic open set from the fixed countable basis. For
each condition c we let S(c) denote the basic open set A appearing in c.

(2) Each πi is a finite (i.e., partial) play of the strong Choquet game on X follow-
ing the fixed winning strategy sII for player II. We require each πi to be of
the form

〈V1, x1, sII(V1, x1),V2, x2, sII(V1, x1,V2, x2), . . . ,

Vr , xr , sII(V1, x1,V2, x2, . . . ,Vr , xr)〉.
Thus each πi ends with an open set, which we will denote by U(πi). A play
π may consist of the empty sequence 〈 〉, in which case U(π) = X.

(3) If a play π is an element of a condition then so is every initial segment of π
that ends with a move by player II.

(4) A ⊆ U(πi) for each i ≤ k.

We define the order ≺ on P as follows. Let c = 〈A,π1,π2, . . . ,πk〉 and c ′ =
〈A′,π ′1,π ′2, . . . ,π ′l 〉 be any two conditions. We let c ′ ≺ c if and only if the follow-
ing statements hold.

(5) For each finite play πi in c there is a point xn ∈ S(c) such that the longer play

πi � 〈A, xn, sII(πi � 〈A, xn〉)〉
is in c ′—that is, equals π ′j for some j ≤ l.

(6) A′ ⊆ A (this is actually a consequence of requirement (5)).
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Requirement (3) in our definition of a condition allows us to prove that the order
on P is transitive. Because each condition is finite, requirement (5) in our defini-
tion of the order relation ensures that c �≺ c for all c ∈P. Thus ≺ is a partial order
on P.

Lemma 5.5. For any filter F on P, the intersection
⋂

c∈F S(c) is nonempty.

Proof. Let 〈Ai | i ∈ N〉 be an enumeration of all of the basic open sets appear-
ing as S(c) for some c ∈F ; here we use that X is second countable and that each
S(c) is drawn from a fixed countable basis of X. It is immediate that

⋂
c∈F S(c)

equals
⋂

i∈N Ai. We will show that the latter intersection is nonempty.
We inductively construct a descending sequence of conditions 〈ci | i ∈N〉 and

a sequence of finite plays 〈πi | i ∈N〉 such that πi+1 is an immediate extension of
πi for each i ∈ N. At stage 0, let c0 be any condition in F such that S(c0) = A0

and let π0 be any finite play in c0. At stage i +1, let c be any condition in F such
that S(c) = Ai and let ci+1 be a common extension of c and ci in F. It is clear
that S(ci+1) ⊆ S(c) = Ai. Choose πi+1 to be any play in ci+1 that is an immediate
extension of πi.

Now suppose the entire sequence 〈πi〉 has been constructed. These partial plays
determine an infinite play γ of the strong Choquet game following the strategy
for player II. Hence the intersection of the open sets played by player I in γ is
nonempty. By construction, each set Ai has a subset played by player I at some
stage of γ. Thus

⋂
i Ai is nonempty.

Lemma 5.6. Let c1 and c2 be two conditions, and let x ∈ S(c1) ∩ S(c2). Then
there is a condition c such that c ≺ c1, c ≺ c2, and x ∈ S(c).

Proof. Begin by letting c be empty. For each π in c1 we put the longer play

π � 〈S(c1), x, sII(π � 〈S(c1), x〉)〉
into c; likewise, for each π in c2 we put

π � 〈S(c2), x, sII(π � 〈S(c2), x〉)〉
into c. For each π that has been added to c we add all initial segments of π end-
ing with a move by player II. We then let S(c) be a basic open neighborhood of x
that is a subset of the open set

⋂
π∈c U(π). This construction ensures that c is a

condition satisfying the conclusions of the lemma.

Lemma 5.7. Let F be a maximal filter on P. Then the intersection
⋂

c∈F S(c)

contains a single point.

Proof. By Lemma 5.5 we know that
⋂

c∈F S(c) is nonempty. Suppose that x and
y are distinct points in

⋂
c∈F S(c). Let A be a basic open neighborhood of x such

that y /∈ A. We construct a filter G inductively. At stage n we construct Gn ⊆
P and in the end we let G be the upward closure of

⋃
n Gn. To begin, let G0 =

F ∪{〈A, 〈 〉〉}. At stage i+1, we know by induction that x ∈ S(c) for every c ∈Gi.
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Thus we can apply Lemma 5.6 repeatedly so that Gi ⊆ Gi+1, every pair of condi-
tions in Gi has a common extension in Gi+1, and x ∈ S(c) for every c ∈Gi+1.

It is immediate from the construction that G = ⋃
i Gi is a filter that properly

extends F. This shows that F was not maximal.

Proof of Theorem 5.3. For each F ∈ MF(P ) we denote the single point in⋂
c∈F S(c) by φ(F ). We show that φ is a homeomorphism from MF(P ) to X.

We first show that φ is an injective map. Suppose that F and F ′ are maximal
filters on P such that x ∈⋂

c∈F S(c) and x ∈⋂
c∈F ′ S(c). By following a proce-

dure similar to the proof of Lemma 5.7, we may find a filter G such that F ⊆ G

and F ′ ⊆ G. Thus, by maximality, we have F = F ′ = G.

Next we show that φ is a surjective map. Let x ∈X be fixed, and let 〈Ai | i ∈N〉
be a sequence of basic open sets such that

⋂
i Ai = {x}. The existence of this se-

quence requires that X be T1 and first countable. For each i ∈N let ci = 〈Ai, 〈 〉〉.
Following a method similar to the proof of Lemma 5.7, we can construct a filter F
such that ci ∈ F for each i ∈ N. Let G be an extension of F to a maximal fil-
ter. Now S = ⋂

c∈G S(c) is nonempty by Lemma 5.5 and S ⊆ ⋂
i Ai = {x} by

construction, so φ(G) = x.

It remains to show that φ is open and continuous. This follows from Lemma 5.6;
for each x ∈X and each condition c, we have c ∈ φ−1(x) if and only if x ∈ S(c).

Therefore, X is homeomorphic to MF(P ). By Theorem 3.2, we may find a count-
able subposet R of P such that X is homeomorphic to MF(R). This completes
the proof.

6. An Application to Domain Theory

In this section, we apply the characterization of countably based MF spaces to char-
acterize those second-countable spaces with a domain representation. Our result
gives a complete solution to the so-called model problem for second-countable
spaces in domain theory.

A domain is a certain type of poset (to be defined shortly), and every domain is
a topological space with a topology known as the Scott topology. A domain rep-
resentation of a topological space X is a domain D such that X is homeomorphic
to the topological space consisting of the maximal elements of D with the rela-
tive Scott topology. The history of such representations is thoroughly described by
Martin [8]. It is known that every complete separable metric space has a domain
representation (see Lawson [7]) and that every space with a domain representa-
tion is T1 and has the strong Choquet property (Martin [8]). We now show that
the strong Choquet property is sufficient for a T1 second-countable space to have
a domain representation.

We summarize the definitions from domain theory that we require; these defini-
tions are explored fully in [5]. A nonempty subset I of a poset 〈P,�〉 is directed
if every pair of elements in I has an upper bound in I. A poset P is said to be a
dcpo (for “directed-complete partial ordering”) if every directed subset of P has a
least upper bound. Any dcpo D has a second order relation � , known as the way
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below relation, under which q � p if and only if, whenever I ⊆ D is a directed
set with p � sup I, there is some r ∈ I with q � r. For each p ∈D we put ⇓p =
{q ∈D | q � p} and ⇑q = {p ∈D | q � p}. A dcpo D is continuous if ⇓p is
directed and the equality p = sup⇓p holds for every p ∈D. A domain is a con-
tinuous dcpo. A subset B of a domain D is a basis if B ∩ ⇓p is directed and also
p = sup(B∩⇓p) for every p ∈D. A domain is ω-continuous if it has a countable
basis. An element p of a dcpo is compact if p � p. A dcpo D is ω-algebraic if
there is a countable basis for D consisting of compact elements. The Scott topol-
ogy on a dcpo D is generated by the basis {⇑p | p ∈D}. A domain representation
of a space X is a homeomorphism between X and the maximal elements of a do-
main with the Scott topology.

Theorem 6.1. A topological space has a domain representation via an ω-
algebraic dcpo if and only if the space is second countable, is T1, and has the
strong Choquet property.

Proof. It can be seen that any space with a domain representation satisfies the T1

separation property, and a result of Martin [8] shows that any space with a domain
representation has the strong Choquet property. Therefore, we need only prove
that a second-countable T1 strong Choquet space has a domain representation via
an ω-algebraic dcpo. We use the following lemma, which follows easily from the
definitions.

Lemma 6.2. Suppose that P is a countable poset. Then the set of all filters on P,
ordered by inclusion, is an ω-algebraic dcpo D. The maximal filters on P are pre-
cisely the maximal elements of D, and the compact elements of D are precisely
the principal filters on P. Moreover, the poset topology on MF(P ) corresponds
exactly to the Scott topology on the maximal elements of D.

We showed in Theorem 5.3 that any second-countable T1 strong Choquet space is
homeomorphic to MF(P ) for a countable poset P. It follows immediately from
Lemma 6.2 that such a space also has a domain representation via an ω-algebraic
dcpo.

The next corollary follows from the fact that any space with a domain representa-
tion is T1 and has the strong Choquet property. Although this corollary is already
known, the proof here is new.

Corollary 6.3. If a second-countable space has a domain representation then
it has a representation via an ω-algebraic dcpo.

We end this section with several remarks on the relationship between domain-
representable spaces and MF spaces.

A proof of Lemma 6.2 can be modified to show that the collection of all ideals
on a poset (sometimes called the ideal completion of the poset) forms a domain
whose maximal elements in the Scott topology correspond to the maximal ideals
of the poset under the Stone topology. By duality, all results we have proved for
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MF spaces hold also for these spaces of maximal ideals. The relationship between
ideal completions and domain representations has been investigated by Martin [9].

A Scott domain is a domain in which every pair of elements with an upper bound
has a least upper bound. Lawson [7] has shown that any space with a domain rep-
resentation via a countably based Scott domain is a complete separable metric
space. It can be seen that posets as constructed in Theorem 5.3 do not, in gen-
eral, give Scott domains, even when the posets are constructed from formal balls
in complete separable metric spaces.

The proof of Example 5.4 can be modifed to obtain the following.

Example 6.4. There is a Hausdorff strong Choquet space that does not have a
domain representation.

7. Semi-Topogenous Orders

In this section, we prove results that give a partial solution to the question of which
arbitrary (not necessarily second-countable) topological spaces are homeomorphic
to MF spaces.

Suppose that a topological space X is homeomorphic to MF(P ), for some
poset P, via a fixed homeomorphism φ. If each element of p ∈ P is replaced
by the corresponding open subset φ(Np) ⊆ X, then the poset order on P will
determine a corresponding order relation on these subsets of X. Moreover, the
collection of all these open subsets forms a basis for the topology on X. It is thus
natural to ask whether the existence of a basis with a suitable order relation is suf-
ficient for a topological space to be homeomorphic to an MF space.

Császár [2] considered many different types of orders and their connections to
topology. The basic concept is that of a semi-topogenous order.

Definition 7.1. A semi-topogenous order is a binary relation � on the power-
set of a topological space X satisfying the following axioms for all u, v,w ⊆ X

[2, Chap. 2]:

• ∅ � ∅ and X � X;
• v � w ⇒ v ⊆ w;
• u ⊆ v � w ⇒ u � w;
• u � v ⊆ w ⇒ u � w.

Császár considered only those orders linked to topology, such as the order which
says that w is a neighborhood of v. It might happen that some but not all open
supersets w of a given set v satisfy v � w. Nevertheless, although this is not made
explicit by Császár, it is quite convenient to postulate also a connection between
the topology and the open spaces.

Recall that the open kernel of a set is the union of all its open subsets. We say
that the topological space X is generated by the order � if, for each u ⊆ X, the
set

⋃{o ⊆ X | o � u} is the open kernel of u. In this case, a set w is open if and
only if it is the union of all v such that v � w. It follows that if v � w then there
is an open o with v ⊆ o ⊆ w; however, the converse of this last implication does
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not always hold. Every topological space is generated by some semi-topogenous
order, for one can define v � w to hold if and only if there is an open set o with
v ⊆ o ⊆ w.

Remark 7.2. There is a close relationship between semi-topogenous orders and
the way below relation� on a continuous dcpo, which was discussed in Section 6.
The following properties of the way below relation are obtained by dualizing the
second, third, and fourth properties in the definition of a semi-topogenous order:

v � w "⇒ v ≤ w;
u ≤ v � w "⇒ u� w;
u� v ≤ w "⇒ u� w.

That these are dual forms follows because points in a topological space are minimal
as nonempty subsets under ⊆ but are maximal elements of a domain representing
the topological space; for this reason, we write≤ for⊇ and� for �. The require-
ment that

⋃{o | o � u} be the open kernel of u corresponds exactly to the fact
that {x | y � x} is the open kernel of an element y of a continuous dcpo with the
Scott topology.

Thus, if a space X has a representation via a continuous dcpo D, then the dual
of the way below relation on D is a semi-topogenous order (except that it is de-
fined only on a subset of the powerset of X) that generates the topology on X.

Semi-topogenous orders can be viewed as a generalization of the way below re-
lation applicable to the case when the dcpo is the full powerset of a topological
space. It appears that semi-topogenous orders are related to auxilliary relations as
defined in [5], although a formal relationship seems difficult to state.

A filter in a topological space X is a collection of nonempty subsets that is closed
under finite intersection and under superset. A filter has an open basis if for every
w there is an open v in the filter with v ⊆ w. In general, there need not be a point
contained in the intersections of the sets in a filter, so we are interested in a con-
dition on filters that requires their sets to contain a common point. Our condition
that a filter meets a semi-topogenous order will imply that this filter also has an
open basis; a completeness condition will ensure that each filter meeting the order
has a nonempty intersection.

Definition 7.3. Let X be a space with a semi-topogenous order � generating
its topology. A filter U on X meets � if for every w ∈ U there is a v ∈ U with
v � w. A space X is complete for � if, for every filter U in X that meets �, there
is a point x with x ∈ u for all u∈U.

Theorem 7.4. Let X be a T1 space with a semi-topogenous order � generating
its topology such that X is complete for �. Then X is homeomorphic to an MF
space.

Proof. Let P consist of the nonempty open subsets of X, and let p ≺ q if and only
if p �= q and p � q. The relation ≺ is obviously transitive and antireflexive, so it
makes P into a poset.



20 Carl Mummert & Frank Stephan

For each x ∈X, let Ux be the set of all p ∈P with {x} � p. If p, q ∈Ux then
the open kernel u of p ∩ q contains x and thus there is an open r � u with x ∈ r.

Since the open kernel of r again contains x, it follows that {x} � r. Hence r ∈Ux ,
r � p, and r � q. Thus Ux is a filter on P.

If V is a maximal filter on MF(P ), then V also meets �. If v generates V, then
v is open (by definition) and not empty. For every x ∈ v there is a w � v with
x ∈ w; by maximality, w = v. Therefore, v � v and every w ⊆ X with v ⊆ w

satisfies v � w and w ∈V. If there is no single element generating V then there
is, for every v,w ∈ V, some u ∈ V with u ≺ v and u ≺ w. Then it follows that
u � v and u � w. Furthermore, there is a t ≺ u with t ∈ V ; hence t � v ∩ w.

Thus V contains all supersets of v ∩ w and so V is a filter. Furthermore, V

meets �.

This means, by assumption, that there is a point x contained in all sets of V.

Thus V ⊆ Ux and, by the maximality of V, we have V = Ux. As a result, every
filter Uy is contained in a filter Ux that is maximal. Because of the T1 property,
y = x; otherwise Uy would contain a p with x /∈ p, in contradiction to the fact
that Uy ⊆ Ux.

This shows that the mapping φ : x �→ Ux is a bijection from X to the maximal
filters on P. To see that φ is open and continuous, first note that if y ∈X and U is
an open set, then y ∈U if and only if {y} � U. To see this, fix y ∈X and any open
U such that y ∈U, which means {y} ⊆ U. Then, because � generates the topology
and y is trivially in the open kernel of U, there is some W # U with y ∈W. Hence
{y} ⊆ W � U, which means that {y} � U by the definition of semi-topogenous
orders. The converse direction of the equivalence follows directly from the defi-
nition of a semi-topogenous order.

Now, to see that φ is open and continuous, note that for any point x ∈ X and
any open set U we have

x ∈U ⇐⇒ {x} � U ⇐⇒ U ∈ φ(x) ⇐⇒ φ(x)∈Np,

where Np is the basic open subset of MF(P ) corresponding to U.

We do not know whether every MF space has a semi-topogenous order satisfying
the hypotheses of Theorem 7.4. We have established the following partial result.

Theorem 7.5. If X = MF(P ) and if P satisfies

∀p, q, r [p ≺ q ∧Nq ⊆ Nr ⇒ p ≺ r], (∗)
then there is a semi-topogenous order � generating the topology of X such that
X is complete for �.

Proof. For any v,w ⊂ X, let v � w if either v = ∅, w = X, there is is an open
atom u with v ⊆ u ⊆ w, or there are p, q ∈P with v ⊆ Np, p ≺ q, and Nq ⊆ w.

Note that Np ⊆ Nq in the last case.
It follows directly from definitions and the present assumptions that � is a semi-

topogenous order. We must show that that � generates the topology of X. Let w be
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an open set and let x be a point in w. There is an open set Nq with {x} ⊆ Nq ⊆ w.

If {x} = Nq then Nq � w. If {x} �= Nq , then there is a further p ≺ q with x ∈Np.

The reason is that, given any y ∈ Nq \ {x}, the maximal filter Ux belonging to x

must contain a p ≺ q, which does not contain y by the T1 axiom. Then {x} ⊆
Np � w, so w is the union of all v with v � w.

Now let W be a filter in the topological space X that meets �. If W contains
an r such that Nr is atomic (i.e., a singleton {x}), then every u ∈ W contains x

because otherwise Nr ∩ u = ∅, in contradiction to W being a filter.
If W does not contain an r such that Nr is atomic, then let V be the set of all

p ∈ P such that Np ∈W. Given any p, q ∈V, there is a u such that u � Np ∩ Nq.

Hence there exist r, t with u ⊆ Nr , Nt ⊆ Np ∩ Nq , and r ≺ t. It follows that
r ≺ p and r ≺ q. Thus V is the basis of a filter on P ; this filter is contained in
a maximal filter on P that is of the form Ux for some point x ∈X. This x is then
in Np for all p ∈V. Let u ∈W. Since W meets �, there is a p ∈V with Np ⊆ u.

It follows that x ∈ Np and x ∈ u. Therefore, x is a common point of the sets
in W.

The posets constructed in Theorems 2.2 and 2.3 satisfy condition (∗) and so are
examples of a poset space that is complete for a semi-topogenous order generating
its topology.

Example 7.6. For every complete metric space and every locally compact Haus-
dorff space, there exists a semi-topogenous order � that generates the topology
of X and for which X is complete.

Remark 7.7. Assume that X is a space that is complete for a semi-topogenous
order generating its topology. Then one can show not only thatX is homeomorphic
to an MF space but also that the winning strategy for player II is quite easy to ob-
tain. Given any open set u and any point x ∈ u by player I, player II need only
choose an open v with {x} ⊆ v � u. It does not matter which v with this condition
is chosen, and the history of the game can be ignored. The result of the construc-
tion will be, at the end of the game, a basis for a filter that meets �; hence this
filter has a common point.

This shows that the “neighborhood spaces” that we consider here satisfy a
restricted version of the strong Choquet property. The intuition behind this re-
striction is that one wishes to study non–second-countable spaces by considering
“transfinite games”. The role of player I is replaced by considering filters instead of
descending sequences; and the winning strategy of player II is reduced to a neigh-
borhood relation �, which could be interpreted as saying that if {x} ⊆ v � u

then v is a good move for player II.
Indeed, the notion of completeness of spaces with respect to a semi-topogenous

order � is based on this idea. Let the strategy of player II be simply to follow �,
and let player I build a filter U such that for every w ∈ U there is a v ∈ U that
player II might have chosen as a response to w (i.e., a v � w). Then the intersec-
tion of all u∈U is not empty.
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8. Cardinality of Poset Spaces

In this section, we establish perfect set theorems for countably based Hausdorff
poset spaces. The theorems show that these spaces either are countable or have
the cardinality 2ℵ0 of the continuum.

Theorem 8.1. Any countably based Hausdorff poset space either has countably
many points or has cardinality 2ℵ0.

Corollary 8.2. Any countably based Hausdorff poset space either has count-
ably many points or contains a perfect closed set.

Proof. Any second-countable Hausdorff space of cardinality 2ℵ0 contains a per-
fect closed set. The complement of the perfect closed set is the union of all the
basic open sets from a fixed countable basis that contain fewer than 2ℵ0 points.

To prove Theorem 8.1, we introduce a class of Gale–Stewart games. These games
are inspired by the ∗-games in descriptive set theory (as described in [6]). For
each poset P we define a game that we call the poset star game on P. There are
two players. The play proceeds in stages numbered 0,1, 2, . . . . At stage t, player I
plays a pair 〈pt

1,pt
2〉 ∈P × P. Then player II plays a number nt ∈ {1, 2}. Player I

wins the game if the following conditions hold for all t :

• pt
1 ⊥ pt

2;
• pt+1

1 � pt
nt

and pt+1
2 � pt

nt
.

Player II wins if player I does not win; there are no ties.
A strategy for a player is a function that tells the player what to do at any pos-

sible move of the game. The strategy is a winning strategy if the player will win
any play of the game in which the player uses the strategy to choose every move.
It is impossible for both players to have a winning strategy for the same game.

Lemma 8.3. Let P be a poset. Then either player I or player II has a winning
strategy for the poset star game on P.

Proof. The set of infinite plays of the poset star game on P that are winning for
player I is closed in the space of all possible plays of the game. (This space is
the space of infinite sequences of moves; the set of moves is assigned the discrete
topology and the space of infinite plays carries the product topology.) The proof
follows from a theorem of Gale and Stewart known as closed determinacy.

Lemma 8.4. Suppose that X is a Hausdorff poset space based on a countable
poset P and that player I has a winning strategy for the poset star game on P.

Then X has cardinality 2ℵ0.

Proof. It suffices to prove the result for MF(P ), which is a subset of UF(P ). Let
sI be a winning strategy for player I and let f ∈ {1, 2}N. Consider the play in which
player I follows sI while player II uses f as a guide; that is, player II plays f(n)

at stage 2n. Because sI is a winning strategy for player I, this play determines a
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descending sequence F(f ) of elements of P. This sequence extends to a maximal
filter. For distinct f , g ∈ {0,1}N, the sequences F(f ) and F(g) contain incompat-
ible elements and thus cannot extend to the same filter. Hence the space MF(P )

has cardinality 2ℵ0.

Lemma 8.5. Let X be a countably based Hausdorff poset space based on the
poset P. If player II has a winning strategy for the poset star game on P, then X

is countable.

Proof. Let sII be a winning strategy for player II. We say that a finite play σ of
length 2k is compatible with sII if sII(σ [2i +1]) = σ(2i + 2) whenever 2i + 2 ≤
k. We say that a play σ of even length is a good play for a point x if σ is compat-
ible with sII and if x is in the open set chosen by player II in the last move of σ. A
good play for x is a maximal play if it cannot be extended to a longer good play
for x; this means that, no matter what pair of disjoint open sets player I plays, sII

will direct player II to choose an open set not containing x.

If player II has a winning strategy then every point x has a maximal play. Ob-
serve that the empty play is trivially a good play for x. If every good play for x

could be extended to a larger good play for x, then it would be possible for player I
to win the game by always leaving the game in a position that is good for x. This
play of the game would follow sII, a winning strategy for player II, which is a
contradiction.

If σ is a good play for two points x and y, then σ is not a maximal play for
both x and y. This follows because player I could play 〈U1,U2〉 in response to σ,
where x ∈U1, y ∈U2, and U1 ∩ U2 = ∅. Here we assume that the topology of X
is Hausdorff.

We have now shown that every point in the space X has a maximal play and that
no play is maximal for two points. Since the set of maximal plays is countable,
this implies that the set of points in X is countable.

We remark that the statement “Every closed subset of a countably based Haus-
dorff MF space either is countable or has a perfect closed subset” is independent
of ZFC set theory; this result is established in [11].
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