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On Fano Manifolds with a Birational Contraction
Sending a Divisor to a Curve

C. Casagrande

1. Introduction

Let X be a smooth, complex Fano variety of dimension n. The Picard number ρX
ofX is equal to the second Betti number ofX, and is bounded in any fixed dimen-
sion, because X can vary only in a finite number of families (see [De, Chap. 5]
and references therein). If n = 3 and ρX ≥ 6, then X ∼= S × P1 where S is a
Del Pezzo surface, so that ρX ≤ 10 [MoMu, Thm. 2]. Starting from dimension 4,
the maximal value of ρX is unknown.

Let’s assume that n ≥ 4. Bounds on the Picard number are known when X
has some special extremal contraction. For instance, ifX has a birational elemen-
tary contraction sending a divisor to a point, then ρX ≤ 3 ([T2, Prop. 5]; see also
Proposition 3.1). In fact such X are classified in the toric case [Bo], in the case of
a blow-up of a point [BoCamW], and more generally when the exceptional divi-
sor is P n−1 [T2]. Concerning the fiber type case, we know that ρX ≤ 11 when X
has an elementary contraction onto a surface or a 3-fold [Ca2, Thm. 1.1].

In this paper we consider the case of a birational elementary contraction of type
(n − 1,1)—that is, sending a divisor to a curve. Such Fano varieties have been
classified in the toric case by Sato [S], and Tsukioka [T1; T3] has obtained classi-
fication results for some cases (see Remark 4.3). Our main result is the following.

Theorem 1.1. Let X be a smooth Fano variety of dimension n ≥ 4, and suppose
that X has a birational elementary contraction sending a divisor E to a curve.

Then ρX ≤ 5. Moreover, if ρX = 5 then we have E ∼= W × P1 for W a smooth
Fano variety, and there exist :

• a smooth projective variety Y, with ρY = 4, such that X is the blow-up of Y in
a subvariety isomorphic to W with exceptional divisor E; and

• a smooth Fano varietyZ, with ρZ = 3, having a birational elementary contrac-
tion sending a divisor EZ to a curve and such thatX is the blow-up of Z in two
fibers of this contraction and E is the proper transform of EZ.

This theorem follows from Theorem 4.2 and Proposition 4.8. There are examples
with ρX = 5 in every dimension n ≥ 4; see Example 4.10. In dimension 4, we get
the following.
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Corollary 1.2. Let X be a smooth Fano 4-fold, and suppose that X has a bi-
rational elementary contraction sending a divisor E to a curve.

Then ρX ≤ 5, and if ρX = 5 then we have one of the following possibilities:

(i) E ∼= P2 × P1, NE/X
∼= O(−1, −1);

(ii) E ∼= P2 × P1, NE/X
∼= O(−2, −1);

(iii) E ∼= P1 × P1 × P1, NE/X
∼= O(−1, −1, −1), and two of the rulings are nu-

merically equivalent in X.

Finally, we sum up what we know about the Picard number of Fano 4-folds with
respect to their elementary contractions. Notice that the known examples with
largest Picard number are products of Del Pezzo surfaces and have ρX = 18.

We recall that a contraction ϕ is of type (a, b) if

dim Exc(ϕ) = a and dimϕ(Exc(ϕ)) = b,

where Exc(ϕ) is the locus where ϕ is not an isomorphism.

Corollary 1.3. Let X be a smooth Fano 4-fold with ρX ≥ 4. The possible
elementary contractions of X are described in the following table, where S is a
Del Pezzo surface and the question mark indicates the absence of any examples.

Type (4, 2) (4, 3) (3,1) (3, 2) (2, 0)

ρX = 4, 5 only if X ∼= P
2 × S yes yes yes yes

ρX = 6 only if X ∼= P
2 × S yes no yes yes

7 ≤ ρX ≤ 10 only if X ∼= P
2 × S only if X ∼= P

1 × P
1 × S or F1 × S no yes ?

ρX = 11 no only if X ∼= P
1 × P

1 × S or F1 × S no yes ?
ρX ≥ 12 no no no yes ?

We outline the technique used to prove Theorem 1.1. Given the divisorE, the clas-
sical approach is to choose an extremal ray R of NE(X) such that E · R > 0 and
then study the associated contraction. However, this is not enough to get a bound
on ρX in all cases, in particular when R is small. One must iterate this procedure
and run a “Mori program” for −E, that is, contract or flip birational extremal rays
having positive intersection with E until one gets a fiber type contraction. This is
possible thanks to [BCHM], where it is shown that Fano varieties are Mori dream
spaces, and to [HuK], where properties of Mori dream spaces are studied.

In Section 3, we use this method to study a Fano variety X containing a prime
divisor D such that the numerical classes of curves contained in D span a 2-
dimensional linear subspace in N1(X). This is enough to get ρX ≤ 3 in some
cases (see Theorem 3.2).

In Section 4 we consider the exceptional divisorE of an elementary contraction
ϕ of type (n−1,1).We apply toE the results of the preceding section, and we need
a detailed analysis of the geometry of E and X to conclude. We first show that if
there is a unique extremal ray having negative intersection with E (corresponding
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to ϕ), then ρX ≤ 4 (Theorem 4.2). Then we consider the case where there is a sec-
ond extremal ray R such that E · R < 0 and show that ρX ≤ 5 (Proposition 4.8).
Finally, we give some examples with ρX = 5.

2. Preliminaries

In this section we recall some notions and results that we need in the sequel.

Contractions. Let X be a normal irreducible variety of dimension n. A con-
traction of X is a projective morphism ϕ : X → Y, with connected fibers, onto
a normal variety Y (without hypotheses on the anticanonical degree of curves in
fibers).

Suppose that X has terminal singularities, so that KX is Q-Cartier. A contrac-
tion ϕ is a Mori contraction if −KX is ϕ-ample.

Numerical Equivalence Classes and the Cone of Curves. Let X be an
irreducible projective variety. We denote by N1(X) the vector space of 1-cycles
in X, with real coefficients, modulo numerical equivalence; its dimension is the
Picard number ρX of X. The cone of curves NE(X) is the convex cone in N1(X)

generated by numerical classes of effective curves, and NE(X) is its closure in
N1(X). We denote by [C] ∈ NE(X) the numerical class of a curve C ⊂ X.

If R is a half-line in N1(X) and D a Q-Cartier divisor in X, we will say that
D · R > 0, D · R = 0, or D · R < 0 if, for any nonzero element γ ∈R, we have
(respectively) D · γ > 0, D · γ = 0, or D · γ < 0.

If ϕ : X → Y is a contraction, then the push-forward of 1-cycles gives a surjec-
tive linear map

ϕ∗ : N1(X) −−� N1(Y ),

and we set NE(ϕ) := NE(X)∩ kerϕ∗.We say that ϕ is elementary if ρX − ρY = 1.
Suppose that X is Q-factorial and that ϕ is elementary with dim Exc(ϕ) =

n− 1. Then Exc(ϕ) is an irreducible divisor and Exc(ϕ) · NE(ϕ) < 0.
For any irreducible closed subset Z of X, let i : Z ↪→ X be the inclusion, and

consider the push-forward of 1-cycles i∗ : N1(Z) → N1(X). We define

N1(Z,X) := i∗(N1(Z)) ⊆ N1(X).

Equivalently, N1(Z,X) is the linear subspace of N1(X) spanned by classes of
curves contained in Z. Working with N1(Z,X) instead of N1(Z) means that we
consider curves in Z modulo numerical equivalence in X, instead of numerical
equivalence in Z. Notice that dim N1(Z,X) ≤ ρZ.

One-dimensional Fibers in Mori Contractions. The following theorem col-
lects results due to several people; see [AW1, Lemma 2.12, Thm. 4.1] and the ref-
erences therein. Notice that X0 does not need to be complete.

Theorem 2.1. Let X0 be a smooth variety, ϕ0 : X0 → Y0 a Mori contraction,
and F a fiber of ϕ0 having a 1-dimensional irreducible component F0. Then Y0 is
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smooth in ϕ0(F ) and either (i) F = F0
∼= P1 or (ii) ϕ0 is of fiber type and F has

two irreducible components, both of which are isomorphic to P1.

Suppose in particular that every fiber of ϕ0 has dimension at most 1, so that Y0 is
smooth. If ϕ0 is of fiber type, we will say that ϕ0 is a conic bundle. If instead ϕ0

is birational, then it is the blow-up of a smooth, codimension-2 subvariety of Y0;
we will say that ϕ0 is of type (n− 1, n− 2)sm.

Concerning the singular case, we have the following.

Theorem 2.2 [I, Lemma 1.1]. Let X be a projective variety with terminal sin-
gularities, and let ϕ : X → Y be an elementary birational Mori contraction with
fibers of dimension at most1. If F0 is an irreducible component of a nontrivial fiber
of ϕ and if F0 contains a Gorenstein point of X, then F0

∼= P1 and −KX · F0 ≤ 1.

Fano Varieties and Mori Dream Spaces. The notion of Mori dream space
was introduced and studied in [HuK]. In that paper the authors show that Fano
3-folds are Mori dream spaces [HuK, Cor. 2.16] and conjecture the same to hold
in arbitrary dimension. This was confirmed in [BCHM] as an application of fun-
damental results on the minimal model program.

Theorem 2.3 [BCHM, Cor. 1.3.1]. Any smooth Fano variety is a Mori dream
space.

(In fact one can also allow singularities, but here we consider only the smooth
case.)

Being a Mori dream space implies many important features with respect to Mori
theory. In the following remarks we recall some consequences of Theorem 2.3
that will be used in the sequel.

Remark 2.4. Let X be a smooth Fano variety, and let X ��� Y be a “rational
contraction” in the sense of [HuK]. This means that there exist a normal and Q-
factorial projective variety X ′ and a factorization

X ��� X ′ −−� Y
such that X ��� X ′ is an isomorphism in codimension 1 and X ′ −−� Y is a
contraction.

Many well-known properties of X hold for Y, too. The Mori cone NE(Y ) is
closed and polyhedral. For any contractionψ : Y → Z, NE(ψ) is a face of NE(Y )
that determines ψ uniquely. Conversely, for every face F of NE(Y ) there exists
a contraction ψ of Y such that F = NE(ψ). Finally, ψ is elementary if and
only if NE(ψ) has dimension 1; we will call a 1-dimensional face of NE(Y ) an
extremal ray.

This follows from the very definition of Mori dream space. Indeed,X ′ is a “small
Q-factorial modification of X”; thus, by [HuK, Def. 1.10, Prop. 1.11(2)], the fore-
going properties hold for X ′. Then it is not difficult to deduce the same for Y.

If R = NE(ψ) is an extremal ray of NE(Y ), then we say that R is birational, divi-
sorial, small, of fiber type, or of type (a, b) if the contraction ψ is. Moreover, we
set Locus(R) := Exc(ψ).
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Consider the special case where ϕ : X → Y is an elementary contraction. Then
the extremal rays of NE(Y ) are in bijection (via ϕ∗) with the 2-dimensional faces
of NE(X) containing the ray NE(ϕ); see [Ca2, 2.5].

Remark 2.5. Let Y be as in Remark 2.4. Suppose that Y is Q-factorial, and con-
sider a prime divisor D ⊂ Y. There exists at least one extremal ray of NE(Y )
having positive intersection with D. Looking at the associated contraction, one
finds an elementary contraction

ψ : Y −−� Z

such that D · NE(ψ) > 0; in particular, D intersects every nontrivial fiber of ψ.
If ψ is of fiber type, then ψ(D) = Z; hence

ψ∗(N1(D,Y )) = N1(Z)

and we have ρZ ≤ dim N1(D,Y ) and ρY ≤ dim N1(D,Y )+ 1.
If ψ is birational, then Exc(ψ)∩D �= ∅; however, Exc(ψ) �= D (for otherwise

D · NE(ψ) < 0) and so ψ(D) ⊂ Z is a divisor. We have two possibilities: either
NE(ψ) ⊂ N1(D,Y ) and dim N1(ψ(D),Z) = dim N1(D,Y ) − 1, or NE(ψ) �⊂
N1(D,Y ) and dim N1(ψ(D),Z) = dim N1(D,Y ). In this last case ψ must be fi-
nite on D, and it follows that every nontrivial fiber of ψ is a curve.

Remark 2.6. Let X be a smooth Fano variety and D a prime divisor in X. By
[HuK, Prop. 1.11(1)] there exists a finite sequence

X = X0
σ0���� X1 ���� · · · ���� Xk−1

σk−1���� Xk , (2.7)

where:

• every Xi is projective, normal, and Q-factorial;
• for i = 0, . . . , k − 1, if Di ⊂ Xi is the proper transform of D then there exists

a birational extremal ray Ri of NE(Xi) such that (i) Di · Ri > 0 and (ii) σi is
either the contraction of Ri (if divisorial) or its flip (if small);

• there exists an extremal ray of fiber type Rk of NE(Xk) with Dk · Rk > 0.

See [KoMo, Def. 3.33, Def. 6.5] for the definition of flip. In the terminology of
[KoMo; HuK] we are considering (−D)-flips, and (2.7) is a Mori program for
−D: since D is effective, −D can never become nef and so the program neces-
sarily ends with a fiber type contraction. Notice that the choice of the extremal
rays Ri is arbitrary among those that have positive intersection with Di.

3. Divisors with Picard Number 2

Let X be a smooth Fano variety and let D ⊂ X be a prime divisor. We recall that
N1(D,X) is the linear subspace of N1(X) spanned by classes of curves contained
in D, so that dim N1(D,X) ≤ ρD. The following result is proven in [T2] under
the assumption that ρD = 1; however the proof can be easily adapted to the case
dim N1(D,X) = 1 (see [Ca2, Prop. 3.16]).
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Proposition 3.1 [T2, Prop. 5]. Let X be a smooth Fano variety of dimension
n ≥ 3, and let D ⊂ X be a prime divisor with dim N1(D,X) = 1. Then ρX ≤ 3.

In particular, we have that ρX ≤ 3 when X has an elementary contraction of type
(n− 1, 0).

In this section we consider the case where dim N1(D,X) = 2. Our goal is to
prove the following two results, which give a bound on ρX in some cases.

Theorem 3.2. Let X be a smooth Fano variety of dimension n ≥ 3, and let
D ⊂ X be a prime divisor with dim N1(D,X) = 2. Let ϕ : X → Y be an elemen-
tary contraction of X with D · NE(ϕ) > 0. Then one of the following holds:

(i) ρX = 2;
(ii) ρX = 3 and ϕ is either a conic bundle or of type (n − 1, 0) or of type

(n− 1, n− 2)sm or small;
(iii) ϕ is of type (n− 1, n− 2)sm and NE(ϕ) �⊂ N1(D,X);
(iv) ϕ is small and there exists a smooth prime divisor D ′ ⊂ X, disjoint from

Exc(ϕ) and with a P1-bundle structure, such that for any fiber f we have
D ′ · f = −1, D · f > 0, and f �⊂ D.

In the last case, we do not know whether the numerical class [f ] lies on an ex-
tremal ray of NE(X). However X is the blow-up of a (possibly nonprojective)
complex manifold in a smooth codimension-2 subvariety with exceptional divi-
sor D ′.

Lemma 3.3. LetX be a smooth Fano variety of dimension n ≥ 3, and letD ⊂ X

be a prime divisor with dim N1(D,X) = 2. Suppose there exists an elementary
divisorial contraction ϕ : X → Y such thatD · NE(ϕ) = 0 and Exc(ϕ)∩D �= ∅.

Then either ρX ≤ 4 or there exists an extremal ray R �= NE(ϕ), of type
(n− 1, n− 2)sm, such that R · Exc(ϕ) < 0 and R + NE(ϕ) is a face of NE(X).

Observe that if X is a toric Fano variety and if D ⊂ X is a prime divisor that is
closed with respect to the torus action, then ρX ≤ 3 + dim N1(D,X) = 3 + ρD
by [Ca1, Thm. 2.4]; in particular, ρX ≤ 5 when dim N1(D,X) = 2. However in
general one can not expect a similar bound, as the following example shows.

Example 3.4. Consider a Del Pezzo surface S with ρS = 9, and letX= S×P n−2.

Then ρX = 10 and X contains divisors D = C × P n−2, where C ⊂ S is an irre-
ducible curve, with dim N1(D,X) = 2.

Before proving Theorem 3.2 and Lemma 3.3, we need some preliminary proper-
ties. We fix a smooth Fano variety X of dimension n ≥ 3 and a prime divisor
D ⊂ X, and we carry out Mori’s program for −D as explained in Remark 2.6.
We stop at Xm when we get either a contraction of fiber type or a birational ex-
tremal ray Rm that is not contained in N1(Dm,Xm). Thus we obtain a sequence
analogous to (2.7):

X = X0
σ0���� X1 ���� · · · ���� Xm−1

σm−1���� Xm, (3.5)
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where moreoverRi ⊂ N1(Di,Xi) for i = 0, . . . ,m−1 and there exists an extremal
ray Rm of NE(Xm) withDm ·Rm > 0 that is either of fiber type or birational with
Rm �⊂ N1(Dm,Xm).

Lemma 3.6. For every i = 0, . . . ,m− 1, we have:

dim N1(Di+1,Xi+1) =
{

dim N1(Di,Xi)− 1 if Ri is divisorial;
dim N1(Di,Xi) if Ri is small.

Proof. By construction we have Ri ⊂ N1(Di,Xi), so the statement is clear if Ri
is divisorial. Suppose that Ri is small; let ϕi : Xi → Yi be its contraction, let
ϕ ′
i : Xi+1 → Yi be the flip of ϕi, and let R ′

i := NE(ϕ ′
i ):

Xi
σi ���������

ϕi
��

��
��

��
�

Xi+1

ϕ ′
i����

��
��

��

Yi .

Then Di+1 ·R ′
i < 0 (see [KoMo, Cor. 6.4(4)]); hence R ′

i ⊂ N1(Di+1,Xi+1). This
implies the statement because ϕi(Di) = ϕ ′

i(Di+1) and

dim N1(Di,Xi) = dim N1(ϕi(Di),Yi)+ 1 = dim N1(Di+1,Xi+1).

Corollary 3.7. Suppose that in (3.5) the ray Rm is of fiber type. Then

ρX ≤ 1 + dim N1(D,X).

Proof. We have

ρXi+1 =
{
ρXi − 1 if Ri is divisorial;

ρXi if Ri is small.

Therefore, by Lemma 3.6 it follows that ρXi − dim N1(Di,Xi) is constant; in par-
ticular, ρX−dim N1(D,X) = ρXm −dim N1(Dm,Xm). IfRm is of fiber type then
ρXm ≤ 1 + dim N1(Dm,Xm) (see Remark 2.5), which gives the statement.

Let A1 ⊂ X1 be the indeterminacy locus of σ−1
0 , and for i ∈ {2, . . . ,m} let Ai ⊂ Xi

be the union of the proper transform of Ai−1 ⊂ Xi−1 with the indeterminacy locus
of σ−1

i−1. Then Xi \ Ai is isomorphic to an open subset of X, and

Sing(Xi) ⊆ Ai ⊂ Di.

Notice, moreover, that dimAi > 0 whenever Ri−1 is small.

Lemma 3.8. Let i ∈ {1, . . . ,m}, and assume that −KXj · Rj > 0 for every j =
0, . . . , i − 1. Then X1, . . . ,Xi have terminal singularities. Moreover, if C ⊂ Xi is
an irreducible curve not contained in Ai and if C0 ⊂ X is its proper transform,
then

−KXi · C ≥ −KX · C0,

with strict inequality whenever C ∩ Ai �= ∅.
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Proof. We assume that the statement holds for i − 1 and consider σi−1 : Xi−1 ���
Xi. Suppose that σi−1 is a flip, and consider a common resolution of Xi−1 and Xi :

X̂

f

����
��

��
�� g

��
��

��
��

��

Xi−1 σi−1
��������� Xi .

Let G1, . . . ,Gr ⊂ X̂ be the exceptional divisors, and write

KX̂ = f ∗(KXi−1)+
r∑
j=1

ajGj = g∗(KXi )+
r∑
j=1

bjGj with aj , bj ∈ Q.

SinceXi−1 has terminal singularities and since −KXi−1 ·Ri−1 > 0, it follows from
[KoMo, Lemma 3.38] that bj ≥ aj > 0 for every j = 1, . . . , r; thus also Xi has
terminal singularities.

The curve C ⊂ Xi is not contained in Ai; hence C intersects the open subset
where Xi−1 and Xi are nonsingular and isomorphic. If C̃ ⊂ Xi−1 and Ĉ ⊂ X̂ are
the proper transforms of C, then Gj · Ĉ ≥ 0 for every j and we have

−KXi · C = −KXi−1 · C̃ +
r∑
j=1

(bj − aj )Gj · Ĉ ≥ −KXi−1 · C̃ ≥ −KX · C0.

Now suppose that C ∩ Ai �= ∅. If C̃ ∩ Ai−1 �= ∅, then −KXi−1 · C̃ > −KX · C0.

Otherwise C̃ must intersect Locus(Ri−1), so there exists a j0 such that f(Gj0) ⊆
Locus(Ri−1) andGj0 · Ĉ > 0. Again by [KoMo, Lemma 3.38] we have bj0 > aj0;
therefore, −KXi · C > −KXi−1 · C̃ and we are done.

The case where σi is a divisorial contraction is similar and shorter.

Lemma 3.9. Let i ∈ {1, . . . ,m}, and assume that −KXj · Rj > 0 for every j =
0, . . . , i − 1. Consider a birational elementary contraction ψ : Xi → Y such that
Di · NE(ψ) > 0 and NE(ψ) �⊂ N1(Di,Xi).

Then Exc(ψ) is disjoint from Ai, and ψ |Xi\Ai is a Mori contraction of type
(n− 1, n− 2)sm.

Proof. Let F be a nontrivial fiber of ψ. Then F must meet Di, but ψ is finite on
Di. Thus F is a curve that intersects Di in finitely many points; in particular, F
cannot be contained in Ai.

Using Lemma 3.8, we see that −KXi ·F > 0 (namely, ψ is a Mori contraction);
moreover, dim(F ∩ Sing(Xi)) ≤ 0. We can now apply Theorem 2.2 to deduce
that −KXi · F0 ≤ 1 for any irreducible component F0 of F.

Again by Lemma 3.8, this shows that F cannot intersect Ai. In particular,
Exc(ψ) is contained in the smooth locus of Xi, and the statement follows.

Lemma 3.10. Let i ∈ {1, . . . ,m}, and assume that −KXj · Rj > 0 for every
j = 0, . . . , i − 1.
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If dim N1(Di,Xi) = 1 and dimAi > 0, then i = m, ρXm ≤ 2, and every ele-
mentary contraction ψ : Xm → Y such that Dm · NE(ψ) > 0 is of fiber type. In
particular, Rm is of fiber type.

Proof. Let ψ : Xi → Y be an elementary contraction such that Di · NE(ψ) > 0.
If ψ is birational then we cannot have NE(ψ) ⊂ N1(Di,Xi), for otherwise

ψ(Di) is a point and Di = Exc(ψ), which contradicts Di · NE(ψ) > 0. On the
other hand, if NE(ψ) �⊂ N1(Di,Xi), then Lemma 3.9 implies that Exc(ψ) is a di-
visor disjoint from Ai. This also is impossible, because Exc(ψ) ∩Di �= ∅, hence
there exists a curveC ⊂ Di with Exc(ψ)·C > 0. Since all curves inDi are numer-
ically proportional, the same must hold for every curve C ⊂ Di. Now choosing
C ⊆ Ai, we get Exc(ψ) ∩ Ai �= ∅.

Therefore ψ is of fiber type, ρXi ≤ 2, and it must be that i = m.

Proof of Theorem 3.2. We assume that ρX ≥ 3 and show that one of (ii), (iii), or
(iv) holds. Let’s consider the possibilities for ϕ.

If ϕ is of fiber type, then ρX = 3 (see Remark 2.5). Moreover, kerϕ∗ �⊂
N1(D,X); hence ϕ is finite on D and is a conic bundle, and we are in (ii).

Suppose now that ϕ is birational. If ϕ is of type (n − 1, 0), then ρX = 3 by
Proposition 3.1, so again we are in (ii). If instead NE(ϕ) �⊂ N1(D,X), then ϕ is
of type (n− 1, n− 2)sm and we are in (iii). Thus we assume that ϕ is not of type
(n− 1, 0) and that NE(ϕ) ⊂ N1(D,X).

Consider the sequence (3.5). We can assume that R0 = NE(ϕ) so that m ≥ 1.
Then dimA1 > 0, because if ϕ is divisorial then A1 = ϕ(Exc(ϕ)).

Suppose that Rm is of fiber type. Then Corollary 3.7 gives ρX = 3 and, in order
to get (ii), we need only show that ϕ is either small or of type (n− 1, n− 2)sm.

Let’s assume that ϕ is divisorial. Then dim N1(D1,X1) = 1, and Lemma 3.10
yields that m = 1. Thus we have

X
ϕ−−� X1

ψ−−� Y,

where ψ is the contraction of R1 and is of fiber type. We have ρY = 1, so Y =
ψ(D1) is not a point. Since all curves contained in D1 are numerically propor-
tional, it follows thatψ must be finite onD1. Then every fiber ofψ has dimension1
and dimY = n− 1.

Notice that ψ is finite on A1 = ϕ(Exc(ϕ)) because A1 ⊂ D1. Choose a point
x1 ∈ A1. The fiber ψ−1(ψ(x1)) has dimension 1 and is not contained in A1, so
ϕ−1(ψ−1(ψ(x1)) has some 1-dimensional irreducible component. Then Theo-
rem 2.1 applied to ψ � ϕ yields that ϕ−1(ψ−1(ψ(x1)) is 1-dimensional and has
exactly two irreducible components. This means that ψ−1(ψ(x1)) ∩ A1 = {x1}
(i.e., ψ is injective on A1), and the two components are ϕ−1(x1) and the proper
transform of ψ−1(ψ(x1)).

Therefore, every nontrivial fiber of ϕ is 1-dimensional; hence X1 is smooth and
ϕ is of type (n−1, n− 2)sm. In fact, it is not difficult to show that X1 is Fano and
that ψ is a smooth morphism.

Let’s now consider the case whereRm is birational and show that this gives (iv).
We claim that −KXi · Ri > 0 for every i = 0, . . . ,m − 1. Indeed this is true for
i = 0. Fix i ∈ {1, . . . ,m− 1} and assume that −KXj · Rj > 0 for j = 0, . . . , i − 1.
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Observe that dimAi > 0. This is clear if i = 1 or if Ri−1 is small. Sup-
pose that i > 1 and that Ri−1 is divisorial, so that σi−1 is its contraction. Since
dim N1(D,X) = 2, it follows from Lemma 3.6 that there is at most one divisorial
ray amongR0, . . . ,Rm−1. ThusRi−2 is small, andAi−1 contains the indeterminacy
locusL of σ−1

i−2, which is the locus of a small extremal ray of NE(Xi−1). Then σi−1

is finite on L and σi−1(L) ⊂ Ai has positive dimension. Therefore, Lemma 3.10
implies that dim N1(Di,Xi) > 1; thus dim N1(Di,Xi) = 2 and Ri−1 is small.

Let R ′
i−1 be the small extremal ray of NE(Xi) whose contraction is the flip of

Ri−1 inXi−1. Then −KXi ·R ′
i−1 < 0 andDi ·R ′

i−1 < 0 (see [KoMo, Cor. 6.4(4)]),
so R ′

i−1 ⊂ N1(Di,Xi) and

N1(Di,Xi) ∩ NE(Xi) = Ri + R ′
i−1.

Since by Lemma 3.8 the divisor Di contains curves of positive anticanonical de-
gree and since −KXi ·R ′

i−1 < 0, we must have −KXi ·Ri > 0. We have also shown
that R0, . . . ,Rm−1 are small; in particular, ϕ is small.

Now it follows from Lemma 3.9 that Locus(Rm) ∩ Am = ∅ and that Rm is of
type (n− 1, n− 2)sm. Therefore, the proper transform of Locus(Rm) in X yields
a divisor D ′ as in (iv), and we are done.

We need one more lemma before proving Lemma 3.3.

Lemma 3.11. LetX be a smooth Fano variety of dimension n, and let ϕ1: X→ Y1

be a divisorial elementary contraction. Let ψ : Y1 → Z be an elementary bira-
tional contraction with fibers of dimension at most 1. Consider the elementary
contraction ϕ2 : X → Y2 such that NE(ψ � ϕ1) = NE(ϕ1) + NE(ϕ2), and set
Ei := Exc(ϕi) ⊂ X for i = 1, 2:

X

ϕ1

��

ϕ2 �� Y2

��

Y1
ψ

�� Z .

Then Y2 is smooth, ϕ2 is of type (n−1, n−2)sm, and Exc(ψ) = ϕ1(E2).Moreover,
one of the following holds:

(i) ψ is a divisorial Mori contraction, Exc(ψ)∩ϕ1(E1) is a union of fibers of ψ,
E1 · NE(ϕ2) = 0, and E1 �= E2;

(ii) ψ is small, Exc(ψ) = ϕ1(E1), E1 · NE(ϕ2) < 0, and E1 = E2.

Proof. Let F be a nontrivial fiber of ψ; then (ϕ1)
−1(F ) is a fiber of ψ � ϕ1 : X →

Z. By Theorem 2.1, if (ϕ1)
−1(F ) has an irreducible component of dimension 1

then (ϕ1)
−1(F ) ∼= P1. This means that either F ⊆ ϕ1(E1) or F ∩ ϕ1(E1) = ∅.

Therefore, Exc(ψ) ∩ ϕ1(E1) is a union of fibers of ψ.
Now let F ′ be a nontrivial fiber of ϕ2. Then ϕ1(F

′) is contained in a nontrivial
fiber of ψ, thus ϕ1(F

′) ⊆ Exc(ψ) and dimϕ1(F
′) = 1. But ϕ1 is finite on F ′,

so dimF ′ = 1 and ϕ2 is birational with fibers of dimension at most 1. Thus Y2 is
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smooth and ϕ2 is of type (n−1, n−2)sm. We also have ϕ1(E2) ⊆ Exc(ψ). Notice
that if F ′ intersectsE1, then ϕ1(F

′) intersects ϕ1(E1) and hence ϕ1(F
′)⊆ ϕ1(E1).

Suppose thatE1 �= E2. Then ϕ1(E2) is a divisor contained in Exc(ψ); hence ψ
is divisorial with exceptional locus ϕ1(E2) (notice that Y1 is Q-factorial because
ϕ1 is divisorial). Since ϕ1(E2) cannot be contained in ϕ1(E1), it follows thatψ has
nontrivial fibers that are disjoint from ϕ1(E1) and so is a Mori contraction. More-
over, there must be fibers of ϕ2 that are disjoint from E1, hence E1 · NE(ϕ2) = 0.

Assume E1 = E2, so that E1 · NE(ϕ2) < 0. Clearly the exceptional locus of
ψ �ϕ1 containsE1. However, every curve in NE(ψ �ϕ1) = NE(ϕ1)+NE(ϕ2) has
negative intersection withE1 and hence is contained inE1;namely, Exc(ψ �ϕ1) =
E1. This yields Exc(ψ) = ϕ1(E1), and ψ is small.

Proof of Lemma 3.3. We set E := Exc(ϕ) ⊂ X, A := ϕ(E) ⊂ Y, and DY :=
ϕ(D) ⊂ Y. Observe that there are nontrivial fibers of ϕ disjoint fromD and others
contained in D. We thus have dim N1(DY ,Y ) = 1, but A is not contained in DY ;
this is the main difference with respect to the situation of Lemma 3.10.

Let ψ : Y → Z be an elementary contraction of Y with DY · NE(ψ) > 0, as
in Remark 2.5. If ψ is of fiber type, then ρZ ≤ 1 and ρX ≤ 3. Suppose that ψ
is birational. As in the proof of Lemma 3.10, we see that ψ is finite on DY and
that its fibers have dimension at most 1. Hence Lemma 3.11 applies; in particular,
Exc(ψ) ∩ A is a union of fibers of ψ. If ψ is not divisorial, then Lemma 3.11(ii)
gives an extremal ray R as in the statement. If ψ is divisorial, then we are in
Lemma 3.11(i) and so ψ is a Mori contraction and Z is Q-factorial.

SetDZ :=ψ(DY )⊂Z. ThenDZ is a prime divisor inZwith dim N1(DZ ,Z)=1
and DZ ⊃ ψ(Exc(ψ)). Let ξ : Z → W be an elementary contraction of Z with
DZ · NE(ξ) > 0, as in Remark 2.5. If ξ is of fiber type, then ρW ≤ 1 and ρX ≤ 4.
Suppose that ξ is birational; as before, it is finite overDZ and has fibers of dimen-
sion at most 1. Set η := ξ �ψ, and let ψ1 : Y → Z1 be the elementary contraction
of Y such that NE(η) = NE(ψ)+ NE(ψ1):

X
ϕ

�� Y

η

��
��

��
��

��

ψ

��

ψ1 �� Z1

��

Z
ξ

�� W.

Again, ψ1 is birational with fibers of dimension at most 1, so Lemma 3.11 applies.
Either ψ1 is not divisorial and we again have an extremal ray R as in the state-
ment, or ψ1 is a divisorial Mori contraction and Exc(ψ1) ∩ A is a union of fibers
of ψ1. We show that this last case leads to a contradiction.

Every curve in NE(η) has positive anticanonical degree, so η is a Mori contrac-
tion. If Exc(ψ) = Exc(ψ1), then every curve in NE(η) has negative intersection
with Exc(ψ); hence Exc(η) = Exc(ψ) and Exc(ξ) = ψ(Exc(ψ)). This is impos-
sible, however, because ξ is finite on DZ , which contains ψ(Exc(ψ)).

Therefore, Exc(ψ) �= Exc(ψ1). Then ψ(Exc(ψ1)) is a divisor contained in
Exc(ξ), which means that Exc(ξ) = ψ(Exc(ψ1)) and ξ is divisorial. As in the
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proof of Lemma 3.10, we see that Exc(ξ) must intersect every curve contained in
DZ and that dimψ(Exc(ψ)) = n−2 ≥ 1;hence Exc(ξ)∩ψ(Exc(ψ)) �= ∅. Then
dim(ψ(Exc(ψ)) ∩ Exc(ξ)) ≥ n− 3 and, since ξ is finite on ψ(Exc(ψ)), we get

dim ξ
(
ψ(Exc(ψ)) ∩ Exc(ξ)

) ≥ n− 3.
We claim that

dim ξ
(
ψ(Sing(Y )) ∩ Exc(ξ)

) ≤ n− 4. (3.12)

First we show that (3.12) allows us to conclude the proof. Since both ψ and ξ are
Mori contractions with fibers of dimension at most 1, it follows that Sing(W ) ⊆
η(Sing(Y )). Thus (3.12) implies that there exists a point w0 ∈W \ Sing(W ) such
that the fiber ξ−1(w0) has dimension 1 and intersects ψ(Exc(ψ)). Restricting η to
a contraction Y \η−1(Sing(W )) →W \ Sing(W ), we can now apply Theorem 2.1
to η−1(w0), as in the proof of Lemma 3.11, and derive a contradiction.

Let’s show (3.12). If dimA = n − 2, then dim Sing(Y ) ≤ n − 4 and so (3.12)
holds. If dimA ≤ n− 3 then we still have A ⊇ Sing(Y ), so it is enough to show
that dim ξ(ψ(A) ∩ Exc(ξ)) ≤ n − 4. This is clear if ψ(A) is not contained in
Exc(ξ). If instead ψ(A) ⊆ Exc(ξ) = ψ(Exc(ψ1)), then

A = ψ−1(ψ(A)) ⊆ ψ−1(Exc(ξ)) ⊆ Exc(ψ) ∪ Exc(ψ1).

Because A is irreducible, it is contained either in Exc(ψ) or in Exc(ψ1), and it is
a union of fibers of both ψ and ψ1. In all cases we have dim η(A) ≤ n − 4, and
we are done.

4. Elementary Contractions of Type (n − 1,1)

Throughout this section, we fix the following notation.

4.1. We use X to denote a smooth Fano variety of dimension n ≥ 4, and R1 is
an extremal ray of type (n − 1,1). For any integer i ∈ Z≥0, if Ri is an extremal
ray of NE(X) then we denote by ϕi : X → Yi the associated contraction and set
Ei := Exc(ϕi).

Our goal is to bound ρX; notice that ρX ≥ 2 by our assumptions.
We observe first of all that, since ϕ1(E1) is a curve, we have

dim N1(ϕ1(E1),Y1) = 1 and dim N1(E1,X) = 2;
thus we can apply to E1 the results of the preceding section. Indeed, there exists
an extremal rayR2 withE1 ·R2 > 0, and by Theorem 3.2 we can conclude at once
that ρX ≤ 3 unless R2 is small or of type (n − 1, n − 2)sm. More precisely, we
show the following.

Theorem 4.2. Let X and R1 be as in 4.1, and let R2 be an extremal ray with
E1 · R2 > 0. Then one of the following holds.

(i) ρX ≤ 4. More precisely, we have the possibilities:
• ϕ2 is of type (n, n− 1), (n, n− 2), or (n− 1, n− 3) and ρX = 2;
• ϕ2 is a conic bundle and ρX = 3;
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• ϕ2 is of type (n− 2, n− 4) and ρX ≤ 3;
• n = 4, ϕ2 is of type (2, 0), and ρX = 4;
• ϕ2 is of type (n− 1, n− 2) and ρX ≤ 4.

(ii) ϕ2 is of type (n− 1, n− 2)sm; E2 · R1 = 0; and there exists an extremal ray
R0 �= R1 such that E1 · R0 < 0.

Case (ii) will be treated in Proposition 4.8, where we will show that ρX ≤ 5.

Remark 4.3 (Classification results by Tsukioka). Suppose that Y1 is smooth and
ϕ1 is the blow-up of a smooth curve. When ϕ2 is of type (n, n − 2), the possible
X and Y1 are classified in [T1]. Moreover if n = 4, ϕ2 is of type (3,1), and E2 is
smooth, then it is shown in [T3] that Y1

∼= P 4 and ϕ1(E1) is an elliptic curve of
degree 4 in P 4.

Proof of Theorem 4.2. First notice that every nontrivial fiber F of ϕ2 has dimen-
sion at most 2. In fact, F ∩ E1 is nonempty and ϕ1 is finite on it, so that

dimF − 1 ≤ dimF ∩ E1 = dimϕ1(F ∩ E1) ≤ dimϕ1(E1) = 1.

This, together with Theorem 3.2, implies the statement—unless we are in cases
(iii) or (iv) of Theorem 3.2.

First we consider case (iii). Assume that ϕ2 is of type (n−1, n−2)sm andR2 �⊂
N1(E1,X). We treat separately the two possibilities E2 ·R1 = 0 and E2 ·R1 > 0.

Figure 1 The case R2 �⊂ N1(E1,X) and E2 · R1 = 0

Suppose that E2 ·R1 = 0 (Figure 1). Then E2 must contain some fiber F ′ of ϕ1

of dimension n− 2. Since ϕ2 is finite on F ′, we have ϕ2(F
′) = ϕ2(E2) and so

N1(E2,X) = RR2 + N1(F
′,X) = R(R1 + R2).

Then Lemma 3.3 applies to E2 and ϕ1, and thus either ρX ≤ 4 or we have (ii).
See Remark 4.7 for a more precise description of this case.

Assume now that E2 · R1 > 0 (Figure 2) and consider D := ϕ2(E1) ⊂ Y2 and
A := ϕ2(E2) ⊂ D. If C ⊂ Y2 is an irreducible curve not contained in A then
−KY2 · C ≥ 1, with strict inequality (by Lemma 3.8) whenever C ∩ A �= ∅.
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Figure 2 The case R2 �⊂ N1(E1,X) and E2 · R1 > 0

We first suppose that Y2 is Fano and apply Theorem 3.2 to D ⊂ Y2 (choosing
any extremal ray of NE(Y ) that has positive intersection withD). If ρY2 ≤ 3, then
ρX ≤ 4. Otherwise we are in case (iii) or (iv) of Theorem 3.2, and there exists a
smooth prime divisor D ′ ⊂ Y2 with a P1-bundle structure such that, for any fiber
f , we have −KY2 · f = 1, f ·D > 0, and f �⊂ D. Then f ∩ A = ∅; that is, D ′
cannot intersect A, so its inverse image D ′′ in X is a prime divisor that intersects
E1 but is disjoint from E2. This is impossible, because eitherD ′′ ·R1 = 0 andD ′′
contains some nontrivial fiber of ϕ1, or D ′′ · R1 > 0 and D ′′ ∩ C �= ∅ for some
irreducible curve C ⊂ E2 with [C] ∈R1.

Figure 3 The case Y2 not Fano

Assume that Y2 is not Fano (Figure 3). This means that there exists some ex-
tremal ray of NE(Y2) with nonpositive anticanonical degree. Let’s consider the
associated contraction

ψ̃ : Y2 −−� Z̃,

and notice that Exc(ψ̃) ⊆ A ⊂ D. Then any nontrivial fiber of ψ̃ must be 1-
dimensional. In fact, if ψ̃ had a fiber F with dimF ≥ 2, then we would have
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dim(ϕ−1
2 (F ) ∩ E1) ≥ 2;

thusR1 ⊂ N1(ϕ
−1
2 (F ),X) and (ϕ2)∗(R1)⊂ N1(F,Y2). This implies that NE(ψ̃)=

(ϕ2)∗(R1), which is impossible because Exc(ψ̃) should contain all D.
Therefore ψ̃ is small with fibers of dimension at most 1. By Lemma 3.11 we see

that there exists an extremal ray R3 of NE(X) of type (n− 1, n− 2)sm such that
E2 · R3 < 0 and R2 + R3 is a face of NE(X); in particular, ρX ≥ 3.

We need to establish some features of E2 in order to show the following:

E1 · R3 = 0 and [C] ∈R1 + R2 + R3 for every curve C ⊂ E2. (4.4)

Observe first of all that E2 is smooth and that ϕ2|E2 and ϕ3|E2 are P1-bundles.
Moreover, we have N1(E2,X) = R(R1 + R2 + R3). Indeed, R1, R2, and R3 are
contained in N1(E2,X). On the other hand, since E1 meets every fiber of ϕ2|E2 ,
we have ϕ2(E1 ∩ E2) = ϕ2(E2) and so

R(R1 + R2 + R3) ⊆ N1(E2,X) ⊆ RR2 + N1(E1,X);
however, since dim(RR2 + N1(E1,X)) = 3, these inclusions are equalities.

Let T be the normalization of ϕ1(E2), ξ : E2 → T the contraction induced by
(ϕ1)|E2 and let i : E2 ↪→ X be the inclusion:

E2

ξ

��

↪
i �� X

ϕ1

��

T �� Y1.

It is easy to see that i∗(ker ξ∗) = ker(ϕ1)∗ = RR1. Since in general i∗ is not in-
jective, ξ does not need to be an elementary contraction; however, ξ is birational
with Exc(ξ) = E1 ∩ E2, and ξ(Exc(ξ)) ⊂ T is a curve.

Notice also that ρT is the codimension of ker ξ∗ in N1(E2) and, since i∗(ker ξ∗)
has codimension 2 in N1(E2,X), we see that ρT ≥ 2; and ρT = 2 if and only if
ker ξ∗ ⊇ ker i∗.

The diagram

E2
ξ

��

ϕ2|E2

��

T

A

gives a proper covering family of irreducible rational curves inT (see [De, Sec. 5.4]
and references therein). This family of curves induces an equivalence relation (E2-
equivalence, in the terminology of [De]) on T as a set, where two points t1, t2 ∈ T
are equivalent if there exist F1, . . . ,Fm fibers of ϕ2|E2 such that ξ(F1 ∪ · · · ∪ Fm)
is connected and contains both t1 and t2. Then there exists a dense open subset
T0 ⊆ T, closed for the equivalence relation, and a proper morphism α0 : T0 → C0,
where C0 is a normal variety, such that every fiber of α0 is an equivalence class
(see e.g. [De, Thm. 5.9]).
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Let S ⊂ T0 be a fiber of α0. We know that dim N1(S, T ) = 1 by [Ko, Prop.
IV.3.13.3], and since ρT > 1 we know that S � T and dimC0 > 0. Moreover,
ξ−1(S) is a union of fibers of ϕ2 and thus intersects E1 ∩ E2 = Exc(ξ), so that
S ∩ ξ(Exc(ξ)) �= ∅. Hence ξ(Exc(ξ)) intersects every fiber of α0, which means
that dimC0 = 1 and every fiber of α0 has codimension 1.

Now if C is the smooth projective curve containing C0 as an open subset, then
it is not difficult to see that the rational map α0 : T ��� C extends to a contrac-
tion α : T → C whose fibers are equivalence classes. We thus have the following
diagram:

E2
ξ

��

ϕ2|E2

��

T

α

��

A �� C .

We deduce that ρT = 2 and ker ξ∗ ⊇ ker i∗. We refer the interested reader to
[BoCaD] and [Ca2, Sec. 4] for related results.

We have
R(R1 + R2) ⊆ i∗(ker(α � ξ)∗),

and since ker(α�ξ)∗ is a hyperplane in N1(E2) and contains ker i∗ , its image under
i∗ must be R(R1 +R2). In particular we see that NE((ϕ3)|E2) cannot be contained
in ker(α � ξ)∗.

Let’s show thatE1 ·R3 = 0. In fact, ifE1 ·R3 > 0 then, reasoning as forR2, we
get a second contraction α ′ : T → C ′ where C ′ is another smooth curve. More-
over, NE((ϕ3)|E2) is contained in ker(α ′ � ξ)∗ , so α � ξ �= α ′ � ξ and α �= α ′.
However, dim T = n− 1 ≥ 3, and the fibers of α and α ′ are Cartier divisors that
should intersect only in finitely many points, which is impossible.

Thus E1 · R3 = 0, N1(E1,X) = R(R1 + R3), and

N1(E1,X) ∩ NE(X) = R1 + R3. (4.5)

Then N1(E1,X) cannot contain other extremal rays, and R1 + R3 is a face of
NE(X) by the following remark.

Remark 4.6. Let X be as in 4.1, and consider a divisorial extremal ray S1 of
NE(X) with exceptional divisor G1 such that G1 · S ≥ 0 for every extremal ray
S �= S1. Let S2 be a birational extremal ray of NE(X) with G1 · S2 = 0. Then
S1 + S2 is a face of NE(X) whose contraction is birational. This is probably well
known; similar properties can be found in [N].

Indeed, let Ci ⊂ X be a curve with [Ci] ∈ Si for i = 1, 2. If S1 + S2 were not a
face of NE(X), then we should have

λ1C1 + λ2C2 ≡
m∑
j=3

λjCj ,

where λj ∈ Q>0 for every j = 1, . . . ,m and where, for j ≥ 3, [Cj ] belongs to an
extremal ray Sj withG1 ·Sj ≥ 0. Then, intersecting withG1 yields a contradiction.
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Moreover, if C ⊂ X is an irreducible curve with [C] ∈ S1 + S2, then either C ·
G1 < 0 or [C] ∈ S2, so that C ⊂ G1 ∪ Locus(S2).

We continue now with the proof of (4.4) and consider the 3-dimensional cone

i∗(NE(E2)) ⊆ N1(E2,X) ∩ NE(X),

which contains R1, R2, and R3. Since R1 +R3 and R2 +R3 are faces of NE(X),
they are faces of i∗(NE(E2)), too. On the other hand, NE(α � ξ) is a face of
NE(E2), and since ker(α � ξ)∗ ⊇ ker i∗ , it follows that i∗(NE(α � ξ)) is a face S of
i∗(NE(E2)) that is contained in i∗(ker(α � ξ)∗) = R(R1 + R2) and contains both
R1 and R2. Therefore, S = R1 + R2 and so

i∗(NE(E2)) = R1 + R2 + R3,
which implies (4.4).

Now let’s consider ϕ1 : X → Y1 and the divisor ϕ1(E2) ⊂ Y1. Let η : Y1 →W

be an elementary contraction with ϕ1(E2) · NE(η) > 0, as in Remark 2.5. More-
over, let R4 be the extremal ray of NE(X) such that R1 + R4 is a face and
(ϕ1)∗(R4) = NE(η). Then, since dim N1(ϕ1(E2),Y1) = 2, if η is of fiber type we
get ρW ≤ 2 and ρX ≤ 4.

Suppose that η is birational (Figure 4). Let’s show that η must be finite on
ϕ1(E2). If not, then there should be a curve C ⊂ E1 ∪ E2 with [C] ∈ R4. But
[C] ∈ R1 + R2 + R3 by (4.4) and (4.5), which yields either R4 = R2 or R4 =
R3. In either case we would have Exc(η) = ϕ1(E2) and ϕ1(E2) · NE(η) < 0, a
contradiction.

Figure 4 The case η birational

Thus η is finite on ϕ1(E2) ⊃ ϕ1(E1) and must have fibers of dimension at most1.
Then, by Lemma 3.11, η is a divisorial Mori contraction with Exc(η) ∩ ϕ1(E1) =
∅, R4 is of type (n− 1, n− 2)sm, and E4 ∩E1 = ∅. Moreover Exc(η) must inter-
sect ϕ1(E2), so that E4 ∩E2 �= ∅. Since E2 cannot contain curves in R4, we have
E2 · R4 > 0.

If R2 + R4 is a face of NE(X) then (ϕ2)∗(R4) is an extremal ray of NE(Y2),
withD · (ϕ2)∗(R4) > 0, whose locus is either ϕ2(E4) or the whole Y2. However,
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if C ⊂ X is a nontrivial fiber of ϕ4, then it is easy to see that ϕ2(C) · ϕ2(E4) ≥
0; thus the contraction of (ϕ2)∗(R4) is of fiber type and, as before, we get ρY2 ≤
3 and ρX ≤ 4.

Finally, let’s assume that R2 +R4 is not a face of NE(X) and consider the divi-
sor ϕ4(E1) ⊂ Y4. There exists an extremal ray S of NE(Y4) with ϕ4(E1) · S > 0.
Let R5 be the extremal ray of NE(X) such that R4 + R5 is a face of NE(X) and
(ϕ4)∗(R5) = S.We observe that, by construction,R5 �= R2. Sinceϕ−1

4 (ϕ4(E1)) =
E1, we have E1 · R5 > 0; hence R5 �= R1 and R5 �= R3.

Now we apply what we proved so far to R5. Notice that R5 �⊂ N1(E1,X);
in particular, R5 cannot be small. Then either (a) ρX ≤ 4 or (b) R5 is of type
(n − 1, n − 2)sm and there exists a divisorial extremal ray R6 �= R5 such that
E5 · R6 < 0 and E1 · R6 = 0. We show that case (b) is impossible.

In fact we have R6 ⊂ N1(E1,X) = R(R1 + R3), and R6 �= R1 because
Locus(R6) = E5 �= E1, so the only possibility is thatR6 = R3 andE5 = E2. IfC
is a curve with numerical class in R5, then C ⊂ E2 and hence [C] ∈R1 +R2 +R3

by (4.4). But R5 is distinct from R1,R2,R3, so we obtain a contradiction.

Figure 5 ϕ2 is (2, 0), n = 4

We still have to consider the case (Figure 5) where ϕ2 is of type (n− 2, n− 4)
and there exists a smooth prime divisor D ′ ⊂ X, disjoint from E2 and having a
P1-bundle structure ξ : D ′ →W, such that for any fiber f of ξ we have D ′ · f =
−1 and E1 · f > 0. Notice that every nontrivial fiber of ϕ1 must intersect E2, so
it cannot be contained in D ′. This implies that D ′ · R1 > 0, so that D ′ intersects
every curve contracted by ϕ1. Again, since D ′ ∩ E2 = ∅, we see that ϕ1 is finite
on E2. This gives

n− 3 = dim(E1 ∩ E2) = dimϕ1(E1 ∩ E2) ≤ 1
and so n = 4.

We have N1(E1,X) ∩ NE(X) = R1 + R2; also, D ′ · R1 > 0, D ′ · R2 = 0, and
D ′ ·f < 0. Thus [f ] /∈ N1(E1,X) and ρX ≥ 3. Moreover, ξ(D ′∩E1)=W ; hence

N1(D
′,X) = R[f ] ⊕ N1(D

′ ∩ E1,X) = R[f ] ⊕ RR1 ⊕ RR2

and dim N1(D
′,X) = 3.
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Since D ′ · f < 0, there exists an extremal ray R̃2 of NE(X) with D ′ · R̃2 <

0. If R̃2 were small, then by [Ka] its exceptional locus would contain F ∼= P2.

ThenW ∼= P2 and ρD ′ = 2, a contradiction. Thus R̃2 is divisorial, with excep-
tional divisorD ′. Since R̃2 �⊂ N1(E1,X), it follows that R̃2 is of type (3, 2)sm and
E1 · R̃2 > 0. Applying to R̃2 what we have already proved yields ρX ≤ 4. In fact,
it is not difficult to see that R̃2 contains [f ].

Remark 4.7. Let X and R1 be as in 4.1, and suppose that R2 is a birational ex-
tremal ray with E1 ·R2 > 0, E2 ·R1 = 0, and R2 �⊂ N1(E1,X) (see Figure 1). We
have seen in the proof of Theorem 4.2 that R2 is of type (n− 1, n− 2)sm and that
N1(E2,X) = R(R1 + R2).

Therefore E2 · S ≥ 0 for every extremal ray S �= R2, and Y2 is Fano by [W,
Prop. 3.4]. Moreover, by Remark 4.6 we have that R1 + R2 is a face of NE(X),
whose contraction is birational. Notice that the contraction ofR1+R2 cannot send
E1 to a point, for otherwise we would have N1(E1,X) = R(R1+R2), which is ex-
cluded by our assumptions. Thus (ϕ2)∗(R1) is an extremal ray of NE(Y2), whose
contraction is birational, and cannot send ϕ2(E1) to a point. This means that Y2

has an elementary contraction of type (n− 1,1) given by (ϕ2)∗(R1), with excep-
tional divisor ϕ2(E1), and ϕ2 is the blow-up of a smooth fiber of this contraction.

Proposition 4.8. LetX and R1 be as in 4.1, and suppose that there exists an ex-
tremal ray R0 �= R1 withE1 ·R0 < 0. Then ρX ≤ 5; R0 +R1 is a face of NE(X);
E1

∼= W × P1, whereW is smooth and Fano; Y0 is smooth; and ϕ0 is the blow-up
of a smooth subvariety isomorphic to W.

If ρX = 5 then there exists a smooth Fano variety Z, with ρZ = 3, dimZ = n,
and having an elementary contraction of type (n− 1,1), such that X is the blow-
up of Z in two fibers of this contraction.

Proof. Every nontrivial fiber of ϕ0 is contained in E1 and thus has dimension 1.
Hence R0 is of type (n − 1, n − 2)sm, Y0 and E1 are smooth, ϕ0 is the blow-up
of a smooth codimension-2 subvariety W ⊂ Y0, and E1 is a P1-bundle over W.
Moreover, N1(E1,X) = R(R0 +R1), N1(E1,X)∩ NE(X) = R0 +R1, and there
are no other extremal rays with negative intersection with E1.

For i = 1, 2 let Ci be a curve in Ri and Hi a nef divisor such that, for every
extremal ray S of NE(X), Hi · S = 0 if and only if S = Ri. Consider the divisor

H := (H0 · C1)H1 + (H1 · C0)(−E1 · C1)H0 + (H0 · C1)(H1 · C0)E1.

It is easy to see that H · R0 = H · R1 = 0 and that H · S > 0 for every extremal
ray S �= R0,R1. Then R0 + R1 is a face of NE(X).

Let’s show that E1 is Fano. If γ ∈ NE(E1) is nonzero, then

−KE1 · γ = −(KX + E1)|E1 · γ = −(KX + E1) · i∗(γ ),
where i : E1 ↪→ X is the inclusion. First of all we observe that i∗(γ ) is nonzero.
Indeed, if A is an ample divisor on X, then

A · i∗(γ ) = A|E1 · γ > 0.
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Moreover, i∗(NE(E1))⊆ NE(X), so that i∗(γ )∈R0+R1 and henceE1·i∗(γ ) < 0.
This gives −KE1 · γ > 0.

The restriction ϕ1|E1 : E1 → ϕ1(E1) is surjective with connected fibers. Since
ϕ1(E1) is dominated by fibers of ϕ0|E1 , it is a rational curve, and ϕ1|E1 induces a
Mori contraction

ϕ : E1 −−� P1

that does not contract the fibers of ϕ0|E1 . Then E1
∼= W × P1 by the following

lemma.

Lemma 4.9. Let E be a smooth variety and let π : E → W be a smooth mor-
phism with fiber P r. Suppose that E has a Mori contraction φ : E → P r that is
finite on fibers of π. Then E ∼= W × P r.

We postpone the proof of Lemma 4.9 and carry on with the proof of Proposition 4.8.
Let R2 be an extremal ray of NE(X) with E1 · R2 > 0. Then R2 is different

fromR0 andR1, so thatR2 �⊂ N1(E1,X), and ϕ2 is finite onE1 (notice that neces-
sarily ρX ≥ 3). If ϕ2 is of fiber type, then it is a conic bundle and we have ρY2 = 2
and ρX = 3.

Suppose that ϕ2 is birational. Then it is of type (n−1, n−2)sm, so Y2 is smooth
and ϕ2 is the blow-up of A := ϕ2(E2) ⊂ ϕ2(E1) ⊂ Y2. We set D := ϕ2(E1).

Notice that ϕ2(E1 ∩ E2) = ϕ2(E2) and that C · E2 ≥ 0 for every curve C ⊂
E1. Since ϕ∗

2(−KY2 ) = −KX +E2, using the projection formula shows us that Y2

is Fano.
Let ψ : Y2 → Z be an elementary contraction such that D · NE(ψ) > 0, as in

Remark 2.5. If ψ is of fiber type, then ρZ ≤ 2 and ρX ≤ 4. Assume that ψ is
birational (Figure 6). Then ψ must be finite on D, because

N1(D,Y2) ∩ NE(Y2) = (ϕ2)∗(N1(E1,X) ∩ NE(X))

= (ϕ2)∗(R0)+ (ϕ2)∗(R1). (4.9)

If ψ were not finite onD, then we should have NE(ψ) = (ϕ2)∗(R0) or NE(ψ) =
(ϕ2)∗(R1); in both cases Exc(ψ) = D, which contradicts D · NE(ψ) > 0. Thus
Z is smooth and ψ is of type (n− 1, n− 2)sm.

Figure 6 The case ψ birational
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Lemma 3.11 states that Exc(ψ) ∩ A is a union of fibers of ψ, but ψ is finite on
A and so Exc(ψ) ∩ A = ∅. Hence the composition

ψ � ϕ2 : X −−� Z
is just the blow-up of two disjoint subvarieties in Z. Set Ẽ2 := ϕ−1

2 (Exc(ψ)), so
that Exc(ψ � ϕ2) = E2 ∪ Ẽ2.

Let’s show thatE2 ·R1 = Ẽ2 ·R1 = 0. The intersectionE1∩E2 has pure dimen-
sion n− 2 ≥ 2, so ϕ1|E1∩E2 : E1 ∩ E2 → ϕ1(E1) has positive dimensional fibers.
Take a curve C in one of these fibers: then [C] ∈R1 and C ⊂ E2; hence C ∩ Ẽ2 =
∅ and so Ẽ2 · R1 = 0. In the same way we see that E2 · R1 = 0. Therefore both
E1 ∩ E2 and E1 ∩ Ẽ2 are the union of finitely many fibers of ϕ1.

We apply Remark 4.7 to R1 and R2, which allows us to deduce that R1 + R2 is
a face of NE(X) and that S1 := (ϕ2)∗(R1) is an extremal ray of NE(Y2) of type
(n− 1,1) with exceptional divisor D.

By (4.9) we know that, apart from S1, the other possible extremal ray contained
in N1(D,Y2) is (ϕ2)∗(R0). It is easy to see that E2 ·R0 > 0 andD · (ϕ2)∗(R0) ≥
0. This shows that S1 is the unique extremal ray of NE(Y2) having negative inter-
section with D, and Theorem 4.2 then yields ρY2 ≤ 4 and ρX ≤ 5.

Recall that NE(ψ) is a birational extremal ray of NE(Y2) with D · NE(ψ) > 0
and NE(ψ) �⊂ N1(D,Y2). Moreover, Ẽ2 · R1 = 0 in X yields Exc(ψ) · S1 = 0 in
Y2. Hence we can apply Remark 4.7 to Y2, S1, and NE(ψ) as we did forX,R1, and
R2. We deduce thatZ is Fano, ψ∗(S1) is an extremal ray of type (n−1,1)with ex-
ceptional divisor ψ(D), and X is the blow-up of Z in two fibers of the associated
contraction. Notice that ψ � ϕ2 is finite and birational on E1, so the normalization
of ψ(D) isW × P1.

Proof of Lemma 4.9. We proceed similarly to the proof of [AW2, Lemma 1.2.2].
LetKπ be the relative canonical bundle of π. Let’s show thatKπ ·C = 0 for every
curve C contracted by φ. Because φ is a Mori contraction, it is enough to show
this when C is an irreducible rational curve. Then π(C) is again an irreducible
rational curve. Let ν : P1 → W be the morphism given by the normalization of
π(C) ⊂ W, and consider the fiber product of P1 and E overW :

EC
ν̃

��

φC

��

πC

��

E
φ

��

π

��

P r

P1 ν �� W .

Notice that πC : EC → P1 is a P r -bundle and KπC = ν̃∗(Kπ).
Set φC := φ � ν̃. Then φC is surjective and its Stein factorization gives a con-

traction ξC : EC → P that is finite on fibers of πC and such that dimP = r. This
easily implies (e.g., using toric geometry) that EC ∼= P1 × P r, P ∼= P r, and ξC is
the projection. Then KπC = ξ ∗

C(KP r ).

Now set C̃ := ν̃−1(C) ⊂ EC. Since φ(C) = {pt}, we have φC(C̃) = {pt} and
hence ξC(C̃ ) = {pt}.Moreover, ν̃∗(C̃ ) = mC for somem∈ Z≥1. Finally, we have
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Kπ · C = 1

m
Kπ · ν̃∗(C̃ ) = 1

m
ν̃∗(Kπ) · C̃ = 1

m
KπC · C̃ = 1

m
ξ ∗
C(KP r ) · C̃ = 0.

Let F be a general fiber of φ, and let d be the degree of the finite map E →
W× P r induced by π and φ. Then g := π|F : F →W is finite of degree d. Since
F is Fano, the numerical and linear equivalence for divisors in F coincide and
therefore (Kπ)|F ∼= OF . We get

KF = (KE)|F = (Kπ + π∗KW)|F = g∗KW ,

so that g is étale. ThenW is Fano, too; in particular, it is simply connected. Thus
g is an isomorphism and d = 1.

Proof of Corollary 1.2. The statement is a straightforward consequence of Theo-
rem 1.1 and [Ta, Thm. 1.1].

Proof of Corollary 1.3. By Proposition 3.1, X cannot have elementary contrac-
tions of type (3, 0). The possible values of ρX whenX has a fiber type elementary
contraction follow from [Ca2, Cor. 1.2], and they follow from Theorem 1.1 for
type (3,1).

Concerning positive examples, any product of Del Pezzo surfacesX ∼= S1 × S2

with ρS1 ≥ 3 has elementary contractions of type (3, 2). In the toric case one can
find examples of Fano 4-folds with small contractions up to Picard number 6; see
[Ba] and [Ca2, Ex. 7.9].

Example 4.10. It is not difficult to find examples of Fano varietiesX, as in The-
orem 1.1, with ρX = 5. For instance, in the toric case we know after [S] (and [Ba]
for the 4-dimensional case) that there are exactly n− 2 possibilities for X, which
can be obtained as follows.

Let a be an integer with 1 ≤ a ≤ n− 2, and consider

Z := PP n−2×P1(O(0,1)⊕ O(a, 0)).

Then Z is Fano with ρZ = 3. The P1-bundle Z → P n−2 × P1 has a section EZ
with normal bundle NEZ/Z

∼= OP n−2×P1(−a,1), and Z has an extremal ray of type
(n − 1,1) with exceptional divisor EZ. Blowing up Z along P n−2 × {p1,p2} ⊂
EZ (where p1,p2 ∈ P1 are two distinct points) yields a toric Fano variety X with
ρX = 5, where the proper transform E ∼= P n−2 × P1 of EZ has normal bundle
OP n−2×P1(−a, −1). Finally, X has an extremal ray of type (n − 1,1) and one of
type (n− 1, n− 2)sm, both with exceptional divisor E.
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