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Wonderful Compactification of an
Arrangement of Subvarieties
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1. Introduction

The purpose of this paper is to define the so-called wonderful compactification of
an arrangement of subvarieties, to prove its expected properties, to give a construc-
tion by a sequence of blow-ups, and to discuss the order in which the blow-ups
can be carried out.

Fix a nonsingular algebraic variety Y over an algebraically closed field (of arbi-
trary characteristic). An arrangement of subvarieties S is a finite collection of
nonsingular subvarieties such that all nonempty scheme-theoretic intersections of
subvarieties in S are again in S or, equivalently, such that any two subvarieties in-
tersect cleanly and the intersection is either empty or a subvariety in this collection
(see Definition 2.1).

Let S be an arrangement of subvarieties of Y. A subset G ⊆ S is called a build-
ing set of S if, for all S ∈ S \G, the minimal elements in {G∈ G : G ⊇ S} intersect
transversally and the intersection is S. A set of subvarieties G is called a build-
ing set if all the possible intersections of subvarieties in G form an arrangement
S (called the induced arrangement of G) and G is a building set of S (see Defini-
tion 2.2).

For any building set G, the wonderful compactification of G is defined as follows.

Definition 1.1. Let G be a nonempty building set and Y ◦ = Y
∖⋃

G∈G G. The
closure of the image of the natural locally closed embedding

Y ◦ ↪→
∏
G∈G

BlGY

is called the wonderful compactification of the arrangement G and is denoted byYG .

The following description of YG is the main theorem and is proved at the end of
Section 2.3. A G-nest is a subset of the building set G satisfying some inductive
condition (see Definition 2.3).

Theorem 1.2. Let Y be a nonsingular variety and let G be a nonempty building
set of subvarieties of Y. Then the wonderful compactification YG is a nonsingular
variety. Moreover, for each G ∈ G there is a nonsingular divisor DG ⊂ YG such
that :
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(i) the union of these divisors is YG \ Y ◦;
(ii) any set of these divisors meets transversally. An intersection of divisors

DT1 ∩ · · · ∩DTr is nonempty exactly when {T1, . . . , Tr} form a G-nest.

This theorem is proved by a construction of YG through an explicit sequence of
blow-ups of Y along nonsingular centers (see Definition 2.12 and Theorem 2.13).

Here are some examples of wonderful compactifications of an arrangement (see
Section 4 for details).

(1) De Concini–Procesi’s wonderful model of subspace arrangements (Section
4.1). In this case, Y is a vector space, S is a finite set of proper subspaces of
Y, and G is a building set with respect to S.

(2) Suppose X is a nonsingular algebraic variety, n is a positive integer, and Y is
the Cartesian product Xn. A diagonal of Xn is

�I = {(p1, . . . ,pn)∈Xn | pi = pj ∀i, j ∈ I }
for I ⊆ [n], |I | ≥ 2. A polydiagonal is an intersection of diagonals

�I1 ∩ · · · ∩�Ik
for Ii ⊆ [n], |Ii | ≥ 2 (1 ≤ i ≤ k).
(a) The Fulton–MacPherson configuration space X[n] (Section 4.2). This is

the wonderful compactification YG where G is the set of all diagonals in
Y and the induced arrangement S is the set of all polydiagonals. It is a
special example of Kuperberg–Thurston’s compactification X� when �
is the complete graph with n vertices.

(b) Ulyanov’s polydiagonal compactification X〈n〉 (Section 4.5). It is the
wonderful compactification YG where S = G are the set of all poly-
diagonals.

(c) Kuperberg–Thurston’s compactificationX� when � is a connected graph
with n labeled vertices (Section 4.3). HereX� is the wonderful compact-
ification YG , where G is the set of diagonals in Y corresponding to vertex-
2-connected subgraphs of � and where S is the set of polydiagonals gen-
erated by intersections of diagonals in G.

(3) The moduli space of rational curves with nmarked pointsM0,n (Section 4.4).
It is the wonderful compactification YG , where Y = (P1)n−3 and G is set of
all diagonals and augmented diagonals �I,a defined as

�I,a := {(p4, . . . ,pn)∈ (P1)n−3 | pi = a ∀i ∈ I }
for I ⊆ {4, . . . , n}, |I | ≥ 2, and a ∈ {0,1,∞}.

The moduli space M0,n is also the wonderful compactification YG where
Y = P n−3 and G is the set of all projective subspaces of P n−3 spanned by any
subset of fixed n− 1 generic points [Ka].

(4) Hu’s compactification of open varieties (Section 4.6). It is a wonderful com-
pactification of (Y, S, G), where Y is a nonsingular algebraic variety and S = G
is an arrangement of subvarieties of Y [Hu].
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During the study of the sequence of blow-ups, a natural question arises: In which
order can we carry out the blow-ups to obtain the wonderful compactification? For
example, neither the original construction of the Fulton–MacPherson configura-
tion space X[n] nor Keel’s construction of M0,n nor Kapranov’s construction of
M0,n is obtained by blowing up along the centers with increasing dimensions. If
we change the order of blow-ups, do we still get the same variety?

We answer this question with the following theorem, which is proved in Sec-
tion 3. The notation G̃ stands for the dominant tranform ofG (see Definition 2.7),
which is similar to but slightly different from the strict tranform: for a subvariety
G contained in the center of a blow-up, the strict transform of G is empty but the
dominant transform G̃ is the preimage of G.

Theorem 1.3. Let Y be a nonsingular variety and let G = {G1, . . . ,GN} be a
nonempty building set of subvarieties of Y. Let I i be the ideal sheaf of Gi ∈ G.
(i) The wonderful compactification YG is isomorphic to the blow-up of Y along

the ideal sheaf I1I2 · · · IN.
(ii) If we arrange G = {G1, . . . ,GN} in such an order that

the first i terms G1, . . . ,Gi form a building set for any 1 ≤ i ≤ N, (∗)
then

YG = BlG̃N · · ·BlG̃2
BlG1Y,

where each blow-up is along a nonsingular subvariety.

Example. By Keel’s construction [Ke1] and the preceding theorem,M0,n is iso-
morphic to the wonderful compactification YG when Y is (P1)n−3 and G is set of
all diagonals and augmented diagonals. In other words, we can blow up along the
centers in any order satisfying (∗) (e.g., of increasing dimension). As a conse-
quence, we have the following corollary.

Corollary 1.4. Let ψ : P1[n] → (P1)3 be the composition of the natural mor-
phism P1[n] → (P1)n and let π123 : (P1)n → (P1)3 be the projection to the
first three components. Then M0,n is isomorphic to the fiber of ψ over the point
(0,1,∞) ∈ (P1)3. Equivalently, M0,n is isomorphic to the fiber over any point
(p1,p2,p3), where p1,p2,p3 are three distinct points in P1.

Similarly, Kapranov’s construction does not delicately depend on the order of the
blow-ups; for example, we can blow up along the centers in any order of increas-
ing dimension.

This article is built on the following previous works: Fulton and MacPherson
[FM], De Concini and Procesi [DP], MacPherson and Procesi [MP], Ulyanov [U],
and Hu [Hu].

The inspiring paper by De Concini and Procesi [DP] gives a thorough discussion
of an arrangement of linear subspaces of a vector space. Given a vector space Y
and an arrangement of subspaces S, De Concini and Procesi give a condition
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for a subset G ⊆ S such that there exists a wonderful model YG of the arrange-
ment in which the elements in G are replaced by simple normal crossing divisors.
De Concini and Procesi call G a building set. Their paper also gives a criterion of
whether the intersection of a collection of such divisors is nonempty by introduc-
ing the notion of a nest.

This idea was later generalized by MacPherson and Procesi to nonsingular va-
rieties over C with conical stratifications. They consider conical stratifications in
place of the subspace arrangments in [DP]. The notions of building set and nest
are generalized in this setting. The idea of the construction of wonderful com-
pactifications of arrangement of subvarieties in our paper is largely inspired by the
beautiful paper [MP]. In our paper we give definitions of arrangements of subvari-
eties, building sets, and nests. The wonderful compactifications are shown to have
properties analogous to those in [DP] and [MP].

The paper is organized as follows. In Section 2 we give the construction of the
wonderful compactificationYG .We begin by defining arrangements, building sets,
and nests and then describe how they vary under one blow-up; we finish by giv-
ing the actual construction of YG . In Section 3 we discuss the order in which the
blow-ups could be carried out to obtain YG . Section 4 gives some examples of
wonderful compactifications.

Section 5 comprises the Appendix. In Section 5.1 we discuss clean intersec-
tions and transversal intersections, and in Section 5.2 we give the proofs of pre-
vious statements. In Section 5.3 we discuss how different choices of blow-ups
change the codimension of the centers. Finally, in Section 5.4 we give the state-
ments for a general (nonsimple) arrangement (proofs omitted).

Acknowledgments. In many ways the author is greatly indebted to Mark de
Cataldo, his Ph.D. advisor. He is very grateful to William Fulton for valuable
comments. He would also thank Blaine Lawson, Dror Varolin, Jun-Muk Hwang,
and especially Herwig Hauser for their many useful comments and encourage-
ment. He thanks Jonah Sinick for carefully proofreading the paper. He thanks the
referee for many constructive suggestions to improve the presentation.

2. Arrangements of Subvarieties and the
Wonderful Compactifications

By a variety we shall mean a reduced and irreducible algebraic scheme defined
over a fixed algebraically closed field (of arbitrary characteristic). A subvariety of
a variety is a closed subscheme that is a variety. By a point of a variety we shall
mean a closed point of that variety. By the intersection of subvarieties Z1, . . . ,Zk
we shall mean the set-theoretic intersection (denoted byZ1∩· · ·∩Zk).We denote
the ideal sheaf of a subvariety V of a variety Y by IV .

In this section we discuss the arrangements, building sets, and nests upon which
is based our definition of the wonderful compactifications of an arrangement. The
idea is inspired by [DP] and [MP].
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2.1. Arrangement, Building Set, Nest

The following definition of arrangement is adapted from [Hu]. For a brief review
of the definitions of clean intersection and transversal intersection, see Section 5.1.

Definition 2.1. A simple arrangement of subvarieties of a nonsingular variety
Y is a finite set S = {Si} of nonsingular closed subvarieties Si properly contained
in Y and satisfying the following conditions:

(i) Si and Sj intersect cleanly (i.e., their intersection is nonsingular and the tan-
gent bundles satisfy T(Si ∩ Sj ) = T(Si)|(Si∩Sj ) ∩ T(Sj )|(Si∩Sj ));

(ii) Si ∩ Sj is either equal to some Sk or is empty.

This definition is equivalent to stating that S is an arrangement if and only if it is
closed under scheme-theoretic intersections (cf. Lemma 5.1).

For the sake of clarity we discuss only the simple arrangement, but most state-
ments still hold (with minor revision) for general arrangements. For example,
instead of condition (ii) we may allow Si ∩ Sj to be a disjoint union of some Sk
(see Section 5.4).

For a simple arrangement, the condition of transversality can be checked at one
point (instead of at every point) of the intersection (Lemma 5.2).

Definition 2.2. Let S be an arrangement of subvarieties of Y. A subset G ⊆ S
is called a building set of S if, for all S ∈ S, the minimal elements in {G ∈ G :
G ⊇ S} intersect transversally and their intersection is S (by our definition of
transversality in Section 5.1, the condition is satisfied if S ∈ G). In this case, these
minimal elements are called the G-factors of S.

A finite set G of nonsingular subvarieties of Y is called a building set if the set of
all possible intersections of collections of subvarieties from G forms an arrange-
ment S and if G is a building set of S. In this situation, S is called the arrangement
induced by G.

Example. LetX be a nonsingular variety of positive dimension and let Y be the
Cartesian product X3.

(1) The set G = {�12,�13,�23,�123} is a building set whose induced arrange-
ment is G itself.

(2) The set G = {�12,�13} is a building set whose induced arrangement is
{�12,�13,�123}. On the other hand, G is not a building set of the arrange-
ment {�12,�13,�23,�123}.

(3) The set G = {�12,�13,�23} is not a building set, because the set of all possi-
ble intersections from G is {�12,�13,�23,�123} yet �123 is not a transversal
intersection of �12, �13, and �23.

Remark. The building set G defined here is related to the one defined in [DP]
as follows. For any point y ∈ Y, define S ∗

y = {T ⊥
S,y}S∈S and G ∗

y = {T ⊥
S,y}S∈G . We
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claim that the set G is a building set if and only if G ∗
y is a building set for all y ∈ Y

in the sense of De Concini and Procesi.
Indeed, S being an arrangement is equivalent to the condition that, for any y ∈ Y,

S ∗
y is a finite set of nonzero linear subspaces of T ∗

y that is closed under sum and
such that each element of S ∗

y is equal to T ⊥
S,y for a unique S ∈ S. The subset G ⊆ S

being a building set is equivalent to the following condition: for all S ∈ S and for
all y ∈ S, suppose T ⊥

1 , . . . , T ⊥
k are all the maximal elements of G ∗

y contained in
T ⊥
S,y; then they form a direct sum and

T ⊥
1 ⊕ T ⊥

2 ⊕ · · · ⊕ T ⊥
k = T ⊥

S,y ,

which is exactly the definition of building set in [DP, Sec. 2.3, Thm. (2)].

Definition 2.3 (cf. [MP, Sec. 4]). A subset T ⊆ G is called G-nested (or a G-
nest) if it satisfies one of the following equivalent conditions.

(i) There is a flag of elements in S: S1 ⊆ S2 ⊆ · · · ⊆ S� such that

T =
�⋃
i=1

{A : A is a G-factor of Si}.

(We say T is induced by the flag S1 ⊆ S2 ⊆ · · · ⊆ S�.)
(ii) Let A1, . . . ,Ak be the minimal elements of T ; then they are all the G-factors

of a certain element in S. For any 1 ≤ i ≤ k, the set {A∈ T : A � Ai} is also
G-nested as defined by induction.

Example. LetX be a nonsingular variety of positive dimension and let Y be the
Cartesian product X 4. Take the building set G to be the set of all diagonals in X 4.

(1) The set T = {�12,�123} is a G-nest, since it can be induced by the flag
�123 ⊆ �12.

(2) The set T = {�12,�34,�1234} is a G-nest, since it can be induced by the flag
�1234 ⊆ (�12 ∩�34).

(3) The set T = {�12,�13} is not a G-nest. Indeed, the intersection of the minimal
elements in T is �123, which has only one G-factor: �123 itself. By condi-
tion (ii) of the definition, T is not a G-nest.

Note that the intersection of elements in a G-nest T is nonempty by (ii). Now
we explain why the two conditions (i) and (ii) are equivalent. Given a set T sat-
isfying (ii), we can construct a flag as follows. Define S1 = A1 ∩ · · · ∩Ak , which
is the intersection of all subvarieties in T . Let S2 be the intersection of the sub-
varieties in T that are not minimal elements in T containing S1. Then inductively
let Sj+1 be the intersection of those that are not minimal elements in T containing
Sj . It is easy to show that T is induced by the flag S1 ⊆ S2 ⊆ · · · , so (ii) ⇒ (i).
Conversely, let S1j = Aj (1 ≤ j ≤ k) be the G-factors of S1. Observe that, for
any 1 ≤ i ≤ �, a G-factor of Si must contain exactly one element of A1, . . . ,Ak;
otherwise, the Ai would not intersect transversally. Let Sij be the G-factor of Si
that contains Aj . (Define Sij = Y if there is no such a G-factor.) Then, for each
1 ≤ j ≤ k, there is a flag of elements S2j ⊆ S3j ⊆ · · · ⊆ S�j , which induces the
G-nest {A∈ T : A � Ai}. This shows that (i) ⇒ (ii).
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We now state some basic properties about arrangements and building sets.

Lemma 2.4. Let Y be a nonsingular variety and let G be a building set with the
induced arrangement S. Suppose S ∈ S and G1, . . . ,Gk are all the G-factors of S
(Definition 2.2). Then the following statements hold.

(i) For any 1 ≤ m ≤ k, the subvarieties G1, . . . ,Gm are all the G-factors of the
subvariety G1 ∩ · · · ∩Gm.

(ii) Suppose F ∈ G is minimal such that F ∩ S �= ∅, F ⊆ G1, . . . ,Gm, and F �
Gm+1, . . . ,Gk. Then F,Gm+1, . . . ,Gk are all the G-factors of the subvariety
F ∩ S.

Proof. See Section 5.2.

Here is an immediate consequence of Lemma 2.4.

Lemma 2.5. If G1, . . . ,Gk ∈ G are all minimal and their intersection S is non-
empty, then G1, . . . ,Gk are all the G-factors of S.

Next we introduce the notion ofF -factorization, which turns out to be a convenient
terminology for the proof of the construction of wonderful compactifications.

Lemma 2.6. Suppose F ∈ G is minimal.

(i) Any G∈ G either contains F or intersects transversally with F.
(ii) Every S ∈ S satisfying S∩F �= ∅ can be uniquely expressed asA∩B, where

A,B ∈ S ∪ {Y } satisfy A ⊇ F and B � F (hence A � B). We call this ex-
pression S = A ∩ B the F -factorization of S.

(iii) Suppose the G-factors of S areG1, . . . ,Gk , whereG1, . . . ,Gm contain F (0 ≤
m ≤ k; the case m = 0 is understood to mean that no G-factors of S con-
tain F ). Let the F -factorization of S be A ∩ B. Then G1, . . . ,Gm are all the
G-factors of A andGm+1, . . . ,Gk are all the G-factors of B, so A = ⋂m

i=1Gi
andB = ⋂k

i=m+1Gi. (Here we assume thatA = Y ifm = 0 and thatB = Y
if m = k.)

(iv) Suppose S ′ ∈ S such that S ′ ∩ S ∩ F �= ∅. Let S ′ = A′ ∩ B ′ be the F -
factorization of S ′. Then F � (B ∩ B ′) and therefore the F -factorization of
S ∩ S ′ is (A ∩ A′) ∩ (B ∩ B ′).

Proof. See Section 5.2.

2.2. Change of an Arrangement after a Blow-up

Before considering a sequence of blow-ups, we first consider a single blow-up.
Let Y be a nonsingular variety and let G be a building set with the induced arrange-
ment S. In Proposition 2.8 we show that, if F ∈ G is minimal, then there exists a
natural arrangement S̃ in BlFY induced from S as well as a natural building set G̃
induced from G.
Definition 2.7. Let Z be a nonsingular subvariety of a nonsingular variety Y
and let π : BlZY → Y be the blow-up of Y along Z.
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For any irreducible subvariety V of Y, we define the dominant transform of
V, denoted by Ṽ or V ,̃ to be the strict transform of V if V � G and to be the
scheme-theoretic inverse π−1(V ) if V ⊆ G.

For a sequence of blow-ups, we still denote the iterated dominant transform
(· · · ((V˜)̃ ) · · · )̃ by Ṽ or V .̃

Remark. We introduce the notion of dominant transform because the strict trans-
form does not behave as expected: the strict transform of a subvariety contained
in the center of a blow-up is empty, which is not what we need.

Proposition 2.8. Let Y be a nonsingular variety and let G be a building set with
the induced arrangement S. LetF be a minimal element in G and let π : BlFY → Y

be the blow-up of Y along F. Denote the exceptional divisor by E.

(i) The collection S̃ of subvarieties in BlGY defined as

S̃ := {S̃ }S∈S ∪ {S̃ ∩ E}∅�S∩F�S

is a (simple) arrangement of subvarieties in BlGY.
(ii) G̃ := {G̃}G∈G is a building set of S̃.

(iii) Given a subset T of G, we define T̃ := {Ã}A∈T . Then T is a G-nest if and
only if T̃ is a G̃-nest.

The proof is in Section 5.2, and its main ingredient is the following lemma.

Lemma 2.9. Assume the same notation as in Proposition 2.8. Assume thatA,A1,
A2, B, B1, B2, and G are nonsingular subvarieties of Y.

(i) Suppose A � F. Then Ã ∩ E intersect transversally (hence cleanly).
(ii) Suppose that A1 � A2 and A2 � A1, and suppose that A1 ∩A2 = F and the

intersection is clean. Then Ã1 ∩ Ã2 = ∅.
(iii) Suppose that A1 and A2 intersect cleanly and that F � A1 ∩ A2. Then

Ã1 ∩ Ã2 = (A1 ∩ A2 )̃ . Moreover, Ã1 and Ã2 intersect cleanly.
(iv) Suppose that B1 and B2 intersect cleanly and thatG is transversal to B1, B2,

and B1 ∩ B2. Then B̃1 ∩ B̃2 = (B1 ∩ B2 )̃ . Moreover, B̃1 and B̃2 intersect
cleanly.

(v) Suppose A � B, F ⊆ A, and F � B. Then Ã ∩ B̃ = (A ∩ B)̃ . Moreover,
Ã � B̃ and (E ∩ Ã) � B̃.

(vi) Assume that F ⊆ A, F � B1 � B2, G ⊆ F ∩ B1, and G � B2. Then
G̃ ∩ Ã ∩ (B1 ∩ B2 )̃ = G̃ ∩ Ã ∩ B̃2, where the latter is a transversal inter-
section.

Proof. See Section 5.2.

2.3. A Sequence of Blow-ups and the Construction
of Wonderful Compactifications

Now we study a sequence of blow-ups, give different descriptions of a wonder-
ful compactification, and study the relations of the arrangements occurring in the
sequence of blow-ups.
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Given kmorphisms between algebraic varieties with the same domain fi : X→
Yi, we adopt the notation (f1, f2, . . . , fk) : X→ Y1×· · ·×Yk to signify the compo-
sition of the diagonal morphismX→ X×· · ·×Xwith the morphism f1×· · ·×fk.
Lemma 2.10. Let V and W be two nonsingular subvarieties of a nonsingular
variety Y such that either V and W intersect transversally or one of V and W
contains the other. Let f : Y1 → Y (resp. g : Y2 → Y ) be the blow-up of Y along
W (resp.V ). Let g ′ : Y3 → Y1 be the blow-up of Y1 along the dominant transform
Ṽ. Then there exists a morphism f ′ : Y3 → Y2 such that the following diagram
commutes.

Y3
f ′

��

g ′
��

Y2

g

��

Y1
f

�� Y

Moreover, (g ′, f ′) : Y3 → Y1 × Y2 is a closed embedding.

Proof. Because of the universal property of blowing up [H, Prop. 7.14], in order
to show the existence of f ′ we need only show that (fg ′)−1IV · OY3 is an invert-
ible sheaf of ideals on Y3. But this is true since, by our choice of V and W, the
sheaf f −1IV · OY1 is either IṼ or IṼ IE , where E is the exceptional divisor of the
blow-up f : Y1 → Y. Hence the ideal sheaf

(fg ′)−1IV · OY3 = g ′−1(f −1IV · OY1) · OY3

is either (g ′−1IṼ ) ·OY3 or g ′−1(IṼ · IE) ·OY3 , both of which are invertible by the
construction of g ′; therefore, the ideal sheaf (fg ′)−1IV · OY3 is invertible. That
(g ′, f ′) is a closed embedding can be checked using local parameters.

Lemma 2.11. Suppose X1,X2,X3,Y1,Y2,Y3 are nonsingular varieties such that
the following diagram commutes.

X1
f1 ��

g1

��

X2
f2 ��

g2

��

X3

g3

��

Y1
h1 �� Y2

h2 �� Y3

If (g1, f1) : X1 → Y1 ×X2 and (g2, f2) : X2 → Y2 ×X3 are closed embeddings,
then (g1, f2f1) : X1 → Y1 ×X3 is also a closed embedding.

As a consequence, if we have the commutative diagram

X1
f1 ��

g1

��

X2
f2 ��

g2

��

· · · fk−1
�� Xk

gk

��

Y1
h1 �� Y2

h2 �� · · · hk−1
�� Yk
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and if (gi, fi) : Xi → Yi ×Xi+1 are closed embeddings for all 1 ≤ i ≤ k−1, then
(g1, fk−1 · · · f1) : X1 → Y1 ×Xk is also a closed embedding.

Proof. The composition of two closed embeddings is still a closed embedding, so

φ := (g1, g2f1, f2f1) : X1 → Y1 × Y2 ×X3

is a closed embedding whose image φ(X1) is a closed subvariety of Y1×Y2 ×X3,
which is isomorphic toX1. Consider the projection π13 : Y1×Y2 ×X3 → Y1×X3

and the morphism �h1 × 1X3 : Y1 ×X3 → Y1 × Y2 ×X3.

X1
φ

��

(g1,f2f1) ������������ Y1 × Y2 ×X3

π13

��

Y1 ×X3

�h1×1X3

��

Notice that π13  (�h1 × 1X3) is the identity automorphism of Y1 × X3 and that
(�h1 × 1X3)  π13|φ(X1) is the identity automorphism of φ(X1). It follows that
(g1, f2f1) : X1 → Y1 ×X3 is a closed embedding.

Definition 2.12. (Inductive construction of YG). Let Y be a nonsingular vari-
ety, S an arrangement of subvarieties, and G a building set of S. Suppose G =
{G1, . . . ,GN} is indexed in an order that is compatible with inclusion relations
(i.e., i ≤ j ifGi ⊆ Gj). We define (Yk , S (k), G (k)) inductively with respect to k as
follows.

(i) For k = 0, define Y0 = Y, S (0) = S, G (0) = G = {G1, . . . ,GN}, and G(0)i =
Gi for 1 ≤ i ≤ N.

(ii) Assume that (Yk−1, S (k−1), G (k−1)) is constructed.
• DefineYk to be the blow-up ofYk−1 along the nonsingular subvarietyG(k−1)

k .

• Define G(k) := (G(k−1))̃ for G∈ G and define

G (k) := {G(k)}G∈G .

• Define S (k) to be the induced arrangement of G (k).
(iii) Continue the inductive construction until k = N. We obtain

(YN , S (N ), G (N )),
where all the subvarieties in the building set G (N ) are divisors.

Remark. In step (ii) we need Proposition 2.8. Indeed, since G(k−1)
i for i < k

are all divisors and hence are too large to be contained in G(k−1)
k , it follows that

G
(k−1)
k is minimal in G (k−1). Proposition 2.8 then asserts the existence of a natu-

rally induced arrangement S (k) and that G (k) = {G(k)}G∈G is a building set with
respect to S (k).

Proposition 2.13. The variety YN constructed in Definition 2.12 is isomorphic
to the wonderful compactification YG defined in Definition 1.1.
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Proof. We prove by induction that Yk is the closure of the inclusion

Y ◦ ↪→
k∏
i=1

BlGiY.

The proposition is then the special case k = N.
Let 0 ≤ i ≤ k − 1. Since G(i)i+1 is minimal in G (i), Lemma 2.6(i) asserts that

there are only two possible relations between the nonsingular subvarietiesG(i)k and
G
(i)
i+1 of Yi : either G(i)k ⊇ G

(i)
i+1 or G(i)k � G(i)i+1. Therefore, Lemma 2.10 applies.

Since G(i+1)
k = (G

(i)
k )̃ , there exists a morphism f ′ such that following diagram

commutes.
Bl
G
(i+1)
k

Yi+1
f ′

��

g ′

��

Bl
G
(i)

k

Yi

g

��

Yi+1
f

�� Yi

The morphism (g ′, f ′) : Bl
G
(i+1)
k

Yi+1 → Yi+1 × Bl
G
(i)

k

Yi is a closed embedding.

Using Lemma 2.11 on the diagram

Bl
G
(k−1)
k

Yk−1 ��

��

Bl
G
(k−2)
k

Yk−2 ��

��

· · · �� Bl
G
(0)
k

Y0

��

Yk−1 �� Yk−2 �� · · · �� Y0

and using that Yk = Bl
G
(k−1)
k

Yk−1, G
(0)
k = Gk , and Y0 = Y, we conclude that the

morphism
Yk → Yk−1 × BlGkY

is a closed embedding. Because the composition of closed embeddings is still a
closed embedding, the morphism

Yk →
k∏
i=1

BlGiY

is a closed embedding. Then, since Y ◦ is an open subset of Yk and since Yk is
irreducible, from the composition

Y ◦ ↪→ Yk ↪→ Y ×
k∏
i=1

BlGiY

we see that the closure of Y ◦ in Y × ∏k
i=1 BlGiY is Yk.

Proof of Theorem 1.2. Since YG ∼= YN , it follows that YG is nonsingular, DG :=
G(N) are codimension-1 nonsingular subvarieties of YG , and YG \ Y ◦ = ⋃

DG.

Hence (i) is clear.



546 Li Li

For any T1, . . . , Tr in G that form a G-nest, DT1 , . . . ,DTr form a G (N )-nest; as a
result,

DT1 ∩ · · · ∩DTr �= ∅
by the definition of nest. Conversely, given T1, . . . , Tr in G such that the displayed
intersection is nonempty, Lemma 2.5 implies that DT1 , . . . ,DTr are all the G (N )-
factors of the intersection and therefore intersect transversally. Moreover, by the
definition of nest, DT1 , . . . ,DTr form a G (N )-nest. Proposition 2.8 then implies
that T1, . . . , Tr form a G-nest. So (ii) is clear.

3. Order of Blow-ups

In this section we shall prove Theorem 1.3, which is subsequently used in Sections
4.2–4.4. For the proof we need the following proposition, which is stronger than
Proposition 2.8(ii) in the sense that a building set still induces a building set after
a blow-up even when the center of the blow-up is not assumed to be minimal.

Proposition 3.1. Suppose that G = {G1, . . . ,Gk} is a building set of an arrange-
ment S in Y and that F ∈ G is minimal. Let φ : BlFY → Y be the blow-up of Y
along F, let G̃ be the induced building set, and let S̃ be the arrangement induced
by G̃. Suppose G+ = {G0, . . . ,Gk} is a building set and S+ is the arrangement
induced by G+.

Then G̃+ := G̃ ∪ {G̃0} is a building set of the induced arrangement

S̃+ := S̃ ∪ {S̃ ∩ G̃0}S∈S .

Proof. As the proof of Proposition 2.8, we need to discuss different types of
intersections of subvarieties. See Section 5.2.

Lemma 3.2. Let I1, I2 be two ideal sheaves on a variety Y. Define BlI2BlI1Y to
be the blow-up of Y ′ = BlI1Y along the ideal sheaf φ−1I2 · OY ′ , where φ is the
blow-up morphism φ : Y ′ → Y. Define BlI1BlI2Y symmetrically. Then

BlI1I2Y
∼= BlI2BlI1Y

∼= BlI1BlI2Y.

Proof. We show the existence of two natural morphisms

f : BlI2BlI1Y → BlI1I2Y,

g : BlI1I2Y → BlI2BlI1Y,

from which we obtain the isomorphism BlI1I2Y
∼= BlI2BlI1Y. The other isomor-

phism BlI1I2Y
∼= BlI1BlI2Y follows symmetrically.

For simplicity of notation, denote Y1 = BlI1Y, Y2 = BlI2BlI1Y, and Y3 =
BlI1I2Y.

(i) We show the existence of f.

BlI1I2Y

φ

��

BlI2BlI1Y

f

��

φ2

�� BlI1Y φ1

�� Y
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By the universal property of blowing up, it suffices to show that

(φ1φ2)
−1(I1I2) · OY2

is an invertible sheaf. Indeed,

(φ1φ2)
−1(I1I2) · OY2 = φ−1

2 ((φ
−1
1 I1 · OY1) · (φ−1

1 I2 · OY1)) · OY2

= (φ−1
2 (φ

−1
1 I1 · OY1) · OY2 ) · (φ−1

2 (φ
−1
1 I2 · OY1) · OY2 ).

In the last expression, both factors are invertible sheaves, so the product is also
invertible.

(ii) We show the existence of g.

BlI1I2Y
g

��

h

��

φ

��
��

��
��

��
��

��
��

��
��

BlI2BlI1Y

φ2

��

BlI1Y

φ1

��

Y

Because (φ−1I1 · OY3) · (φ−1I2 · OY3) = φ−1(I1I2) · OY3 is invertible, both
(φ−1I1 · OY3) and (φ−1I2 · OY3) are invertible. The invertibility of (φ−1I1 · OY3)

implies the existence of h by the universal property of blowing up. Then, since φ2

is the blow-up of the ideal sheaf (φ−1
1 I2 · OY1) and since

h−1(φ−1
1 I2 · OY1) · OY3 = φ−1I2 · OY3

is invertible, we can lift h to g by again applying the universal property of blow-
ing up. This completes the proof.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. (i) We fix the indices of {Gi} in an order that is compatible
with inclusion relations (i.e., i < j if Gi ⊂ Gj). Consider the blow-up φ : Ỹ :=
BlI1Y → Y, where I1 is the ideal sheaf of G1. Since Gi (i > 1) either contains
G1 or is transversal to G1 by Lemma 2.6, the ideal sheaf φ−1IGi · OỸ is either
IG̃i · IE or IG̃i . Because IE is invertible, the blow-up of IG̃i · IE is isomorphic to
the blow-up of IG̃i—that is, the blow-up along the nonsingular subvariety G̃i . By
the same argument, each blow-up Yk+1 → Yk is isomorphic to the blow-up of the
ideal sheaf ψ−1Ik+1 ·OYk , where ψ : Yk → Y is the natural morphism. Therefore,
by Lemma 3.2,

YG ∼= BlIN · · ·BlI2BlI1Y
∼= BlI1···INY.

(ii) Now assume that the order of {Gi} is not necessarily compatible with inclu-
sion relations but that it does satisfy (∗).

The proof is by induction with respect toN. The statement is obviously true for
N = 1. Assume the statement (ii) is true for N, and consider G+ = G ∪ {GN+1}.
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We need to show that YG+ is isomorphic to the blow-up of YG along a nonsingular
subvariety G̃N+1.

Suppose F is minimal in G, Ỹ = BlFY, and φ : Ỹ → Y is the natural morphism.
Proposition 3.1 implies that G̃+ := G̃ ∪{G̃N+1} is a building set in Ỹ. There are two
cases. If F is not minimal in G+ , then GN+1 must be minimal and GN+1 � F ; in
this case, φ−1IGN+1 · OỸ = IG̃N+1

. Next consider the case where F is minimal in
G+. NowGN+1 either contains F or is transversal to F, so φ−1IGN+1 · OỸ is either
IG̃N+1

· IE or IG̃N+1
. In each situation, φ−1IGN+1 · OỸ is isomorphic to IG̃N+1

up
to an invertible sheaf. Continue this procedure until all elements in G have been
blown up. Let ψ : YG → Y be the natural morphism. Then ψ−1IGN+1 · OYG is
isomorphic to the ideal sheaf of the nonsingular subvariety G̃N+1 ⊂ YG up to an
invertible sheaf, and hence the blow-up of YG along ψ−1IGN+1 ·OYG is isomorphic
to the blow-up of YG along G̃N+1. This completes the proof.

4. Examples of Wonderful Compactifications

4.1. Wonderful Model of Subspace Arrangements

If we let Y = V be a finite-dimensional vector space, let S be any finite collection
of subspaces of V, and construct the wonderful compactification of any building
set of subspaces of V, then we recover the wonderful model of subspace arrange-
ments by De Concini and Procesi.

It was discovered by De Concini and Procesi [DP] that, if a subset G ⊆ S forms
a so-called building set, then the closure of the natural locally closed embedding

i : V
∖ ⋃

W∈G
W ↪→ V ×

∏
W∈G

P(V/W )

is a nonsingular variety birational toV. Moreover, the subspaces in S are replaced
by a normal crossing divisor.

Remark. This idea motivated a generalized definition of the so-called wonder-
ful conical compactifications for a complex manifold given by MacPherson and
Procesi [MP]. Our definition of wonderful compactification is neither strictly gen-
eral nor strictly less general than the wonderful compactification defined in [MP].
On the one hand, our compactification does not include the conic case: all the sub-
varieties involved in this paper are assumed to be nonsingular. On the other hand,
even over the complex field C, many arrangements of nonsingular varieties are not
conical.

4.2. Fulton–MacPherson Configuration Spaces

Let X be a nonsingular variety, let Y = Xn, and let G be the set of diagonals of
Xn. Our wonderful compactification gives the Fulton–MacPherson configuration
space X[n].

In [FM], Fulton and MacPherson constructed a compactification X[n] of the
configuration space F(X, n) of n distinct labeled points in a nonsingular algebraic
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variety X. This compactification is related to several areas of mathematics. In
[FM], Fulton and MacPherson used their compactification to construct a differen-
tial graded algebra that is a model for the configuration space F(X, n) in the sense
of Sullivan. Axelrod and Singer [AxS] used an analogous construction in the set-
ting of real smooth manifolds in Chern–Simons perturbation theory. Now we give
a brief review of Fulton and MacPherson’s construction.

The configuration space F(X, n) is an open subset of the Cartesian product Xn

defined as the complement of all diagonals:

F(X, n) := Xn
∖ ⋃

|I |≥2

�I = {(p1, . . . ,pn)∈Xn | pi �= pj ∀i �= j}.

The construction of X[n] by Fulton and MacPherson is inductive. They de-
fine X[1] to be X and X[n + 1] to be the variety that results from a sequence of
blow-ups of X[n] ×X along nonsingular subvarieties corresponding to all diago-
nals �I , where I ⊆ [n+ 1], |I | ≥ 2, and I contains the number n+ 1.

For example, X[2] is the blow-up of X2 along the diagonal �12. The variety
X[3] is obtained from a sequence of blow-ups ofX[2]×X along nonsingular sub-
varieties corresponding to {�123;�13,�23}. More specifically, denoting by π the
blow-up X[2] × X → X3, we blow up first along π−1(�123) and then along the
strict transforms of�13 and�23 (the two strict transforms are disjoint, so they can
be blown up in any order). In general, the order of blow-ups in the construction of
X[n] can be expressed as

�12,�123,�13,�23,�1234,�124,�134,�234,�14,�24,�34,�12345,�1235, . . . .

It is easy to verify that this sequence satisfies (∗) in Theorem 1.3, so the resulting
variety X[n] is indeed the wonderful compactification YG . Theorem 1.3 also im-
plies that X[n] can be obtained from a more symmetric sequence of blow-ups in
the order of ascending dimension:

�12,...,n,�12,...,(n−1), . . . ,�23,...,n, . . . ,�12, . . . ,�(n−1),n.

This more symmetric order of blow-ups is given by De Concini and Procesi [DP],
MacPherson and Procesi [MP], and Thurston [T].

In fact, graphs can be used to clarify condition (∗) by using Kuperberg–Thur-
ston’s compactification (cf. the discussion after Proposition 4.2).

4.3. Kuperberg–Thurston’s Compactification

In [KuT], Kuperberg and Thurston constructed an interesting compactification
of the configuration space F(X, n). Their construction is for real smooth mani-
folds and in this section we adapt their compactification to a nonsingular algebraic
variety.

Let � be a (not necessarily connected) graph with n labeled vertices such that �
has no self-loops or multiple edges. Denote by�� the polydiagonal in Xn, where
xi = xj if i, j are connected in �. We call a graph � vertex-2-connected if the
graph is connected and if it will remain connected after we remove any vertex. In
particular, a single edge is vertex-2-connected.
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In [KT] the authors state and sketch a proof that blowing up along �� ′ for all
vertex-2-connected subgraphs � ′ ⊆ � gives a compactification X�. If � is the
complete graph with n vertices (i.e., any two vertices are joined with an edge), then
the compactification X� is exactly the Fulton–MacPherson compactication X[n].

Kuperberg–Thurston’s compactification X� is a special case of the wonderful
compactification of an arrangement of subvarieties given in this paper. Indeed, let
Y = Xn, let

G := {�� ′ : � ′ ⊆ � is vertex-2-connected},
and let S be the set of polydiagonals of Xn obtained by intersecting only the di-
agonals in G.

Proposition 4.1. In the notation just given, G is a building set with respect to
S. Therefore, Kuperberg–Thurston’s compactification is the wonderful compacti-
fication YG .

Proof. The proof is in two steps.
(1) We call � ′ ⊆ � a full subgraph if the following conditions are satisfied:

• � ′ contains all vertices in �;
• for any edge e ∈ �, if its endpoints p and q are in the same connected compo-

nent of � ′ then e ∈� ′.
Then there is a one-to-one correspondence between the set of all full subgraphs
of � and the set S. The correspondence is given by mapping a full subgraph � ′
to �� ′ .

(2) Any full subgraph � ′ has a unique decomposition into vertex-2-connected
subgraphs �1, . . . ,�k. Observe that ��1 , . . . ,��k are the minimal elements in G
containing �� ′ and that they intersect transversally with the intersection �� ′ .
Therefore, G is a building set by Definition 2.2.

Remark. It is also easy to describe a G-nest. It corresponds to a set of vertex-
2-connected subgraphs of � where, for any two subgraphs �1 and �2, one of the
following statements holds:

(i) �1 and �2 are disjoint; or
(ii) �1 and �2 intersect at one vertex; or

(iii) �1 ⊆ �2 or �2 ⊆ �1.

The next proposition describes the relation between X�1 and X�2 for �1 � �2,
which will help us understand the construction of Fulton and MacPherson config-
uration spaces.

Proposition 4.2. Let �1 � �2 be two (not necessarily connected ) graphs with n
labeled vertices without self-loops and multiple edges. Then X�2 can be obtained
by a sequence of blow-ups of X�1 along nonsingular centers.

One such order is given as follows. Let {� ′′
j }tj=1 be the set of all vertex-2-

connected subgraphs of �2 that are not contained in �1. Arrange the index such
that i < j if the number of vertices of � ′′

i is greater than the number of vertices
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of � ′′
j . Then X�2 can be obtained by blowing up along the nonsingular centers

�̃� ′′
1

, �̃� ′′
2
, . . . , �̃� ′′

t
.

Proof. Let {� ′
i }si=1 be the set of all vertex-2-connected subgraphs of �1. Arrange

the indices such that i < j if the number of vertices of � ′
i is greater than the num-

ber of vertices of � ′
j .

It is easy to verify that {�� ′
1
, . . . ,�� ′

s
,�� ′′

1
, . . . ,�� ′′

t
} satisfies (∗) in Theorem1.3.

Apply Theorem 1.3, we know thatX�2 is the blow-up ofXn along the nonsingular
centers

�� ′
1
, �̃� ′

2
, . . . , �̃� ′

s
, �̃� ′′

1
, . . . , �̃� ′′

t
.

On the other hand, after the first s blow-ups we getX�1. ThereforeX�2 can be ob-
tained by a sequence of blow-ups along nonsingular centers �̃� ′′

1
, . . . , �̃� ′′

t
. This

completes the proof.

In light of Proposition 4.2, Fulton and MacPherson’s original construction ofX[n]
can be understood as specifying a chain of graphs. Indeed, by the proposition, the
first arrow corresponds to blowing up X[4] along �12, the second corresponds
to blowing up along �̃123, �̃13, and �̃23 (which correspond to all the vertex-2-
connected subgraphs that are not in the previous graph), and the last arrow corre-
sponds to blowing up along �̃1234, �̃124, �̃134, �̃234, �̃14, �̃24, and �̃34. On the
other hand, the symmetric construction of X[4] corresponds to the chain contain-
ing only two graphs: the first graph and last graph in Figure 1.

X 4

•

•

•

•
1

2

4

3

−→

X[2] ×X2

•

•

•

•
1

2

4

3

−→

X[3] ×X

•

•

•

•
1

2

4

3

���������
−→

X[4]

•

•

•

•
1

2

4

3

�����������
��

��
��

�

Figure 1 Fulton and MacPherson’s construction of X[4]

To illustrate the idea a little more, in Figure 2 we construct X[3] corresponding
to the chain of graphs. The first step is to blow up along �12, the second step is
to blow up along �̃23, and the final step is to blow up along �̃123 and �̃13. Each
blow-up is along a nonsingular subvariety.

X3

•

•

•

1

2 3

−→

X[2] ×X

•

•

•

1

2 3

−→

Bl�̃23
(X[2] ×X)

•

•

•

1

2 3

−→

X[3]

•

•

•

1

2 3

���������

Figure 2 A new construction of X[3]
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4.4. Moduli SpaceM0,n of Rational Curves with n Marked Points

The moduli spaceM0,n is the wonderful compactification of ((P1)n−3, S, G), where
G is set of all diagonals and augmented diagonals

�I,a := {(p4, . . . ,pn)∈ (P1)n−3 | pi = a ∀i ∈ I }
for I ⊆ {4, . . . , n}, |I | ≥ 2, and a ∈ {0,1,∞}. Here S is the set of all intersections
of elements in G.

This result is an immediate consequence of Theorem 1.3 applied to Keel’s con-
struction [Ke1]. Indeed, Keel gives the construction of M0,n by a sequence of
blow-ups in the following order:

�45,0,�45,1,�45,∞,�456,0,�456,1,�456,∞, . . . ,�46,0, . . . ,�456, . . . .

To be more precise: for I such that max I = 5, blow up along�I,a for those I such
that |I | = 2; for max I = 6, blow up �I,a for |I | = 3 and then �I for |I | = 3. In
general, for max I = k, blow up �I,a for |I | = k − 3, then �I,a for |I | = k − 4
and �I for |I | = n − 3, then �I,a for |I | = k − 5 and �I for |I | = n − 4, and
so forth. It is easy to check that the order satisfies (∗) in Theorem 1.3. Therefore,
M0,n is a wonderful compactification.

Notice that the preceding diagonals and augmented diagonals in P n−3 are just
the restrictions of diagonals in (P1)n to the codimension-3 subvariety

Y = {(p1,p2, . . . ,pn)∈ (P1)n | p1 = 0, p2 = 1, p3 = ∞}.
Now, by blowing up all the diagonals of (P1)n in order of increasing dimension and
then comparing with the construction of Fulton–MacPherson configuration space,
we obtain a relation between M0,n and the Fulton–MacPherson space P1[n] in
Corollary 1.4.

4.5. Ulyanov’s Compactification

Closely related to Fulton and MacPherson’s compactification is another compact-
ification of the configuration space F(X, n), which Ulyanov [U] discovered and
denoted by X〈n〉. The construction consists of blowing up more subvarieties in
Xn than Fulton–MacPherson’s construction does; in particular, Ulyanov blows up
not only diagonals but also polydiagonals. The order of the blow-ups in [U] is the
ascending order of the dimension. For example, X〈4〉 is the blow-up of X 4 along
polydiagonals in the following order:

(1234), (123), (124), (134), (234), (12, 34), (13, 24), (14, 23), (12), . . . , (34).

The polydiagonal compactification X〈n〉 shares many similar properties with
Fulton–MacPherson’s compactification. However, one difference is that, in the
case of characteristic 0, the isotropy group of any point in X〈n〉 is abelian under
the symmetric group action, whereas the isotropy group of a point in X[n] is not
necessarily abelian (but is always solvable) under the symmetric group action.
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4.6. Hu’s Compactification versus Minimal Compactifications

We now consider the general situation where Y is nonsingular with an arrange-
ment of subvarieties S. By blowing up all S ∈ S in order of ascending dimension,
we obtain a nonsingular variety BlSY [Hu]. Define Y ◦ := Y

∖⋃
S∈S S, the open

stratum of Y. It is isomorphic to an open subset of BlSY. Hu showed that:

(1) the boundary BlSY \ Y ◦ = ⋃
S∈S DS is a simple normal crossing divisor; and

(2) for any S1, . . . , Sn ∈ S, the intersection ofDS1, . . . ,DSk is nonempty if and only
if {Si} forms a chain—that is, S1 ⊆ · · · ⊆ Sk , with a rearrangement of indices
if necessary.

Hu’s compactification generalized Ulyanov’s polydiagonal compactification
and is a special case of the wonderful compactification of arrangement of sub-
varieties given in this paper where the building set G = S. (In this special case, a
G-nest is simply a chain of subvarieties.)

Fixing an arrangement S, Hu’s compactification YS is the maximal wonderful
compactification. Indeed, it is not hard to show that, for any building set G of S,
the natural birational map YS → YG is a morphism. At the other extreme, there
exists a minimal wonderful compactification for S that can be defined by the set
of so-called irreducible elements in S.

Definition 4.3. An elementG in S is called reducible if there areG1, . . . ,Gk ∈
S (k ≥ 2) with G = G1 � · · · � Gk and if, for every G′ ⊇ G in S, there exist
G′
i ∈ S with G′

i ⊇ Gi for 1 ≤ i ≤ k such that G′ = G′
1 � · · · � G′

k. An element
G∈ S is called irreducible if it is not reducible.

By the same method as in [DP] we can show that the irreducible elements in S
form a building set, denoted by Gmin, and that every building set G of the arrange-
ment S contains Gmin. It is not hard to show that the natural birational map YG →
YGmin is a morphism.

Of the previous examples, the Fulton–MacPherson configuration spaces, Kuper-
berg–Thurston’s compactification, and the moduli space M0,n are minimal won-
derful compactifications. Ulyanov’s polydiagonal compactification is maximal.

5. Appendix

5.1. Clean Intersection versus Transversal Intersection

Let Y be a nonsingular variety. For a nonsingular subvariety A (more generally, a
subscheme whose connected components are nonsingular subvarieties) of Y, de-
note by TA the total space of the tangent bundle ofA and by TA,y the tangent space
of A at the point y ∈A. For a point y /∈A, define TA,y to be Ty , the tangent space
of Y at y. (This stipulation will simplify the definition of transversal intersection.)
In this paper, TA,y is viewed as a subspace of Ty and TA is viewed as a subvariety
of TY .
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5.1.1. Clean Intersection
The notion of cleanness can be traced back to Bott [B] in the setting of differential
geometry.

We say that the intersection of two nonsingular subvarieties A and B is clean if
the set-theoretic intersection A ∩ B is a nonsingular subvariety (or, more gener-
ally, is a scheme whose connected components are nonsingular subvarieties) and
also satisfies the condition

TA∩B,y = TA,y ∩ TB,y ∀y ∈A ∩ B.
The following lemma gives a useful criterion for the cleanness of intersections.

Lemma 5.1. Suppose that A and B are nonsingular closed subvarieties of Y and
that the intersection C = A ∩ B is a disjoint union of nonsingular subvarieties.
Let IA (resp. IB , IC) denote the ideal sheaf ofA (resp. B, C). Then the following
statements are equivalent :

(i) the subvarieties A and B intersect cleanly;
(ii) IA + IB = IC.
In other words, two subvarieties intersect cleanly if and only if their scheme-
theoretic intersection is nonsingular.

Proof. Condition (i) is equivalent to

TA,y ∩ TB,y = TC,y ∀y ∈A ∩ B. (5.1)

By definition of tangent space,

TA,y = {v ∈ Ty | df(v) = 0 ∀f ∈ (IA)y}.
Define φ : my → my/m

2
y to be the natural quotient. Then TA,y = φ((IA)y)⊥,

the annihilator of φ((IA)y) in the dual space (my/m
2
y)

∗ ∼= Ty. Therefore, (5.1) is
equivalent to

φ((IA)y)⊥ ∩ φ((IB)y)⊥ = φ((IC)y)⊥ ∀y ∈A ∩ B,

which is equivalent to

φ((IA)y)+ φ((IB)y) = φ((IC)y) ∀y ∈A ∩ B.
Since φ((IA)y) = ((IA)y + m2

y)/m
2
y (and similarly for B and C), the preceding

condition is equivalent to

(IA)y + (IB)y + m2
y = (IC)y + m2

y ∀y ∈A ∩ B. (5.2)

On the other hand, two ideal sheaves on Y are the same if and only if their germs
coincide at every closed point y ∈ Y. So condition (ii) is equivalent to

(IA)y + (IB)y = (IC)y ∀y ∈ Y, (5.3)

where Iy denotes the germ of a sheaf I at point y. Therefore it suffices to show
that (5.2) ⇔ (5.3).
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Obviously (5.3) ⇒ (5.2). To see the implication (5.2) ⇒ (5.3), observe first that
condition (5.3) holds for y /∈A∩B and that the inclusion (IA)y + (IB)y ⊆ (IC)y
holds for y ∈A ∩ B. Thus it remains to show that (IA)y + (IB)y ⊇ (IC)y holds
for y ∈ A ∩ B. Using local parameters allows us to check that (IC)y ∩ m2

y =
(IC)ymy. Condition (5.2) then implies the surjection

(IA)y + (IB)y →→ ((IC)y + m2
y)/m

2
y

∼=−→ (IC)y/((IC)y ∩ m2
y)

∼=−→ (IC)y/(IC)ymy.

Hence (IA)y + (IB)y + (IC)ymy = (IC)y. Applying Nakayama’s lemma then
yields (IA)y + (IB)y = (IC)y , which completes the proof.

5.1.2. Transversal Intersection
By definition, A and B intersect transversally (denoted by A � B) if T ⊥

A,y + T ⊥
B,y

form a direct sum in the dual space T ∗
y

∼= my/m
2
y of Ty for any point y ∈ Y or,

equivalently, if
Ty = TA,y + TB,y ∀y ∈ Y.

More generally, we state that a finite collection of k nonsingular subvarieties
A1, . . . ,Ak intersect transversally (denoted by A1 � A2 � · · · � Ak) if k = 1 or if,
for any y ∈ Y,

T ⊥
A1,y

+ T ⊥
A2,y

+ · · · + T ⊥
Ak,y

form a direct sum in T ∗
y ; or, equivalently, if

codim

( k⋂
i=1

TAi,y , Ty

)
=

k∑
i=1

codim(Ai,Y );

or, equivalently, if for any y ∈ Y there exist (a) a system of local parameters
x1, . . . , xn on Y at y that are regular on an affine neighborhood U of y such that y
is defined by the maximal ideal (x1, . . . , xn) as well as (b) integers 0 = r0 ≤ r1 ≤
· · · ≤ rk ≤ n such that the subvariety Ai is defined by the ideal

(xri−1+1, xri−1+2, . . . , xri ) for all 1 ≤ i ≤ k.
(If ri−1 = ri then the ideal is assumed to be the ideal containing units, which means
geometrically that the restriction of Ai to U is empty.)

5.1.3. Transversal Intersection ⇒ Clean Intersection
If A and B intersect transversally, then we can choose local parameters around
any point y ∈A ∩ B such that (a) y is the origin and (b) the restrictions of A and
B are defined by local parameters. Then it is obvious that TA∩B,y = TA,y ∩ TB,y

for all y ∈A ∩ B.
5.1.4. Transversal Intersection at One Point + Clean Intersection

⇒ Transversal Intersection

Lemma 5.2. Let A1 and A2 be two nonsingular closed subvarieties of Y that
intersect cleanly along a closed nonsingular subvariety A. If A1 and A2 intersect
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transversally at a point y0 ∈ A, then they intersect transversally (at every point
y ∈A).

In general, let A1, . . . ,Ak be subvarieties in a simple arrangement S (cf. Def-
inition 2.1) and let A = ⋂k

i=1Ai. If A1, . . . ,Ak intersect transversally at a point
y0 ∈A, then they intersect transversally (at every point).

Proof. We prove the general case. Without loss of generality, we need only prove
the transversality for points in A. The irreducibility of Ai and A implies that
dim T ⊥

Ai,y
= dim T ⊥

Ai,y0
and dim T ⊥

A,y = dim T ⊥
A,y0

. By the definition of clean inter-
section, we have

T ⊥
A1,y

+ · · · + T ⊥
Ak,y

= T ⊥
A,y.

On the other hand, by the transversality condition at point y0 it follows that

T ⊥
A1,y0

⊕ · · · ⊕ T ⊥
Ak,y0

= T ⊥
A,y0

.

Comparing the dimensions of the two equalities just displayed, we see that the
left-hand side of the first equality must form a direct sum; therefore, A1, . . . ,Ak
intersect transversally at y.

5.1.5. Examples and Nonexamples of Clean and Transversal Intersections

• k (≤ n) hyperplanes Hi in An defined by xi = 0 intersect transversally; there-
fore, any two of them intersect cleanly.

• Two (not necessarily distinct) lines in A3 passing through the origin intersect
cleanly but not transversally.

• In A2, the intersection of the parabola y = x 2 and the line y = 0 is not clean
and thus not transversal.

5.2. Proofs of Statements in Previous Sections

Proof of Lemma 2.4. It is convenient to carry out the proof using the cotangent
space T ∗

y . We use the same notation G ∗
y , S, T ⊥

S,y , T
⊥
i as in the remark after Defi-

nition 2.2. By [DP, Sec. 2.3, Thm. (2)], the definition of building set implies the
following: if S ′ ∈ S is such that S ′ ⊇ S, then

T ⊥
S ′,y =

k⊕
i=1

(T ⊥
S ′,y ∩ T ⊥

i );

moreover, if T ⊥
S ′,y = T ′⊥

1 ⊕ · · · ⊕ T ′⊥
s , where T ′⊥

1 , . . . , T ′⊥
s are the maximal ele-

ments in G ∗
y contained in T ⊥

S ′,y , then each term (T ⊥
S ′,y ∩ T ⊥

i ) is a direct sum of
some T ′⊥

j .

Fix a point y ∈ S. To show (i), it is enough to show the following. Suppose
T ⊥

1 , . . . , T ⊥
k are all the maximal elements in G ∗

y that are contained in T ⊥
S,y. Suppose

m is an integer such that 1 ≤ m ≤ k, and define T ⊥ := T ⊥
1 ⊕ · · · ⊕ T ⊥

m . Then
T ⊥

1 , . . . , T ⊥
m are all the maximal elements in G ∗

y that are contained in T ⊥.
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To show (ii), it is equivalent to show the following. Suppose T ⊥
1 , . . . , T ⊥

k are all
the maximal elements in G ∗

y that are contained in T ⊥
S,y. Suppose T ⊥ ∈ G ∗

y is max-
imal, T ⊥ ⊇ T ⊥

1 , . . . , T ⊥
m , and T ⊥ � T ⊥

m+1, . . . , T
⊥
k . Then T ⊥, T ⊥

m+1, . . . , T
⊥
k are all

the maximal elements in G ∗
y that are contained in T ⊥ + T ⊥

S,y.

Both claims can be shown by routine linear algebra.

Proof of Lemma 2.6. Part (i) follows directly from the definition of building set: if
F is disjoint from G then of course F � G; otherwise, G contains some G-factor
of F ∩G. But a G-factor of F ∩G is either F or is transversal to F (which implies
that G � F ).

(iii) Define A = ⋂m
i=1Gi and B = ⋂k

i=m+1Gi. We claim that A ⊇ F and
B � F. That A = ⋂m

i=1Gi ⊇ F follows from the definition of m. Lemma 2.4(ii)
asserts that F � Gm+1 � · · · � Gk , so F is transversal to B. Then (iii) follows
from Lemma 2.4(i).

(ii) The proof of (iii) demonstrates the existence of an F -factorization. Now
we show that such an factorization is unique. Suppose we have another factoriza-
tion S = A′ ∩ B ′ such that A′ ⊇ F and B ′ � F. Since B ′ ⊇ F ∩ B ′ = F ∩ S and
since, by Lemma 2.4(ii), the G-factors of F ∩ S are F,Gm+1, . . . ,Gk , it follows
that each G-factorG′ of B ′ contains F orGi for somem+1 ≤ i ≤ k. But B ′ � F
impliesG′ � F, soG′ � F. HenceG′ ⊇ Gi for somem+1 ≤ i ≤ k. Intersecting
all the G-factors G′ of B ′ yields B ′ = ⋂

G′ ⊇ ⋂k
i=m+1Gi = B. Fixing a point

y ∈F ∩ S, we have
T ⊥
F,y ⊕ T ⊥

B,y = T ⊥
F,y ⊕ T ⊥

B ′,y

and T ⊥
B,y ⊇ T ⊥

B ′,y; therefore, T ⊥
B,y = T ⊥

B ′,y and so B = B ′. Similarly A = A′.
(iv) Suppose the F -factorization of S ∩ S ′ is A′′ ∩ B ′′. Then F ∩ B ′′ is the

F -factorization of the intersection. Since B ⊇ (F ∩ S) = (F ∩ B ′′) but B � F,
we have B ⊇ B ′′. Similarly, B ′ ⊇ B ′′ and so B ∩ B ′ ⊇ B ′′. By an analogous ar-
gument using the dual of the tangent space as in the proof of (ii), we can show that
B ∩ B ′ = B ′′; hence F � (B ∩ B ′). Then it is easy to see that A′′ = A ∩ A′ and
that the F -factorization of S ∩ S ′ is indeed (A ∩ A′) ∩ (B ∩ B ′).

Proof of Lemma 2.9. We give only the proof of part (iii), because (ii) and (iv) can
be proved similarly while (i), (v), and (vi) can be easily checked using a system
of local parameters.

In the complement of the exceptional divisor E, we have

(Ã1 ∩ Ã2) \ E ∼= (A1\ F ) ∩ (A2 \ F ) = (A1 ∩ A2) \G = (A1 ∩ A2 )̃ \ E.
Inside E, we have

(Ã1 ∩ Ã2) ∩ E = P(NFA1) ∩ P(NFA2) = P(TA1/TF ) ∩ P(TA2/TF )

= P((TA1 ∩ TA2)/TF ) = P(TA1∩A2/TF ) = P(NF (A1 ∩ A2))

= (A1 ∩ A2 )̃ ∩ E,

where NF (A1 ∩ A2) denotes the normal bundle of F in A1 ∩ A2. (Note that in
the fourth equality we have used the condition that A1 and A2 intersect cleanly.)
Hence Ã1 ∩ Ã2 = (A1 ∩ A2 )̃ .
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According to Lemma 5.1, Ã1 and Ã2 intersect cleanly if and only if

IÃ1
+ IÃ2

= I(A1∩A2 ) .̃ (5.4)

But Ã1 = R(E,π−1(A1)), where R(E,π−1(A1)) is the residue scheme to E in
π−1(A1) (see [K2, Thm. 1] or [F, Sec.9.2]). By a property of residue schemes,
we have

IR(E,π−1(A1)) · IE = Iπ−1(A1),

which is the same as
IÃ1

· IE = Iπ−1(A1).

Similarly, we have

IÃ2
· IE = Iπ−1(A2 ),

I(A1∩A2 )˜ · IE = Iπ−1(A1∩A2 ).

Because A1 and A2 intersect cleanly, IA1 + IA2 = IA1∩A2 , and this implies

Iπ−1(A1) + Iπ−1(A2 ) = Iπ−1(A1∩A2 ).

Thus we derive that equality

IÃ1
· IE + IÃ2

· IE = I(A1∩A2 )˜ · IE.
Since IE is an invertible sheaf, this equality implies (5.4) and hence (iii) is proved.

Proof of Proposition 2.8. (i) We need to check that any two elements in S̃ inter-
sect cleanly and that the intersection is still in S̃. For this, we need to check three
possibilities: S̃ ∩ S̃ ′, S̃ ∩ (S̃ ′ ∩ E), and (S̃ ∩ E) ∩ (S̃ ′ ∩ E). We prove only the
first because proofs for the other two possibilities are similar.

Suppose S, S ′ ∈ S. We can assume that S ∩ S ′ �= ∅, for otherwise S̃ ∩ S̃ ′ is
obviously empty. Suppose the F -factorizations of S and S ′ are S = A ∩ B and
S ′ = A′ ∩ B ′, respectively. By Lemma 2.6(iv), the F -factorization of S ∩ S ′ is
(A ∩ A′) ∩ (B ∩ B ′). Lemma 2.9(v) asserts that S̃ = Ã ∩ B̃ and S̃ ′ = Ã′ ∩ B̃ ′.
To show that S̃ and S̃ ′ intersect cleanly along a subvariety in S̃, we consider three
cases as follows.

Case 1: F � A ∩ A′. In this case, (S ∩ S ′ )̃ = (A ∩ A′ )̃ ∩ (B ∩ B ′ )̃ and

S̃ ∩ S̃ ′ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃ ′) = (A ∩ A′ )̃ ∩ (B ∩ B ′ )̃ = (S ∩ S ′ )̃ .

Moreover,

TS̃ ∩ TS̃ ′ = TÃ ∩ TB̃ ∩ TÃ′ ∩ TB̃ ′ = T(A∩A′ )˜∩ T(B∩B ′ )˜ = T(S∩S ′ )˜,

where the first and third equalities hold by Lemma 2.9(v) and the second equal-
ity holds by parts (iii) and (iv) of Lemma 2.9. Thus S̃ intersects S̃ ′ cleanly along
(S ∩ S ′ )̃ ∈ S̃.

Case 2: F = A ∩ A′ but F �= A and F �= A′. By Lemma 2.9(ii) we have
Ã ∩ Ã′ = ∅; hence

S̃ ∩ S̃ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃ ′) = ∅.
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Case 3: F = A or A′. Without loss of generality, we assume F = A. Then

S̃ ∩ S̃ ′ = (Ã ∩ Ã′) ∩ (B̃ ∩ B̃ ′) = E ∩ (Ã′ ∩ B̃ ∩ B̃ ′) = E ∩ (A′ ∩ B ∩ B ′ )̃ .

By parts (i) and (v) of Lemma 2.9,

TS̃ ∩ TS̃ ′ = (TE ∩ TB̃) ∩ (TÃ′ ∩ TB̃ ′) = (TE ∩ TÃ′) ∩ T(B∩B ′ )˜ = TE∩(A′∩B∩B ′ )˜,

so again S̃ intersects S̃ ′ cleanly alongE∩ (A∩B ∩B ′ )̃ ∈ S̃. We have thus shown
that S̃ and S̃ ′ intersect cleanly along a subvariety in S̃ in all possible cases.

(ii) To show that G̃ := {G̃}G∈G forms a building set we first need to show that,
for all S̃ (resp. (S̃∩E))∈ S̃, the G̃-factors of S̃ (resp. of (S̃∩E)) intersect transver-
sally along S̃ (resp. along (S̃ ∩ E)).

By Lemma 2.6, we can assume S = (G1 � · · · � Gm) � (Gm+1 � · · · � Gk),
F ⊆ G1, . . . ,Gm, and F � Gm+1, . . . ,Gk. Define A = G1 � · · · � Gm and B =
Gm+1 � · · · � Gk. Then S̃ = Ã ∩ B̃ by Lemma 2.9(v).

Two cases need to be considered: F � A and F = A. We prove only the first
case because the second case can be proved analogously. So assume that F � A.

First we show that, for all S̃ ∈ S̃, the G̃-factors of S̃ (resp. of (S̃ ∩ E)) intersect
transversally along S̃. Lemma 2.9 implies that

S̃ = G̃1 � · · · � G̃k
and that G̃1, . . . , G̃k are all the G̃-factors of S̃. (Indeed, if some G̃ ∈ G̃ contains
S̃, then G = π(G̃) contains S = π(S̃ ). Since G1, . . . ,Gk are all the minimal ele-
ments in G that contain S, it follows that G contains Gr for some 1 ≤ r ≤ k.

The inclusion of their dominant transforms still holds: G̃ ⊇ G̃r .) Therefore, the
G̃-factors of S̃ intersect transversally.

Next we show that, for all (S̃ ∩ E) ∈ S̃, the G̃-factors of (S̃ ∩ E) intersect
transversally along (S̃ ∩ E). Observing that

S̃ ∩ E = E � Ã � B̃ = E � G̃1 � · · · � G̃k ,
we assert that E, G̃1, . . . , G̃k are all the G̃-factors of (S̃ ∩E) and so the conclusion
follows. Indeed it is enough to show that, given any G̃ ∈ G̃ containing (S̃ ∩ E),
either G̃ = E or G̃ ⊇ G̃r for some 1 ≤ r ≤ k. The inclusion G̃ ⊇ (S̃ ∩ E) im-
plies G ⊇ (S ∩ F ) if we take the image of π. By Lemma 2.4(ii), we know that
F,Gm+1, . . . ,Gk are all the G-factors of (S∩F ). HenceG contains either F or one
ofGr form+1 ≤ r ≤ k. In the latter case we immediately get the conclusion, so
we assume that G contains F. If G = F then G̃ = E, from which the conclusion
follows.

Now we assume that G � F. Since

G̃ ∩ E ∼= P(NFG), S̃ ∩ E ∼= P(NFA|F∩B)

and since G̃ ∩E contains S̃ ∩E, we have (NFG)y ⊇ (NFA)y for any y ∈F ∩ B.
But (NFG)y ∼= TG,y/TF,y and (NFA)y ∼= TA,y/TF,y , so TG,y ⊇ TA,y and G con-
tains A. SinceG1, . . . ,Gm are the G-factors of A (by Lemma 2.4(i)), we have that
G contains Gr for some 1 ≤ r ≤ m.
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(iii) “T is a nest ⇒ T̃ is a nest”. Suppose T is induced by the flag S1 ⊆ S2 ⊆
· · · ⊆ Sk. If S1 � F or Sk ⊆ F, then T̃ is induced by the flag S̃1 ⊆ S̃2 ⊆ · · · ⊆ S̃k;
otherwise, there exists an integer m (1 ≤ m ≤ k − 1) where Sm ⊆ F but Sm+1 �
F. In this case it can be easily checked that T̃ is generated by the flag

(S̃1 ∩ S̃m+1) ⊆ · · · ⊆ (S̃m ∩ S̃m+1) ⊆ (S̃m+1 ∩ E) ⊆ · · · ⊆ (S̃k ∩ E).
“T is a nest ⇐ T̃ is a nest”. Suppose T̃ is induced by the flag S ′

1 ⊆ S ′
2 ⊆ · · · ⊆

S ′
k. If S ′

1 � E, then T is induced by the flag π(S ′
1) ⊆ π(S ′

2) ⊆ · · · ⊆ π(S ′
k) and

we are done. Now assume that S ′
1 ⊆ E and denote by m the maximal integer sat-

isfying S ′
m ⊆ E. Since E is both minimal and maximal in G̃, the E-factorization

of S ′
i must be of the form E ∩ B ′

i for 1 ≤ i ≤ m. Then it can be checked that T is
induced by the following flag:

(G ∩ π(B ′
1)) ⊆ π(B ′

1) ⊆ · · · ⊆ π(B ′
m) ⊆ π(S ′

m+1) ⊆ · · · ⊆ π(S ′
k).

Proof of Proposition 3.1. The proof is similar to the proof of Proposition 2.8. The
only new case is when F is not minimal in G+. So, throughout the proof we as-
sume that G0 is minimal and that G0 � F.

We begin by showing that S̃+ is an arrangement. First we prove that the inter-
section (G̃0 ∩ S̃ )∩ S̃ ′ is clean for S, S ′ ∈ S. Take the F -factorizations S = A∩B
and S ′ = A′ ∩B ′ in the arrangement S, and take theG0-factorization B = B1∩B2

in the arrangement S+. Similarly to proving Proposition 2.8(i), we must consider
three cases.

Case 1: F � A ∩ A′. Then

(G̃0 ∩ S̃ ) ∩ S̃ ′ = G̃0 ∩ Ã ∩ B̃1 ∩ B̃2 ∩ Ã′ ∩ B̃ ′

= G̃0 ∩ Ã ∩ Ã′ ∩ B̃2 ∩ B̃ ′

= G̃0 ∩ (A ∩ A′ )̃ ∩ (B2 ∩ B ′ )̃

= G̃0 ∩ (A ∩ A′ ∩ B2 ∩ B ′ )̃ .

The second equality holds because IB̃1
= φ−1IB1 ⊆ φ−1IG0 = IG̃0

, so B̃1 ⊇ G̃0.

The third and fourth equalities follow from Lemma 2.9.
Moreover, we have

TG̃0∩ S̃∩ S̃ ′ = TG̃0
∩ TÃ∩Ã′ ∩ TB̃2∩B̃ ′

= TG̃0
∩ TÃ ∩ TÃ′ ∩ TB̃2

∩ TB̃ ′

= (TG̃0
∩ TÃ ∩ TB̃1

∩ TB̃2
) ∩ (TÃ′ ∩ TB̃ ′)

= TG̃0∩ S̃ ∩ TS̃ ′ .

Case 2: F = A ∩ A′ but F �= A and F �= A′. In this case it is easy to verify
that (G̃0 ∩ S̃ ) ∩ S̃ ′ = ∅.

Case 3: F = A′. The proof is similar to that for Case 1 and so we omit it.

Similarly, we can check that (G̃0 ∩ S̃ ) ∩ (G̃0 ∩ S̃ ′) and (G̃0 ∩ S̃ ) ∩ (E ∩ S̃ ′) are
clean intersections along some elements in S̃+.

For our second step, we show that G̃+ is a building set. It is enough to demon-
strate that the minimal elements in G̃+ that contain G̃0 ∩ S̃ intersect transversally
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along G̃0∩S̃.Assume theF -factorization of S isA∩B, whereG � A. (IfG = A,
then G̃0 ⊆ E and so we can replace S by B and keep G̃0 ∩ S̃ unchanged.) Assume
the G0-factorization of B is B1 ∩ B2.

We claim that the set of G̃+-factors of G̃0 ∩ S̃ is

P := {G̃0} ∪ {G̃-factors of Ã} ∪ {G̃-factors of B̃2}.
It is easy to check that the subvarieties in P intersect transversally. To show that
the subvarieties in P are all the G̃+-factors, it suffices to show that any minimal
element G̃∈ G̃+ that contains G̃0 ∩ S̃ (= G̃0 ∩ Ã ∩ B̃2) belongs to P.

SinceG = φ(G̃) ⊇ φ(G̃0 ∩ Ã∩ B̃2) = G0 ∩B2 and since the set of G+-factors
of G0 ∩ B2 consists of G0 and all the G-factors of B2, we have either G ⊇ G0 or
G ⊇ B2. IfG ⊇ B2 then the conclusion follows, so we can assume thatG ⊇ G0.

Then either G � F or G ⊇ F.
If G � F, then G ⊇ G0 implies G̃ ⊇ G̃0. Since G̃ is chosen to be minimal, it

follows that G̃ = G̃0 belongs to P. If G ⊇ F, then G̃ = P(NFG) and G̃0 ∩ S̃ =
P(NFA|G0∩B). HenceG ⊇ A, which implies thatG is a G-factor of A and that G̃
is a G̃-factor of Ã. Therefore, G̃∈P.

5.3. Codimensions of the Centers

(Thanks to the referee for suggesting this question.) In the original construction of
the Fulton–MacPherson configuration space X[n], each blow-up is along a non-
singular center of codimensionm orm+1, wherem is the dimension ofX. But if
we construct X[n] by blowing up centers in ascending dimension, then the codi-
mensions of the centers are much larger: the first blow-up is along the smallest
diagonal �[n], which is of codimension m(n− 1).

In general, given a specified order of blow-ups, we can easily find the dimen-
sion (and hence the codimension) of the centers.

Proposition 5.3. Let Y be a nonsingular variety and let G = {G1, . . . ,GN} be
a nonempty building set of subvarieties of Y satisfying the condition (∗) in The-
orem 1.3. Let j be an integer between 1 and N. Define G ′ := {G1, . . . ,Gj−1}, and
define F = {Gi1,Gi2 , . . . ,Gi�} to be the minimal elements of {G∈ G ′ : G ⊇ Gj}.

Then, in the construction of YG by blowing up along G1, . . . ,GN in order, the
center of the j th blow-up is of dimension

dimGj +
�∑
k=1

(d − 1− dimGik )

if F �= ∅ and is of dimension dimGj if F = ∅.
Proof. The set G ′ := {G1, . . . ,Gj−1} is a building set by condition (∗). By Theo-
rem 1.3, we can assume thatG1, . . . ,Gj−1 is in order of ascending dimension. De-
note by Yi the variety obtained after the ith blow-up. We want to find the dimension
of G̃j in Yj−1.

Since blowing up a center that does not contain G̃j will not change the dimen-
sion of G̃j and since G̃ does not contain G̃j ifG does not containGj , we can focus
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on the subset G ′′ ⊆ G ′ of subvarieties that containGj . Let F := {Gi1,Gi2 , . . . ,Gi�}
be the set of minimal elements in G ′′. Define S := Gi1 ∩Gi2 ∩ · · · ∩Gi� . Then F
is also the set of minimal elements in G ′ that contain S. By the definition of build-
ing set, Gi1 . . . Gi� intersect transversally. A subvariety G ∈ G ′′ \ F must contain
a subvariety (say, Gi) in F. Then G � Gi � Gj , and in the variety Yi−1 we have
G̃ � G̃i � G̃j . It can easily be checked that, in the variety Yj (obtained by blow-
ing up along G̃i), G̃ will no longer contain G̃j ; hence the blow-up along G̃ will
not change the dimension of G̃j . In other words, we only need to find the change
of dim G̃j for the blow-ups along the transversal subvarieties in F, which is simply

�∑
k=1

(d − 1− dimGik ).

Example. Letm = dimX. In the original construction of the Fulton–MacPher-
son configuration space X[4] (cf. Section 4.2), the dimension of the first center is
dim�12 = 3m and the dimension of the second center, �̃123, is

dim�123 + (4m− 1− dim�12) = 2m+ (m− 1) = 3m− 1.

It can be easily checked that dim �̃I is 3m if |I | = 2 and is 3m− 1 otherwise, so
the codimension is either m or m + 1. In general, when using the order of blow-
ups in the orginal construction of X[n] for n ≥ 2, the codimension of each center
�̃I is m if |I | = 2 and is m+ 1 otherwise.

Example. The codimension is 2 for each blow-up center in Keel’s construction
ofM0,n. Since the blow-ups in Keel’s construction can be obtained by restricting
the blow-ups in the original Fulton–MacPherson construction ofX[n] to a fiber of
π123 (defined in Corollary 1.4), it follows that each blow-up center is of codimen-
sion m = 1 or m + 1 = 2. But blowing up along a center of codimension 1 does
nothing, so we need only carry out blow-ups along codimension-2 centers.

5.4. The Statements for a General Arrangement

Definition 5.4. An arrangement of subvarieties of a nonsingular variety Y is a
finite set S = {Si} of nonsingular closed subvarieties Si, properly contained in Y,
that satisfy the following conditions:

(i) Si and Sj intersect cleanly;
(ii) Si ∩ Sj either is equal to a disjoint union of some Sk or is empty.

Definition 5.5. Let S be an arrangement of subvarieties of Y. A subset G ⊆ S
is called a building set of S if there is an open cover {Ui} of Y such that (a) the re-
striction of the arrangement S|Ui is simple for each i and (b) G|Ui is a building set
of S|Ui .

A finite set G of nonsingular subvarieties of Y is called a building set if the set of
all possible intersections of collections of subvarieties from G forms an arrange-
ment S and if G is a building set of S as defined previously. In this situation, S is
called the arrangement induced by G.
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Definition 5.6. A subset T ⊆ G is called G-nested (or a G-nest ) if there is an
open cover {Ui} of Y such that (a) the restriction of the arrangement induced by G
to each Ui is simple and (b) T |Ui is a G|Ui -nest.

We define the wonderful compactification as in Definition 1.1. Then Theorem 1.2
and Theorem 1.3 still hold.
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